Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining

Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb

Contrast

Set

Mining

Emerging

Pattern

Mining 1

Subgroup

Discovery

Supervised Descriptive Rule Discovery

Inhaltsangabe

- 1. Einführung
- 2. Descriptive Rule Discovery Verfahren
 - 2.1 Contrast Set Mining
 - 2.2 Emerging Pattern Mining
 - 2.3 Subgroup Discovery
- Einheitliches Framework für Supervised Descriptive Rule Induction
- 4. Fazit

Einführung

Symbolic Data Analysis Techniques

- Descriptive Induction
 - Unlabeled Data
 - Erkennen von Mustern
 - Contrast Set Mining
 Emerging Pattern Mining

- Predictive Induction
 - Labeled Data
 - Klassifizierung von Beispielen
 - Subgroup Discovery

Hauptziel: menschlich interpretierbare Unterschiede zwischen Gruppen finden

Beispiel Datenbank

 Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

Predictive Induction

- C4.5 (1993)
- Hoher Wert auf Vollständigkeit

```
Sex = female \rightarrow Approved = yes

MaritalStatus = single AND Sex = male \rightarrow Approved = no

MaritalStatus = married \rightarrow Approved = yes

MaritalStatus = divorced AND HasChildren = yes \rightarrow Approved = no

MaritalStatus = divorced AND HasChildren = no \rightarrow Approved = yes
```


Descriptive Induction


```
MaritalStatus = single AND Sex = male \rightarrow Approved = no Sex = male \rightarrow Approved = no Sex = female \rightarrow Approved = yes MaritalStatus = married \rightarrow Approved = yes MaritalStatus = divorced AND HasChildren = yes \rightarrow Approved = no MaritalStatus = single \rightarrow Approved = no
```

- Class Attribut entspricht normalem Attribut
- Regeln redundant
- Regeln fehlen

- Aufgabenstellung
- Algorithmus
- Constraints des Benutzers

Inhaltsangabe

- 1. Einführung
- 2. Descriptive Rule Discovery Verfahren
 - 2.1 Contrast Set Mining
 - 2.2 Emerging Pattern Mining
 - 2.3 Subgroup Discovery
- 3. Einheitliches Framework für Supervised Descriptive Rule Induction
- 4. Fazit

2.1 Contrast Set Mining

 Ziel: Finde ContrastSets mit denen eine Gruppe von anderen unterschieden werden kann

$$ContrastSet_i \rightarrow Gi \quad ContrastSet_j \rightarrow Gj \quad \dots \dots$$

Qualitätsbewertung:

$$SuppDiff(X, G_i, G_j) = |support(X, G_i) - support(X, G_j)| \ge \delta$$

2.2 Emerging Pattern Mining

 Ziel: ItemSets deren Support signifikant von einem Datenset zu einem anderen steigt

$$ItemSet_1 \rightarrow D_1 \quad ItemSet_2 \rightarrow D_2$$

- aufkommende Trends in zeitlich gemessenen Datenbanken oder differenzierende Merkmale zwischen Klassen von Daten finden
- Qualitätsbewertung:

$$GrowthRate(ItemSet, D_1, D_2) = \frac{support(ItemSet, D_1)}{support(ItemSet, D_2)}$$

2.3 Subgroup Discovery

 Ziel: finde UG, die statistisch gesehen am interessantesten sind bezüglich einer Property of Interest

 $SubgroupDescription \rightarrow Class$

Qualitätsbewertung:

$$WRAcc(X,C) = P(X) \cdot (P(Y|X) - P(Y))$$
 $q_g(X,C) = \frac{p}{n+g}$

Zielt auf ein gutes Maß zwischen Rule Coverage und Precision ab

Inhaltsangabe

- 1. Einführung
- 2. Descriptive Rule Discovery Verfahren
 - 2.1 Contrast Set Mining
 - 2.2 Emerging Pattern Mining
 - 2.3 Subgroup Discovery
- Einheitliches Framework für Supervised Descriptive Rule Induction
- 4. Fazit

3. Ein einheitliches Framework - Inhalt

- Terminologie
- Task Definitions
- Rule Learning Heuristics
- Rule Selection Mechanism

3.1 Vereinheitlichung der Terminologie

Definition 1: Kompatibilität von Termen

Terme sind kompatibel, wenn sie ...

