
2 J. Fürnkranz

Web Search EnginesWeb Search Engines
➔ Crawler

 Simple Crawler
 Large-Scale Crawler
 Efficient DNS Resolution
 Robot Exclusion Protocol
 (Near-)Duplicate Detection

● Indexer
● Query Interface
● Ranker
● Scalability

3 J. Fürnkranz

Web search enginesWeb search engines

● Rooted in Information Retrieval (IR) systems
 Prepare a keyword index for corpus
 Respond to keyword queries with a ranked list of documents.

● ARCHIE
 Earliest application of

rudimentary IR systems
to the Internet

 Title search across sites
serving files over FTP

4 J. Fürnkranz

Search EnginesSearch Engines
● Crawler

 collect internet addresses
● Indexer

 break up text into tokens (words)
 create inverted index
 advanced indices include position information and hyperlink

information
● Query interface

 query for words and phrases
 Boolean expressions
 search for location, site, url, domain, etc.

● Ranker
 heuristics based on frequency/location of words
 heuristics based on hyperlink structure (page rank (Google))
 pre-defined categories or clustering of results

http://www.searchenginewatch.com

5 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Crawling and indexingCrawling and indexing

● Purpose of crawling and indexing
 quick fetching of large number of Web pages into a local

repository
 indexing based on keywords
 Ordering responses to maximize user’s chances of the first

few responses satisfying his information need.

● Earliest search engine:
 Lycos (Jan 1994)

● Followed by….
 Alta Vista (1995), HotBot and Inktomi, Excite

http://www.searchenginewatch.com/

6 J. Fürnkranz

Simple Crawler / SpiderSimple Crawler / Spider

Source: www.codeproject.com

7 J. Fürnkranz

Simple Crawler / SpiderSimple Crawler / Spider

1. Initialize Queue with a (set of) random starting URL(s)
2. retrieve the first URL in the Queue
3. find all hyperlinks in the retrieved page
4. add new hyperlinks to the Queue (remove duplicates)
5. store retrieved page
6. goto 2.

8 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Crawling procedureCrawling procedure

● Simple Crawlers are easy
● But a great deal of engineering goes into industry-strength

crawlers
 Industry crawlers crawl a substantial fraction of the Web
 many times (as quickly as possible)
 E.g.: Google, AltaVista, Yahoo! (bought Inktomi)

● No guarantee that all accessible Web pages will be
located in this fashion

● Crawler may never halt …….
 pages will be added continually even as it is running.
 usually stopped after a certain amount of work

9 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Crawling overheadsCrawling overheads

● Delays involved in
 Resolving the host name in the URL to an IP address using

DNS
 Connecting a socket to the server and sending the request
 Receiving the requested page in response

● Solution: Overlap the above delays by
 fetching many pages at the same time

10 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan 10

Anatomy of a crawlerAnatomy of a crawler
● (Logical) Page fetching threads

 Starts with DNS resolution
 Finishes when the entire page has been fetched

● Each page
 stored in compressed form to disk/tape
 scanned for outlinks

● Work pool of outlinks
 maintain network utilization without overloading it

● Dealt with by load manager
● Continue till the crawler has collected a sufficient number

of pages.
 a crawler never completes it job, it is simply stopped

(and re-started)

11 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Typical Anatomy of a Typical Anatomy of a
Large-Scale CrawlerLarge-Scale Crawler

12 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Normalizing URLsNormalizing URLs

● URLs may appear in many forms
 absolute vs. relative links (e.g., „../photo.jpg“)
 with or without ports, etc.

● To recognize duplicates, a Canonical URL is formed by
 Using a standard string for the protocol

● e.g., http vs. Http
 Canonicalizing the host name

● lower case
● resolving relative URLs

 Adding an explicit port number (default: 80)
 Normalizing and cleaning up the path

● e.g., removing /./ or /xxx/../ from path

13 J. Fürnkranz

DNS CachingDNS Caching
● A crawler will spend a substantial amount of time in

resolving DNS requests
● Crucial performance enhancements

 A large, persistent DNS cache
● need not be super-fast (disk/network are the bottlenecks)

 Custom client for DNS name resolution
● allows to concurrently handle multiple outstanding requests
● issue them and poll at a later time for completion
● distribute load among multiple DNS servers
● Compaq Mercator crawler reduced time spent in DNS resolution

from 87% to 25% by using a custom crawler
 Prefetching

● immediately after URL is extracted, the domain-host is sent to a
pre-fetching client that makes sure the address is in the cache.

14 J. FürnkranzChakrabarti and Ramakrishnan

14

Per-server work queuesPer-server work queues

● http servers protect against Denial Of Service (DoS)
attacks
 limit the speed or frequency of responses to any fixed

client IP address
● Avoiding DOS

 limit the number of active requests to a given server IP
address at any time

 maintain a queue of requests for each server
● supported by HTTP/1.1 persistent socket capability

 distribute attention relatively evenly between a large
number of sites

● Access locality vs. politeness dilemma

15 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Robot exclusionRobot exclusion
● Check

 whether the server prohibits crawling a normalized URL
 In robots.txt file in the HTTP root directory of the server

● species a list of path prefixes which crawlers should not
attempt to fetch.

● Meant for crawlers only
● Examples:

• http://www.google.de/robots.txt

• http://www.fleiner.com/robots.txt

16 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

16

Spider trapsSpider traps

Protecting from crashing on
● Ill-formed HTML

 E.g.: page with 68 kB of null characters
● Misleading sites

 indefinite number of pages dynamically generated by CGI
scripts

 paths of arbitrary depth created using
● soft directory links and
● path remapping features in HTTP server

 e.g.,http://www.fleiner.com/bots
 http://www.fleiner.com/botsv/

http://www.google.de/robots.txt
http://www.fleiner.com/robots.txt

17 J. FürnkranzChakrabarti and Ramakrishnan

17

 Spider Traps: SolutionsSpider Traps: Solutions
● Guards

 Preparing regular crawl statistics
● Adding dominating sites to guard module

 Disable crawling active content such as CGI form queries
 Eliminate URLs with non-textual data types
 Monitor URL length


● No automatic technique can be foolproof

http://www.fleiner.com/bots
http://www.fleiner.com/botsv/

18 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan
18

Eliminating already-visited URLsEliminating already-visited URLs

● Checking if a URL has already been fetched
 Before adding a new URL to the work pool
 Needs to be very quick.
 Achieved by computing MD5 hash function on the URL

● 32 – 128 bit signature (depending on size of crawling task)
● Exploiting spatio-temporal locality of access

● Two-level hash function.
 most significant bits (say, 24) derived by hashing the host name
 lower order bits (say, 40) derived by hashing the path

● concatenated bits used as a key in a B-tree
 thus spatio-temporal locality is maintained

● new URLs added to frontier of the crawl.
 hash values added to B-tree.

19 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

19

Avoiding duplicate pagesAvoiding duplicate pages

● