Point Spreads

TECHNISCHE UNIVERSITÄT DARMSTADT

Changneng Xu

Sports Data Mining

Topic : Point Spreads

Introduction

Method of Spread Ratings

Example

Comparison

Conclusion

Overview

Introduction

Method of Spread Ratings

Example

Comparison

Conclusion

Introduce to Point Spreads

Spread betting - any of various types of wagering on the outcome of an event, including in financial market(spread betting is regulated by the Financial Conduct Authority in UK)

Point spreads - the scoring differences of a competition (mainly in sport area)

• Handicap

How can bookmaker makes money?

- Vigorish/Juice: a **fee** that charged for the services from bookmaker
- By setting the **payout rate** under 100% probabilities
- If there is an **equal amount** of money that betting on each teams

Odds VS Point Spreads

If only odds betting

- the payoff on a winning bet should tied to the **odds in favor of winning**(hard to predict)
- less fovor on a weak team(skillful gambler)
- \rightarrow decreased betting activity & less vig
- Competition between bookmakers

point spreads betting:

For gambler: Great **volatility** \rightarrow excitement, substantial losses and rewards

For bookmaker: Maximize the betting activity Balance the amount that betting on either teams(make them equally attractive)

Point Spread Betting

Early age: Charles K. Mcneil, a mathematics teacher, became bookmaker and offerd betting against a published spread around 1940s in U.S.

Target: maximize and balance the activity on both sides

Operations:

- bookmakers create a handicap against the favored team;
- bookmakers decide the point spread that may result in an equal amount of wager;
- gamblers betting that, the scoring differences is more/less than the offered spread;
- adjust the spreads

Types of Point Spread Betting - Handicap

Handicap(beat the spread)

- Underdog & favorite the underdog(weaker/away team) receives points and favorite give points;
- The result of wager is then determind by the adjusted score: the favorite team with original score and the underdog plus spread on basis of primitive score;
- "Push" using half-point fractions to avoid tie
- Example of World Cup from bet365.com, in which team Holland receives 1 additional point: if you bet on Argentina to win and Argentina wins exceeding 2 additional score, then you beat the spread;

Asian handicap

HANDICAP RESULT

Holland (+1) 11/20

- range from one-quarter goal to several goals
- originated in Indonesia

	ASIAN HANDICAP					
	HOLLAND	ARGENTINA				
	0.0,+0.5 1.850	0.0,-0.5 2.075				
goals						
	ALTERNATIVE ASIAN HANDIGAP					
	HOLLAND	ARGENTINA				
	-1.5 7.200	+1.5 1.100				
	-1.0,-1.5 6.600	+1.0,+1.5 1.110				
	-1.0 6.000	+1.0 1.130				
e - (Arge	ntina -1) 11/4	Argentina (-1) 15/4				

Types of Point Spread Betting - Over/Under Betting

Over/Under Betting

- Another popular spread betting bet on the total score
- Usually with a half-point fraction to avoid tie
- Example of over/under bet of World Cup ½ final (Hollland VS Argentina) from bet365.com and oddset.de showed below
- Other stastistics total passing yards in football, turnovers in basketball, ect.

GOALS OVER/UNDER					
	OVER	UNDER			
2.5	27/20	4/7			
Weniger oder Mehr Tore					
Wie viele Tore werden erzielt?					
Weniger als 2,5	1,45 Mehr als 2,5	2,15			
	Over/Under Betting of a soccer game				

Overview

Method of Spread Ratings

Example

Comparison

Conclusion

Predicting Spreads with Ratings?

Difficulties:

- The purpose of ratings are different usually the **overall strengh** of teams that related to others
- Details may filtered out during distillation
- Lack of the seprate analyses of individual aspects, such as offensive/defensive

- Use the historical information to build rating of spreads
- Similar to Massey's method
- Build an optimal rating system that closely reflect the point spreads

