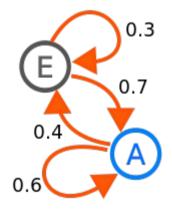
The Markov Method

Sören Schmidt

Übersicht



- Einleitung
- Einfache Methode (Sieg/Niederlage)
- Voting mit Punktdifferenzen
- Voting mit Punkten
- Kombination verschiedener Rankings
- Handhabung von unbesiegten Teams
- Vergleich mit anderen Rankingmethoden
- Anwendungen

Einleitung

- Benannt nach Andrey Andreyevich Markov
- 1906 Erfindung der Markov Kette, sie beschreibt stochastische Prozesse
- Vielfältige Anwendungsmöglichkeiten, unter anderem PageRank

- Ein Wort Beschreibung: "Voting"
- In einem Match stimmen die Verlierer für die Gewinner
- In einer Liga das Team mit den meisten Stimmen hat den höchste Ranking
- Adaption von PageRank

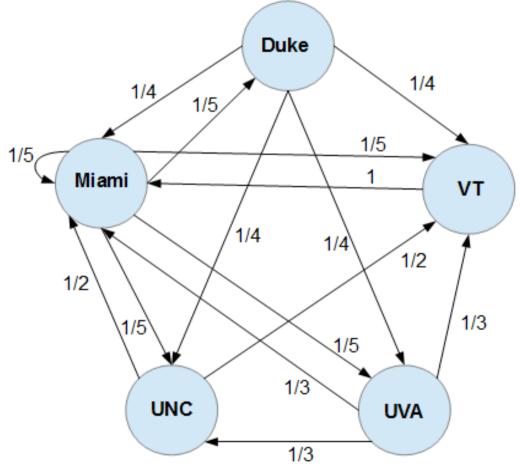
Votingmatrix V:

V	Duke	Miami	UNC	UVA	VT
Duke	0	1	1	1	1
Miami	0	0	0	0	0
UNC	0	1	0	0	1
UVA	0	1	1	0	1
VT	0	1	0	0	0

Normalisierte Votingmatrix N:

N	Duke	Miami	UNC	UVA	VT
Duke	0	1/4	1/4	1/4	1/4
Miami	0	0	0	0	0
UNC	0	1/2	0	0	1/2
UVA	0	1/3	1/3	0	1/3
VT	0	1	0	0	0

Stochastische Normalisierte Votingmatrix S:


S	Duke	Miami	UNC	UVA	VT
Duke	0	1/4	1/4	1/4	1/4
Miami	1/5	1/5	1/5	1/5	1/5
UNC	0	1/2	0	0	1/2
UVA	0	1/3	1/3	0	1/3
VT	0	1	0	0	0

- Ratingvektor r: Dominate Eigenvektor der Matrix S
- S*r = r
- Entspricht einem unendlichen "Random Walk" auf dem Graphen der Matrix, wobei r die normalisieren Anzahl der Besuche bei jedem Team darstellt

Graph der Matrix S:

Ranking für Sieg/Niederlage Voting:

Team	r S/N	Rank
Duke	0.087	5.
Miami	0.438	1.
UNC	0.146	3.
UVA	0.110	4.
VT	0.219	2.

Voting mit Punktdifferenzen

Statt einer Stimme stimmt der Verlierer mit der Punktdifferenz für den Gewinner

V	Duke	Miami	UNC	UVA	VT
Duke	0	45	3	31	45
Miami	0	0	0	0	0
UNC	0	18	0	0	27
UVA	0	8	2	0	38
VT	0	20	0	0	0

Voting mit Punktdifferenzen

Stochastische Normalisierte Votingmatrix mit Punktdifferenzen S:

S	Duke	Miami	UNC	UVA	VT
Duke	0	45/124	3/124	31/124	45/124
Miami	1/5	1/5	1/5	1/5	1/5
UNC	0	18/45	0	0	27/45
UVA	0	8/48	2/48	0	38/48
VT	0	1	0	0	0

Voting mit Punktdifferenzen

Ranking für Punktdifferenzen Voting:

Team	r PD	Rank
Duke	0.088	5.
Miami	0.442	1.
UNC	0.095	4.
UVA	0.110	3.
VT	0.265	2.

Team	r S/N	Rank
Duke	0.087	5.
Miami	0.438	1.
UNC	0.146	3.
UVA	0.110	4.
VT	0.219	2.

Voting mit Punkten

Beide Teams stimmen für das andere Team mit den Punkten, die gegen sie erzielt wurden.

