
17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Verification of Ontologies
with Rules
Seminar aus maschinellem Lernen WS 2011/12
Dr. Heiko Paulheim, Frederik Janssen

C(X) ∧ P1(X,Y) ⇒ P2(Y,X).

D(X) ∧ E(X) ⇒ P2(X).

C

D
E

E

E(X) ∧ P1(Y,X) ⇒ D(Y).

A
r

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Ontologien...

?

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Ontologien...

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Wieso Ontologien mit Regeln?

§ vieles Wissen lässt sich deskriptiv kodieren, z.B.
§ Maler is-a Künstler
§ Künstler erzeugt Kunstwerk
§ Kunstwerk hergestelltVon mind. 1 Künstler (Property hergestelltVon

hat minimale Kardinalität von 1)
§ ...

§ formal: Description Logic (DL)
§ Vortrag nächste Woche: Concept Learning in Description Logics

§ solches Wissen lässt sich in OWL (Web Ontology Language)
beschreiben

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Wieso Ontologien mit Regeln?

§ aber: ein Großteil an Wissen lässt sich so schlecht auffassen,
z.B.:
§ jede Schwester von einem meiner Elternteile ist meine Tante
§ dagegen leicht als Regel definierbar:
§ sister(x,Y), parent(Y) => aunt(x)

§ -> Regeln müssen her

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Regeln...

§ gebe ich hier nur abstrakt wieder
§ müssen aber immer aus einer konkreten Sprache stammen
§ verschiedene Standards (SWRL, RuleML, ...)
§ RuleML zum Beispiel unterscheidet verschiedene Untersprachen
§ unterteilt nach Mächtigkeit
§ Datalog RuleML
§ Horn-Logic RuleML
§ FOL (First-Order Logic) RuleML
§ ...

§ Mächtigkeit kommt immer zum Preis von Berechenbarkeit/Performanz

siehe z.B. http://ruleml.org/modularization/

http://ruleml.org/modularization/
http://ruleml.org/modularization/

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Der Semantic Web Stack

17.10.11 | Fachbereich 20 | Knowledge Engineering | Heiko Paulheim | 50

Semantic Web – Aufbau

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Technische

Grundlagen

Semantic-Web-

Technologie

(Fokus der Vorlesung)

here be dragons...

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Schön. Ist jetzt alles besser?

§ Beobachtung:
§ viele Fakten lassen sich nun deskriptiv (mit OWL) und mit

Regeln kodieren:

Lehrer
Professor(x) ⇒ Lehrer(x)

Professor

<owl:Class rdf:ID="Professor">
 <rdfs:subClassOf rdf:resource="#Lehrer" />
</owl:Class>

Lehrer(x) :- Professor(x)

am Beispiel Prolog:OWL:

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Das Problem...

§ Beobachtung:
§ viele Fakten lassen sich nun deskriptiv (mit OWL) und mit

Regeln kodieren

=> Redundanz

=> Inkonsistenz

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Das Problem...

§ Außerdem: Ontologien mit Regeln sind komplexer
§ -> mehr menschliche Fehler

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Verifikation!

§ viele Fehler, Redundanzen, etc. (Anomalien) können
automatisch erkannt werden

§ hier kommen die 3 Paper ins Spiel:
§ Klassifikation möglicher Anomalien
§ wie sie (autom.) erkannt werden können
§ wie man sie beheben kann

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Verifikation! - Die Papers

§ „Verification and Refactoring of Ontologies With Rules“
§ Joachim Baumeister, Dietmar Seipel
§ 2006

§ „Towards the Verification of Ontologies with Rules“
§ Joachim Baumeister, Dietmar Seipel, Thomas Kleemann
§ 2007

§ „Anomalies in Ontologies with Rules“
§ Joachim Baumeister, Dietmar Seipel
§ 2010

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Verifikation!

§ erkennen von Anomalien umgesetzt in Mischung aus Prolog und
Datalog

§ -> eigene Sprache „Datalog*“
§ mehr dazu später

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Vereinfachungen

§ alle Anomalien zu finden ist ein unentscheidbares Problem
§ daher Vereinfachungen
§ nur Untermenge von OWL DL wird betrachtet:
§ Klasseneigenschaften:
§ Unterklassen (owl:subClassOf)
§ Komplement (owl:complementOf)
§ Disjunktheit (owl:disjointWith)

§ Property-Eigenschaften (neu in Paper 3 in kursiv):
§ Transitivität (owl:transitiveProperty)
§ Symmetrie (owl:symmetricProperty)
§ Definitions- und Wertebereich (rdfs:domain bzw. rdfs:range)
§ Kardinalitäteinschränkungen (owl:minCardinality, owl:maxCa..)

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Arten von Anomalien

§ Zirkularität (circularity)

§ Inkonsistenz

§ Redundanz

§ Unzulänglichkeit (deficiency)

property clump
over-specific property range
lonely disjoint class
chain of inheritance
lazy class/property

combined

missing literals
unused literals

rule-based

partition errors
concept classification

taxonomic

Deficiency
contradicting rules

self-contradicting rule
incompatible rule antecedent

combined

ambiguous rule chains
self-reference

rule-based

semantic inconsistency
partition error

taxonomic

Inconsistency

circular properties

circularity between
rules and taxonomy. combined

circular rule chains rule-based

circular subclasses taxonomic

Circulariy

futile cardinalities
redundant implication of transitivity
redundant range/domain restrictions
subsumed rule
redundancy in antecedent
implication of properties
implication of superclasses

combined

unusable rules
unsatisfiable rules
redundant literals

rule-based

identical structure
identical names

taxonomic

Redundancy

Anomaly

Figure 1: A star of anomalies for the combination of ontologies and rules.

2005). To the best of our knowledge that will not be pro-
vided by existing tools.

Natural sources of circularity are inverse and symmetric
properties. Unlike these desired circularities a merging pro-
cess of ontologies may lead to circular definitions. Com-
bining ontologies with different views to properties may
yield for example a class vehicle that is connected by a
property isEquippedWith to a class engine , while in the
merged ontology engine was related to vehicle by a prop-
erty isUsedIn . The merging process is not completed until
these properties are related to each other.

To detect circular properties we use the following pred-
icates, where property restriction is a generaliza-
tion of restrictions like someValuesFrom , allValuesFrom ,
and applicable range restrictions on a property P .

anomaly(circular_property, C, Ps) :-

tc_connected_classes(C, Ps, C),

member(P, Ps), \+ symmetric(P).

tc_connected_classes(A, [P], C) :-

connected_classes(A, P, C).

tc_connected_classes(A, [P|Ps], C) :-

connected_classes(A, P, B),

tc_connected_classes(B, Ps, C).

connected_classes(A, P, D) :-

tc_derives(A, B),

property_restriction(B, P, C),

tc_derives(C, D).

The PROLOG call anomaly(circular property,

C, Ps) computes classes C that are part of a circular chain
Ps of properties. The forming chain is computed using the

predicate tc connected classes.