Suppose that there is a perfect rating vector

$$\mathbf{r} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix}$$

that rating difference $r_i - r_j$ is equal to each scoring difference $S_i - S_j$

$$\mathsf{K} = \begin{pmatrix} 0 & S_1 - S_2 & \cdots & S_1 - S_n \\ S_2 - S_1 & 0 & \cdots & S_1 - S_n \\ \vdots & \vdots & \ddots & \vdots \\ S_n - S_1 & S_n - S_2 & \cdots & 0 \end{pmatrix}, \ \mathsf{R} = \begin{pmatrix} 0 & r_1 - r_2 & \cdots & r_1 - r_n \\ r_2 - r_1 & 0 & \cdots & r_2 - r_n \\ \vdots & \vdots & \ddots & \vdots \\ r_n - r_1 & r_n - r_2 & \cdots & 0 \end{pmatrix}$$

$$\mathbf{K} = \mathbf{R} = \mathbf{r}\mathbf{e}^T - \mathbf{e}\mathbf{r}^T$$
 (e is a column of 1)

$$\mathsf{K} = \begin{pmatrix} 0 & S_1 - S_2 & \cdots & S_1 - S_n \\ S_2 - S_1 & 0 & \cdots & S_1 - S_n \\ \vdots & \vdots & \ddots & \vdots \\ S_n - S_1 & S_n - S_2 & \cdots & 0 \end{pmatrix}$$

- Score-differential matrix K is skew symmetric $\implies K^T = -K$
- Rank of $re^T er^T$ is 2 \implies Rank of K is 2
- But actually we can only build ratings vector **r** that: minimize the distance between K and R

Build a function of vector x that is minimal for Frobenius norm:

$$f(\mathbf{x}) = \| \mathbf{K} - \mathbf{R}(\mathbf{x}) \|^2 = \| \mathbf{K} - (\mathbf{x}\mathbf{e}^T - \mathbf{e}\mathbf{x}^T) \|^2$$
(1)

as rank(K) = 2 and it is simplest and most standard

Frobenius norm is

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i,j} a_{ij}^{2}} = \sqrt{trace(\mathbf{A}^{T}\mathbf{A})}$$

In which the trace function have these proterties:

 $trace(\alpha A + B) = \alpha trace(A) + trace(B)$, and trace(AB) = trace(BA)

Set $\frac{\partial f}{\partial x_i} = 0$ for each *i* and solve the resulting system of equations for $x_1, x_2, ..., x_n$ to minimize the function (1)

 $f(\mathbf{x}) = \| \mathbf{K} - \mathbf{R}(\mathbf{x}) \|^{2} = \| \mathbf{K} - (\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T}) \|^{2}$ $\xrightarrow{\text{yields}} f(\mathbf{x}) = trace \ [\mathbf{K} - (\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T})]^{T} \ [\mathbf{K} - (\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T})]$ $= trace \ \mathbf{K}^{T}\mathbf{K} - trace \ [\mathbf{K}^{T}(\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T}) + (\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T})^{T}\mathbf{K}] + trace \ [(\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T})^{T} (\mathbf{x}\mathbf{e}^{T} - \mathbf{e}\mathbf{x}^{T})]$

As K is skew symmetric, then: $f(x) = trace (K^T K) - 4x^T Ke + 2n(x^T x) - 2(e^T x)^2$

$$f(x) = trace (K^T K) - 4x^T Ke + 2n(x^T x) - 2(e^T x)^2$$

differntiate f with respect to x_i , we got:

$$\frac{\partial f}{\partial x_i} = -4\mathbf{e}_i^T \mathbf{K} \mathbf{e} + 4nx_i - 4\mathbf{e}^T \mathbf{x}$$

set
$$\frac{\partial f}{\partial x_i} = 0$$
 then:
 $-4(e_i^T \text{Ke} - nx_i + e^T x) = 0$
 $nx_i - e^T x = e_i^T \text{Ke}$
 $nx_i - \sum_{j=i}^n x_j = (\text{Ke})_i, \text{ for } i = 1, 2, ..., n$

This linear equation can be transfored into a matrix equation:

$$\begin{pmatrix} (n-1) & -1 & \cdots & -1 \\ -1 & (n-1) & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & (n-1) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} (Ke)_1 \\ (Ke)_2 \\ \vdots \\ (Ke)_n \end{pmatrix} \text{, each side divide } n \rightarrow \left(\mathbf{I} - \frac{ee^T}{n} \right) \mathbf{x} = \frac{Ke}{n}$$

which **I** is a ideantity matrix

$$\left(\mathbf{I} - \frac{\mathbf{e}\mathbf{e}^{\mathrm{T}}}{\mathrm{n}}\right)\mathbf{x} = \frac{\mathrm{K}\mathbf{e}}{\mathrm{n}}$$
 (2)

