
 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz1

 Introduction
 Planning vs. Problem-Solving
 Representation in Planning Systems

 Situation Calculus
 The Frame Problem

 STRIPS representation language
 Blocks World

 Planning with State-Space Search
 Progression Algorithms
 Regression Algorithms

 Planning with Plan-Space Search
 Partial-Order Planning
 The Plan Graph and GraphPlan
 SatPlan

Planning

Some based on Slides by
Lise Getoor and Tom Lenaerts

Material from
Russell & Norvig,

 chapters 7.7. and 10

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz2

Planning problem

 Planning is the task of coming up with a sequence of actions
that will achieve a goal starting from an initial state

 many search-based problem-solving agents are special cases
 Given:

 a set of action descriptions (defining the
possible primitive actions by the agent),

 an initial state description, and
 a goal state description or predicate,

 Find a plan, which is
 a sequence of action instances, such that executing them in

the initial state will change the world to a state satisfying the
goal-state description.

 Goals are usually specified as a conjunction of subgoals to
be achieved

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz3

Application Scenario
 Classical planning environment

 fully observable, deterministic, finite, static, discrete
 Practical Applications

 design and manufacturing
 military operations
 games
 space exploration

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz4

Planning vs. Problem Solving

 Planning and problem solving methods can often solve the
same sorts of problems

 Planning is more powerful because of the representations
and methods used

 States, goals, and actions are decomposed into sets of
sentences (usually in first-order logic)

 Planning can analyze the effects of actions
 The successor function is a black box: it must be “applied” to

a state to know which actions are possible in that state and
what are the effects of each one

 An explicit representation of the possible actions and their
effects would help the problem solver

 Subgoals can often be planned independently, reducing the
complexity of the planning problem

 Search may be through plan space rather than state space

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz5

Representation in Planning

Problem solving Logic representation

Planning

 In Problem Solving, actions, states, and goals are black
boxes

 each problem has its own representation
 agent does not understand the representations of actions,

states, and goals
→ cannot exploit relations between them

 Planning works with explicit representations of actions,
states, and goals

 typically in some form of logical calculus

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz6

Key Problems
 Which actions are relevant?

 Example: Goal is have(milk)
 the agent may have billions of possible actions

 e.g., one buy-action for each possible product in a store
 an intelligent planner will know that buy(X) will cause have(X),

and only consider the action buy(milk)
 What is a good heuristic functions?

 Problem:
 states are domain-specific data structures, and new heuristics

must be supplied for each new problem
 Example: Goal is buying n different items

 Number of plans grows exponentially with n
→ Problem-independent heuristics are needed

 e.g., number of subgoals that have already been reached
 How to decompose a problem?

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz7

Decomposable Problems
 Goals are often given as a conjunction of subgoals

 e.g., have(milk) & have(bread)
 each subgoal can be solved independently

Other problems can be decomposed into subproblems:
 Example: overnight delivery of a set of packages

 Planning a complete route for all packages at once is very
expensive (O(n!) different routes)

→ Better decompose the problem:
 First distribute the packages to the airports nearest to the

respective destinations
 Then plan separate routes from each airport to the final

destinations
→ O(k∙(n/k)!) different routes if we have k airports

 much less than O(n!))

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz8

Nearly Decomposable Problems
 Completely decomposable problems are rare

 typically there are interactions between subgoals

→ Nearly decomposable problems
 planning for subgoals is possible
 but additional work may be required to bring the partial results

together
 Example:

 Independent plans for have(milk)and have(bread) may
have the result that two different super-markets are visited

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz9

Major Approaches to Planning
 Situation calculus
 State space planning
 Partial order planning
 Planning graphs
 Planning with Propositional Logic
 Hierarchical decomposition (HTN planning)
 Reactive planning

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz10

Planning in First-Order Logic

Principal Idea:
 Formulate planning problem in First-Order Logic (FOL)

 states (and goals) are conjunctions of literals
 actions are logical rules

 Use theorem prover to find a proof for the goal
 the actions used in this proof are the plan
 e.g., use PROLOG

Key Problem:
 How to represent change?

a) add and delete sentences from the KB to reflect changes
b) all facts are indexed by a situation variable → situation

calculus

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz11

PROLOG-like Logical Notation
 Constant: represents some objects

 starts with a number or a lower-case letter
 e.g., pam, bob, liz, 1, pi, true, etc.

 functions are like constants, but complex expressions
 Variable: denotes some unknown object/constant

 starts with an upper-case letter or an underscore
 e.g. X, Person, Nummer, _42, etc.

