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 Representation in Planning Systems
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Planning problem

 Planning is the task of coming up with a sequence of actions 
that will achieve a goal starting from an initial state

 many search-based problem-solving agents are special cases
 Given:

 a set of action descriptions (defining the 
possible primitive actions by the agent), 

 an initial state description, and 
 a goal state description or predicate, 

 Find a plan, which is
 a sequence of action instances, such that executing them in 

the initial state will change the world to a state satisfying the 
goal-state description. 

 Goals are usually specified as a conjunction of subgoals to 
be achieved

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties



   Planning                                                                                                                                      

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz3

Application Scenario
 Classical planning environment

 fully observable, deterministic, finite, static, discrete
 Practical Applications

 design and manufacturing
 military operations
 games
 space exploration
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Planning vs. Problem Solving

 Planning and problem solving methods can often solve the 
same sorts of problems

 Planning is more powerful because of the representations 
and methods used

 States, goals, and actions are decomposed into sets of 
sentences (usually in first-order logic)

 Planning can analyze the effects of actions
 The successor function is a black box: it must be “applied” to 

a state to know which actions are possible in that state and 
what are the effects of each one

 An explicit representation of the possible actions and their 
effects would help the problem solver 

 Subgoals can often be planned independently, reducing the 
complexity of the planning problem

 Search may be through plan space rather than state space



   Planning                                                                                                                                      

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz5

Representation in Planning

Problem solving Logic representation

Planning

 In Problem Solving, actions, states, and goals are black 
boxes

 each problem has its own representation
 agent does not understand the representations of actions, 

states, and goals
→ cannot exploit relations between them

 Planning works with explicit representations of actions, 
states, and goals

 typically in some form of logical calculus



   Planning                                                                                                                                      

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz6

Key Problems
 Which actions are relevant?

 Example:  Goal is have(milk)
 the agent may have billions of possible actions 

 e.g., one buy-action for each possible product in a store
 an intelligent planner will know that buy(X) will cause have(X), 

and only consider the action buy(milk)
 What is a good heuristic functions?

 Problem: 
 states are domain-specific data structures, and new heuristics 

must be supplied for each new problem
 Example: Goal is buying n different items

 Number of plans grows exponentially with n
→ Problem-independent heuristics are needed

 e.g., number of subgoals that have already been reached
 How to decompose a problem?
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Decomposable Problems
 Goals are often given as a conjunction of subgoals

 e.g., have(milk) & have(bread)
 each subgoal can be solved independently

Other problems can be decomposed into subproblems:
 Example: overnight delivery of a set of packages

 Planning a complete route for all packages at once is very 
expensive (O(n!) different routes)

→ Better decompose the problem:
 First distribute the packages to the airports nearest to the 

respective destinations
 Then plan separate routes from each airport to the final 

destinations
→ O(k∙(n/k)!) different routes if we have k airports 

 much less than O(n!))
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Nearly Decomposable Problems
 Completely decomposable problems are rare

 typically there are interactions between subgoals

→ Nearly decomposable problems
 planning for subgoals is possible
 but additional work may be required to bring the partial results 

together
 Example:

 Independent plans for have(milk)and have(bread) may 
have the result that two different super-markets are visited
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Major Approaches to Planning
 Situation calculus
 State space planning
 Partial order planning
 Planning graphs
 Planning with Propositional Logic
 Hierarchical decomposition (HTN planning)
 Reactive planning
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Planning in First-Order Logic

Principal Idea:
 Formulate planning problem in First-Order Logic (FOL)

 states (and goals) are conjunctions of literals
 actions are logical rules

 Use theorem prover to find a proof for the goal
 the actions used in this proof are the plan
 e.g., use PROLOG

Key Problem:
 How to represent change?

a) add and delete sentences from the KB to reflect changes
b) all facts are indexed by a situation variable → situation 

calculus
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PROLOG-like Logical Notation
 Constant:  represents some objects

 starts with a number or a lower-case letter
 e.g., pam, bob, liz, 1, pi, true, etc.

