
 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz1

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Uninformed Search
 Problem-solving agents

 Single-State Problems
 Tree search algorithms

 Breadth-First Search
 Depth-First Search
 Limited-Depth Search
 Iterative Deepening

 Extensions
 Graph search algorithms
 Search with Partial Information

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz2

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Problem-Solving Agents
 Simple reflex agents

 have a direct mapping from states to actions
 typically too large to store
 would take too long to learn

 Goal-Based agents
 can consider future actions and the desirability of their

outcomes
 Problem-Solving Agents

 special case of Goal-Based Agents
 find sequences of actions that lead to desirable states

 Uninformed Problem-Solving Agents
 do not have any information except the problem definition

 Informed Problem-Solving Agents
 have knowledge where to look for solutions

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz3

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Goal-Based Agent
 the agent knows what states are desirable

 it will try to choose an action that leads to a desirable state

project
consequences
of actions into

the future

compare the
expected

consequence
s to goals

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz4

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Formulate-Search-Execute Design
 Formulate:

 Goal formulation:
 A goal is a set of world states that the agents wants to be in

(where the goal is achieved)
 Goals help to organize behavior by limiting the objectives that the

agent is trying to achieve
 Problem formulation:

 Process of which actions and states to consider, given a goal
 Search:

 the process of finding the solution for a problem in the form of
an action sequence
an agent with several immediate options of unknown value can
decide what to do by examining different possible sequences of
actions that lead to states of known value, and then choosing the best

 Execute:
 perform the first action of the solution sequence

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz5

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Simple Problem-Solving Agent

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz6

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Navigate in Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest

 Formulate goal:
 be in Bucharest

 Formulate problem:
 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Rimnicu Vilcea, Pitesti

 Assumption:
 agent has a map of Romania, i.e., it can use this information to

find out which of the three ways out of Arad is more likely to go
to Bucharest

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz7

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Romania

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz8

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Single-state Problem Formulation

A problem is defined by four items:

 initial state
 e.g., "at Arad"

 description of actions and their effects
 typically as a successor function that maps a state s to a set

S(s) of action-state pairs
 e.g., S(„at Arad“) = {<„goto Zerind“, „at Zerind“>, … }

 goal test, can be
 explicit, e.g., s = "at Bucharest"
 implicit, e.g., Checkmate(s), NoDirt(s)

 path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(s1, a, s2) are the costs for one step (one action),
 assumed to be ≥ 0

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz9

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Single-State Problems

Yes
 8-queens puzzle
 8-puzzle
 Towers of Hanoi
 Cross-Word puzzles
 Sudoku
 Chess, Bridge, Scrabble

puzzles
 Rubik's cube
 Sobokan
 Traveling Salesman

Problem

No
 Tetris

 dynamic not static
 Solitaire

 only partially observable

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz10

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

State Space of a Problem
 State Space

 the set of all states reachable from the initial state
 implicitly defined by the initial state and the successor function

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz11

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

State Space of a Problem
 State Space

 the set of all states reachable from the initial state
 implicitly defined by the initial state and the successor function

 Path
 a sequence of states connected by a sequence of actions

 Solution
 a path that leads from the initial state to a goal state

 Optimal Solution
 solution with the minimum path cost

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz12

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Romania

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz13

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Selecting a State Space

Real world is absurdly complex
→ state space must be abstracted for problem solving

 (Abstract) state
 corresponds to a set of real states

 (Abstract) action
 corresponds to a complex combination of real actions
 e.g., "go from Arad to Zerind" represents a complex set of

possible routes, detours, rest stops, etc.
 for guaranteed realizability, any real state "in Arad“ must get to

some real state "in Zerind"
 each abstract action should be "easier" than the original

problem
 (Abstract) solution

 corresponds to a set of real paths that are solutions in the real
world

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz14

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Romania – State Space

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz15

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: The 8-puzzle

 states?
 location of tiles

 ignore intermediate
positions during sliding

 goal test?
 situation corresponds to goal state

 path cost?
 number of steps in path

(each step costs 1)

 actions?
 move blank tile

(left, right, up, down)
 easier than having

separate moves for
each tile

 ignore actions like
unjamming slides if
they get stuck

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz16

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: The 8-Queens Problem

 states?
 any configuration of 8

queens on the board
 goal test?

 no pair of queens can
capture each other

 actions?
 move one of the queens to

another square
 path cost?

 not of interest here

inefficient complete-state formulation
→ 64 ∙ 63 ∙ ... ∙ 57 ≈ 3 ∙ 1014 states

conflict no
conflict

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz17

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: The 8-Queens Problem

 states?
 n non-attacking queens in

the left n columns
 goal test?

