
   Informed Search                                                                                                   ©  J. Fürnkranz1

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Outline
 Best-first search

 Greedy best-first search
 A* search
 Heuristics

 Local search algorithms
 Hill-climbing search
 Beam search
 Simulated annealing search
 Genetic algorithms

 Constraint Satisfaction Problems



   Informed Search                                                                                                   ©  J. Fürnkranz2

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Motivation
 Uninformed search algorithms are too inefficient

 they expand far too many unpromising paths
 Example:

 8-puzzle

 Average solution depth = 22
 Breadt-first search to depth 22 has to expand about 3.1 x 1010 

nodes

→ try to be more clever with what nodes to expand

 



   Informed Search                                                                                                   ©  J. Fürnkranz3

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Best-First Search
 Recall

 Search strategies are characterized by the order in which they 
expand the nodes of the search tree

 Uninformed tree-search algorithms sort the nodes by problem-
independent methods (e.g., recency)

 Basic Idea of Best-First Search
 use an evaluation function  f (n)  for each node

 estimate of the "desirability" of the node's state
 expand most desirable unexpanded node

 Implementation
 use Game-Tree-Search algorith
 order the nodes in fringe in decreasing order of desirability

 Algorithms
 Greedy best-first search
 A* search



   Informed Search                                                                                                   ©  J. Fürnkranz4

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Heuristic
 Greek "heurisko" (εὑρίσκω) → "I find"

 cf. also „Eureka!“

 informally denotes a „rule of thumb“
 i.e., knowledge that may be helpful in solving a problem
 note that heuristics may also go wrong!

 In tree-search algorithms, a heuristic denotes a function that 
estimates the remaining costs until the goal is reached

 Example:
 straight-line distances may be a good approximation for the 

true distances on a map of Romania
 and are easy to obtain (ruler on the map)

 but cannot be obtained directly from the distances on the map



   Informed Search                                                                                                   ©  J. Fürnkranz5

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Romania Example:
Straight-line Distances

176



   Informed Search                                                                                                   ©  J. Fürnkranz6

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Greedy Best-First Search
 Evaluation function f (n) = h(n)   (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to 
be closest to goal 

 according to evaluation function
 Example:



   Informed Search                                                                                                   ©  J. Fürnkranz7

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Greedy Best-First Search
 Evaluation function f (n) = h(n)   (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to 
be closest to goal 

 according to evaluation function
 Example:



   Informed Search                                                                                                   ©  J. Fürnkranz8

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Greedy Best-First Search
 Evaluation function f (n) = h(n)   (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to 
be closest to goal 

 according to evaluation function
 Example:



   Informed Search                                                                                                   ©  J. Fürnkranz9

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Greedy Best-First Search
 Evaluation function f (n) = h(n)   (heuristic)

 estimates the cost from node n to goal
 e.g., hSLD(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to 
be closest to goal 

 according to evaluation function
 Example:



   Informed Search                                                                                                   ©  J. Fürnkranz10

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Properties of 
Greedy Best-First Search

 Completeness
 No – can get stuck in loops
 Example: We want to get from Iasi to Fagaras

 Iasi → Neamt → Iasi → Neamt → ...

Neamt is closer
to Fagaras than
Vaslui

Note: 
These two are
different search
nodes referring 

to the same state!



   Informed Search                                                                                                   ©  J. Fürnkranz11

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Properties of 
Greedy Best-First Search

 Completeness 
 No – can get stuck in loops
 can be fixed with careful checking for duplicate states
→ complete in finite state space with repeated-state checking

 Time Complexity
 O(bm), like depth-first search
 but a good heuristic can give dramatic improvement

 optimal case: best choice in each step → only d steps
 a good heuristic improves chances for encountering optimal case

 Space Complexity
 has to keep all nodes in memory → same as time complexity

 Optimality
 No
 Example:

  solution Arad → Sibiu → Fagaras → Bucharest is not optimal



   Informed Search                                                                                                   ©  J. Fürnkranz12

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search
 Best-known form of best-first search

 Basic idea:
 avoid expanding paths that are already expensive
→ evaluate complete path cost not only remaining costs

 Evaluation function:
 g(n) = cost so far to reach node n
 h(n) = estimated cost to get from n to goal
 f (n) = estimated cost of path to goal via n

f n=g nhn



   Informed Search                                                                                                   ©  J. Fürnkranz13

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Beispiel

g (n) h(n)



   Informed Search                                                                                                   ©  J. Fürnkranz14

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example



   Informed Search                                                                                                   ©  J. Fürnkranz15

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example



   Informed Search                                                                                                   ©  J. Fürnkranz16

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example



   Informed Search                                                                                                   ©  J. Fürnkranz17

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example



   Informed Search                                                                                                   ©  J. Fürnkranz18

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example

Note that Pitesti will be expanded even 
though Bucharest is already in the fringe!
This is good, because we may still find a

shorter way to Budapest.
Greedy Search would not do that.