Inconsistency
Contradictory knowledge contained in ontological knowl-
edge and rules often yields unintended and unexpected
reasoning results. In the past, possible inconsistencies
were investigated separately for both taxonomic knowledge
(Gómez-Pérez 2001) and for rule-based knowledge (Preece
& Shinghal 1994), respectively. Typical examples of incon-
sistencies are contradicting rule consequents for two rules
with subsuming rule antecedent. For ontological knowledge
the partition error is very common, i.e., a subclass of two or
more classes that are contained in a disjoint partition (mu-
tually disjoint classes). In the following, we only discuss
inconsistencies that may occur due to the combined use of
rules and ontology definitions.

Incompatible Rule Antecedent. For a rule A1 ^ · · ·^An

) A there might exist an incompatibility relationship (dis-
jointness or complementarity) between two body atoms Ai

and Aj . Note that, according to our definitions this means
that Ai = Ci(x) and Aj = Cj(x) are class atoms with the
same argument x, and that Ci and Cj are disjoint or com-
plements. A rule having incompatible concepts may be also
considered as a redundancy, since the rule would never fire.

anomaly(incompatible_antecedent, A-Ais) :-

subset([B, C], Ais),

incompatible(B, C).

However, from our point of view a redundancy should be
reported when it is likely that the detected part should be re-
moved from the knowledge base. Here, we think that this

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 1: Redundanz von Regeln

subClassOf(Professor, Teacher)

Professor(x) ∧ Lecture(Y) ∧ teaches(X,Y)
⇒ Teacher(x)

most cases, redundancies can be clearly identified. Typ-
ical redundancies for ontologies like identical concepts
have already been discussed, for example in [11]. Also,
a separate discussion of rule-based redundancies like
subsuming rules can be found for instance in [23].

In the following, we introduce further redundancies
that can occur due to the combination of ontological
definitions and rules.

5.1. Identity

We call identical formal definitions of classes, prop-
erties or rules, that can be only discriminated by their
different names, identity errors. They can occur if some
implied knowledge is not explicitly stated in the ontol-
ogy, thus uncovering an incompleteness error.

For example, identical classes may be distinguished
by the developer by the introduction of an additional
property for one of the identical classes. Also identity
of classes or rules can be created by the integration of
overlapping ontologies that share (partially) identical
concepts.

5.2. Redundancy by Repetitive Taxonomic Definition

The redundant definition of taxonomic knowledge of
classes and properties was already described by Gómez-
Pérez [11]. Let X, Y be either two classes or two prop-
erties. We distinguish two types of repetition:
– direct repetition, where subClassOf(X, Y) is de-

fined more than once in the ontology;
– indirect repetition, where subClassOf(X, Y) is

defined, but this relation can be also derived by a
chain subClassOf(X, X1), subClassOf(X1, X2),
. . .subClassOf(Xn, Y) with n � 1.
Direct and indirect repetition corresponding to the in-

stantiation of classes and properties can be also defined
on instance-of instead of subclass relations. A repetitive
definition can easily occur due to the (correct) align-
ment of two classes or properties. In such cases, repeti-
tions are not an undesirable redundancy, but an intended
behavior.

5.3. Rule Subsumption

A rule r = B1 ^ · · · ^Bn) A, can be mapped to
a logically equivalent disjunction clause(r) = ¬B1 _
. . . _ ¬Bn _A.

We say that a rule r subsumes another rule r

0, for
short r⌅r

0, if clause(r)⌅clause(r0). This means, that
the head A of r subsumes the head A

0 of r

0, and the

body clause of r subsumes the body clause of r

0 with
respect to the same substitution ✓.

A subsumed rule r

0 can be removed without changing
the semantics of the ontology. Subsuming rules can be
detected by the following DATALOG? predicate, where
the PROLOG predicate rule_subsumes_check, which
we do not list here, is used for checking subsumption:

anomaly(subsumed_rule, [R1, R2]) :-
rule(R1), rule(R2),
rule_subsumes_check(R1, R2),
not(rule_subsumes_check(R2, R1)).

5.4. Redundant Implication

A rule r (over class or property atoms) has a redun-
dant implication of a parent, if some body atom B im-
plies the head atom A. This can be seen as a special
case of rule subsumption, since the implication can be
seen as a rule B) A, which subsumes the rule r.

Example: Given the subclass relation subClass-
Of(Professor, Teacher), the following rule redun-
dantly derives the parent Teacher:
Professor(X) ^ Lecture(Y) ^ teaches(X,Y)
) Teacher(X).

The example is depicted in Figure 5.

Teacher

Professor

Teacher(x) ⇐

 Professor(x),
 Lecture(Y),
 teaches(X,Y)

Lecture

Fig. 5. An example for a rule redundantly deriving an already known
parent.

In DATALOG?, such a redundancy can be defined as
follows:

anomaly(implication_of_superclass, Bs=>A) :-
rule(Bs=>A), member(B, Bs),
implies(B, A).

Besides the obviously redundant inclusion of B in the
antecedent, this anomaly might also point to an incor-
rectly assigned subsumption relation between A and B.
On the one hand, there exists a separate subsumption

9

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 2: Redundanz in Regeln

5.6.1. Redundant Derivation in the Antecedent
A redundancy in the antecedent of a rule occurs in a

rule B1^ · · ·^Bn) A, if some body atom Bi implies
another body atom Bj . Here, Bj is redundant in the
rule body and may be removed.

Example: The subclass relationship subClass-
Of(TeachingAssistant, Person) makes the atom
Person(X) redundant in the following rule:
Person(X) ^ TeachingAssistant(X) ^ ...
) Employee(X)

The DATALOG? implementation for finding the anomaly
is as follows:

anomaly(redundant_derivation, Bs=>A) :-
rule(Bs=>A), sub_sequence([Bi, Bj], Bs),
(implies(Bi, Bj)
; implies(Bj, Bi)).

As a special case, this form of redundancy can occur
in the ontology, if Bi ⌘ Bj , e.g., due to the definition
of equivalence relations. The anomaly may alternatively
point to an incorrect mapping between the elements Bi

and Bj , when these two elements were aligned from
different ontologies.

5.6.2. Redundant Use of Transitivity and Symmetry
With the definition of special property characteristics

in OWL, further anomalies may occur. For equivalent
properties P,Q, R, there may exist the following redun-
dancies:
– A rule P (x, y)^Q(y, z)^R(x, z)^�) A has a re-

dundant body atom R(x, z), if the properties P,Q, R,
are transitive.

– A rule P (x, y) ^ Q(y, x) ^ �) A has a redundant
body atom Q(x, y), if the properties P and Q are
equivalent and symmetric.

In DATALOG? – with a supporting PROLOG rule –
this can be detected using the PROLOG predicate
clause_subsumes_check:

anomaly(redundant_transitivity_b, Rule) :-
rule(Rule),
body_predicate(Rule, R),
rule_transitivity(
Rule, R, [Pxy, Qyz]=>Rxz),

rule_to_clause(Rule, [_|Cs]),
clause_subsumes_check(
[~Pxy, ~Qyz, ~Rxz], Cs).