 no pair of queens can
capture each other

 actions?
 add queen in column n + 1
 without attacking the others

 path cost?
 not of interest here

more efficient incremental formulation
→ only 2057 states

conflict no
conflict

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz18

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Tree Search Algorithms

 Treat the state-space graph as a tree
 Expanding a node

 offline, simulated exploration of state space by generating
successors of already-explored states (successor function)

 Search strategy
 determines which node is expanded next

 General algorithm:

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz19

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Tree Search Example

 Initial state: start with node Arad

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz20

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Tree Search Example

 Initial state: start with node Arad
 expand node Arad

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz21

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Tree Search Example

 Initial state: start with node Arad
 expand node Arad
 expand node Sibiu

fringe of the
search tree

depth of the
search tree

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz22

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

States vs. Nodes
 State

 (representation of) a physical configuration
 Node

 data structure constituting part of a search tree
 includes

 state
 parent node
 action
 path cost g(x)
 depth

 Expand
 creates new nodes
 fills in the various fields
 uses the successor function to create the corresponding states

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz23

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Implementation: General Tree Search

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz24

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Search Strategies
 A search strategy is defined by picking the order of node

expansion
 implementation in a queue

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of
 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz25

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Search Strategies

 Uninformed (blind) search strategies use only the
information available in the problem definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search

 Informed (heuristic) search strategies have knowledge
that allows to guide the search to promising regions

 Greedy Search
 A* Best-First Search

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz26

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its

successors is expanded (depth)
 Implemetation:

 expand the shallowest unexpanded node
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz27

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its

successors is expanded (depth)
 Implemetation:

 expand the shallowest unexpanded node
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz28

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its

successors is expanded (depth)
 Implemetation:

 expand the shallowest unexpanded node
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz29

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Breadth-First Strategy
 Expand all neighbors of a node (breadth) before any of its

successors is expanded (depth)
 Implemetation:

 expand the shallowest unexpanded node
 fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz30

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Properties of Breadth-First Search
 Completeness

 Yes (if b is finite)
 Time Complexity

 each depth has b times as many nodes as the previous
 each node is expanded
 except the goal node in level d

 worst case: goal is last node in this level

 Space Complexity
 every node must remain in memory

 it is either a fringe node or an ancestor of a fringe node
 in the end, the goal will be in the fringe, and its ancestors will be

needed for the solution path
⇒ O(bd+1)

 Optimality
 Yes, for uniform costs (e.g., if cost = 1 per step)

⇒1bb2
b3

...bd
bd1

−b=O bd1


 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz31

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Combinatorial Explosion
 Breadth-first search

 branching factor b = 10, 10,000 nodes/sec, 1000 bytes/node

 Space is the bigger problem
 can easily generate nodes at 100MB/sec ⇒ 24hrs = 8640 GB

Depth Nodes Time Memory
2 1100 .11 secs 1 MB
4 111 100 11 secs 106 MB
6 19 mins 10 GB
8 31 hours 1 TB
10 129 days 101 TB
12 35 years 10 PetaBytes
14 3523 years 1 ExaByte

107

109

1011

1013

1015

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz32

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Uniform-Cost Search

 Breadth-first search can be generalized to cost functions
 each node now has associated costs
 costs accumulate over path
 instead of expanding the shallowest path,

expand the least-cost unexpanded node
 breadth-first is special case where all costs are equal

 Implementation
 fringe = queue ordered by path cost

 Completeness
 yes, if each step has a positive cost (cost ≥ ε)
 otherwise infinite loops are possible

 Space and Time complexity
 number of nodes with costs < costs of optimal solution C*

 Optimality
 Yes – nodes expanded in increasing order of path costs

b1O ⌊C *
/ ⌋

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz33

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz34

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz35

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz36

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz37

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz38

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz39

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz40

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz41

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz42

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz43

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz44

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-First Strategy
 Expand all successors of a node (depth) before any of its

neighbors is expanded (breadth)
 Implemetation:

 expand the deepest unexpanded node
 fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz45

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Properties of Depth-First Search
 Completeness

 No, fails in infinite-depth search spaces and spaces with loops
 complete in finite spaces if modified so that repeated states

are avoided
 Time Complexity

 has to explore each branch until maximum depth m
 terrible if m > d (depth of goal node)
 but may be faster than breadth-first if solutions are dense

 Space Complexity
 only nodes in current path and their unexpanded siblings need

to be stored
⇒ only linear complexity

 Optimality
 No, longer (more expensive) solutions may be found before

shorter (cheaper) ones

⇒Obm


O m⋅b

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz46

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Backtracking Search

Even more space-efficient variant
 does not store all expanded nodes, but only the current path

⇒ O(m)
 if no further expansion is possible, go back to the predecessor
 each node is able to generate the next successor

 only needs to store and modify one state
 actions can do and undo changes on this one state

