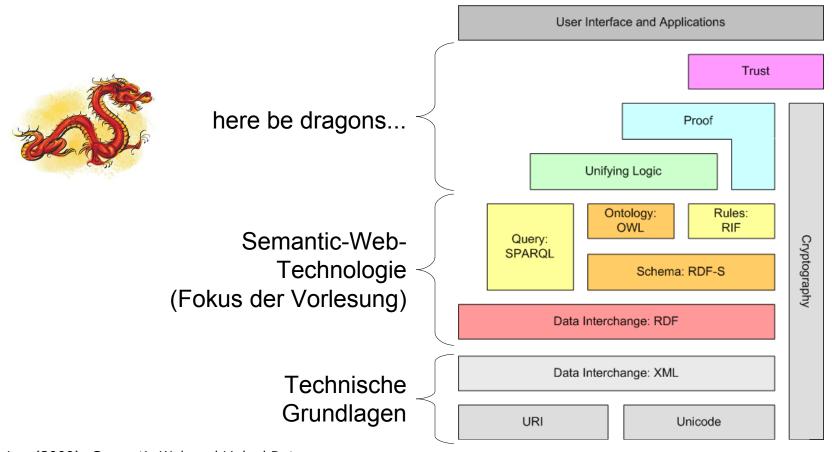
Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012 Dr. Heiko Paulheim Fachgebiet Knowledge Engineering

Semantic Web - Aufbau



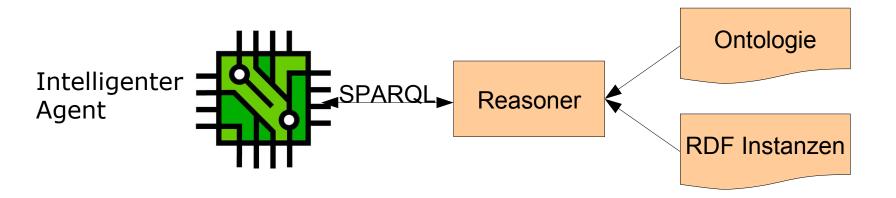
Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Was bisher geschah

- Komplexe Ontologien
 - RDF Schema ist leichtgewichtig
 - OWL kann mehr
- Reasoning
 - für RDF Schema können wir das schon
 - wie funktioniert Reasoning mit OWL?

Recap: Kombination von SPARQL & Reasoning

- Reasoning mit RDF Schema haben wir schon kennen gelernt
- Viele Reasoner haben auch eine SPARQL-Schnittstelle



- Was würden wir gern von einem Reasoner wissen?
 - Subklassenbeziehung
 - z.B.: Sind alle Säugetiere Landbewohner?
 - Klassenäquivalenz
 - z.B.: Sind alle Wasserbewohner mit Flossen Fische und umgekehrt?
 - Klassendisjunktheit
 - z.B.: Gibt es Tiere, die zu den Säugetieren und zu den Vögeln gehören?
 - Klassenkonsistenz
 - z.B.: Kann es eierlegende Säugetiere geben?
 - Instanzbeziehung
 - z.B.: Ist Flipper ein Delfin?
 - Klassenaufzählung
 - z.B.: Liste alle Elefanten auf

- Das sind ziemlich viele mögliche Aufgaben
- Macht einen Reasoner ziemlich kompliziert
- Naiver Forward-Chaining-Algorithmus
 - ist nicht besonders gut skalierbar
 - kann nicht mit Konjunktion umgehen
 - die gibt es aber in OWL, z.B. unionOf

- Ansatz: alle Aufgaben auf ein gemeinsames Grundproblem zurückführen
- Zum Beispiel: Widerspruchsfreiheit
 - d.h.: es lässt sich nicht gleichzeitig eine Aussage und ihr Gegenteil aus T-Box und A-Box ableiten

Beispiel: Widerspruchsfreiheit

Beispiel:

```
:Man a owl:Class .
:Woman a owl:Class .
:Man owl:disjointWith :Woman .
:Alex a :Man .
:Alex a :Woman .
```


Beispiel: Widerspruchsfreiheit

- Daraus folgt:
 - :Man \cap :Woman = \emptyset owl:Nothing owl:intersectionOf (:Man :Woman) .
 - :Alex ∈ (:Man ∩ :Woman)