V	Duke	Miami	UNC	UVA	VT
Duke	0	52	24	38	45
Miami	7	0	16	17	7
UNC	21	34	0	5	30
UVA	7	25	7	0	52
VT	0	27	3	14	0

Voting mit Punkten

Stochastische Normalisierte Votingmatrix mit Punkten S:

S	Duke	Miami	UNC	UVA	VT
Duke	0	52/159	24/159	38/159	45/159
Miami	7/47	0	16/47	17/47	7/47
UNC	21/90	34/90	0	5/90	30/90
UVA	7/91	25/91	7/91	0	52/91
VT	0	27/44	3/44	14/44	0

Voting mit Punkten

Ranking für Punkte Voting:

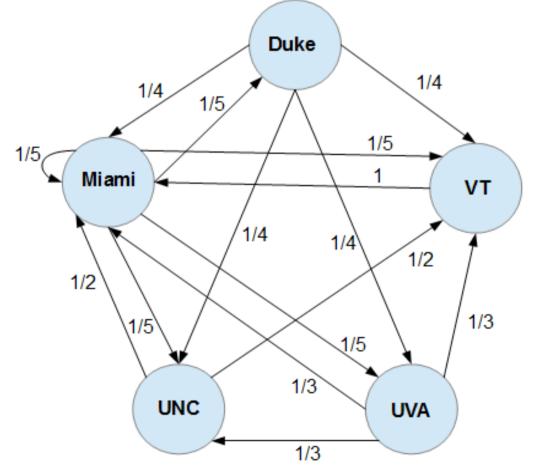
Team	r P	Rank
Duke	0.095	5.
Miami	0.296	1.
UNC	0.149	4.
UVA	0.216	3.
VT	0.244	2.

Team	r S/N	Rank
Duke	0.087	5.
Miami	0.438	1.
UNC	0.146	3.
UVA	0.110	4.
VT	0.219	2.

Statt Punkten sind auch andere Statistiken möglich, z.B. Torchancen, Zweikämpfe, Ballbesitz und Heimvorteil

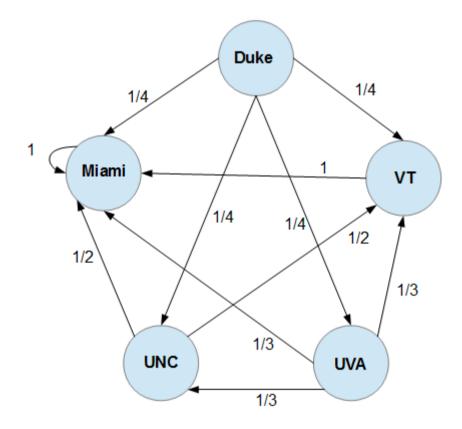
Kombination verschiedener Rankings

- Verschiedene Rankings können zu einem Gesamtranking zusammen gefasst werden
- $S = \alpha_1 S_{tc} + \alpha_2 S_{zk} + \alpha_3 S_{bb} + \alpha_4 S_{hv}$
- Wobei α_1 , α_2 , α_3 , $\alpha_4 \ge 0$ und $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$
- Die α müssen dabei entsprechend der Relevanz der einzelnen Statistiken gewählt werden


- Ersetze alle 0-Zeilen mit 1/n
- Unbesiegte Teams stimmen nur für sich selbst
 - Problem: Markov Kette wird reduzierbar
 - Addiere Teleportations Matrix E (nur Einsen)

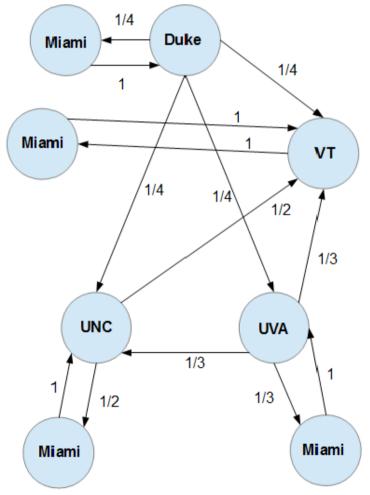
$$-S_{new} = \beta * S + (1 - \beta) / n * E (0 \le \beta \le 1)$$

- Webdata β = 0.85, NFL β = 0.6, Basketball β = 0.5
- "Bounceback Vote" Unbesiegte Teams schicken den "fair weather fan" zurück zu dem Team von dem er kam



Unbesiegte Teams stimmen mit 1/n für alle Teams

Unbesiegte Teams stimmen mit 1 für sich selbst



Votingmatrix S_{new} mit $\beta = 0.5$:

N	Duke	Miami	UNC	UVA	VT
Duke	1/10	18/80	18/80	18/80	18/80
Miami	1/10	12/20	1/10	1/10	1/10
UNC	1/10	14/40	1/10	1/10	14/40
UVA	1/10	16/60	16/60	1/10	16/60
VT	1/10	12/20	1/10	1/10	1/10

"Bounceback Vote"

Vergleich mit anderen Rankingmethoden

- Massey's Methode ist vergleichbar mit Markov mit Punktdifferenzen
- Beide Methoden suchen Gewichte für die Knoten (Teams)
- "Random Walk" vs. "Form Fitting"
- Ähnlich zu Keeners Ranking, wenn λ = 1 und Teleportationsmatrix zu S addiert wird

Anwendungen

- Getestet f
 ür College Football und NFL
- Bei Vorhersage für NFL 2004-2006 Seasons 70&, 76% und 62 % Genauigkeit