 within a conjunction of literals, same variables refer to same objects
 but may be different objects in different conjunctions / rules

 Predicate: denotes a relation between two objects
 starts with a lower-case letter

 e.g., parent, male, female
 Literal: a predicate symbol with some arguments

 e.g., parent(pam,bob), at(pam,X), airport(X)
 Rule: an implication, typically written Head :- Cond1, Cond2,

 e.g., grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz12

Situation Calculus
 A situation is a snapshot of the world at some instant in time
 Every true or false statement is made with respect to a

particular situation
 Add situation variables to every predicate.
 at(agent,1,1) becomes at(agent,1,1,s0):
at(agent,1,1) is true in situation (i.e., state) s0.

 Add a new function, result(a,s), that maps a situation s
into a new situation as a result of performing action a.

 For example, result(forward,s) is a function that returns
the successor state (situation) to s after performing action a

 Note that this is just notation!
 Logical functions are not implemented or evaluated!
 They are used in pattern matching

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz13

Situation Calculus
 Actions can be respresented as logical rules that describe

which states can be valid
 Example:

 The action agent-walks-to-location-y could be represented by
the PROLOG rule

at(A,Y,result(walk(Y),S)) :- at(A,X,S).

agent A is now at location Y in state result(walk(Y),S)
if it was at location X in state S and performed action walk(Y)

 Action sequences are also useful: results(l,s) is the
result of executing the list of actions l starting in s:

 corresponding rules could be included as short-hand notation
into inference engine

results([],S) = S
results([A|P],S) = results(P,result(A,S))

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz14

Situation Calculus Planning
 Initial state

 a logical sentence that describes current situation S0

at(home,s0), not(have(milk,s0)), not(have(bread,s0)),
not(have(drill,s0))

 Goal state
 a logical sentence that describes the goal state

at(home,G), have(milk,G), have(bread,G), have(drill,G)

 Actions (Operators)
 logical rules that describe the effects of actions

 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).
 have(milk,result(A,S)) :- have(milk,S),
 A != drop(milk).

 etc.

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz15

Situation Calculus Planning
 Solution

 A sequence of actions P (a plan) that, when applied to the
initial state, yields a situation satisfying the goal query

at(home,G), have(milk,G), have(bread,G), have(drill,G)

with

G = results(P,s0)

 P could, for example, be something like

 Projection
 determine the effect of a sequence of actions

 Planning
 find the sequence of action with the desired effect

P = [go(grocery), buy(milk), buy(bread),
 go(hardwareStore), buy(drill), go(home)]

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz16

The Frame Problem
 the action rules only specify what aspects change when an

action is performed
 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).

 we also need rules that describe what does not change!
 at(grocery,result(A,S)) :- at(grocery,S),
 A = buy(milk).

If we are in a grocery store and buy milk, we remain in the grocery store.

 such frame axioms are necessary for all possible
combination of state predicates and actions

 representational frame problem:
 we do not want to represent each such possible combination

 inferential frame problem:
 most of the work will be spent in deriving that nothing changes

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz17

SC Planning: More Problems
 Qualification problem:

 difficulty in specifying all the conditions that must hold in order
for an action to work

 e.g., go action might fail for various reasons
(locked doors, hit by a truck while crossing the street, ...)

 Ramification problem:
 difficulty in specifying all of the effects that will hold after an

action is taken
 e.g., if the agent carries something, a go action will move that

thing too...
 Complexity:

 problem solving (search) is exponential in the worst case
 Optimality:

 resolution theorem proving can only find a proof (plan), not
necessarily a good plan

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz18

Representation Languages
 for Planning

 Some of the afore-mentioned problems can be solved by
better knowledge representation

 some of them will necessarily remain
(e.g., qualification and ramification problems)

 Alternative approach
 we restrict the language
 use a special-purpose algorithm (a planner) rather than

general theorem prover
 Criteria for a good representation language

 Expressive enough to describe a wide variety of problems
 Restrictive enough to allow efficient algorithm
 Planning algorithm should be able to take advantage of the

logical structure of the problem.