   Informed Search                                                                                                   ©  J. Fürnkranz19

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

A* Search Example



   Informed Search                                                                                                   ©  J. Fürnkranz20

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Properties of A*

 Completeness
 Yes 
 unless there are infinitely many nodes with 

 Time Complexity
 it can be shown that the number of nodes grows exponentially 

unless the error of the heuristic h(n) is bounded by the 
logarithm of the value of the actual path cost h*(n), i.e.

 Space Complexity
 keeps all nodes in memory
 typically the main problem with A* 

 Optimality
 ???
→ following pages

f n ≤ f G 

∣h n−h*
n∣≤ O log h*

n



   Informed Search                                                                                                   ©  J. Fürnkranz21

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Admissible Heuristics

A heuristic is admissible if it never overestimates the 
cost to reach the goal

 Formally:
                    if h*(n) are the true cost from n to goal

 Example:
 Straight-Line Distances hSLD are an admissible heuristics for 

actual road distances h*

 Note:
             must also hold, so that h(goal) = 0

h n≤h*
n

h n≥0



   Informed Search                                                                                                   ©  J. Fürnkranz22

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

 If h(n) is admissible, A* using TREE-SEARCH is optimal. If h(n) is admissible, A* using TREE-SEARCH is optimal.

Theorem

Suppose some 
suboptimal goal G2 

has been generated 
and is in the fringe.

Let n be an unexpanded 
node in the fringe such 
that n is on a shortest 
path to an optimal goal G
with path cost C*.

Proof:

g G 2C*

because G2 suboptimal
f n≤ C*

f G2=g G2

because hG2=0
(holds for all goal nodes)

f n=g nhn

C*=g nh*n

hn≤h*n
because h admissible G2 will never be expanded,

and G will be returned

 f G2



   Informed Search                                                                                                   ©  J. Fürnkranz23

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Consistent Heuristics
 Graph-Search discards new paths to repeated state even 

though the new path may be cheaper
→ Previous proof breaks down

 2 Solutions
1.Add extra bookkeeping to remove the more expensive path
2.Ensure that optimal path to any repeated state is always 

followed first

 Requirement for Solution 2:

A heuristic is consistent if for every node n 
and every successor n' generated by any 
action a it holds that  

h n≤cn , a , n ' h n ' 



   Informed Search                                                                                                   ©  J. Fürnkranz24

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Lemma 1

 Note:
 not every admissible heuristic is consistent
 but most of them are 

 it is hard to find non-consistent admissible heuristics

 Every consistent heuristic is admissible. Every consistent heuristic is admissible.

Proof Sketch:

h n≤cn , a ,G h G =h*
n

for all nodes n, in which an action a leads to goal G

by induction on the path length from goal, this argument
can be extended to all nodes, so that eventually 

∀n : h n≤h*
n



   Informed Search                                                                                                   ©  J. Fürnkranz25

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Lemma 2

If h(n) is consistent, then the values of 
f (n) along any path are non-decreasing.

If h(n) is consistent, then the values of 
f (n) along any path are non-decreasing.

Proof:
f n  = g nh n ≤ g ncn , a , n ' hn '  =

g nc n , a , n ' h n'  = g n' h n'  = f n' 



   Informed Search                                                                                                   ©  J. Fürnkranz26

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Theorem

If h(n) is consistent, A* is optimal.If h(n) is consistent, A* is optimal.

A* expands nodes in order of increasing f value
Proof:

Contour labelled fi

contains all nodes
with f n f i

Contours expand gradually
Cannot expand fi+1 until fi is finished.

Eventually
 A* expands all nodes with 
 A* expands some nodes with 
 A* expands no nodes with 

Eventually
 A* expands all nodes with 
 A* expands some nodes with 
 A* expands no nodes with 

f n  C*

f n = C*

f n   C*

How would
such contours

look like for
uniform-cost 

search?