 functions are like constants, but complex expressions
 Variable: denotes some unknown object/constant

 starts with an upper-case letter or an underscore
 e.g. X, Person, Nummer, _42, etc.

 within a conjunction of literals, same variables refer to same objects
 but may be different objects in different conjunctions / rules

 Predicate: denotes a relation between two objects
 starts with a lower-case letter

 e.g., parent, male, female
 Literal: a predicate symbol with some arguments

 e.g., parent(pam,bob), at(pam,X), airport(X)
 Rule: an implication, typically written Head :- Cond1, Cond2, ....

 e.g., grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
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Situation Calculus
 A situation is a snapshot of the world at some instant in time
 Every true or false statement is made with respect to a 

particular situation
 Add situation variables to every predicate.
 at(agent,1,1) becomes at(agent,1,1,s0): 
at(agent,1,1) is true in situation (i.e., state) s0.

 Add a new function, result(a,s), that maps a situation s 
into a new situation as a result of performing action a. 

 For example, result(forward,s) is a function that returns 
the successor state (situation) to s after performing action a 

 Note that this is just notation! 
 Logical functions are not implemented or evaluated!
 They are used in pattern matching



   Planning                                                                                                                                      

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz13

Situation Calculus
 Actions can be respresented as logical rules that describe 

which states can be valid
 Example: 

 The action agent-walks-to-location-y could be represented by 
the PROLOG rule

at(A,Y,result(walk(Y),S)) :- at(A,X,S).

agent A is now at location Y in state result(walk(Y),S)
if it was at location X in state S and performed action walk(Y)

 Action sequences are also useful: results(l,s) is the 
result of executing the list of actions l starting in s:

 corresponding rules could be included as short-hand notation 
into inference engine

results([],S) = S
results([A|P],S) = results(P,result(A,S))
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Situation Calculus Planning
 Initial state

 a logical sentence that describes current situation S0

at(home,s0), not(have(milk,s0)), not(have(bread,s0)),
not(have(drill,s0))

 Goal state 
 a logical sentence that describes the goal state

at(home,G), have(milk,G), have(bread,G), have(drill,G)

 Actions (Operators)
 logical rules that describe the effects of actions

  have(milk,result(A,S)) :- at(grocery,S), 
                            A = buy(milk).
  have(milk,result(A,S)) :- have(milk,S),
                            A != drop(milk).

  etc.
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Situation Calculus Planning
 Solution

 A sequence of actions P (a plan) that, when applied to the 
initial state, yields a situation satisfying the goal query

at(home,G), have(milk,G), have(bread,G), have(drill,G)

with

G = results(P,s0)

 P could, for example, be something like

 Projection
 determine the effect of a sequence of actions

 Planning
 find the sequence of action with the desired effect

P = [go(grocery), buy(milk), buy(bread),  
   go(hardwareStore), buy(drill), go(home)]
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The Frame Problem
 the action rules only specify what aspects change when an 

action is performed
  have(milk,result(A,S)) :- at(grocery,S), 
                            A = buy(milk).

 we also need rules that describe what does not change!
  at(grocery,result(A,S)) :- at(grocery,S), 
                             A = buy(milk).

If we are in a grocery store and buy milk, we remain in the grocery store.

 such frame axioms are necessary for all possible 
combination of state predicates and actions

 representational frame problem:
 we do not want to represent each such possible combination

 inferential frame problem:
 most of the work will be spent in deriving that nothing changes
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SC Planning: More Problems
 Qualification problem: 

 difficulty in specifying all the conditions that must hold in order 
for an action to work

 e.g., go action might fail for various reasons 
(locked doors, hit by a truck while crossing the street, ...)