 :Alex a [a owl:Class; owl:intersectionOf (:Man :Woman)]
- also:
 - *:Alex ∈ Ø:Alex a owl:Nothing

Neudefinition der Reasoner-Tasks

- Subklassenbeziehung
 Student ⊆ Person ⇔ Student(x) → Person(x)
- Prüfungsmethode: indirekter Beweis
 - "Erfinde" eine Instanz i
 - Setze Student(i) und ¬Person(i)
 - Prüfe auf Widerspruchsfreiheit
 - bei Widerspruch: Student ⊆ Person muss gelten
 - kein Widerspruch: Student ⊆ Person kann nicht abgeleitet werden

Beispiel: Subklassenbeziehung

Ontologie:

```
:Student owl:subClassOf :UniversityMember .
:UniversityMember owl:subClassOf :Person .
```

Neu hinzugefügte Instanz:

```
:i a :Student .
:i a [ owl:complementOf :Person ] .
```


Beispiel: Subklassenbeziehung


```
Aus
  :i a :Student .
 und
  :Student owl:subClassOf :UniversityMember .
 folgt
  :i a :UniversityMember .
analog folgt mit
  :UniversityMember owl:subClassOf :Person .
auch
  :i a Person .
```


Beispiel: Subklassenbeziehung

Jetzt haben wir

Neudefinition der Reasoner-Tasks

- Klassenäquivalenz
 - Person = Mensch
- Das kann man auflösen in
 - Person

 Mensch und
 - Mensch ⊆ Person
- Also: zweimal Subklassenbeziehung zeigen
 - können wir schon
- Klassendisjunktheit
 - Sind C und D disjunkt?
 - "Erfinde" eine Instanz i
 - setze C(i) und D(i)
 - das haben wir schon gesehen (Beispiel: Alex)

Klassenkonsistenz

- Kann eine Klasse Instanzen haben?
 - zum Beispiel: verheiratete Junggesellen

```
:Junggeselle owl:subClassOf :Mann .
:Junggeselle owl:subClassOf
  [ a owl:Restriction;
    owl:onProperty :verheiratetMit;
    owl:cardinality 0 ] .
:VerheiratetePerson owl:subClassOf [
    a owl:Restriction;
    owl:onProperty :verheiratetMit;
    owl:cardinality 1 ] .
:VerheirateterJunggeselle owl:intersectionOf
    (:Junggeselle :VerheiratetePerson) .
```


Klassenkonsistenz

- Prüfen auf Klassenkonsistenz:
 - "Erfinde" eine Instanz i
 - Füge sie als Instanz der Klasse hinzu
 - Prüfe, ob ein Widerspruch entsteht

Beispiel: Klassenkonsistenz

In unserem Beispiel entsteht:

```
:i a [
          a owl:Restriction;
          owl:onProperty :verheiratetMit;
          owl:cardinality 1 ] .

• und
:i a [
```

```
:i a [
    a owl:Restriction;
    owl:onProperty :verheiratetMit;
    owl:cardinality 0 ] .
```

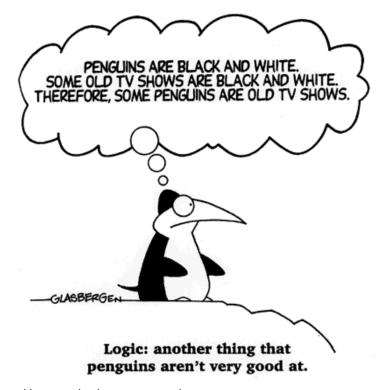

- Instanzbeziehung
 - Ist Flipper ein Delfin?
- Prüfung:
 - setze ¬Delfin(Flipper)
 - prüfe auf Widerspruch
- Instanzen einer Klasse aufzählen
 - Prüfe die Instanzbeziehung für alle bekannten Individuen durch

- Was würden wir gern von einem Reasoner wissen?
 - Subklassenbeziehung
 - z.B.: Sind alle Säugetiere Landbewohner?
 - Klassenäquivalenz
 - z.B.: Sind alle Wasserbewohner mit Flossen Fische und umgekehrt?
 - Klassendisjunktheit
 - z.B.: Gibt es Tiere, die zu den Säugetieren und zu den Vögeln gehören?
 - Klassenkonsistenz
 - z.B.: Kann es eierlegende Säugetiere geben?
 - Instanzbeziehung
 - z.B.: Ist Flipper ein Delfin?
 - Klassenaufzählung
 - z.B.: Liste alle Elefanten auf