- ... in äquivalente logische Ausdrücke umgeformt werden können
- ... die selbe Bedeutung haben

3.1 Vereinheitlichung der Terminologie

Lemma 1: Die Terme in CSM, EPM und SD sind kompatibel

Contrast Set Mining	Emerging Pattern Mining	Subgroup Discovery	Rule Learning
contrast set	itemset	subgroup description	rule condition
groups $G_1, \ldots G_n$	data sets D_1 and D_2	class/property C	class/concept C_i
attribute-value pair	item	logical (binary) feature	condition
examples in groups	transactions in data sets	examples of	examples of
$G_1, \ldots G_n$	D_1 and D_2	C and \overline{C}	$C_1 \dots C_n$
examples for which	transactions containing	subgroup of instances	covered examples
the contrast set is true	the itemset		
support of contrast set on G_i	support of EP in data set D_1	true positive rate	true positive rate
support of contrast set on G_j	support of EP in data set D_2	false positive rate	false positive rate

3.2 Vereinheitlichung der Task Definitions

Definition 2: Kompatibilität von Task Definitionen

Definitionen sind kompatibel, wenn ...

 ... ein Learning Task zu einem anderen umgewandelt werden kann, ohne das Lernziel zu verändern

3.2 Task Definitions

CSM

 Finde ContrastSets mit denen man am besten Gruppen voneinander unterscheiden kann

EPM

Finde ItemSets deren Support signifikant von einem DatenSet zu einem anderen steigt

SD

 Finde UG die so groß wie möglich sind und möglichst ausgefallene statistische Charakteristika besitzen bezüglich der Property of Interest

3.2 Vereinheitlichung der Task Definitions

Lemma 2: Die Definitionen von CSM, EPM und SD sind kompatibel

$$EPM(D_1, D_2) \Leftrightarrow CSM(Gi, Gj)$$

 $CSM(G_i, G_j) \Leftrightarrow SD(G_i) \ und \ SD(G_j)$

Contrast Set Mining	Emerging Pattern Mining	Subgroup Discovery	Rule Learning
Given	Given	Given	Given
examples in G_1 vs. G_j	transactions in D_1 and D_2	in examples C	examples in C_i
from $G_1, \ldots G_i$	from D_1 and D_2	from C and \overline{C}	from $C_1 \dots C_n$
Find	Find	Find	Find
$ContrastSet_{i_k} \rightarrow G_i$	$ItemSet_{1_k} \rightarrow D_1$	$SubgrDescr_k \rightarrow C$	$\{RuleCond_{i_k} \rightarrow C_i\}$
$ContrastSet_{j_l} \rightarrow G_j$	$ItemSet_{2_l} \rightarrow D_2$	352	100 M

3.3 Vereinheitlichung der Rule Learning Heuristics

Definition 3: Kompatibilität von Heuristiken

Heuristik h_1 ist kompatibel mit Heuristik h_2 , wenn ...

- ... h₂ von h₁ abgeleitet werden kann
- ... für zwei Regeln R und R' gilt: $h_1(R) > h_1(R') \Leftrightarrow h_2(R) > h_2(R')$

