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Nonparametric

I no assumptions about underlying data distribution
I usually needs more samples than parametric approaches
I computationally expensive
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Nonparametric

I Examples are
I K-Nearest Neighbors
I Kernel Ridge Regression
I Locally Weighted Regression
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Goals

I Policies and Value-Functions are represented nonparametrically along
trajectories

I minimizing costs (representational resources, computation time, amount of
training data)

I reducing amount of training data needed by learning models
I More powerful updates of first and second derivatives of value functions and

first derivatives od policies
I reducing representational resources by representing value functions and

policies along carefully chosen trajectories
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Key Ideas

I coordinate many trajectories
I more global function created by combining value functions for the trajectories
I as long as value functions are consistent between trajectories, and cover the

appropriate space, the global value function created, will be correct
I supports accurate updating since any update must occur along densely

represented optimized trajectories and an adaptive resolution representation
that allocates resources to where optimal trajectories tend to go.
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Key Ideas

I segment trajectories at discontinuities of system dynamics
I reducing amount of discontinuity in the value function of each segment
I assume smooth dynamics and criteria, so that first and second derivatives

exist
I using LWR to represent value functions at discontinuities
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Bellman’s Principle of Optimality

I Richard Bellman, Dynamic Programming, 1957
I “An optimal sequence of controls in a multistage optimization problem has the

property that whatever the initial stage, state and controls are, the remaining
controls must constitute an optimal sequence of decisions for the remaining
problem with stage and state resulting from previous controls considered as
initial conditions”
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Bellman’s Principle of Optimality

u = arg min
u

(L(x,u) + λV (f(x,u))) (1)

I x is a state
I u are actions
I f represents the dynamics of the system i.e. xi+1 = f(xi,ui)

I L is a one step cost function
I V is the value function
I λ is a discount factor
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Taylor approximation

I given the point (xp,up) we define x̃ = x− xp and ũ = u− up

V (x) ≈ V0 + Vxx̃ +
1

2
x̃TVxxx̃

f(x,u) ≈ f0 + fxx̃ + fuũ +
1

2
x̃T fxxx̃ + x̃T fxuũ +

1

2
ũT fuuũ

L(x,u) ≈ L0 + Lxx̃ + Luũ +
1

2
x̃TLxxx̃ + x̃TLxuũ +

1

2
ũTLuuũ
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Backwards sweep

I computing the derivatives of the Q-function

Qx = Lx + λVxfx

Qu = Lu + λVxfu

Qxx = λfTx Vxxfx + λVxfxx + Lxx

Qux = λfTu Vxxfx + λVxfux + Lux

Quu = λfTu Vxxfu + λVxfuu + Luu
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Backwards sweep

I defining additional terms

∆u = Q−1
uuQu

K = Q−1
uuQux

Vxi−1
= Qx −QuK

Vxxi−1
= Qxx −QuxK
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Forward sweep

I to update the trajectory itself, forward integration can be used

unew = u− ∆u−K(xnew − x) (2)
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Regulator task

I aka steady state control
I trajectory starts and ends at the goal
I value function is in the vicinity of the goal
I constanc policy ũ = Kx̃
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Task with point goal

I value function for a swing up problem
I regulation about the unstable equilibrium
I nonlinearities limit the region of applicability
I non-trivial trajectories needed for a larger region
I here: thresholded region is filled with trajectories
I consistent value functions among neighbors
I optimal value function / policy are in this region
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Periodic Task

I control of vertical hopping
I goal state replaced by desired hopping height
I counterclockwise movement direction
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Periodic Task

I discontinuity at horizontal axis
I funneling effect
I funnel width controlled by penalty on u usage
I optimal hopper with different penalties
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How to get initial trajectories ?

I for regulator tasks its trivial
I for point goal tasks trajectories can be extended backwards away from the

goal
I for periodic tasks, crude trajectories must already exist
I created by other approaches
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What approaches are used ?

I manually designed controllers
I imitation learning
I parameterized trajectory from policy search
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Trajectory refinement

I global policy by policy optimization
I local policy from nearest point with same type of dynamics
I local value function estimate from the nearest point with the same type of

dynamics
I use the policy from the nearest trajectory
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Trajectory refinement

I all four methods are used parallel
I locally optimize each produced trajectory
I only the best trajectory is stored
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Walking Robot

I simple planar biped, that walks along a bar
I no knees, but can grab the bar as leg swings by (like a monkey)
I 5 dimensional state space

I left and right leg angle θl, θr
I left and right leg angular velocity θ̇l, θ̇r
I stance foot location

I controlled action is torque τ at the hip
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Cost function

I goal described by “shaping” terms
I keeping the hips at the right altitude
I with minimal vertical velocity
I keeping leg amplitude within reason
I maintaining a symmetric gait
I maintaining the desired hip forward velocity
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Cost function

I results in the following cost function

cost = wy(y − 1)2 + wẏ ẏ
2 + wlleg

2
r + wlleg

2
l + wlrleglr + wẋ(ẋ− ẋd)2 + τ2

I weighting factors wy = 100, wẏ = 100 , wl = 100, wlr = 100000, wẋ=100

I desired leg velociy ẋd = 0.4m/s
I legl, legr describe how far leg has gone past its limits ±0.1 in radians
I leglr is the product of the leg angles
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Initial trajectory

I Initial trajectory generated by optimizing coefficients of a linear policy

τ = α0 + alpha1θlr + alpha2θl + α3y + α4θ̇lr + α5θ̇l + α6(̇x) + alpha7ẏ

I where θlr is the angle between the legs
I used when left leg was in stance
I negate appropriate signs for right leg
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Result cost

I cheaper than parametric policy optimization approach
I measured undiscounted cost over 1 second
I starting in a state along the lowest cost trajectory
I optimized parametric policy: 4316
I trajectory-based approach: 3502
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Result robustness

I more robust than parametric policy optimization approach
I adding offset to the starting point until policy fails
I maximum offset for parametric policy

I −0.02 ≤ θl ≤ 0.06
I −0.45 ≤ θ̇l ≤ 0.1
I −0.2 ≤ θlr ≤ 0.03
I −0.78 ≤ θ̇lr ≤ 0.2

I maximum offset of trajectory-based approach was greater or equal in each
case

I not surprising. trajectory based approach uses parametric policy to initialize
trajectories.
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Result interference

I optimized parametric policy from a distribution of starting states.
I original states and states with positive offset
I new cost was 14.747 (before 4316)
I cost for trajectory approach stayed the same (3502)

November 13, 2012 | TU Darmstadt | Machine Learning Seminar | Rudolf Lioutikov | 27



Robustness to modelling error, probabilistic

I state is augmented with unknown parameters (masses, friction, etc.)
I Kalman filter is used as the new dynamics equation
I cost and value function are modified
I reward for moving into regions where value function becomes planar
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Robustness to modelling error, game based

I minimax optimization
I dynamics equation is augmented with a disturbance term
I “opponent" controls the disturbance
I expect worst possible disturbance
I trajectories should be robust against most-likely disturbance
I cost function contains trade-off between robustness and original reward
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Critic reception

I the approach is not sufficiently explained
I no performance benchmarks (neither time nor resources)
I what parametric approach is used?
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