- Wir haben jetzt gesehen:
 - alle möglichen Aufgaben lassen sich auf dieselbe Aufgabe herunterbrechen
 - nämlich Prüfung auf Konsistenz
- Jetzt muss ein Reasoner also nur noch einen Task implementieren

Tableau-Verfahren

- Das heute am häufigsten eingesetzte Reasoning-Verfahren
- kommt aus dem Bereich der Prädikatenlogik



Cartoon Copyright: Randy Glasbergen, http://www.glasbergen.com/

DL-Schreibweisen

Klassen und Instanzen

DL-Schreibweisen

Restriktionen

DL-Schreibweisen

Abkürzung für universell gültige Aussagen

■ D π E $\leftrightarrow \forall x : x \in D \pi$ E

■ D \sqcup E $\leftrightarrow \forall x : x \in D \sqcup E$

■ $\exists R.C$ $\leftrightarrow \forall x: x \in \exists R.C$

 $\leftrightarrow \forall x: \exists y: y \in C \land R(x,y)$

■ $\forall R.C$ $\leftrightarrow \forall x: x \in \forall R.C$

 $\leftrightarrow \forall x \colon R(x,y) \to y \in C$

Vorbereitung: Ontologien in Negationsnormalform (NNF)

- Negationsnormalform:
 - und = kommen nicht vor
 - Negation nur vor atomaren Klassen oder Aussagen
- Eine vereinfachte Schreibweise für Ontologien
- Von Tableau-Reasonern als Eingabe verlangt
- Wie kommt man da hin?

Ontologien in Negationsnormalform (NNF)

- Elimination von ⊆:
 - Ersetze C

 □ D durch ¬C □ D
 - Kurzschreibweise für: $\forall x$: $\neg C(x) \lor D(x)$
- Warum gilt diese Äquivalenz?
 - C \sqsubseteq D ist äquivalent zu C(x) \rightarrow D(x)

C(x)	D(x)	$C(x) \rightarrow D(x)$	$\neg C(x) \lor D(x)$
true	true	true	true
true	false	false	false
false	true	true	true
false	false	true	true

Ontologien in Negationsnormalform

- Elimination von =:
 - Ersetze C ≡ D durch C ⊑ D und D ⊑ C
 - Verfahre wie gehabt

Ontologien in Negationsnormalform (NNF)

- Transformationsregeln
 - NNF(C) = C (für atomare C)
 - NNF(\neg C) = \neg C (für atomare C)
 - NNF($\neg \neg C$) = C
 - $NNF(C \sqcup D)$ = $NNF(C) \sqcup NNF(D)$
 - NNF(C π D) = NNF(C) π NNF(D)
 - NNF(\neg (C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)
 - NNF(\neg (C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)
 - NNF(\forall R.C) = \forall R.NNF(C)
 - $NNF(\exists R.C)$ = $\exists R.NNF(C)$
 - NNF($\neg \forall R.C$) = $\exists R.NNF(\neg C)$
 - NNF($\neg \exists R.C$) = $\forall R.NNF(\neg C)$

Ontologien in Negationsnormalform (NNF)

- Beispiel: ein Verein kann natürliche und juristische Personen als Mitglieder haben
 - :hasMember rdfs:range
 [owl:unionOf (:NaturalPerson :LegalPerson)]
 - \blacksquare T \subseteq \forall hasMember.(NaturalPerson \sqcup LegalPerson)
 - ¬T ⊔ ∀hasMember.(NaturalPerson ⊔ LegalPerson)
 - Damit sind alle Aussagen in NNF (keine Negation vor nicht-Elementaren Ausdrücken)

Der einfache Tableau-Algorithmus

- Tableau: Sammlung von abgeleiteten Aussagen
 - wird nach und nach erweitert
 - wie beim Forward Chaining
- Bei Konjunktion
 - Teilen in zwei Tableaus

Wann ist eine Wissensbasis widerspruchsfrei?