3.3 Rule Quality Measures

CSM

$$SuppDiff(X, G_i, G_j) = |support(X, G_i) - support(X, G_j)| \ge \delta$$

EPM

$$GrowthRate(X, D_1, D_2) = \frac{support(X, D_1)}{support(X, D_2)}$$

SD

$$WRAcc(X,C) = P(X) \cdot (P(Y|X) - P(Y))$$
 $q_g(X,C) = \frac{p}{n+g}$

$$support(X,Y) = \frac{count(X,Y)}{|Y|} = TPr(X,Y)$$

3.3 Vereinheitlichung der Rule Learning Heuristiken

Lemma 3a: Support Difference Heuristik von CSM und Weighted Relative Accuracy von SD sind kompatibel

$$\begin{split} WRAcc(X,Y) &= \\ &= P(X) \cdot [P(Y|X) - P(Y)] = P(Y \cdot X) - P(Y) \cdot P(X) \\ &= P(Y \cdot X) - P(Y) \cdot [P(Y \cdot X) + P(\overline{Y} \cdot X)] \\ &= (1 - P(Y)) \cdot P(Y \cdot X) - P(Y) \cdot P(\overline{Y} \cdot X) \\ &= P(\overline{Y}) \cdot P(Y) \cdot P(X|Y) - P(Y) \cdot P(\overline{Y}) \cdot P(X|\overline{Y}) \\ &= P(\overline{Y}) \cdot P(Y) \cdot [P(X|Y) - P(X|\overline{Y})] \\ &= P(Y) \cdot P(\overline{Y}) \cdot [TPr(X,Y) - FPr(X,Y)] \end{split}$$

 $\mathit{WRAcc}(X,C) = \mathit{WRAcc}(X,G_1) = P(G_1) \cdot P(G_2) \cdot [\mathit{support}(X,G_1) - \mathit{support}(X,G_2)].$

3.3 Vereinheitlichung der Rule Learning Heuristiken

Lemma 3b: Die Growth Rate Heuristik vom EPM und die Generalization Quotient Heuristik sind kompatibel

$$GrowthRate(X, D_1, D_2) = \frac{support(X, D_1)}{support(X, D_2)}$$

$$= \frac{count(X, D_1)}{count(X, D_2)} \cdot \frac{|D_2|}{|D_1|} = \boxed{\frac{p}{n}} \frac{N}{P}$$
konstant

GrowthRate
$$(X, C, \overline{C}) = q_0(X, C) \cdot \frac{N}{P}$$

3.3 Vereinheitlichung der Rule Learning Heuristiken

Lemma 3: Die Definitionen der CSM, EPM und SD Heuristiken sind paarweise kompatibel

Contrast Set Mining	Emerging Pattern Mining	Subgroup Discovery	Rule Learning
$SuppDiff(X, G_i, G_j)$		WRAcc(X,C)	Piatetski-Shapiro heuristic leverage
	$GrowthRate(X, D_1, D_2)$	$q_{\mathcal{S}}(X,C)$	odds ratio for $g = 0$ accuracy/precision, for $g = p$

Zielen alle auf ein gutes Maß zwischen Rule Coverage und Precision ab

3.4 Vergleich der Rule Selection Mechanismen

Statistic Test

- Contrast Set Mining
- Statistical significance pruning
- Entfernt alle ContrastSets, die Spezialisierungen von generelleren CS sind, wenn sie einen ähnlichen Support haben

Weighted Covering Approach

- Subgroup Discovery
- Benutzt gewichtete Version von q_q und WRAcc
- Nach jeder Iteration wird die Gewichtung von pos. Bsp. Gesenkt

$$q'_{g}(X,Y) = \frac{p'}{n+g}$$

Inhaltsangabe

- 1. Einführung
- 2. Descriptive Rule Discovery Verfahren
 - 2.1 Contrast Set Mining
 - 2.2 Emerging Pattern Mining
 - 2.3 Subgroup Discovery
- 3. Einheitliches Framework für Supervised Descriptive Rule Induction
- 4. Fazit

Fazit

- Ziel: Vereinheitlichung von Bereichen
- nur Terminologie, Task Definition und Heuristiken werden verglichen
- Rule Selection Mechanism unterscheiden sich!
 - → andere Schwerpunkte

Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining

Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb

Vielen Dank für Eure Aufmerksamkeit!