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz19

The STRIPS Language
 STRIPS (STanford Research Institute Problem Solver)

 classical planning system (Fikes & Nilsson, 1971)
 representation of states and actions quite influential

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz20

STRIPS: Representation of States
 Decompose the world in logical conditions and represent a

state as a conjunction of positive literals.
 Propositional literals

 e.g., poor ∧ unknown
 First-Order literals

 e.g., at(plane1, melbourne) ∧ at(plane2, sydney)
 grounded (contain no variables)
 function-free (contain no function symbols)

 Closed world assumption
 what is not known to be true, is assumed to be false

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz21

STRIPS: Representation of Goals
 like any other state, a goal is a conjunction of positive ground

literals
 e.g. rich ∧ famous

 may be partially instantiated:
 e.g., at(P,paris) ∧ plane(P)

(some plane should be in Paris)

 A goal is satisfied if the state contains all literals in goal
 e.g. rich ∧ famous ∧ miserable satisfies goal

 In the case of partially instantiated first-order predicates, the
state must contain some instantiation of the literals

 e.g., at(spirit_of_st_louis,paris) ∧
 plane(spirit_of_st_louis)

 satisfies the goal with the substitution
θ = {P/spirit_of_st_louis}

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz22

STRIPS: Representation of Actions

Preconditions: determine the applicability of an action
 conjunction of function-free literals
 all variables that occur here, must also occur in the effects
 the action is applicable if the preconditions match the current

state (similar to goals)

Effects: describe the state change after executing an action
 conjunction of function-free

literals
 typically divided into:

 ADD-list:
 facts that become true

after executing the action
 DELETE-list

 facts that become false
after executing the action

Action(fly(P, From, To),

PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

Action(fly(P, From, To),

PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz23

Semantics of the STRIPS Language
 What actions are applicable in a state?

 An action is applicable in any state that satisfies the
precondition.

 For First-Order action schema applicability involves a
substitution θ for the variables in the PRECOND.

 Example:
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)

satisfies
at(P,From), plane(P), airport(From), airport(To)

with

θ ={P/p1,From/jfk,To/sfo}

 Thus the action fly(P, From, To) is applicable.

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz24

Semantics of the STRIPS Language

 What effects do the actions have?
 The result of executing action a in state s is the state t
 t is same as s except

 Any literal P in the ADD-list is added
 Any literal P in the DELETE-list is removed

 Example
ADD: at(P,To)
DELETE: at(P,From)

with substitution θ ={P/p1,From/jfk,To/sfo} results in state
at(p1,sfo), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)

 STRIPS assumption
 every literal NOT in the effect remains unchanged
 avoids representational frame problem

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz25

Example: Blocks World
 Very famous AI toy domain
 The blocks world is a micro-world

that consists of
 a table
 a set of blocks
 a robot hand

 Operation
 The robot hand can grasp a single block
 The robot hand can move over the table (with or without a

block)
 The robot hand can release a block it is holding
 Blocks can be stacked on top of each other if the top is clear
 Any number of blocks can be on the table
 The hand can only hold one block

A

B

C

TABLE

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz26

State Representation

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty

A B

C

TABLE

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz27

Goal Representation

A

B

C

on(a,table), on(b,a), on(c,b)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz28

Action Application

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,
holding(c), clear(a)

A B

C

TABLE

unstack(c,a)

 θ ={X/c, Y/a}

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz29

Action Application
Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table),
clear(b),
holding(c), clear(a)

TABLE
A B

C

unstack(c,a)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz30

More Blocks-World Actions

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
 on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
 on(X,table)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
 on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
 on(X,table)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
 on(X,table)
DELETE: holding(X)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
 on(X,table)
DELETE: holding(X)
)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz31

Example: Air Cargo Transport
 Initial state:

at(c1,sfo), at(c2,jfk), at(p1,sfo),
at(p2,sfo), cargo(c1), cargo(c2),
plane(p1), plane(p2), airport(jfk),
airport(sfo)

 Goal state:
at(c1,jfk), at(c2,sfo)

Action(unload(C,P,A),

PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: at(C,A)
DELETE: in(C,P)
)

Action(unload(C,P,A),

PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: at(C,A)
DELETE: in(C,P)
)

Action(load(C,P,A),

PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: in(C,P)
DELETE: at(C,A)
)

Action(load(C,P,A),

PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: in(C,P)
DELETE: at(C,A)
)

Action(fly(P,From,To),

PRECOND: at(P,From),

 plane(P),

 airport(From),

 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

Action(fly(P,From,To),

PRECOND: at(P,From),

 plane(P),

 airport(From),

 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz32

Expressiveness and Extensions

 The STRIPS language is a very simple subset of FOL
 Important limitation: function-free literals

 All such problems can be represented in propositional logic
 use one proposition for each possible combination of predicate

symbol and arguments
 Function symbols lead to infinitely many states and actions

 infinitely many arguments can be constructed with function
symbols, hence propositionalization is not possible