- Tableau wird kontinuierlich erweitert und geteilt
- Widerspruchsfreiheit, wenn...
 - keine weiteren Axiome erzeugt werden können
 - mindestens ein Teiltableau ohne Widerspruch bleibt
 - Ein Teiltableau enthält einen Widerspruch, wenn es ein Axiom und sein direktes Gegenteil enthält
 - z.B. Mensch(Hans) und ¬Mensch(Hans)
 - man sagt dann, dass das Teiltableau abgeschlossen ist

Der einfache Tableau-Algorithmus

Gegeben: eine Wissensbasis W in NNF

Solange nicht alle Teiltableaus abgeschlossen sind

* Wähle ein nicht abgeschlossenes Teiltableau T und ein A ∈ W ∪ T

Wenn A noch nicht in T enthalten

Wenn A eine A-Box-Aussage ist

füge A zu T hinzu

zurück zu *

Wenn A eine T-Box-Aussage ist

Wähle ein Individuum a ∈ W ∪ T

Füge A(a) zu T hinzu

zurück zu *

sonst

Erweitere das Tableau mit Konsequenzen aus A zurück zu *

Der einfache Tableau-Algorithmus

Erweiterungsregeln für eine Aussage A

Nr	Aussage	Aktion
1	C(a)	Füge C(a) hinzu
2	R(a,b)	Füge R(a,b) hinzu
3	С	Wähle ein Individuum a, füge C(a) hinzu
4	(C п D)(a)	Füge C(a) und D(a) hinzu
5	(C ⊔ D)(a)	Teile das Tableau in T1 und T2. Füge C(a) zu T1, D(a) zu T2 hinzu
6	(∃R.C)(a)	Füge R(a,b) und C(b) für ein <i>neues</i> Individuum b hinzu
7	(∀R.C)(a)	Für alle b mit R(a,b) ∈ T: füge C(b) hinzu

Ein einfaches Beispiel

Gegeben folgende Ontologie:

```
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect ) .
```

:Animal owl:disjointWith :Human .

:Seth a :Human .

:Seth a :Insect .

Ist diese Wissensbasis konsistent?

Ein einfaches Beispiel

Gegeben folgende Ontologie:

```
:Animal owl:disjointWith :Human .
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect ) .
:Seth a :Human .
:Seth a :Insect .
```

Dieselbe Ontologie in DL-NNF:

```
¬Animal ப ¬Human
Animal ப (¬Mammal п ¬Bird п ¬Fish п ¬Insect)
¬Animal ப (Mammal ப Bird ப Fish ப Insect)
Human(Seth)
Insect(Seth)
```


Ein einfaches Beispiel

Human(Seth), Insect(Seth)

Nr	Aussage	Aktion
1	C(a)	Füge C(a) hinzu

Human(Seth), Insect(Seth), (¬Animal ⊔ ¬Human)(Seth)

Nr	Aussage	Aktion
3	С	Wähle ein Individuum a, füge C(a) hinzu

Human(Seth), Insect(Seth),
¬Animal(Seth)

Human(Seth), Insect(Seth),

¬Human(Seth)

Nr	Aussage	Aktion
5	(C ⊔ D)(a)	Teile das Tableau in T1 und T2. Füge C(a) zu T1, D(a) zu T2 hinzu

Human(Seth), Insect(Seth),
¬Animal(Seth)
Animal μ (¬Mammal π ¬Bird π ¬Fish π ¬Insect)(Seth)
Human(Seth), Insect(Seth),
¬Human(Seth)

Nr	Aussage	Aktion
3	С	Wähle ein Individuum a, füge C(a) hinzu

Human(Seth), Insect(Seth),
¬Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)

(¬Mammal π ¬Bird π ¬Fish π ¬Insect)(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)

Nr	Aussage	Aktion
5	(C ⊔ D)(a)	Teile das Tableau in T1 und T2. Füge C(a) zu T1, D(a) zu T2 hinzu


```
Human(Seth), Insect(Seth),
¬Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)
(¬Mammal π ¬Bird π ¬Fish π ¬Insect)(Seth)
¬Mammal(Seth) π ¬Bird(Seth) π ¬Fish(Seth) π ¬Insect(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)
```

Nr	Aussage	Aktion
4	(C п D)(a)	Füge C(a) und D(a) hinzu

Der einfache Tableau-Algorithmus

Gegeben: eine Wissensbasis W in NNF

Solange nicht alle Teiltableaus abgeschlossen sind

* Wähle ein nicht abgeschlossenes Teiltableau T und ein A ∈ W ∪ T Wenn A noch nicht in T enthalten

Wenn A eine A-Box-Aussage ist

füge A zu T hinzu

zurück zu *

Wenn A eine T-Box-Aussage ist

Wähle ein Individuum a ∈ W ∪ T

Füge A(a) zu T hinzu

zurück zu *

sonst

Erweitere das Tableau mit Konsequenzen aus A zurück zu *

Der einfache Tableau-Algorithmus

- Funktioniert prima, wenn wir einen Widerspruch finden
 - aber wo ist das Abbruchkriterium für widerspruchsfreie Wissensbasen?

