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Introduction – Motivation  
Why CF-18? 
Advanced diagnostic platform. In use since 1982. 
1.  Flight operational data 

•  altitude, airspeed, engine temperature, vibrations, pressures, etc. 
•  single diagnostic events 
•  5 years of records available as Aircraft Data Files 

2.  Maintenance data 
•  what operations have been performed on which components 
•  tracks over 2300 components 
•  10 years of records available as Oracle database 

Research question 
Can CF-18 available data be used to build prognostic models for 
different components? 



Introduction – Task  
What has been modeled? 
Two components of an aircraft engine (model GE F404): 
•  No. 4 Bearing – reduces frictions between rotating parts 
•  Main Fuel Control (MFC) – controls fuel supply to combustion  

               chambers  
 

Problems 
Delays, cancelations, engine damage, loos of engine or aircraft 
 
Objective 
•  Enhance preventive maintenance procedures 
•  improve overall fleet readiness 



Methodology – Overview  



Methodology – Challenges  
Data gathering 
1.  Too many measurements 

•  advice from experts and reliable documentation 
•  CF-18: 65 different message groupings in operations data (armament, 

engine performance, diagnostic information) 

2.  Time nature of instances 
•  no random sampling 
•  define failure event – CF-18: component replacement 
•  extract instances in time window before and after event 

3.  Different recording frequencies 
•  summarize records into single value 
•  CF-18: speed à 1s, temperatures à 5s, pressure à 1s for 15s 



Methodology - Challenges 
Data labeling 
1.  Time nature of instances 

•  time windows before and after the failure 
•  optimal repair time, balance of negative/positive (at least 15% positive) are 

important 

Modeling and evaluation 
1.  Simple, easy to explain models 

•  simple algorithms: Naïve-Bayes, decision trees, rules 

2.  Time nature of instances 
•  relevant for splitting in training/test datasets 
•  relevant for evaluation 



Model development – Data gathering 
Maintenance data 
Failure defined as a component replacement 
 

Components 

2300 
components 

1. No. 4 B. 
2. MFC 

Critical, replaceable 

1280  
1700 

42  
6 

Replacements 

Same aircraft and engine for 
whole life cycle 

Operational data 
64 

measurement 
sets 

4 
measurement 

sets 

Relevant for engine performance 

•  4 sets merged together 
•  time ordered 
•  filtered from flight number, 

date etc 



Model development – Data gathering 
Maintenance data is used to extract relevant operational data. 
1.  Extract relevant records 

Installation Replacement 

2.  Group by flight and summarize 

•  21 ways to summarize 
• traditional statistics (average, standard deviation) 
• ordered statistics (medians, quantiles) 

•  21 datasets for each Problem ID file 

Installation Replacement 

• results in 42 Problem ID files for No.4 Bearing and 6 for MFC 



Model development – Data labeling 
3.  Label the instances 

•  1 instance = summarized records of one flight 

•  each Problem ID file sizes range from 32 to 343 instances 

4.  Combine and split the data 
For each component, for each of 21 summarization types: 

•  combine all Problem ID series (ordered by ID) 
•  split into train and test sets 

•  No. 4 Bearing: 33 for training, 9 for testing 
•  MFC: 5 for training, 1 for testing 

Installation Replacement 

20 flights 



Model development – Algorithms 
Using WEKA implementation of algorithms. 



Model development – Automation  
EBM3 – Environment for Building Models for Machinery 
Maintenance 
Each step of methodology defined as independent component 

•  input/output formats, parameters, algorithms 
•  written in various languages (Java, Perl, R, Python, C/C++) 

 
EBM3: 
1.  launches components, connects computers if necessary 
2.  converts data formats between components 
3.  handles iterations and stores results for exploration 

•  various parameters, datasets and learning algorithms 

4.  deploys desired model (software and configuration) to end 
users 

 
 
 



Evaluation – Criteria 
Score 
•  sum of scores for each positive flight classification 
 
 
 
 
 
 
Problem detection rate 
•  proportion of “detected problems” 
•  problem detected, if at least one of the flight in Alert Period is 

classified as positive 
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Evaluation – Criteria 
The Paper 
 

Earlier Paper 

Precision = Number of correct predictions
Total number of predictions

Recall =

         Number of correct
replacement alert predictions

Total number of replacement alerts

Precision = Number of correct predictions
Total number of instances

Recall =

 Number of correct 
positive predictions

Total number of positive instances

Accuracy 

Accuracy 
true positive 

true positive +  
false negatives 



Evaluation – Results  
negative/positive instances: 50/50 (20 first and 20 last flights) 
 
 
 
 
 
 
 
 
 
 
 
 
Problems get detected, but not precisely in the Alert Period 

max. 126 

Accuracy 

No. 4 Bearing 

fpr: 13% 

fpr: 23% 



Evaluation – Results  

Main Fuel Control 

negative/positive instances: 85/15  
Leave One Batch Out cross validation 
 
 
 
 
 
 
 
 
 
 
 
 

fpr: 26% 



Evaluation – Discussion  
1.  No best model for all evaluation criteria 

•  MFC – not enough data 
•  MFC – imbalance 

2.  Much space for improvement 
•  custom metrics instead of precision and recall 

• alert precision, latency, assessment of false alerts 
•  feature evaluation 

• using domain knowledge or WEKA 
•  feature engineering 

•  transform raw measurements into more relevant parameters using 
physics knowledge 



Related Work 
1999 [1] 

•  failures of Airbus 320 components (16 unidentified components) 
•  no process automation, IR for maintenance data 
•  no feature transformation, no model fusion, 
•  similar results: no one best model (score evaluation only) 

2005 [2] 
•  failures of train wheels 
•  no process automation, no feature transformation 
•  model fusion – stacking 
•  results: meta model has 97% detection rate, 8% fpr, highest score  

2014 [3] 
•  predict energy consumption for air conditioning systems in buildings 
•  continuous values – regression tree, SVM  
•  results: incomparable 



Conclusion 
Negative 
1.  Results not promising 

•  no economical value, if more false alerts, than truthful predictions 
•  no cost evaluation 

2.  Questionable development decision 
•  only 20 first and 20 last flights for No. 4 Bearing 
•  metrics not informative enough 

Positive 
1.  Summarization of typical challenges 
2.  Automation of experiments 

Question 
•  Reasons for low results: methodology or data? 



Thank you for your attention! 
 

Questions? 
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