 Ramification problem: 
 difficulty in specifying all of the effects that will hold after an 

action is taken
 e.g., if the agent carries something, a go action will move that 

thing too...
 Complexity:

 problem solving (search) is exponential in the worst case
 Optimality:

 resolution theorem proving can only find a proof (plan), not 
necessarily a good plan
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Representation Languages
 for Planning

 Some of the afore-mentioned problems can be solved by 
better knowledge representation

 some of them will necessarily remain 
(e.g., qualification and ramification problems)

 Alternative approach
 we restrict the language
 use a special-purpose algorithm (a planner) rather than 

general theorem prover
 Criteria for a good representation language

 Expressive enough to describe a wide variety of problems
 Restrictive enough to allow efficient algorithm
 Planning algorithm should be able to take advantage of the 

logical structure of the problem.
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The STRIPS Language
 STRIPS (STanford Research Institute Problem Solver)

 classical planning system (Fikes & Nilsson, 1971)
 representation of states and actions quite influential
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STRIPS: Representation of States
 Decompose the world in logical conditions and represent a 

state as a conjunction of positive literals. 
 Propositional literals

 e.g., poor ∧ unknown
 First-Order literals

 e.g., at(plane1, melbourne) ∧ at(plane2, sydney)
 grounded (contain no variables)
 function-free (contain no function symbols)

 Closed world assumption
 what is not known to be true, is assumed to be false
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STRIPS: Representation of Goals
 like any other state, a goal is a conjunction of positive ground 

literals
 e.g. rich ∧ famous

 may be partially instantiated: 
 e.g., at(P,paris) ∧ plane(P) 

(some plane should be in Paris)

 A goal is satisfied if the state contains all literals in goal
 e.g. rich ∧ famous ∧ miserable satisfies goal

 In the case of partially instantiated first-order predicates, the 
state must contain some instantiation of the literals

 e.g., at(spirit_of_st_louis,paris) ∧          
    plane(spirit_of_st_louis)

 satisfies the goal with the substitution 
θ = {P/spirit_of_st_louis}
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STRIPS: Representation of Actions

Preconditions: determine the applicability of an action
 conjunction of function-free literals
 all variables that occur here, must also occur in the effects
 the action is applicable if the preconditions match the current 

state (similar to goals)

Effects: describe the state change after executing an action
 conjunction of function-free 

literals
 typically divided into:

 ADD-list:
 facts that become true 

after executing the action
 DELETE-list

 facts that become false 
after executing the action

Action( fly(P, From, To),

PRECOND: at(P,From), 
         plane(P), 
         airport(From), 
         airport(To)
ADD:     at(P,To)
DELETE:  at(P,From)
)

Action( fly(P, From, To),

PRECOND: at(P,From), 
         plane(P), 
         airport(From), 
         airport(To)
ADD:     at(P,To)
DELETE:  at(P,From)
)
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Semantics of the STRIPS Language
 What actions are applicable in a state?

 An action is applicable in any state that satisfies the 
precondition.

 For First-Order action schema applicability involves a 
substitution θ for the variables in the PRECOND.

 Example:
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2), 
airport(jfk), airport(sfo)

satisfies
at(P,From), plane(P), airport(From), airport(To)

with

θ ={P/p1,From/jfk,To/sfo}

 Thus the action fly(P, From, To) is applicable.
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Semantics of the STRIPS Language

 What effects do the actions have?
 The result of executing action a in state s is the state t 
 t is same as s except

 Any literal P in the ADD-list is added 
 Any literal P in the DELETE-list is removed

 Example
ADD:     at(P,To)
DELETE:  at(P,From)

with substitution θ ={P/p1,From/jfk,To/sfo} results in state
at(p1,sfo), at(p2,sfo), plane(p1), plane(p2), 
airport(jfk), airport(sfo)

 STRIPS assumption
 every literal NOT in the effect remains unchanged
 avoids representational frame problem
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Example: Blocks World
 Very famous AI toy domain
 The blocks world is a micro-world 

that consists of 
 a table
 a set of blocks 
 a robot hand

 Operation
 The robot hand can grasp a single block
 The robot hand can move over the table (with or without a 

block)
 The robot hand can release a block it is holding
 Blocks can be stacked on top of each other if the top is clear
 Any number of blocks can be on the table
 The hand can only hold one block

A

B

C

TABLE
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State Representation

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty

A B

C

TABLE
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Goal Representation

A

B

C

on(a,table), on(b,a), on(c,b)
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Action Application