Nr	Aussage	Aktion
6	(∃R.C)(a)	Füge R(a,b) und C(b) für ein <i>neues</i> Individuum b hinzu

Diese Regel ist potentiell gefährlich!

Gegeben folgende Ontologie:

```
:ParentsOfSons owl:subClassOf [
  a owl:Restriction;
  owl:onProperty :hasChild;
  owl:someValuesFrom :Man ] .
:Peter :hasChild :Julia .
:Julia a :Woman .
```

■ in DL-NNF:

```
¬ParentsOfSons ⊔ ∃hasChild.Man
hasChild(Peter,Julia)
Woman(Julia)
```


hasChild(Peter,Julia)

Nr	Aussage	Aktion
2	R(a,b)	Füge R(a,b) hinzu

hasChild(Peter,Julia), Woman(Julia)

Nr	Aussage	Aktion
1	C(a)	Füge C(a) hinzu

hasChild(Peter,Julia), Woman(Julia), (¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter)

Nr	Aussage	Aktion
3	С	Wähle ein Individuum a, füge C(a) hinzu

hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
¬ParentsOfSons(Peter)

hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
∃hasChild.Man(Peter)

Nr	Aussage	Aktion
5	(C ⊔ D)(a)	Teile das Tableau in T1 und T2. Füge C(a) zu T1, D(a) zu T2 hinzu

hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
¬ParentsOfSons(Peter)

hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
∃hasChild.Man(Peter),
hasChild(Peter,b0),Man(b0)

Nr	Aussage	Aktion
6	(∃R.C)(a)	Füge R(a,b) und C(b) für ein <i>neues</i> Individuum b hinzu


```
hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
¬ParentsOfSons(Peter)
hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
∃hasChild.Man(Peter),
hasChild(Peter,b0),Man(b0),
hasChild(Peter,b1),Man(b1),
...
```

Nr	Aussage	Aktion
6	(∃R.C)(a)	Füge R(a,b) und C(b) für ein <i>neues</i> Individuum b hinzu

Tableau-Algorithmus mit Blocking

- Terminiert nicht unbedingt
- Man kann beliebig viele neue Axiome erzeugen

Nr	Aussage	Aktion
6	(∃R.C)(a)	Füge R(a,b) und C(b) für ein <i>neues</i> Individuum b hinzu

- Idee: wenn keine neue Information erzeugt wird, dann verhindere die Anwendung von Regel 6
 - d.h., wenn schon eine gleichartige Instanz b0 erzeugt wurde, dann blockiere die Auswahl von Regel 6 in diesem Fall.

Tableau-Algorithmus mit Blocking

Gegeben: eine Wissensbasis W in NNF Solange nicht alle Teiltableaus abgeschlossen sind und weitere Aussagen erzeugt werden können

```
* Wähle ein nicht abgeschlossenes Teiltableau T
und ein A ∈ W ∪ T, das nicht blockiert ist
Wenn A noch nicht in T enthalten
    Wenn A eine A-Box-Aussage ist
            füge A zu T hinzu
            zurück zu *
    Wenn A eine T-Box-Aussage ist
            Wähle ein Individuum a ∈ W ∪ T
            Füge A(a) zu T hinzu
            zurück zu *
```

sonst

Erweitere das Tableau mit Konsequenzen aus A zurück zu *

Tableau-Algorithmus: Zusammenfassung

- Ein Algorithmus für Beschreibungslogiken
 - passt auf OWL Lite und DL
- Wir haben Beispiele für einige OWL-Konstrukte gesehen
 - Auch andere OWL-DL-Ausdrücke können in DL "übersetzt" werden
 - und auch hier gibt es Expansionsregeln
 - allerdings machen die das Reasoning nicht immer leichter
 - benötigen teilweise komplizierte Strategien
 - dynamisches Blockieren und Deblockieren