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz47

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Depth-limited Search
 depth-first search is provided with a depth limit l

 nodes with depths d > l are not considered → incomplete
 if d < l it is not optimal (like depth-first search)
 time complexity O(bl), space complexity O(bl)

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz48

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Iterative Deepening Search

 Main problem with depth-limited search is setting of l

 Simple solution:
 try all possible l = 0, 1, 2, 3, ...

 costs are dominated by the last iteration, thus the overhead is
marginal

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz49

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Iterative Deepening Search

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz50

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Iterative Deepening Search

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz51

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Properties of
Iterative Deepening Search

 Completeness
 Yes (no infinite paths)

 Time Complexity
 first level has to be searched d times
 last level has to be searched once

 Space Complexity
⇒ only linear complexity O(bd)

 Optimality
 Yes, the solution is found at the minimum depth

⇒ combines advantages of depth-first and breadth-first search

⇒d⋅bd−1b2
...1⋅bd

=∑
i=1

d

d−i1⋅bi

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz52

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Comparison of Time Complexities

Worst-case (goal is in right-most node at level d)

 Depth-Limited Search

 Iterative Deepening

Example: b = 10, d = 5

N IDS=d⋅bd−1b2
...1⋅bd

=∑
i=1

d

d−i1⋅bi

N DLS=bb2
...bd

=∑
i=1

d

bi

N IDS=50400300020,000100,000=123,450

N DLS=10100100010,000100,000=111,110 Overhead of
IDS only ca. 10%

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz53

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Bidirectional Search
 Perform two searches simultaneously

 forward starting with initial state
 backward starting with goal state
check whether generated node is in fringe of the other search

 Properties
 reduction in complexity
 only possible if actions can be reversed
 search paths may not meet for depth-first bidirectional search

bd /2
bd /2

≪bd


 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz54

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Summary of Algorithms
 Problem formulation usually requires abstracting away real-

world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz55

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Repeated States

 Failure to detect repeated states can turn a linear problem
into an exponential one!

Ribbon Example
 two connections from each state to the next
 d states but state space is 2d

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz56

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Repeated States

 Failure to detect repeated states can turn a linear problem
into an exponential one!

(more realistic) Grid Example

 each square on grid has
4 neighboring states in

 thus, game tree w/o repetitions
has 4d nodes

 but only about 2d 2 different
states are reachable in d steps

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz57

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Graph Search

 remembers the states that have been visited in a list closed
 Note: the fringe list is often also called the open list

 Example:
 Dijkstra's algorithm is the graph-search variant of uniform cost search

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz58

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Assumptions about the Environment
 static

 we do not pay attention to possible changes in the
environment

 observable
 we can at least observe our initial state

 discrete
 possible actions can be enumerated

 deterministic
 the expected outcome of an action is always identical to the

true outcome
 once we have a plan, we can execute it „with eyes closed“

→ easiest possible scenario

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz59

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Problems with Partial Information
 Single-State Problem

deterministic, fully observable
 agent knows exactly which state it will be in
 solution is a sequence

 Conformant Problem (sensorless problem)
non-observable

 agent may have no idea where it is
 solution (if any) is a sequence

 Contingency Problem
nondeterministic and/or partially observable

 percepts provide new information about current state
 solution is a contingent plan (tree) or a policy
 search and execution often interleaved

 Exploration Problem
state-space is not known → Reinforcement Learning

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz60

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Single-state Problem
 start in #5
 goal

 no dirt
 Solution

 [Right, Suck]

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz61

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Conformant Problem
 start in any state

(we can't sense)
 start ← {1,2,3,4,5,6,7,8}

 actions
 e.g., Right

goes to {2,4,6,8}
 goal

 no dirt
 Solution

 [Right, Suck, Left, Suck]

 Problem-Solving by Uninformed Search V2.0 © J. Fürnkranz62

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

Example: Vacuum World

 Contingency Problem
 start in #5
 indeterministic actions

 Suck can dirty a
clean carpet

 sensing
 dirt at current

location?
 goal

 no dirt
 Solution

 [Right, if dirt then Suck]

	Outline
	Folie 2
	Folie 3
	Folie 4
	Problem-solving agents
	Example: Romania
	Folie 7
	Single-state problem formulation
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Selecting a state space
	Folie 14
	Example: The 8-puzzle
	Folie 16
	Folie 17
	Tree search algorithms
	Folie 19
	Folie 20
	Folie 21
	Implementation: states vs. nodes
	Implementation: general tree search
	Search strategies
	Uninformed search strategies
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Properties of breadth-first search
	Folie 31
	Uniform-cost search
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Depth-limited search
	Iterative deepening search
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Summary of algorithms
	Repeated states
	Folie 56
	Graph search
	Folie 58
	Problem types
	Example: vacuum world
	Folie 61
	Folie 62