 Various extensions have been proposed:
 Action Description language (ADL)

 recent extension to STRIPS language
 allows for types, explicit negation (no CWA), relations and

conditions in goals, equality predicate built in, ...
 Planning domain definition language (PDDL)

 standardization of various AI planning formalisms

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz33

Comparison STRIPS-ADL

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz34

Planning with State-Space Search

Progression

Regression

at(p1,jfk)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,jfk)

fly(p1,jfk,
 sfo)

fly(p2,jfk,
 sfo)

fly(p1,jfk,
 sfo)

fly(p2,jfk,
 sfo)

at(p1,sfo)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,sfo)

 Progression planners
 forward state-space search

 Regression planners
 backward state-space search

Initial State

Goal State

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz35

Progression Algorithm

Formulation as state-space search problem:
 Initial state = initial state of the planning problem

 Literals not appearing are false
 Actions = those whose preconditions are satisfied

 Add positive effects, delete negative
 Goal test = does the state satisfy the goal
 Step cost = each action costs 1

 could be changed if necessary

Search Algorithms
 function-free → finite → any complete graph

search algorithm will yield a complete planner
 Efficiency is a problem

 irrelevant action problem
 good heuristic required for efficient search

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz36

Regression Algorithm
 In order to be able to use a backward search, we must be

able to apply the STRIPS operators backwards
 Relevant actions

 actions that achieve one of the subgals
 i.e., the subgoal is on the actions' ADD-list

 Example:
 Goal state:
 at(c1,a), at(c2,a),..., at(c20,a)
 Relevant action for first conjunct: unload(c1,P,a)

 Consistent actions
 Actions must not undo subgoals that are already achieved
 Example:

 load(c1,p) will never appear in a plan for the above task
because it will delete the subgoal at(c1,a) which has been
achieved with the first action

→ How can an action be applied backwards?

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz37

Inverse Action Application

General process for predecessor construction
 Given a goal description G
 Let A be an action that is relevant and consistent
 The predecessor state is determined as follows:

 Positive effects of A that appear in G are deleted.
 because they are assumed to have been added by A

(otherwise we do not need A in the plan)
 Each precondition literal of A is added (unless it already appears)

 because in order to apply A, we must now make find actions that
enable the precconditions.

→ New Goal = Old Goal – ADD(A) + PRECOND(A)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz38

Inverse Action Application

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz39

Inverse Action Application

stack(c,b)

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

 θ ={X/c, Y/b}

holding(c), block(c), block(b), clear(b)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz40

Inverse Action Application

A

B

C

 New Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

on(a,table), on(b,a),

holding(c), block(c), block(b), clear(b)

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz41

Regression Algorithm

Formulation as state-space search problem:
 Initial state = goal state of the planning problem

 Literals not appearing may be true or false
 Actions = those whose add-list satisfy the current state

 delete positive effects, add preconditions
 Goal test = is the current state satisfied in the initial state of

the planning problem?
 Step cost = each action costs 1

 could be changed if necessary

Search algorithm
 again, any standard algorithm can perform the search

 Main Advantage of Regression Planning
 only relevant actions are considered

 → often much lower branching factor than for forward search

 Planning

 TU Darmstadt, WS 2013/14 Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz42

Heuristics for State-Space Search
 Even for regression we need good heuristics

 How many actions are needed to achieve the goal?
 Exact solution is NP hard, find a good estimate

Two approaches to find an admissible search heuristic:
 The optimal solution to a relaxed problem

 remove all preconditions from actions
 almost identical to the number of open subgoals

 remove only the delete-list and find a (minimal) set of actions
that collectively achieve the goals

 problem: finding a minimal set cover is NP-hard, and relaxing the
constraint looses admissibility of heuristic

 The subgoal independence assumption:
 The cost of solving a conjunction of subgoals is approximated

by the sum of the costs of solving them independently
 is only admissible if co-ordination causes additional complexity

(not admissible for the have(milk) & have(bread) plan)

	Outline
	Planning problem
	Folie 3
	Planning vs. problem solving
	Representations in Planning
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Situation Calculus Planning
	Folie 11
	Situation calculus
	Folie 13
	Folie 14
	Folie 15
	SC planning: analysis
	Folie 17
	Folie 18
	General language features
	Folie 20
	Folie 21
	Folie 22
	Language semantics?
	Folie 24
	Folie 25
	State Representation
	Goal Representation
	Action Representation
	Folie 29
	Folie 30
	Example: air cargo transport
	Expressiveness and extensions
	Folie 33
	Planning with state-space search
	Progression algorithm
	Regression algorithm
	Regression algorithm
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Heuristics for state-space search