Tableau-Algorithmus: Optimierungsansätze

Gegeben: eine Wissensbasis W in NNF

Solange nicht alle Teiltableaus abgeschlossen sind und weitere Aussagen erzeugt werden können

Wähle ein nicht abgeschlossenes Teiltableau T und ein A ∈ W ∪ T, das nicht blockiert ist Wenn A noch nicht in T enthalten

Wenn A eine A-Box-Aussage ist füge A zu T hinzu zurück zu *

Wenn A eine T-Box-Aussage ist Wähle ein Individuum a ∈ W ∪ T Füge A(a) zu T hinzu zurück zu *

sonst

Erweitere das Tableau mit Konsequenzen aus Azurück zu *

Tableau-Algorithmus: Implementierungen

- Fact
 - University of Manchester, kostenlos
 - SHIQ
- Fact++/JFact
 - Weiterentwicklung von Fact, kostenlos
 - SHOIQ(mit etwas D), OWL-DL + OWL2
- Pellet
 - Clark & Parsia, kostenlos für akademische Nutzung
 - SHOIN(D), OWL-DL + OWL2
- RacerPro
 - Racer Systems, kommerzielles Produkt
 - SHIQ(D)

Reasoning mit OWL: Alternative Ansätze

- Wiederverwendung von Reasonern aus anderen Bereichen
 - z.B. Datalog-Reasoner (KAON)
 - z.B. First Order Logic Theorem Prover (Hoolet)

Reasoning: aktuelle Forschung

- Gute Heuristiken für Auswahl von Axiomen
- Unterstützte Expressivität erhöhen
 - z.B. auch Regeln ermöglichen
 - dabei Skalierbarkeit erlauben
- Paralleles Reasoning

Zur Erholung

Gönnen wir unserem Reasoner doch mal etwas Zerstreuung...

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Sudoku in OWL

- Was haben wir?
- Zunächst mal eine abgeschlossene Klasse von Zahlen:

```
:Zahl a owl:Class;
owl:oneOf (:1 :2 :3 :4 :5 :6 :7 :8 :9) .
```

- Und eine ganze Menge von Feldern
 - die wir mit diesen Zahlen füllen wollen
 - machen wir's uns einfach: die Felder sind auch Zahlen
 - wir wollen wissen, welches Feld gleich welcher Zahl ist

■ 81 Felder:

c9 33 a :Zahl .

c1_11	c1_12	c2_11	c2_12		
c1_21					
c4_11					

Felder in einem Quadranten sind verschieden:

c1_11	c1_12	c2_11	c2_12		
c1_21					
c4_11					

Felder in einer Zeile sind verschieden:

c1_11	c1_12	c2_11	c2_12		
c1_21					
c4_11					

Felder in einer Spalte sind verschieden:

c1_11	c1_12	c2_11	c2_12		
c1_21					
c4_11					

Sudoku in OWL

Letzter Schritt: bekannte Zahlen einsetzen

```
c1_11 owl:sameAs :5 .
c1_12 owl:sameAs :3 .
c1_21 owl:sameAs :6 .
```

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Komplexität unseres OWL-Problems

- Wir haben
 - Klassen, und zwar eine abgeschlossene
- d.h., eine Ontologie der Komplexität SO.
- Wer kann das?
 - Fact: SHIQ :-(
 - RacerPro: SHIQ(D) :-(
 - Pellet: SHOIN(D) :-)
 - HermiT: SHOIQ :-)

Sudoku in OWL

- Probe aufs Exempel in Protégé
 - mit HermiT-Reasoner
- Vereinfacht, damit wir nicht so viel tippen müssen

	4		
		3	
		2	
1			

Zusammenfassung

- Reasoning auf Ontologien
 - lässt sich auf Konsistenzprüfung zurückführen
 - in OWL DL: Description Logic Reasoning
- Tableau-Verfahren
 - erzeuge alle möglichen Aussagen
 - verzweige bei "oder"
 - blockiere unproduktive Axiome

Vorlesung Semantic Web

Vorlesung im Wintersemester 2011/2012 Dr. Heiko Paulheim Fachgebiet Knowledge Engineering

