Uninformed Search

- Problem-solving agents
 - Single-State Problems
- Tree search algorithms
 - Breadth-First Search
 - Depth-First Search
 - Limited-Depth Search
 - Iterative Deepening
- Extensions
 - Graph search algorithms
 - Search with Partial Information

Problem-Solving Agents

- Simple reflex agents
 - have a direct mapping from states to actions
 - typically too large to store
 - would take too long to learn
- Goal-Based agents
 - can consider future actions and the desirability of their outcomes
- Problem-Solving Agents
 - special case of Goal-Based Agents
 - find sequences of actions that lead to desirable states
- Uninformed Problem-Solving Agents
 - do not have any information except the problem definition
- Informed Problem-Solving Agents
 - have knowledge where to look for solutions

Formulate-Search-Execute Design

- Formulate:
 - Goal formulation:
 - A goal is a set of world states that the agents wants to be in (where the goal is achieved)
 - Goals help to organize behavior by limiting the objectives that the agent is trying to achieve
 - Problem formulation:
 - Process of which actions and states to consider, given a goal
- Search:
 - the process of finding the solution for a problem in the form of an action sequence

an agent with several immediate options of unknown value can decide what to do by **examining different possible sequences** of actions that lead to states of known value, and then **choosing the best**

- Execute:
 - perform the first action of the solution sequence

Simple Problem-Solving Agent

```
function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
   state \leftarrow UPDATE-STATE(state, percept)
   if seq is empty then
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow FORMULATE-PROBLEM(state, goal)
        seq \leftarrow SEARCH(problem)
   action \leftarrow \text{Recommendation}(seq, state)
   seq \leftarrow \text{REMAINDER}(seq, state)
   return action
```

Example: Navigate in Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution:
 - sequence of cities, e.g., Arad, Sibiu, Rimnicu Vilcea, Pitesti
- Assumption:
 - agent has a map of Romania, i.e., it can use this information to find out which of the three ways out of Arad is more likely to go to Bucharest

Example: Romania

Single-state Problem Formulation

A problem is defined by four items:

- initial state
 - e.g., "at Arad"

description of actions and their effects

- typically as a successor function that maps a state s to a set
 S(s) of action-state pairs
- e.g., *S*(,,at Arad") = {<,,goto Zerind", ,,at Zerind">, ... }
- goal test, can be
 - explicit, e.g., *s* = "at Bucharest"
 - implicit, e.g., Checkmate(s), NoDirt(s)
- path cost (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - $c(s_1, a, s_2)$ are the costs for one step (one action),
 - assumed to be ≥ 0

Single-State Problems

Yes

- 8-queens puzzle
- 8-puzzle
- Towers of Hanoi
- Cross-Word puzzles
- Sudoku
- Chess, Bridge, Scrabble puzzles
- Rubik's cube
- Sobokan
- Traveling Salesman
 Problem

No

Tetris

- dynamic not static
- Solitaire
 - only partially observable

State Space of a Problem

State Space

- the set of all states reachable from the initial state
- implicitly defined by the initial state and the successor function

State Space of a Problem

State Space

- the set of all states reachable from the initial state
- implicitly defined by the initial state and the successor function

Path

a sequence of states connected by a sequence of actions

Solution

- a path that leads from the initial state to a goal state
- Optimal Solution
 - solution with the minimum path cost

Example: Romania

Saved Locations | Sign in | Help

12

Problem-Solving by Uninformed Search

Selecting a State Space

Real world is absurdly complex

- \rightarrow state space must be abstracted for problem solving
- (Abstract) state
 - corresponds to a set of real states
- (Abstract) action
 - corresponds to a complex combination of real actions
 - e.g., "go from Arad to Zerind" represents a complex set of possible routes, detours, rest stops, etc.
 - for guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
 - each abstract action should be "easier" than the original problem
- (Abstract) solution
 - corresponds to a set of real paths that are solutions in the real world

Example: Romania – State Space

Example: The 8-puzzle

Start State

- states?
 - Iocation of tiles
 - ignore intermediate positions during sliding
 - goal test?
 - situation corresponds to goal state
 - path cost?
 - number of steps in path (each step costs 1)

Goal State

- actions?
 - move blank tile (left, right, up, down)
 - easier than having separate moves for each tile
 - ignore actions like unjamming slides if they get stuck

Example: The 8-Queens Problem

states?

- any configuration of 8 queens on the board
- goal test?
 - no pair of queens can capture each other

- actions?
 - move one of the queens to another square
- path cost?
 - not of interest here

inefficient complete-state formulation $\rightarrow 64 \cdot 63 \cdot ... \cdot 57 \approx 3 \cdot 10^{14}$ states

Example: The 8-Queens Problem

states?

