# Outline

- Best-first search
  - Greedy best-first search
  - A\* search
  - Heuristics
- Local search algorithms
  - Hill-climbing search
  - Beam search
  - Simulated annealing search
  - Genetic algorithms
- Constraint Satisfaction Problems
  - Constraints
  - Constraint Propagation
  - Backtracking Search
  - Local Search

## Local Search Algorithms

- In many optimization problems, the path to the goal is irrelevant
  - the goal state itself is the solution
  - State space:
    - set of "complete" configurations
  - Goal:
    - Find a configuration that satisfies all constraints
- Examples:
  - n-queens problem, travelling salesman,
- In such cases, we can use local search algorithms

## Local Search

#### Approach

- keep a single "current" state (or a fixed number of them)
- try to improve it by maximizing a heuristic evaluation
- using only "local" improvements
  - i.e., only modifies the current state(s)
- paths are typically not remembered
- similar to solving a puzzle by hand
  - e.g., 8-puzzle, Rubik's cube

#### Advantages

- uses very little memory
- often quickly finds solutions in large or infinite state spaces

#### Disadvantages

no guarantees for completeness or optimality

# **Optimization Problems**

- Goal:
  - optimize some evaluation function (objective function)
- there is no goal state, and no path costs
  - hence A\* and other algorithms we have discussed so far are not applicable
- Example:
  - Darwinian evolution and survival of the fittest may be regarded as an optimization process

# Example: Travelling Salesman Problem

- Basic Idea:
  - Start with a complete tour
  - perform pairwise exchanges



 variants of this approach get within 1% of an optimal solution very quickly with thousands of cities

## Example: n-Queens Problem

- Basic Idea:
  - move a queen so that it reduces the number of conflicts



 almost always solves n-queens problems almost instantaneously for very large n (e.g., n = 1,000,000)

# Hill-climbing search

- Algorithm:
  - expand the current state (generate all neighbors)
  - move to the one with the highest evaluation
  - until the evaluation goes down

### Hill-climbing search (aka Greedy Local Search)

- Algorithm:
  - expand the current state (generate all neighbors)
  - move to the one with the highest evaluation
  - until the evaluation goes down
- Main Problem: Local Optima
  - the algorithm will stop as soon as is at the top of a hill
  - but it is actually looking for a mountain peak

"Like climbing Mount Everest in thick fog with amnesia"

- Other problems:
  - ridges
  - plateaux
  - shoulders

# State Space Landscape

- state-space landscape
  - Iocation: states
  - elevation: heuristic value (objective function)
- Assumption:
  - states have some sort of (linear) order
  - continuity regarding small state changes



# Multi-Dimensional State-Landscape

States may be refine in multiple ways
 → similarity along various dimensions



## Example: 8-Queens Problem

- Heuristic *h*:
  - number of pairs of queens that attach each other
- Example state: h = 17



• Best Neighbor(s): 
$$h = 12$$

• Local optimum with h = 1



 no queen can move without increasing the number of attacked pairs

## Randomized Hill-Climbing Variants

#### Random Restart Hill-Climbing

- Different initial positions result in different local optima
  make several iterations with different starting positions
- Example:
  - for 8-queens problem the probability that hill-climbing succeeds from a randomly selected starting position is  $\approx 0.14$
  - $\rightarrow$  a solution should be found after about  $1/0.14 \approx 7$  iterations of hill-climbing

- Stochastic Hill-Climbing
  - select the successor node ramdomly
  - better nodes have a higher probability of being selected

### Beam Search

- Keep track of k states rather than just one
  - k is called the beam size
- Algorithm
  - Start with k randomly generated states
  - At each iteration, all the successors of all k states are generated
  - If any one is a goal state, stop; else select the k best successors from the complete list and repeat.