Action( unstack(X,Y),
PRECOND: handempty, 
         block(X), 
         block(Y), 
         clear(X),
         on(X,Y),
ADD:     holding(X),
         clear(Y),
DELETE:  handempty,
         clear(X),
         on(X,Y)
)

Action( unstack(X,Y),
PRECOND: handempty, 
         block(X), 
         block(Y), 
         clear(X),
         on(X,Y),
ADD:     holding(X),
         clear(Y),
DELETE:  handempty,
         clear(X),
         on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,
holding(c), clear(a)

A B

C

TABLE

unstack(c,a)

 θ ={X/c, Y/a}
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Action Application
Action( unstack(X,Y),
PRECOND: handempty, 
         block(X), 
         block(Y), 
         clear(X),
         on(X,Y),
ADD:     holding(X),
         clear(Y),
DELETE:  handempty,
         clear(X),
         on(X,Y)
)

Action( unstack(X,Y),
PRECOND: handempty, 
         block(X), 
         block(Y), 
         clear(X),
         on(X,Y),
ADD:     holding(X),
         clear(Y),
DELETE:  handempty,
         clear(X),
         on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table),
clear(b), 
holding(c), clear(a)

TABLE
A B

C

unstack(c,a)
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More Blocks-World Actions

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

Action( pickup(X),
PRECOND: handempty, 
         block(X),  
         clear(X),
         on(X,table),
ADD:     holding(X),
DELETE:  handempty,
         clear(X),
         on(X,table)
)

Action( pickup(X),
PRECOND: handempty, 
         block(X),  
         clear(X),
         on(X,table),
ADD:     holding(X),
DELETE:  handempty,
         clear(X),
         on(X,table)
)

Action( putdown(X),
PRECOND: holding(X)
ADD:     handempty,
         clear(X),
         on(X,table)
DELETE:  holding(X)
)

Action( putdown(X),
PRECOND: holding(X)
ADD:     handempty,
         clear(X),
         on(X,table)
DELETE:  holding(X)
)



   Planning                                                                                                                                      

   TU Darmstadt, WS 2013/14                                                                                                                                                 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz31

Example: Air Cargo Transport
 Initial state:

at(c1,sfo), at(c2,jfk), at(p1,sfo), 
at(p2,sfo), cargo(c1), cargo(c2), 
plane(p1), plane(p2), airport(jfk), 
airport(sfo)

 Goal state:
at(c1,jfk), at(c2,sfo)

Action(unload(C,P,A),

PRECOND: in(C,P), 
         at(P,A), 
         cargo(C), 
         plane(P),
         airport(A)
ADD:     at(C,A)
DELETE:  in(C,P)
)

Action(unload(C,P,A),

PRECOND: in(C,P), 
         at(P,A), 
         cargo(C), 
         plane(P),
         airport(A)
ADD:     at(C,A)
DELETE:  in(C,P)
)

Action( load(C,P,A),

PRECOND: at(C,A), 
         at(P,A), 
         cargo(C), 
         plane(P),
         airport(A)
ADD:     in(C,P)
DELETE:  at(C,A)
)

Action( load(C,P,A),

PRECOND: at(C,A), 
         at(P,A), 
         cargo(C), 
         plane(P),
         airport(A)
ADD:     in(C,P)
DELETE:  at(C,A)
)

Action( fly(P,From,To),

PRECOND: at(P,From),

         plane(P),

         airport(From),

         airport(To)
ADD:     at(P,To)
DELETE:  at(P,From)
)

Action( fly(P,From,To),

PRECOND: at(P,From),

         plane(P),

         airport(From),

         airport(To)
ADD:     at(P,To)
DELETE:  at(P,From)
)
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Expressiveness and Extensions

 The STRIPS language is a very simple subset of FOL
 Important limitation: function-free literals

 All such problems can be represented in propositional logic
 use one proposition for each possible combination of predicate 

symbol and arguments
 Function symbols lead to infinitely many states and actions

 infinitely many arguments can be constructed with function 
symbols, hence propositionalization is not possible