- *n* non-attacking queens in the left *n* columns
- goal test?
 - no pair of queens can capture each other

- actions?
 - add queen in column n+1
 - without attacking the others
- path cost?
 - not of interest here

more efficient incremental formulation \rightarrow only 2057 states

Tree Search Algorithms

- Treat the state-space graph as a tree
- Expanding a node
 - offline, simulated exploration of state space by generating successors of already-explored states (successor function)
- Search strategy
 - determines which node is expanded next
- General algorithm:

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Tree Search Example

Initial state: start with node Arad

Tree Search Example

- Initial state: start with node Arad
- expand node Arad

Tree Search Example

- Initial state: start with node Arad
- expand node Arad
- expand node Sibiu

States vs. Nodes

State

- (representation of) a physical configuration
- Node
 - data structure constituting part of a search tree
 - includes
 - state
 - parent node
 - action
 - path cost g(x)
 - depth
- Expand
 - creates new nodes
 - fills in the various fields
 - uses the successor function to create the corresponding states

22

Implementation: General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if for a set or a set of failure

if fringe is empty then return failure $node \leftarrow \text{REMOVE-FRONT}(fringe)$ if GOAL-TEST(problem, STATE(node)) then return node $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

function EXPAND(node, problem) returns a set of nodes $successors \leftarrow$ the empty set for each action, result in SUCCESSOR-FN(problem, STATE[node]) do $s \leftarrow$ a new NODE PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s) DEPTH[s] \leftarrow DEPTH[node] + 1 add s to successors return successors

Search Strategies

- A search strategy is defined by picking the order of node expansion
 - implementation in a queue
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - *b*: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Search Strategies

- Uninformed (blind) search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
- Informed (heuristic) search strategies have knowledge that allows to guide the search to promising regions
 - Greedy Search
 - A* Best-First Search

- Expand all neighbors of a node (breadth) before any of its successors is expanded (depth)
- Implemetation:
 - expand the shallowest unexpanded node
 - fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

- Expand all neighbors of a node (breadth) before any of its successors is expanded (depth)
- Implemetation:
 - expand the shallowest unexpanded node
 - fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

- Expand all neighbors of a node (breadth) before any of its successors is expanded (depth)
- Implemetation:
 - expand the shallowest unexpanded node
 - fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

- Expand all neighbors of a node (breadth) before any of its successors is expanded (depth)
- Implemetation:
 - expand the shallowest unexpanded node
 - fringe is a FIFO queue (first-in-first-out, new nodes go to end of queue)

Properties of Breadth-First Search

Completeness

Yes (if b is finite)

Time Complexity

- each depth has b times as many nodes as the previous
- each node is expanded
- except the goal node in level *d*
 - worst case: goal is last node in this level

$$\Rightarrow 1 + b + b^{2} + b^{3} + \dots + b^{d} + (b^{(d+1)} - b) = O(b^{d+1})$$

- Space Complexity
 - every node must remain in memory
 - it is either a fringe node or an ancestor of a fringe node
 - in the end, the goal will be in the fringe, and its ancestors will be needed for the solution path

$$\Rightarrow O(b^{d+1})$$

- Optimality
 - Yes, for uniform costs (e.g., if cost = 1 per step)

Combinatorial Explosion

- Breadth-first search
 - branching factor b = 10, 10,000 nodes/sec, 1000 bytes/node

Depth	Nodes	Time	Memory	
2	1100	.11 secs	1 MB	
4	111 100	11 secs	106 MB	
6	107	19 mins	10 GB	
8	109	31 hours	1 TB	
10	10^{11}	129 days	101 TB	
12	10 ¹³	35 years	10 PetaBytes	
14	10^{15}	3523 years	1 ExaByte	

Space is the bigger problem

• can easily generate nodes at 100MB/sec \Rightarrow 24hrs = 8640 GB

Uniform-Cost Search

- Breadth-first search can be generalized to cost functions
 - each node now has associated costs
 - costs accumulate over path
 - instead of expanding the shallowest path, expand the least-cost unexpanded node
 - breadth-first is special case where all costs are equal
- Implementation
 - fringe = queue ordered by path cost
- Completeness
 - yes, if each step has a positive cost (cost $\geq \varepsilon$)
 - otherwise infinite loops are possible
- Space and Time complexity $b^{1+O([C^*/\epsilon])}$
 - number of nodes with costs < costs of optimal solution C*
- Optimality
 - Yes nodes expanded in increasing order of path costs

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

- Expand all successors of a node (depth) before any of its neighbors is expanded (breadth)
- Implemetation:
 - expand the deepest unexpanded node
 - fringe is a LIFO queue (last-in-first-out, new nodes at begin of queue)

Properties of Depth-First Search

Completeness

- No, fails in infinite-depth search spaces and spaces with loops
- complete in finite spaces if modified so that repeated states are avoided

Time Complexity

- has to explore each branch until maximum depth $m \Rightarrow O(b^m)$
- terrible if m > d (depth of goal node)
- but may be faster than breadth-first if solutions are dense

Space Complexity

- only nodes in current path and their unexpanded siblings need to be stored
- \Rightarrow only linear complexity $O(m \cdot b)$
- Optimality
 - No, longer (more expensive) solutions may be found before shorter (cheaper) ones