We first construct three atoms Rxz, Pxy, and Qyz for
equivalent properties, where R is a transitive property
that occurs in the body of a rule Rule together with P
and Q. Then, we form a clause from the negations of the
three atoms and check if it subsumes the body clause
Cs of Rule. The body clause Cs is obtained by applying
the predicate rule_to_clause and omitting the first
element of the result, which is the head of Rule.

anomaly(redundant_symmetry_b, Rule) :-
rule(Rule),
body_predicate(Rule, Q),
rule_symmetry(Rule, Q, [Pxy]=>Qyx),
rule_to_clause(Rule, [_|Cs]),
clause_subsumes_check([~Pxy, ~Qyx], Cs).

We construct two atoms Pxy and Qyx for equivalent
properties, where P is a symmetric property that occurs
in the body of a rule Rule together with Q. Then, we
form a clause from the negations of the two atoms, and
we check if it subsumes the body clause Cs of Rule.

Example: For two ontologies a and b, the symmetric
properties
– a:worksWith(a:Person, a:Person) and
– b:collaborates(b:Person, b:Employee)
were defined to be equivalent. With the alignment
equivalentClasses(a:Person, b:Person) and the
relationship subClassOf(b:Employee, b:Person),
the rule a:P(X) ^ a:worksWith(X,Y) ^ b:colla-
borates(Y,X)) b:E(Y), where Person and
Employee are abbreviated by P and E, respectively,
redundantly includes one of the two symmetric prop-
erties; either the use of worksWith or collaborates
is redundant. In Figure 6 the concepts and properties
together with their alignments are shown.

Person

Ontology a

Person

Employee

Ontology b

collaborates

(symmetric)

equivalent

worksWith

(symmetric)

equivalent

Fig. 6. The rule redundantly uses a symmetrical property: a:P(X)
^ a:worksWith(X,Y) ^ b:collaborates(Y,X)) b:E(Y)

Like the redundant definitions of transitivity and sym-
metry as described in Section 5.5, these anomalies can

11

a:worksWith(a:Person, a:Person)
b:collaborates(b:Person, b:Employee)
equivalentClasses(a:Person, b:Person)
equivalentProperties(a:worksWith, b:collaborates)
subClassOf(b:Employee, b:Person)

a:P(X) ∧ a:worksWith(X,Y) ∧ b:collaborates(Y,X) ⇒ b:E(Y)

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 2: Redundanz in Regeln

5.6.1. Redundant Derivation in the Antecedent
A redundancy in the antecedent of a rule occurs in a

rule B1^ · · ·^Bn) A, if some body atom Bi implies
another body atom Bj . Here, Bj is redundant in the
rule body and may be removed.

Example: The subclass relationship subClass-
Of(TeachingAssistant, Person) makes the atom
Person(X) redundant in the following rule:
Person(X) ^ TeachingAssistant(X) ^ ...
) Employee(X)

The DATALOG? implementation for finding the anomaly
is as follows:

anomaly(redundant_derivation, Bs=>A) :-
rule(Bs=>A), sub_sequence([Bi, Bj], Bs),
(implies(Bi, Bj)
; implies(Bj, Bi)).

As a special case, this form of redundancy can occur
in the ontology, if Bi ⌘ Bj , e.g., due to the definition
of equivalence relations. The anomaly may alternatively
point to an incorrect mapping between the elements Bi

and Bj , when these two elements were aligned from
different ontologies.

5.6.2. Redundant Use of Transitivity and Symmetry
With the definition of special property characteristics

in OWL, further anomalies may occur. For equivalent
properties P,Q, R, there may exist the following redun-
dancies:
– A rule P (x, y)^Q(y, z)^R(x, z)^�) A has a re-

dundant body atom R(x, z), if the properties P,Q, R,
are transitive.

– A rule P (x, y) ^ Q(y, x) ^ �) A has a redundant
body atom Q(x, y), if the properties P and Q are
equivalent and symmetric.

In DATALOG? – with a supporting PROLOG rule –
this can be detected using the PROLOG predicate
clause_subsumes_check:

anomaly(redundant_transitivity_b, Rule) :-
rule(Rule),
body_predicate(Rule, R),
rule_transitivity(
Rule, R, [Pxy, Qyz]=>Rxz),

rule_to_clause(Rule, [_|Cs]),
clause_subsumes_check(
[~Pxy, ~Qyz, ~Rxz], Cs).

We first construct three atoms Rxz, Pxy, and Qyz for
equivalent properties, where R is a transitive property
that occurs in the body of a rule Rule together with P
and Q. Then, we form a clause from the negations of the
three atoms and check if it subsumes the body clause
Cs of Rule. The body clause Cs is obtained by applying
the predicate rule_to_clause and omitting the first
element of the result, which is the head of Rule.

anomaly(redundant_symmetry_b, Rule) :-
rule(Rule),
body_predicate(Rule, Q),
rule_symmetry(Rule, Q, [Pxy]=>Qyx),
rule_to_clause(Rule, [_|Cs]),
clause_subsumes_check([~Pxy, ~Qyx], Cs).

We construct two atoms Pxy and Qyx for equivalent
properties, where P is a symmetric property that occurs
in the body of a rule Rule together with Q. Then, we
form a clause from the negations of the two atoms, and
we check if it subsumes the body clause Cs of Rule.

Example: For two ontologies a and b, the symmetric
properties
– a:worksWith(a:Person, a:Person) and
– b:collaborates(b:Person, b:Employee)
were defined to be equivalent. With the alignment
equivalentClasses(a:Person, b:Person) and the
relationship subClassOf(b:Employee, b:Person),
the rule a:P(X) ^ a:worksWith(X,Y) ^ b:colla-
borates(Y,X)) b:E(Y), where Person and
Employee are abbreviated by P and E, respectively,
redundantly includes one of the two symmetric prop-
erties; either the use of worksWith or collaborates
is redundant. In Figure 6 the concepts and properties
together with their alignments are shown.

Person

Ontology a

Person

Employee

Ontology b

collaborates

(symmetric)

equivalent

worksWith

(symmetric)

equivalent

Fig. 6. The rule redundantly uses a symmetrical property: a:P(X)
^ a:worksWith(X,Y) ^ b:collaborates(Y,X)) b:E(Y)

Like the redundant definitions of transitivity and sym-
metry as described in Section 5.5, these anomalies can

11

a:worksWith(a:Person, a:Person)
b:collaborates(b:Person, b:Employee)
equivalentClasses(a:Person, b:Person)
equivalentProperties(a:worksWith, b:collaborates)
subClassOf(b:Employee, b:Person)

a:P(X) ∧ a:worksWith(X,Y) ∧ b:collaborates(Y,X) ⇒ b:E(Y)

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 3: Inkonsistenz

case however, a cyclic property chain may sometimes
be an intentional design decision in ontology modeling
and should be therefore not treated as an anomaly.

Example: We consider two ontologies a and b with
the following classes and alignments: equivalent-
Classes(a:Lecture, b:Course) and equivalent-
Classes(a:Professor, b:Professor). The follow-
ing further properties are defined in the ontologies:
– lectures(a:Professor, a:Lecture) and
– teaches(b:Professor, b:Course).
If lectures and teaches are incorrectly aligned as
inverse properties, then a property cycle is created.