 Various extensions have been proposed:
 Action Description language (ADL)

 recent extension to STRIPS language
 allows for types, explicit negation (no CWA), relations and 

conditions in goals, equality predicate built in, ...
 Planning domain definition language (PDDL)

 standardization of various AI planning formalisms
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Comparison STRIPS-ADL
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Planning with State-Space Search

Progression

Regression

at(p1,jfk)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,jfk)

fly(p1,jfk,
       sfo)

fly(p2,jfk,
       sfo)

fly(p1,jfk,
       sfo)

fly(p2,jfk,
       sfo)

at(p1,sfo)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,sfo)

 Progression planners
 forward state-space search

 Regression planners 
 backward state-space search

Initial State

Goal State
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Progression Algorithm

Formulation as state-space search problem:
 Initial state = initial state of the planning problem

 Literals not appearing are false
 Actions = those whose preconditions are satisfied

 Add positive effects, delete negative
 Goal test = does the state satisfy the goal
 Step cost = each action costs 1 

 could be changed if necessary

Search Algorithms
 function-free → finite → any complete graph 

search algorithm will yield a complete planner
 Efficiency is a problem

 irrelevant action problem 
 good heuristic required for efficient search
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Regression Algorithm
 In order to be able to use a backward search, we must be 

able to apply the STRIPS operators backwards
 Relevant actions

 actions that achieve one of the subgals
 i.e., the subgoal is on the actions' ADD-list

 Example:
 Goal state: 
    at(c1,a), at(c2,a),..., at(c20,a)
 Relevant action for first conjunct:   unload(c1,P,a)

 Consistent actions
 Actions must not undo subgoals that are already achieved 
 Example: 

 load(c1,p) will never appear in a plan for the above task 
because it will delete the subgoal at(c1,a) which has been 
achieved with the first action

→ How can an action be applied backwards?
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Inverse Action Application

General process for predecessor construction
 Given a goal description G
 Let A be an action that is relevant and consistent
 The predecessor state is determined as follows:

 Positive effects of A that appear in G are deleted.
 because they are assumed to have been added by A

(otherwise we do not need A in the plan)
 Each precondition literal of A is added (unless it already appears)

 because in order to apply A, we must now make find actions that 
enable the precconditions.

→     New Goal  =  Old Goal – ADD(A) + PRECOND(A)
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Inverse Action Application

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)
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Inverse Action Application

stack(c,b)

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

 θ ={X/c, Y/b}

holding(c), block(c), block(b), clear(b)
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Inverse Action Application

A

B

C

 New Goal:

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

Action( stack(X,Y),
PRECOND: holding(X), 
         block(X), 
         block(Y), 
         clear(Y)
ADD:     handempty,
         clear(X),
         on(X,Y),
DELETE:  holding(X),
         clear(Y)
)

on(a,table), on(b,a),

holding(c), block(c), block(b), clear(b)
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Regression Algorithm

Formulation as state-space search problem:
 Initial state = goal state of the planning problem

 Literals not appearing may be true or false
 Actions = those whose add-list satisfy the current state

 delete positive effects, add preconditions
 Goal test = is the current state satisfied in the initial state of 

the planning problem?
 Step cost = each action costs 1 

 could be changed if necessary

Search algorithm
 again, any standard algorithm can perform the search

 Main Advantage of Regression Planning
 only relevant actions are considered

      → often much lower branching factor than for forward search
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Heuristics for State-Space Search
 Even for regression we need good heuristics

 How many actions are needed to achieve the goal?
 Exact solution is NP hard, find a good estimate 

Two approaches to find an admissible search heuristic:
 The optimal solution to a relaxed problem

 remove all preconditions from actions
 almost identical to the number of open subgoals

 remove only the delete-list and find a (minimal) set of actions 
that collectively achieve the goals

 problem: finding a minimal set cover is NP-hard, and relaxing the 
constraint looses admissibility of heuristic

 The subgoal independence assumption:
 The cost of solving a conjunction of subgoals is approximated 

by the sum of the costs of solving them independently
 is only admissible if co-ordination causes additional complexity

(not admissible for the have(milk) & have(bread) plan)
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