Hill-Climbing Search



### Beam Search

- Keep track of k states rather than just one
  - *k* is called the beam size
- Algorithm
  - Start with k randomly generated states
  - At each iteration, all the successors of all k states are generated
  - If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

#### Implementation

Can be implemented similar to the Tree-Search algorithm:

- sort the queue by the heuristic function h (as in greedy search)
- but limit the size of the queue to k
- and expand all nodes in queue simultaneously

### Beam Search

- Keep track of k states rather than just one
  - k is called the beam size
- Note
  - Beam search is different from *k* parallel hill-climbing searches!
  - Information from different beams is combined

#### Effectiveness

- suffers from lack of diversity of the k states
  - e.g., if one state has better successors than all other states
  - thus it is often no more effective than hill-climbing

#### Stochastic Beam Search

- chooses k successors at random
- better nodes have a higher probability of being selected

# Simulated Annealing Search

- combination of hill-climbing and random walk
- Idea:
  - escape local maxima by allowing some "bad" moves
  - but gradually decrease their frequency (the *temperature*)
- Effectiveness:
  - it can be proven that if the temperature is lowered slowly enough, the probability of converging to a global optimum approaches 1
  - Widely used in VLSI layout, airline scheduling, etc
- Note:
  - Annealing in metallurgy and materials science, is a heat treatment wherein the microstructure of a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces equilibrium conditions by heating and maintaining at a suitable temperature, and then cooling very slowly.

## Simulated Annealing Search

#### combination of hill-climbing and random walk

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                     next. a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
     next \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
     if \Delta E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```

# **Genetic Algorithms**

- Same idea as in Stochastic Beam Search
  - but uses "sexual" reproduction (new nodes have two parents)
- Basic Algorithm:
  - Start with k randomly generated states (population)
  - A state is represented as a string over a finite alphabet
    - often a string of 0s and 1s
  - Evaluation function (fitness function)
  - Produce the next generation by selection, cross-over, and mutation



**Fitness Selection** 



Cross-Over

Mutation

### **Cross-Over**

Modelled after cross-over of DNA

- take two parent strings
- cut them at cross-over point
- recombine the pieces



it is helpful if the substrings are meaningful subconcepts







# **Genetic Algorithm**

function GENETIC ALGORITHM( population, FITNESS-FN) return an individual input: *population*, a set of individuals FITNESS-FN, a function which determines the quality of the individual repeat *new population*  $\leftarrow$  empty set loop for i from 1 to SIZE(population) do  $x \leftarrow \text{RANDOM SELECTION}(population, FITNESS FN)$  $y \leftarrow \text{RANDOM SELECTION}(population, FITNESS FN)$ *child*  $\leftarrow$  REPRODUCE(*x*,*y*) **if** (small random probability) **then** *child* ← MUTATE(*child* ) add child to new population population  $\leftarrow$  new population **until** some individual is fit enough or enough time has elapsed return the best individual in *population*, according to FITNESS FN

# **Genetic Algorithms**

- Evaluation
  - attractive and popular
    - easy to implement general optimization algorithm
    - easy to explain to laymen (boss)
  - perform well
    - unclear under which conditions they work well
    - other randomized algorithms perform equally well (or better)
- Numerous applications
  - optimization problems
    - circuit layout
    - job-shop scheduling
  - game playing
    - checkers program Blondie24 (David Fogel)
      - nice and easy read, but shooting a bit over target in its claims...



# Genetic Programming

#### popularized by John R. Koza

Genetic programming is an automated method for creating a working computer program from a high-level problem statement of a problem. It starts from a high-level statement of "what needs to be done" and automatically creates a computer program to solve the problem.

- applies Genetic Algorithms to program trees
  - Mutation and Cross-over adapated to tree structures
  - special operations like
    - inventing/deleting a subroutine
    - deleting/adding an argument,
    - etc.
- Several successful applications
  - 36 cases where it achieve performance competitive to humans <u>http://www.genetic-programming.com/humancompetitive.html</u>
- More information at <u>http://www.genetic-programming.org/</u>

## **Random Initialization of Population**



### **Mutation**



### **Cross-Over**



### **Create a Subroutine**



### **Delete a Subroutine**



### **Duplicate an Argument**



### **Delete an Argument**



## Create a Subroutine by Duplication



# Local Search in Continuous Spaces

In many real-world problems the state space is continuous

- Discretize the state space
  - e.g., assume only *n* different positions of a steering wheel or a gas pedal
- Gradient Descent (Ascent)
  - hill-climbing using the gradient of the objective function f
  - f needs to be differentiable
- Empirical Gradient
  - empirically evaluate the response of f to small state changes
  - same as hill-climbing in a discretized space