We consider common property and range restric-
tions and further restrictions like the quantifiers
someValuesFrom and allValuesFrom. Circular prop-
erties are detected in DATALOG? as follows.

anomaly(circular_property, C, Ps) :-
tc_connected_classes(C, Ps, C),
member(P, Ps),
not(symmetricObjectProperty(P)).

The call anomaly(circular_property, C, Ps)
computes classes C that are connected to them-
selves by a chain Ps of properties; the chain Ps
is computed by using the DATALOG? predicate
tc_connected_classes, which will be given in Sec-
tion 7. If at least one of the properties is not symmetric,
then we have found a circular chain.

4. Inconsistency

Contradictory knowledge contained in ontological
knowledge and rules often yields unintended and unex-
pected conclusions. In the past, possible inconsistencies
were investigated separately for both taxonomic knowl-
edge [11] and rule-based knowledge [22]. In the context
of this paper, we focus on inconsistent knowledge that
can be detected at the symbolic level. In the common
case, the consistency of ontological knowledge with
(general) rules cannot be derived in a tractable manner.

Typical examples of inconsistencies are contradict-
ing rule consequences for two rules with subsuming
rule antecedents. For taxonomic knowledge, the parti-
tion error, which is given by a subclass of two or more
classes that are contained in a disjoint partition (pairwise
disjoint classes), is very common. In the following, we
additionally discuss inconsistencies that may occur due
to the combined use of rules and ontology definitions.

4.1. Partition Error in Taxonomy

The partition error [10] is commonly created due to
the incorrect combination of disjoint and derives rela-
tions: There exists a partition error on the class level,
when a class C is the subclass of two disjoint classes
Ci, Cj . Similarly, a partition error on the instance level
occurs, when an instance X was created from two dis-
joint classes.

Example: Consider the ontology a with a class Person
having two disjoint subclasses Teacher and Student:
– subClassOf(a:Teacher, a:Person),
– subClassOf(a:Student, a:Person), and
– disjointClasses(a:Teacher, a:Student) .
The alignment of the class b:TA (TeachingAssistent) of
the ontology b as a subclass of both a:Teacher and
a:Student would introduce a partition error, see for
example Figure 3.

The following DATALOG? predicate detects partition
errors, where X is either a subclass or an instance of the
disjoint classes C1 and C2. The Prolog term X-[C1,C2]
is used as a syntactic data structure for X and the group
of the disjoint classes C1 and C2.

anomaly(partition_error, X-[C1, C2]) :-
incompatible(C1, C2),
((derives(X, C1), derives(X, C2))
; (classAssertion(C1, X),

classAssertion(C2, X))).

Person

Teacher Studentdisjoint

TA

Ontology a

Ontology b

Fig. 3. An example of a partition error, where the concept TA
(Teaching Assistent) inherits from the disjoint concepts Teacher and
Student.

6

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 4: Zirkularität

3. Circularity

Circular definitions in the ontology have a severe
impact on the reasoning capabilities of the underlying
knowledge. Here we distinguish circular definitions in
the taxonomic structure of the ontology as described
by Gómez-Pérez [11], circular dependencies in the rule
base as considered, e.g., by Preece and Shinghal [22],
but also circular dependencies that can occur due to the
mixture of taxonomic and rule-based knowledge.

3.1. Circularity in Taxonomy and Rules

Circular definitions can occur in the taxonomy, in
rules, and in property relations.

3.1.1. Exact Circularity in Taxonomy and Rules
The following DATALOG? predicate finds pairs

[E,F] of subsequent elements E = Ei�1 and F = Ei

from a cyclic chain

E1, E2, . . . , En, En+1 = E1,

where Ei�1 derives Ei, for 2  i  n+1, such that all
elements Ei of the chain are either classes or properties.

anomaly(exact_circularity, [E, F]) :-
derives(E, F), E \= F,
tc_derives(F, E).

Cycles with n = 1 commonly occur due to the inclu-
sion of equivalent classes and properties in the predi-
cate derives. For the subClassOf relation alone (in-
cluded in derives), the described circular relationships
are commonly detected by existing tools.

Example: Consider two ontologies a and b with classes
– subClassOf(a:Professor, a:Person) and
– subClassOf(b:Employee, b:Person).
Then, the following incorrect alignments create an un-
desired circularity in the taxonomy with n = 4:
– equivalentClasses(a:Professor, b:Person)

and
– equivalentClasses(a:Person, b:Employee).

The example is depicted in Figure 2, where the incorrect
alignment between the concepts of two ontologies a and
b produce the circular dependence.

3.1.2. Circularity between Rules and Taxonomy
A rule B1 ^ · · · ^Bn) A, such that the head atom

A implies some body atom B = Bi, leads to a cir-

Person

Professor

Ontology a

Person

Employee

Ontology b

equi

equi

Fig. 2. An example of a circular alignment of concepts of two
different ontologies due to the incorrect use of equivalence relations.

cularity. The rule should be considered as a restricted
subClassOf relation between A and B, which may re-
sult in the detection of a misapplied taxonomic defini-
tion between them. The circularity can be found with
by following DATALOG? predicate:

anomaly(circularity, A-Bs) :-
rule(Bs=>A), member(B, Bs),
implies(A, B).

Example: Since subClassOf(Professor, Person),
the following rule — defining a specific restriction on
instances of classes Person and Professor — creates
a partially cyclic definition:
Person(X) ^ Teacher(X,Y) ^
University(Y)) Professor(X).

3.2. Circular Properties

Property descriptions can also be the source of cir-
cularity, when a chain of properties Pi connects a class
C by a chain

C = C1
P1! C2

P2! . . .

Pn�1! Cn = C

of classes Ci, with n � 2, to itself; at least one of
the properties should not be symmetric. We say that a
property P connects two classes D and E and denote
this by D

P! E, if there exists a property between two
classes D

0 and E

0, such that D transitively derives or is
equal to D

0 and E

0 transitively derives or is equal to E.
Often such a circularity leads to infinite models of

the ontology. In pure description logic reasoners, vari-
ous blocking methods [2,18] ensure termination of the
proof procedure in case of existentially quantified cy-
cles. However, the extension of ontologies by rules re-
quires new methods, and decidability is not guaranteed
in the general case. Typical sources of circularity are
the incorrect use of inverse and symmetrical properties
during the matching of two ontologies. In the general

5

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 4: Zirkularität

3. Circularity

Circular definitions in the ontology have a severe
impact on the reasoning capabilities of the underlying
knowledge. Here we distinguish circular definitions in
the taxonomic structure of the ontology as described
by Gómez-Pérez [11], circular dependencies in the rule
base as considered, e.g., by Preece and Shinghal [22],
but also circular dependencies that can occur due to the
mixture of taxonomic and rule-based knowledge.

3.1. Circularity in Taxonomy and Rules

Circular definitions can occur in the taxonomy, in
rules, and in property relations.