   Informed Search                                                                                                   ©  J. Fürnkranz27

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

 Space is the main problem with A*

 Some solutions to A* space problems 
(maintaining completeness and optimality)

 Iterative-deepening A* (IDA*)
 like iterative deepening
 cutoff information is the f-cost (g + h) instead of depth

 Recursive best-first search (RBFS)
 recursive algorithm that attempts to mimic standard best-first 

search with linear space.
 keeps track of the f-value of the best alternative path available 

from any ancestor of the current node
 (Simple) Memory-bounded A* ((S)MA*)

 drop the worst leaf node when memory is full

Memory-Bounded Heuristic Search



   Informed Search                                                                                                   ©  J. Fürnkranz28

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Admissible Heuristics: 8-Puzzle

 hMIS(n) = number of misplaced tiles
 admissible because each misplaced tile must be moved at 

least once
 hMAN(n) = total Manhattan distance

 i.e., no. of squares from desired location of each tile
 admissible because this is the minimum distance of each tile to 

its target square
 Example:

hMIS start =8

hMAN start =18

h*
 start =26



   Informed Search                                                                                                   ©  J. Fürnkranz29

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Effective Branching Factor
 Evaluation Measure for a search algorithm:

 assume we searched N nodes and found solution in depth d
 the effective branching factor b* is the branching factor of a 

uniform tree of depth d with N+1 nodes, i.e.

 Measure is fairly constant for different instances of 
sufficiently hard problems

 Can thus provide a good guide to the heuristic’s overall 
usefulness.

 A good value of b* is 1

1N = 1b*
b*


2
...b*


d



   Informed Search                                                                                                   ©  J. Fürnkranz30

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Efficiency of A* Search
 Comparison of number of nodes searched by A* and  

Iterative Deepening Search (IDS)
 average of 100 different 8-puzzles with different solutions 
 Note: heuristic                is always better than  h2=hMAN h1=hMIS



   Informed Search                                                                                                   ©  J. Fürnkranz31

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Dominance

 If h1 and h2 are admissible, h2 dominates h1 if 
 If h1 and h2 are admissible, h2 dominates h1 if ∀n : h2n≥h1 n

 if h2 dominates h1 it will perform better because it will always be 

closer to the optimal heuristic h*

 Example:
 hMAN dominates hMIS because if a tile is misplaced, its 

Manhattan distance is ≥ 1

Theorem: (Combining admissible heuristics)

 If h1 and h2 are two admissible heuristics than

           is also admissible and dominates h1 and h2 

h n=max h1n , h2n



   Informed Search                                                                                                   ©  J. Fürnkranz32

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Relaxed Problems
 A problem with fewer restrictions on the actions is called a 

relaxed problem
 The cost of an optimal solution to a relaxed problem is an 

admissible heuristic for the original problem

 Examples:
 If the rules of the 8-puzzle are relaxed so that a tile can move 

anywhere, then hMIS gives the shortest solution
 If the rules are relaxed so that a tile can move to any adjacent 

square, then hMAN gives the shortest solution

 Thus, looking for relaxed problems is a good strategy for 
inventing admissible heuristics.



   Informed Search                                                                                                   ©  J. Fürnkranz33

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Pattern Databases
 Admissible heuristics can also be derived from the solution 

cost of a subproblem of a given problem.
 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution (length) for every 
possible subproblem instance

 constructed once for all by searching backwards from the goal 
and recording every possible pattern

 Example:
 store exact solution costs for solving 4 tiles of the 8-puzzle
 sample pattern:



   Informed Search                                                                                                   ©  J. Fürnkranz34

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Learning of Heuristics
 Another way to find a heuristic is through learning from 

experience
 Experience: 

 states encountered when solving lots of 8-puzzles
 states are encoded using features, so that similarities between 

states can be recognized
 Features:

 for the 8-puzzle, features could, e.g. be 
 the number of misplaced tiles
 number of pairs of adjacent tiles that are also adjacent in goal
 ...

 An inductive learning algorithm can then be used to predict 
costs for other states that arise during search.

 No guarantee that the learned function is admissible!



   Informed Search                                                                                                   ©  J. Fürnkranz35

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

Summary
 Heuristic functions estimate the costs of shortest paths
 Good heuristics can dramatically reduce search costs
 Greedy best-first search expands node with lowest estimated 

remaining cost
 incomplete and not always optimal

 A* search minimizes the path costs so far plus the estimated 
remaining cost

 complete and optimal, also optimally efficient:
 no other search algorithm can be more efficient, because they all 

have search the nodes with               
 otherwise it could miss a solution

 Admissible search heuristics can be derived from exact 
solutions of reduced problems

 problems with less constraints
 subproblems of the original problem

f nC*


	Outline
	Folie 2
	Best-first search
	Folie 4
	Romania with step costs in km
	Folie 6
	Folie 7
	Folie 8
	Greedy best-first search
	Properties of greedy best-first search
	Folie 11
	A* search
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Properties of A$^*$
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Dominance
	Relaxed problems
	Folie 33
	Folie 34
	Folie 35