As e^T Ke is a scalar and $K^T = -K \xrightarrow{\text{yields}} e^T$ Ke = 0, So one solution of formula (2) is the vector x that:

$$x = \frac{Ke}{n}$$

Further more, $(\mathbf{I} - \frac{ee^{T}}{n})e = 0$ and $rank\left(\mathbf{I} - \frac{ee^{T}}{n}\right) = n - 1$, Then all solutions of the formula (2) are: $x = \frac{Ke}{n} + \alpha e$, $\alpha \in \mathcal{R}$

With help of some constraint such as sum of ratings equals 0, we can determine a unique solution: $\sum_{n=1}^{T} \sum_{n=1}^{T} \sum_$

$$\sum x_i = \mathbf{e}^T \mathbf{x} = \mathbf{0}$$

$$e^{T}\left(\frac{Ke}{n} + \alpha e\right) = \frac{e^{T}Ke}{n} + e^{T}\alpha e = e^{T}\alpha e = 0 \xrightarrow{\text{yields}} \alpha = 0$$

check if $r = \frac{Ke}{n}$ is the actual minimizer using the Cauchy-Schwarz (or CBS) inequality method

Then the only critical point for f(x) is:

 $r = \frac{Ke}{R}$ (the centroid of the columns in K) In which the set of ratings $\{r_1, r_2, \dots, r_n\}$ with constraint $\sum_i r_i = 0$, that the (Frobenius) distance between K = $[S_i - S_j]$ and R = $[r_i - r_j]$ is minimized.

Take the result	t of World	$\begin{bmatrix} 0 & 4 & 0 & 1 \end{bmatrix}$					
	Germany	Portugal	Ghana	United States	$K = \begin{bmatrix} -4 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$		
Germany	0	4 - 0	2 - 2	1 - 0	$\begin{bmatrix} 0 & -1 & 0 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix}$		
Portugal	0 - 4	0	2 - 1	2 - 2	[1.2]		
Ghana	2 - 2	1 - 2	0	1 - 2	$r = \begin{bmatrix} -0.75 \\ 0.75 \end{bmatrix}$		
United States	0 - 1	2 - 2	2 - 1	0	-0.5		

Introduction

Method of Spread Ratings

Example

Comparison

Conclusion

Example : NFL 2009 - 2010

- 267 games in 2009 2010 NFL season
- If two teams meet more than once, use the average score respectively
- Hindsight prediction percentage : 71.54%
- High efficiency– only averaging the score differences

Rank	Team	Rating	Rank	Team	Rating
1.	SAINTS	6.2187	17.	PANTHERS	-0.1094
2.	VIKINGS	4.7187	18.	BRONCOS	-0.1250
3.	PACKERS	3.9687	19.	TITANS	-0.9531
4.	RAVENS	3.6875	20.	GIANTS	-1.0625
5.	PATRIOTS	3.6250	21.	REDSKINS	-1.0937
6.	JETS	3.0000	22.	DOLPHINS	-1.1094
7.	COLTS	2.8594	23.	BEARS	-1.5781
8.	CHARGERS	2.7031	24.	BILLS	-1.7812
9.	EAGLES	2.5469	25.	JAGUARS	-2.9531
10.	TEXANS	2.0781	26.	CHIEFS	-3.0156
11.	COWBOYS	2.0156	27.	BROWNS	-3.0469
12.	STEELERS	1.4219	28.	SEAHAWKS	-3.3281
13.	FALCONS	1.1719	29.	BUCS	-3.9687
14.	CARDINALS	0.3906	30.	RAIDERS	-5.1562
15.	BENGALS	0.3281	31.	LIONS	-5.4219
16.	NINERS	0.1875	32.	RAMS	-6.2187

Spread ratings NFL 2009-2010

Example : NFL 2009 - 2010

Absolute-spread error – with linear regression approach

Parameters: ",,home-field advantage", α , β , γ

Expected[(home-team score) – (away-team score)] = $\alpha + \beta r_h - \gamma r_a$ r_h and r_a are the ratings for home and away teams; In this equation:

$$\alpha + \beta r_{h_i} - \gamma r_{a_i} = S_{h_i} - S_{a_i}, i = 1, 2, \dots, 267$$

 α , β , γ are determined by computing least squares solution within equation above, Where r_{h_i} and r_{a_i} are the ratings for home and away team in game *i*, S_{h_i} and S_{a_i} is the scores at home or away in game i,