3.1.1. Exact Circularity in Taxonomy and Rules
The following DATALOG? predicate finds pairs

[E,F] of subsequent elements E = Ei�1 and F = Ei

from a cyclic chain

E1, E2, . . . , En, En+1 = E1,

where Ei�1 derives Ei, for 2  i  n+1, such that all
elements Ei of the chain are either classes or properties.

anomaly(exact_circularity, [E, F]) :-
derives(E, F), E \= F,
tc_derives(F, E).

Cycles with n = 1 commonly occur due to the inclu-
sion of equivalent classes and properties in the predi-
cate derives. For the subClassOf relation alone (in-
cluded in derives), the described circular relationships
are commonly detected by existing tools.

Example: Consider two ontologies a and b with classes
– subClassOf(a:Professor, a:Person) and
– subClassOf(b:Employee, b:Person).
Then, the following incorrect alignments create an un-
desired circularity in the taxonomy with n = 4:
– equivalentClasses(a:Professor, b:Person)

and
– equivalentClasses(a:Person, b:Employee).

The example is depicted in Figure 2, where the incorrect
alignment between the concepts of two ontologies a and
b produce the circular dependence.

3.1.2. Circularity between Rules and Taxonomy
A rule B1 ^ · · · ^Bn) A, such that the head atom

A implies some body atom B = Bi, leads to a cir-

Person

Professor

Ontology a

Person

Employee

Ontology b

equi

equi

Fig. 2. An example of a circular alignment of concepts of two
different ontologies due to the incorrect use of equivalence relations.

cularity. The rule should be considered as a restricted
subClassOf relation between A and B, which may re-
sult in the detection of a misapplied taxonomic defini-
tion between them. The circularity can be found with
by following DATALOG? predicate:

anomaly(circularity, A-Bs) :-
rule(Bs=>A), member(B, Bs),
implies(A, B).

Example: Since subClassOf(Professor, Person),
the following rule — defining a specific restriction on
instances of classes Person and Professor — creates
a partially cyclic definition:
Person(X) ^ Teacher(X,Y) ^
University(Y)) Professor(X).

3.2. Circular Properties

Property descriptions can also be the source of cir-
cularity, when a chain of properties Pi connects a class
C by a chain

C = C1
P1! C2

P2! . . .

Pn�1! Cn = C

of classes Ci, with n � 2, to itself; at least one of
the properties should not be symmetric. We say that a
property P connects two classes D and E and denote
this by D

P! E, if there exists a property between two
classes D

0 and E

0, such that D transitively derives or is
equal to D

0 and E

0 transitively derives or is equal to E.
Often such a circularity leads to infinite models of

the ontology. In pure description logic reasoners, vari-
ous blocking methods [2,18] ensure termination of the
proof procedure in case of existentially quantified cy-
cles. However, the extension of ontologies by rules re-
quires new methods, and decidability is not guaranteed
in the general case. Typical sources of circularity are
the incorrect use of inverse and symmetrical properties
during the matching of two ontologies. In the general

5

anomaly(exact_circularity, [E, F]) :-
derives(E, F),
E \= F,
tc_derives(F, E).

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 4: Zirkularität

anomaly(exact_circularity, [E, F]) :-
derives(E, F),
E \= F,
tc_derives(F, E).

derives(Professor, Person)
Professor \= Person
tc_derives(Person, Professor)3. Circularity

Circular definitions in the ontology have a severe
impact on the reasoning capabilities of the underlying
knowledge. Here we distinguish circular definitions in
the taxonomic structure of the ontology as described
by Gómez-Pérez [11], circular dependencies in the rule
base as considered, e.g., by Preece and Shinghal [22],
but also circular dependencies that can occur due to the
mixture of taxonomic and rule-based knowledge.

3.1. Circularity in Taxonomy and Rules

Circular definitions can occur in the taxonomy, in
rules, and in property relations.

3.1.1. Exact Circularity in Taxonomy and Rules
The following DATALOG? predicate finds pairs

[E,F] of subsequent elements E = Ei�1 and F = Ei

from a cyclic chain

E1, E2, . . . , En, En+1 = E1,

where Ei�1 derives Ei, for 2  i  n+1, such that all
elements Ei of the chain are either classes or properties.

anomaly(exact_circularity, [E, F]) :-
derives(E, F), E \= F,
tc_derives(F, E).

Cycles with n = 1 commonly occur due to the inclu-
sion of equivalent classes and properties in the predi-
cate derives. For the subClassOf relation alone (in-
cluded in derives), the described circular relationships
are commonly detected by existing tools.

Example: Consider two ontologies a and b with classes
– subClassOf(a:Professor, a:Person) and
– subClassOf(b:Employee, b:Person).
Then, the following incorrect alignments create an un-
desired circularity in the taxonomy with n = 4:
– equivalentClasses(a:Professor, b:Person)

and
– equivalentClasses(a:Person, b:Employee).

The example is depicted in Figure 2, where the incorrect
alignment between the concepts of two ontologies a and
b produce the circular dependence.

3.1.2. Circularity between Rules and Taxonomy
A rule B1 ^ · · · ^Bn) A, such that the head atom

A implies some body atom B = Bi, leads to a cir-

Person

Professor

Ontology a

Person

Employee

Ontology b

equi

equi

Fig. 2. An example of a circular alignment of concepts of two
different ontologies due to the incorrect use of equivalence relations.

cularity. The rule should be considered as a restricted
subClassOf relation between A and B, which may re-
sult in the detection of a misapplied taxonomic defini-
tion between them. The circularity can be found with
by following DATALOG? predicate:

anomaly(circularity, A-Bs) :-
rule(Bs=>A), member(B, Bs),
implies(A, B).

Example: Since subClassOf(Professor, Person),
the following rule — defining a specific restriction on
instances of classes Person and Professor — creates
a partially cyclic definition:
Person(X) ^ Teacher(X,Y) ^
University(Y)) Professor(X).

3.2. Circular Properties

Property descriptions can also be the source of cir-
cularity, when a chain of properties Pi connects a class
C by a chain

C = C1
P1! C2

P2! . . .

Pn�1! Cn = C

of classes Ci, with n � 2, to itself; at least one of
the properties should not be symmetric. We say that a
property P connects two classes D and E and denote
this by D

P! E, if there exists a property between two
classes D

0 and E

0, such that D transitively derives or is
equal to D

0 and E

0 transitively derives or is equal to E.
Often such a circularity leads to infinite models of

the ontology. In pure description logic reasoners, vari-
ous blocking methods [2,18] ensure termination of the
proof procedure in case of existentially quantified cy-
cles. However, the extension of ontologies by rules re-
quires new methods, and decidability is not guaranteed
in the general case. Typical sources of circularity are
the incorrect use of inverse and symmetrical properties
during the matching of two ontologies. In the general

5

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 4: Unzulänglichkeit
(Deficiency)

§ mehrere Klassen teilen eine Menge von Properties
§ sog. „Property Clump“

C1

C2

property clump

P1

P2

P3

P4

C1

C2 Cp

P1

P2

P3

P4
C3 C3

Fig. 9. Refactoring a property clump to an n-ary relation with the abstract property class P.

An example of a property clumpP = {P1, P2, P3, P4}
used by three classes C1, C2, and C3 is depicted in
Figure 9 (left); the refactored design using an abstract
property class CP is shown at the right of the figure.

