Bayesian Networks

- Syntax
- Semantics
- Parametrized Distributions

Bayesian Networks - Structure

- Are a simple, graphical notation for conditional independence assertions
 - hence for compact specifications of full joint distributions
- A BN is a directed graph with the following components:
 - Nodes: one node for each variable
 - **Edges:** a directed edge from node N_i to node N_j indicates that variable X_i has a direct influence upon variable X_j

Bayesian Networks - Probabilities

- In addition to the structure, we need a conditional probability distribution for the random variable of each node given the random variables of its parents.
 - i.e. we need $P(X_i | Parents(X_i))$
- nodes/variables that are not connected are (conditionally) independent:
 - Weather is independent of Cavity
 - Toothache is independent of Catch given Cavity

Running Example: Alarm

Situation:

- I'm at work
- John calls to say that the in my house alarm went off
 - but Mary (my neighbor) did not call
- The alarm will usually be set off by burglars
 - but sometimes it may also go off because of minor earthquakes

Variables:

- Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects causal knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Alarm Example

Local Semantics of a BN

 Each node is is conditionally independent of its nondescendants given its parents

$$\mathbf{P}(X \mid U_{1,}..., U_{m}, Z_{1j}, ..., Z_{nj}) =$$

$$= \mathbf{P}(X \mid U_{1}..., U_{m})$$

Markov Blanket

Markov Blanket:

parents + children + children's parents

Each node is conditionally independent of all other nodes given its markov blanket

$$\mathbf{P}(X \mid U_{1,}..., U_{m}, Y_{1,}..., Y_{n}, Z_{1j}, ..., Z_{nj}) =$$

$$= \mathbf{P}(X \mid all \ variables)$$

Global Semantics of a BN

 The conditional probability distributions define the joint probability distribution of the variables of the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid \text{Parents}(X_i))$$

- Example:
 - What is the probability that the alarm goes off and both John and Mary call, but there is neither a burglary nor an earthquake?

$$P(j \land m \land a \land \neg b \land \neg e) =$$

$$= P(j \mid a) \cdot P(m \mid a) \cdot P(a \mid \neg b, \neg e) \cdot P(\neg b) \cdot P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \approx 0.00063$$

Theorem

Local Semantics ⇔ Global Semantics

- Proof:
 - order the variables so that parents always appear before children
 - apply chain rule
 - use conditional independence

Constructing Bayesian Networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|Parents(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)}$$
$$= \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$$

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(A | J, M) = P(A)$$
?

If Mary and John call, the probability that the alarm has gone off is larger than if they don't call.

Node A needs parents J or M

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

P(A | J, M) = P(A | J)?

If John and Mary call, the probability that the alarm has gone off is higher than if only John calls.

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(A \mid J, M) = P(A \mid M)$$
?

If John and Mary call, the probability that the alarm has gone off is higher than if only Mary calls.

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(B \mid A, J, M) = P(B)$$
?

Knowing whether Mary or John called and whether the alarm went off influences my knowledge about whether there has been a burglary

Node B needs parents A, J or M

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

If I know that the alarm has gone off, knowing that John or Mary have called does not add to my knowledge of whether there has been a burglary or not.

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?

Knowing whether there has been an Alarm does not suffice to determine the probability of an earthquake, we have to know whether there has been a burglary as well.

Suppose we first select the ordering

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

 $P(E \mid B, A, J, M) = P(E \mid A)$?

 $P(E \mid B, A, J, M) = P(E \mid A, B)$?

If we know whether there has been an alarm and whether there has been burglary, no other factors will determine our knowledge about whether there has been an earthquake

Example - Discussion

- Deciding conditional independence is hard in non-causal direction
 - for assessing whether X is conditionally independent of Z ask the question:

If I add variable Z in the condition, does it change the probabilities for X?

- causal models and conditional independence seem hardwired for humans!
- Assessing conditional probabilities is also hard in non-causal direction

- Network is less compact
 - more edges and more parameters to estimate
- Worst possible ordering
 MaryCalls, JohnCalls
 Earthquake, Burglary, Alarm
 → fully connected network

Reasoning with Bayesian Networks

- Belief Functions (margin probabilities)
 - given the probability distribution, we can compute a margin probability at each node, which represents the belief into the truth of the proposition
 - → the margin probability is also called the belief function
- New evidence can be incorporated into the network by changing the appropriate belief functions
 - this may not only happen in unconditional nodes!
- changes in the margin probabilities are then propagated through the network
 - propagation happens in forward (along the causal links) and backward direction (against them)
 - e.g., determining a symptom of a disease does not cause the disease, but changes the probability with which we believe that the patient has the disease

Structure of the network

Adding Probability Distributions

Belief functions

 Interviewing the patient results in change of probability for variable for "visit to Asia"

Patient is also a smoker...

but fortunately the X-ray is normal...

but then again patient has difficulty in breathing.

More Complex Example: Car Diagnosis

- Initial evidence: Car does not start
- Test variables

- Variables for possible failures
- Hidden variables: ensure spare structure, reduce parameters

More Complex: Car Insurance

Example: Pigs Network

- Determines pedigree of breeding pigs
 - used to diagnose PSE disease
 - half of the network structure shown here

Compactness of a BN

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

Compact Conditional Distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

$$X = f(Parents(X))$$
 for some function f

E.g., Boolean functions

 $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}$$

Compact Conditional Distributions Independent Causes

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1...U_j, \neg U_{j+1}... \neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
T	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs

Option 2: finitely parameterized canonical families

- 1) Continuous variable, discrete+continuous parents (e.g., Cost)
- 2) Discrete variable, continuous parents (e.g., Buys?)

Continuous Conditional Distributions

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$P(Cost = c | Harvest = h, Subsidy? = true)$$

$$= N(a_t h + b_t, \sigma_t)(c)$$

$$= \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2\right)$$

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

Continuous Conditional Distributions

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete Variables with Continuous Parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$\begin{aligned} &\Phi(x) = \mathbf{1}_{-\infty}^x N(0,1)(x) dx \\ &P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma) \end{aligned}$$

Why Probit?

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

Discrete Variables with Continuous Parents

Sigmoid (or logit) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c + \mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:

Real-World Applications of BN

Industrial

- Processor Fault Diagnosis by Intel
- Auxiliary Turbine Diagnosis GEMS by GE
- Diagnosis of space shuttle propulsion systems VISTA by NASA/Rockwell
- Situation assessment for nuclear power plant NRC

Military

- Automatic Target Recognition MITRE
- Autonomous control of unmanned underwater vehicle -Lockheed Martin
- Assessment of Intent

Real-World Applications of BN

- Medical Diagnosis
 - Internal Medicine
 - Pathology diagnosis Intellipath by Chapman & Hall
 - Breast Cancer Manager with Intellipath
- Commercial
 - Financial Market Analysis
 - Information Retrieval
 - Software troubleshooting and advice Windows 95 & Office 97
 - Pregnancy and Child Care Microsoft
 - Software debugging American Airlines' SABRE online reservation system