Computing LS of linear system $Ax = b \rightarrow$ the 3 X 3 system of normal equations $A^TAx = A^Tb$, Where

$$A_{267\times3} = \begin{pmatrix} 1 & r_{h1} & r_{a1} \\ 1 & r_{h2} & r_{a2} \\ \vdots & \vdots & \vdots \\ 1 & r_{h267} & r_{a267} \end{pmatrix}, x = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}, and b = \begin{pmatrix} S_{h1} - S_{a1} \\ S_{h2} - S_{a2} \\ \vdots \\ S_{h267} - S_{a267} \end{pmatrix}$$

Example : NFL 2009 - 2010

Result:

 $\alpha = 2.3671$

 $\beta = 2.4229$

 $\gamma = 2.2523$

 \rightarrow *tocal absolute*-spread error:

$$\sum_{i=1}^{267} |(2.3671 + 2.4229r_{h_i} - 2.2523r_{a_i}) - (S_{h_i} - S_{a_i})| = 2827.6$$

Which the spread error per game is 10.59

Overview

Introduction

Method of Spread Ratings

Example

Comparison

Conclusion

Compare with other Methods

TECHNISCHE UNIVERSITÄT DARMSTADT

Rank	Team	Rating	Rank	Team	Rating	Rank	Team	Rating	Rank	Team	Rating
1.	SAINTS	1.693	17.	TITANS	0.110	1.	SAINTS	32.18	17.	BENGALS	21.07
2.	COLTS	1.416	18.	DOLPHINS	0.062	2.	COLTS	29.86	18.	GIANTS	20.52
3.	CHARGERS	1.291	19.	GIANTS	0.036	3.	VIKINGS	27.91	19.	BRONCOS	20.27
4.	COWBOYS	1.002	20.	NINERS	-0.093	4.	JETS	27.69	20.	NINERS	20.21
5.	VIKINGS	0.909	21.	BRONCOS	-0.182	5.	CHARGERS	25.99	21.	TITANS	19.76
6.	JETS	0.897	22.	BILLS	-0.232	6.	PATRIOTS	25.89	22.	BILLS	18.18
7.	EAGLES	0.814	23.	BEARS	-0.478	7.	COWBOYS	25.65	23.	BEARS	16.48
8.	PACKERS	0.783	24.	JAGUARS	-0.621	8.	RAVENS	25.58	24.	JAGUARS	16.2
9.	FALCONS	0.671	25.	BUCS	-0.706	9.	FALCONS	24.3	25.	BUCS	13.06
10.	PATRIOTS	0.667	26.	REDSKINS	-0.938	10.	PACKERS	24.19	26.	REDSKINS	12.84
11.	PANTHERS	0.639	27.	BROWNS	-0.947	11.	EAGLES	23.79	27.	BROWNS	12.66
12	RAVENS	0.602	28.	RAIDERS	-0.986	12.	PANTHERS	22.87	28.	RAIDERS	12.56
13.	TEXANS	0.340	29.	CHIEFS	-1.050	13.	TEXANS	22.49	29.	CHIEFS	11.93
14	CARDINALS	0.318	30.	SEAHAWKS	-1.451	14.	DOLPHINS	21.43	30.	SEAHAWKS	11.61
15	BENGALS	0.230	31	LIONS	-2.385	15.	CARDINALS	21.37	31.	LIONS	6.41
16.	STEELERS	0.178	32.	RAMS	-2.591	16.	STEELERS	21.24	32.	RAMS	3.82
	NF	1.2009-201	0 Massev	ratings			NF	L 2009–201	0 Sagarin	ratings	

Compare with other Methods

Hindsight Win Accuray:	Average Spread Error(Points per Game)
Spread Ratings = 71.5%	Spread Ratings = 10.59 points per game
Sagarin Ratings = 70.8%	Sagarin Ratings = 10.53 points per game
Elo Ratings = 75.3%	Elo Ratings = 10.71 points per game
Keener Ratings = 73.4%	Keener Ratings = 10.54 points per game
Massey Ratings = 72.7%	Massey Ratings = 10.65 points per game

Comparisons of popular rating systems with 2009-2010 NFL data

Compare the hindsight win accuracy and spread error

- Spread ratings method is in the similar efficiency area as the other 4 rating systems
- Spread (centroid) ratings are more **easier** to compute

Overview

Introduction Method of Spread Ratings Example Comparison

Conclusion

Conclusion

Gambling is sometimes an art (of psychology) – gamblers, bookmakers are betting on the expectation that their "predieted" point spread will generate an equal amount of money,

Using simple method may also receive a good result.

Questions?

Thank you for your attentions!