The introduction of a new class, that captures related
aspects of another class, is also discussed in the ontol-
ogy design pattern n-ary relations [20], where a new
class is created in order to link the instances of n indi-
viduals to an instance of a single class. With the identi-
fication of a property clump, incorrectly modeled n-ary
relations may be uncovered. The extraction of such rep-
etitions into a single data structure is a common refac-
toring, which improves the compactness and maintain-
ability of the implementation.

7. Implementation in DATALOG?

The introduced anomalies have been also defined by
an implementation in the new language DATALOG?. Us-
ing this language, we have developed a new approach
that extends the DATALOG paradigm and mixes it with
PROLOG. The analysis can be run using the system
DISLOG Developers’ Kit (DDK) [30]. This toolkit pro-
vides a module including the presented implementation
of DATALOG? and the anomaly predicates as well as
the shown examples.

For the interested reader, we introduce some technical
details of the evaluation mechanisms of DATALOG? in
the following. For the detection of anomalies a number
of further DATALOG? and PROLOG predicates was used.
We describe their implementation in Section 7.3 and
Section 7.4.

7.1. Mixing DATALOG and PROLOG: Forward and
Backward Chaining

The detection of anomalies in rule ontologies could
not be formulated using PROLOG’s backward chain-

ing or DATALOG’s forward chaining alone, since we
need recursion on cyclic data, function symbols (mainly
for representing lists), non-grounded facts, disjunction,
negation, and aggregation (using meta-predicates) in
rule bodies, and stratification.

DATALOG and PROLOG. We distinguish between
DATALOG? rules and PROLOG rules: DATALOG? rules
are forward chaining rules that may contain function
symbols (in rule heads and bodies) as well as negation,
disjunction, and PROLOG predicates in rule bodies.
DATALOG? rules are evaluated bottom-up, and all
possible conclusions are derived.

The supporting PROLOG rules are evaluated top-
down, and — for efficiency reasons — only on demand,
and they can refer to DATALOG? facts. The PROLOG
rules are also necessary for expressivity reasons: they
are used for some computations on complex terms,
and — more importantly — for computing very general
aggregations of DATALOG? facts.

Forward and Backward Chaining. DATALOG? rules
cannot be evaluated in PROLOG or DATALOG alone for
the following reasons: Current DATALOG engines can-
not handle function symbols and non-grounded facts,
and they do not allow for the embedded computations
(arbitrary built-in predicates), which we need here in
this work. Standard PROLOG systems cannot easily han-
dle recursion with cycles, because of non-termination,
and are inefficient, because of subqueries that are posed
and answered multiply. Thus, they have to be extended
by some DATALOG? facilities (our approach) or mem-
oing/tabling facilities (the approach of the PROLOG ex-
tension XSB [24]). Since the embedding system, the
DDK [30], is developed in SWI-PROLOG, we have im-
plemented a new inference machine that can handle
mixed, stratified DATALOG?/PROLOG rule systems.

The evaluation of DATALOG? programs mixes
forward-chained evaluation of DATALOG with SLD-

16

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 4: Unzulänglichkeit
(Deficiency)

§ Lösung ist einfach
§ Zusammenfassen des Property Clumps zu einer neuen Klasse:

C1

C2

property clump

P1

P2

P3

P4

C1

C2 Cp

P1

P2

P3

P4
C3 C3

Fig. 9. Refactoring a property clump to an n-ary relation with the abstract property class P.

An example of a property clumpP = {P1, P2, P3, P4}
used by three classes C1, C2, and C3 is depicted in
Figure 9 (left); the refactored design using an abstract
property class CP is shown at the right of the figure.

The introduction of a new class, that captures related
aspects of another class, is also discussed in the ontol-
ogy design pattern n-ary relations [20], where a new
class is created in order to link the instances of n indi-
viduals to an instance of a single class. With the identi-
fication of a property clump, incorrectly modeled n-ary
relations may be uncovered. The extraction of such rep-
etitions into a single data structure is a common refac-
toring, which improves the compactness and maintain-
ability of the implementation.

7. Implementation in DATALOG?

The introduced anomalies have been also defined by
an implementation in the new language DATALOG?. Us-
ing this language, we have developed a new approach
that extends the DATALOG paradigm and mixes it with
PROLOG. The analysis can be run using the system
DISLOG Developers’ Kit (DDK) [30]. This toolkit pro-
vides a module including the presented implementation
of DATALOG? and the anomaly predicates as well as
the shown examples.

For the interested reader, we introduce some technical
details of the evaluation mechanisms of DATALOG? in
the following. For the detection of anomalies a number
of further DATALOG? and PROLOG predicates was used.
We describe their implementation in Section 7.3 and
Section 7.4.

7.1. Mixing DATALOG and PROLOG: Forward and
Backward Chaining

The detection of anomalies in rule ontologies could
not be formulated using PROLOG’s backward chain-

ing or DATALOG’s forward chaining alone, since we
need recursion on cyclic data, function symbols (mainly
for representing lists), non-grounded facts, disjunction,
negation, and aggregation (using meta-predicates) in
rule bodies, and stratification.

DATALOG and PROLOG. We distinguish between
DATALOG? rules and PROLOG rules: DATALOG? rules
are forward chaining rules that may contain function
symbols (in rule heads and bodies) as well as negation,
disjunction, and PROLOG predicates in rule bodies.
DATALOG? rules are evaluated bottom-up, and all
possible conclusions are derived.

The supporting PROLOG rules are evaluated top-
down, and — for efficiency reasons — only on demand,
and they can refer to DATALOG? facts. The PROLOG
rules are also necessary for expressivity reasons: they
are used for some computations on complex terms,
and — more importantly — for computing very general
aggregations of DATALOG? facts.

Forward and Backward Chaining. DATALOG? rules
cannot be evaluated in PROLOG or DATALOG alone for
the following reasons: Current DATALOG engines can-
not handle function symbols and non-grounded facts,
and they do not allow for the embedded computations
(arbitrary built-in predicates), which we need here in
this work. Standard PROLOG systems cannot easily han-
dle recursion with cycles, because of non-termination,
and are inefficient, because of subqueries that are posed
and answered multiply. Thus, they have to be extended
by some DATALOG? facilities (our approach) or mem-
oing/tabling facilities (the approach of the PROLOG ex-
tension XSB [24]). Since the embedding system, the
DDK [30], is developed in SWI-PROLOG, we have im-
plemented a new inference machine that can handle
mixed, stratified DATALOG?/PROLOG rule systems.

The evaluation of DATALOG? programs mixes
forward-chained evaluation of DATALOG with SLD-

16

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Implementierung

§ Mix aus Datalog und Prolog
§ wieso?
§ Prolog ist zwar mächtiger als Datalog, aber nicht deterministisch
§ Datalog dagegen nicht ausreichend (nur Atome in Prädikaten, keine

Funktionssymbole)
§ determin. Charakteristika aus Datalog werden mit Ausdrucksstärke

von Datalog kombiniert
§ -> Kompromisslösung „Datalog*“

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Implementierung

§ größter Unterschied:
§ Literale einer Datalog*-Regel können auf zwei Arten hergeleitet

werden:
§ mittels Forward-Chaining (wie in Datalog)
§ mittels Backward-Chaining (SLD-Resolution, wie in Prolog)

resolution of PROLOG, see Figure 10. A DATALOG?

rule A B1 ^ · · · ^ Bn can contain atoms Bi which
are evaluated backward in PROLOG.