Backtracking Search

Even more space-efficient variant

- does not store all expanded nodes, but only the current path
 ⇒ O(m)
 - if no further expansion is possible, go back to the predecessor
 - each node is able to generate the *next* successor
- only needs to store and modify one state
 - actions can do and undo changes on this one state

Depth-limited Search

depth-first search is provided with a depth limit *l*

- nodes with depths d > l are not considered \rightarrow incomplete
- if d < l it is not optimal (like depth-first search)</p>
- time complexity $O(b^l)$, space complexity O(bl)

function DEPTH-LIMITED-SEARCH(*problem, limit*) **returns** soln/fail/cutoff RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[*problem*]), *problem, limit*)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? ← false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result ← RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? ← true

else if $result \neq failure$ then return result

if cutoff-occurred? then return cutoff else return failure

Iterative Deepening Search

- Main problem with depth-limited search is setting of *l*
- Simple solution:
 - try all possible l = 0, 1, 2, 3, ...

```
function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
inputs: problem, a problem
for depth ← 0 to ∞ do
    result ← DEPTH-LIMITED-SEARCH( problem, depth)
    if result ≠ cutoff then return result
end
```

 costs are dominated by the last iteration, thus the overhead is marginal

Iterative Deepening Search

Iterative Deepening Search

Properties of Iterative Deepening Search

- Completeness
 - Yes (no infinite paths)
- Time Complexity
 - first level has to be searched d times
 - last level has to be searched once $\Rightarrow d \cdot b + (d-1)b^2 + ... + 1 \cdot b^d = \sum_{i=1}^d (d-i+1) \cdot b^i$
- Space Complexity

 \Rightarrow only linear complexity O(bd)

Optimality

Yes, the solution is found at the minimum depth

\Rightarrow combines advantages of depth-first and breadth-first search

Comparison of Time Complexities

Worst-case (goal is in right-most node at level *d*)

 Depth-Limited Search N_{DLS}=b+b²+...+b^d= \sum_{i=1}^{d} b^{i}

 Iterative Deepening N_{IDS}=d·b+(d-1)b²+...+1·b^d= \sum_{i=1}^{d} (d-i+1)·b^{i}

Example: *b* = 10, *d* = 5

 $N_{DLS} = 10 + 100 + 1000 + 10,000 + 100,000 = 111,110$ $N_{IDS} = 50 + 400 + 3000 + 20,000 + 100,000 = 123,450$ Overhead of IDS only ca. 10%

Bidirectional Search

- Perform two searches simultaneously
 - forward starting with initial state
 - backward starting with goal state

check whether generated node is in fringe of the other search

Properties

- reduction in complexity $(b^{d/2}+b^{d/2}\ll b^d)$
- only possible if actions can be reversed
- search paths may not meet for depth-first bidirectional search

Summary of Algorithms

- Problem formulation usually requires abstracting away realworld details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes^*	Yes^*	No	Yes, if $l \ge d$	Yes
Time	$b^{\omega+1}$	$b^{\uparrow \circ \uparrow \circ \uparrow}$	6	D°	b^{α}
Space	b^{a+1}	$b^{ C+/\epsilon }$	bm	bl	bd
Optimal?	Yes^*	Yes	No	No	Yes^*

Repeated States

 Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated States

 Failure to detect repeated states can turn a linear problem into an exponential one!

Graph Search

- remembers the states that have been visited in a list *closed*
 - Note: the fringe list is often also called the open list

- Example:
 - Dijkstra's algorithm is the graph-search variant of uniform cost search

Assumptions about the Environment

static

- we do not pay attention to possible changes in the environment
- observable
 - we can at least observe our initial state
- discrete
 - possible actions can be enumerated
- deterministic
 - the expected outcome of an action is always identical to the true outcome
 - once we have a plan, we can execute it "with eyes closed"

 \rightarrow easiest possible scenario

Problems with Partial Information

Single-State Problem

deterministic, fully observable

- agent knows exactly which state it will be in
- solution is a sequence
- Conformant Problem (sensorless problem)

non-observable

- agent may have no idea where it is
- solution (if any) is a sequence
- Contingency Problem

nondeterministic and/or partially observable

- percepts provide new information about current state
- solution is a contingent plan (tree) or a policy
- search and execution often interleaved
- Exploration Problem

state-space is not known

Example: Vacuum World

- Single-state Problem
 - start in #5
 - goal
 - no dirt
- **Solution**
 - [Right, Suck]

8

Example: Vacuum World

- Conformant Problem
 - start in any state (we can't sense)
 - *start* \leftarrow {1,2,3,4,5,6,7,8}
 - actions
 - e.g., Right
 goes to {2,4,6,8}
 - goal
 - no dirt
- Solution

Problem-Solving by Uninformed Search

[*Right, Suck, Left, Suck*]

8

Example: Vacuum World

<u>ശ്</u>ര്റ്റ്

1

3

7

- Contingency Problem
 - start in #5
 - indeterministic actions
 - Suck can dirty a clean carpet
 - sensing
 - dirt at current location?
 - goal
 - no dirt
- Solution

Problem-Solving by Uninformed Search

[Right, if dirt then Suck]

8

ശ്പുറ്റ