SLD-Resolution

Fig. 10. Mixing Forward and Backward Chaining.

7.2. Stratified Evaluation of DATALOG?

For the ontology evaluation we have implemented
two layers (strata) D1 and D2 of DATALOG? rules:
– The upper layer D2 consists of the rules for the pred-

icate anomaly/2 and some DATALOG? rules that are
stated together with them.

– The lower layer D1 consists of all other DATALOG?

rules. For example, the rules for predicates derives
and tc_derives are in D1.

D1 is applied to the DATALOG? facts for the following
basic predicates, which have to be derived from the
underlying ontology document:
rule, class, subClassOf,
objectComplementOf, incompatible,
equivalentObjectProperties,
equivalentClasses,
transitive/symmetricObjectProperty,
min/max_cardinality_restriction,
property_restriction, class_has_property.
The resulting DATALOG? facts are the input for D2.

The stratification into two layers is necessary, because
D2 refers to D1 through negation and aggregation. Most
PROLOG predicates in this paper support the layer D2.

7.3. Further DATALOG? Predicates

The following DATALOG? predicate computes a
chain Ps of properties that connect two classes C and D
using transitive closure:

tc_connected_classes(C, [P], D) :-
connected_classes(C, P, D).

tc_connected_classes(C, [P|Ps], D) :-
connected_classes(C, P, E),
tc_connected_classes(E, Ps, D),
not(member(P, Ps)).

connected_classes(C, P, D) :-
tc_derives(C, C_),
property_restriction(C_, P, D_),
tc_derives(D_, D).

7.4. Further Supporting PROLOG Predicates

Head and Body. The head and body predicates of a
rule can be determined using the following pure PRO-
LOG predicates:

head_predicate(_=>A, P) :-
functor(A, P, _).

body_predicate(Bs=>_, P) :-
member(B, Bs), functor(B, P, _).

rule_predicate(E) :-
rule(Rule),
(head_predicate(Rule, E)
; body_predicate(Rule, E)).

Siblings. The following PROLOG rules define siblings
and aggregate the siblings Z of a class X to a list Xs using
the PROLOG meta-predicate setof/3, respectively:

sibling(X, Y) :-
subClassOf(X, Z),
subClassOf(Y, Z), X \= Y.

siblings(Zs) :-
setof(Z, sibling(X, Z), Zs).

These rules could also be evaluated in DATALOG? using
forward chaining. But, since we need siblings only
for certain lists Zs, this would be far too inefficient. The
call to setof/3 above succeeds for every class X having
siblings, and it computes the list Zs of all siblings Z of X.
On backtracking, the siblings of the other classes X are
computed. This means, setof/3 does a grouping on
the variable X. Within setof/3, the call sibling(X,
Z) computes one class X and its siblings Z.

Transitivity. Given a DATALOG? rule Rule and a pred-
icate R, the following PROLOG rule tests if R is tran-
sitive and then constructs three atoms Rxz, Pxy, and
Qyz, where P and Q are body predicates of Rule that

17

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Stratifizierung

§ Konzept aus Datalog
§ Regeln werden in Schichten (Strata) aufgeteilt
§ zuerst werden Regeln aus Schicht 1 ausgewertet, dann Regeln

aus Schicht 2, etc.
§ erlaubt Verwendung negierter Literale trotz Fixpunkt-Semantik

anomaly(subsumed_rule, [R1, R2]) :-
rule(R1), ...,
not(rule_subsumes_check(R2, R1)).

anomaly(lazy_element, E) :-
element(E), ...,
not(rule_predicate(E)).

etc.

1

2

rule_subsumes_check(R1, R2) :-
...

clause_subsumes(Cs1, Cs2) :-
checklist(implies, Cs1, Cs2). etc.

rule_predicate(E) :-
rule(Rule),
(head_predicate(Rule, E)
; body_predicate(Rule, E)).

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Bemerkungen u. Kritik

§ Typisierung der Anomalien eindeutig?

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 1: Redundanz von Regeln
(Wdh.)

subClassOf(Professor, Teacher)

Professor(x) ∧ Lecture(Y) ∧ teaches(X,Y)
⇒ Teacher(x)

most cases, redundancies can be clearly identified. Typ-
ical redundancies for ontologies like identical concepts
have already been discussed, for example in [11]. Also,
a separate discussion of rule-based redundancies like
subsuming rules can be found for instance in [23].

In the following, we introduce further redundancies
that can occur due to the combination of ontological
definitions and rules.

5.1. Identity

We call identical formal definitions of classes, prop-
erties or rules, that can be only discriminated by their
different names, identity errors. They can occur if some
implied knowledge is not explicitly stated in the ontol-
ogy, thus uncovering an incompleteness error.

For example, identical classes may be distinguished
by the developer by the introduction of an additional
property for one of the identical classes. Also identity
of classes or rules can be created by the integration of
overlapping ontologies that share (partially) identical
concepts.

5.2. Redundancy by Repetitive Taxonomic Definition

The redundant definition of taxonomic knowledge of
classes and properties was already described by Gómez-
Pérez [11]. Let X, Y be either two classes or two prop-
erties. We distinguish two types of repetition:
– direct repetition, where subClassOf(X, Y) is de-

fined more than once in the ontology;
– indirect repetition, where subClassOf(X, Y) is

defined, but this relation can be also derived by a
chain subClassOf(X, X1), subClassOf(X1, X2),
. . .subClassOf(Xn, Y) with n � 1.
Direct and indirect repetition corresponding to the in-

stantiation of classes and properties can be also defined
on instance-of instead of subclass relations. A repetitive
definition can easily occur due to the (correct) align-
ment of two classes or properties. In such cases, repeti-
tions are not an undesirable redundancy, but an intended
behavior.

5.3. Rule Subsumption

A rule r = B1 ^ · · · ^Bn) A, can be mapped to
a logically equivalent disjunction clause(r) = ¬B1 _
. . . _ ¬Bn _A.

We say that a rule r subsumes another rule r

0, for
short r⌅r

0, if clause(r)⌅clause(r0). This means, that
the head A of r subsumes the head A

0 of r

0, and the

body clause of r subsumes the body clause of r

0 with
respect to the same substitution ✓.

A subsumed rule r

0 can be removed without changing
the semantics of the ontology. Subsuming rules can be
detected by the following DATALOG? predicate, where
the PROLOG predicate rule_subsumes_check, which
we do not list here, is used for checking subsumption:

anomaly(subsumed_rule, [R1, R2]) :-
rule(R1), rule(R2),
rule_subsumes_check(R1, R2),
not(rule_subsumes_check(R2, R1)).

5.4. Redundant Implication

A rule r (over class or property atoms) has a redun-
dant implication of a parent, if some body atom B im-
plies the head atom A. This can be seen as a special
case of rule subsumption, since the implication can be
seen as a rule B) A, which subsumes the rule r.

Example: Given the subclass relation subClass-
Of(Professor, Teacher), the following rule redun-
dantly derives the parent Teacher:
Professor(X) ^ Lecture(Y) ^ teaches(X,Y)
) Teacher(X).

The example is depicted in Figure 5.

Teacher

Professor

Teacher(x) ⇐

 Professor(x),
 Lecture(Y),
 teaches(X,Y)

Lecture

Fig. 5. An example for a rule redundantly deriving an already known
parent.

In DATALOG?, such a redundancy can be defined as
follows:

anomaly(implication_of_superclass, Bs=>A) :-
rule(Bs=>A), member(B, Bs),
implies(B, A).

Besides the obviously redundant inclusion of B in the
antecedent, this anomaly might also point to an incor-
rectly assigned subsumption relation between A and B.
On the one hand, there exists a separate subsumption

9

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Beispiel 1: Redundanz von Regeln
(Wdh.)

subClassOf(Professor, Teacher)

Professor(x) ∧ Lecture(Y) ∧ teaches(X,Y)
⇒ Teacher(x)

most cases, redundancies can be clearly identified. Typ-
ical redundancies for ontologies like identical concepts
have already been discussed, for example in [11]. Also,
a separate discussion of rule-based redundancies like
subsuming rules can be found for instance in [23].

In the following, we introduce further redundancies
that can occur due to the combination of ontological
definitions and rules.

5.1. Identity

We call identical formal definitions of classes, prop-
erties or rules, that can be only discriminated by their
different names, identity errors. They can occur if some
implied knowledge is not explicitly stated in the ontol-
ogy, thus uncovering an incompleteness error.

For example, identical classes may be distinguished
by the developer by the introduction of an additional
property for one of the identical classes. Also identity
of classes or rules can be created by the integration of
overlapping ontologies that share (partially) identical
concepts.

5.2. Redundancy by Repetitive Taxonomic Definition

The redundant definition of taxonomic knowledge of
classes and properties was already described by Gómez-
Pérez [11]. Let X, Y be either two classes or two prop-
erties. We distinguish two types of repetition:
– direct repetition, where subClassOf(X, Y) is de-

fined more than once in the ontology;
– indirect repetition, where subClassOf(X, Y) is

defined, but this relation can be also derived by a
chain subClassOf(X, X1), subClassOf(X1, X2),
. . .subClassOf(Xn, Y) with n � 1.
Direct and indirect repetition corresponding to the in-

stantiation of classes and properties can be also defined
on instance-of instead of subclass relations. A repetitive
definition can easily occur due to the (correct) align-
ment of two classes or properties. In such cases, repeti-
tions are not an undesirable redundancy, but an intended
behavior.

5.3. Rule Subsumption

A rule r = B1 ^ · · · ^Bn) A, can be mapped to
a logically equivalent disjunction clause(r) = ¬B1 _
. . . _ ¬Bn _A.

We say that a rule r subsumes another rule r

0, for
short r⌅r

0, if clause(r)⌅clause(r0). This means, that
the head A of r subsumes the head A

0 of r

0, and the

body clause of r subsumes the body clause of r

0 with
respect to the same substitution ✓.

A subsumed rule r

0 can be removed without changing
the semantics of the ontology. Subsuming rules can be
detected by the following DATALOG? predicate, where
the PROLOG predicate rule_subsumes_check, which
we do not list here, is used for checking subsumption:

anomaly(subsumed_rule, [R1, R2]) :-
rule(R1), rule(R2),
rule_subsumes_check(R1, R2),
not(rule_subsumes_check(R2, R1)).

5.4. Redundant Implication

A rule r (over class or property atoms) has a redun-
dant implication of a parent, if some body atom B im-
plies the head atom A. This can be seen as a special
case of rule subsumption, since the implication can be
seen as a rule B) A, which subsumes the rule r.

Example: Given the subclass relation subClass-
Of(Professor, Teacher), the following rule redun-
dantly derives the parent Teacher:
Professor(X) ^ Lecture(Y) ^ teaches(X,Y)
) Teacher(X).

The example is depicted in Figure 5.

Teacher

Professor

Teacher(x) ⇐

 Professor(x),
 Lecture(Y),
 teaches(X,Y)

Lecture

Fig. 5. An example for a rule redundantly deriving an already known
parent.

In DATALOG?, such a redundancy can be defined as
follows:

anomaly(implication_of_superclass, Bs=>A) :-
rule(Bs=>A), member(B, Bs),
implies(B, A).

Besides the obviously redundant inclusion of B in the
antecedent, this anomaly might also point to an incor-
rectly assigned subsumption relation between A and B.
On the one hand, there exists a separate subsumption

9

⇒ Inkonsistenz?

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Bemerkungen u. Kritik

§ Hinweis darauf, wie konkrete Anomalien „hergeleitet“ werden,
fehlt

§ woher weiß man, ob eine sinnvolle Anzahl an Anomalien
abgedeckt ist?

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Bemerkungen u. Kritik

§ Real-World-Tests wären interessant gewesen

§ Problem hier aber: bisher existieren keine größeren Ontologien
mit Regeln

§ nur wenige „Toy Examples“

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Bemerkungen u. Kritik

§ weitere Hinweise zur Implementierung von Datalog* fehlen

§ z.B.: wann wird ein Literal einer Datalog*-Regel mittels
Forward-, wann mittels Backward-Chaining hergeleitet

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Bemerkungen u. Kritik

§ Anomalien in aufeinanderfolgenden Papers mal neu eingeführt,
mal wiederverwendet

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Implementierte Anomalien:
Redundanz

Paper 1
rule_subsumption
implication_of_superclasses
redundant_transitivity
redundancy_in_antecedent
unsatisfiable_condition

Paper 3
unsatisfiable_condition
subsumed_rule
redundant_mincardinality_0
redundant_transitivity_hb
redundant_symmetry_hb
redundant_derivation
redundant_transitivity_b
redundant_symmetry_b
unsupported_condition
subsumed_maxcardinality_1

Paper 2
implication_of_superclasses
redundancy_in_antecedent
redundant_transitivity
subsumed_rule
redundant_range
redundant_domain
redundant_mincardinality_0
maxcardinality_0
mincardinality_1

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Diskussion

Fragen?

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Unterschiede der Papers

§ 1. Paper von 2006, 2. von 2007 und 3. von 2010
§ Anomalienerkennung mittels Prolog in 1 und 2, Datalog* in 3
§ 1. und 2. Paper sehr knapp, 3. Paper enthält dagegen viele

anschauliche Beispiele

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Die verschiedenen Logiken

PL

FOL

HL DL

PL - Propositional Logic (Aussagenlogik)
FOL - First Order Logic (Prädikatenlogik)

HL - Horn Logic
DL - Description Logic

Prolog,
Horn-Logic RuleML OWL DL

17.1.2012 | Verification of Ontologies with Rules | Johannes Simon |

Ontologien...

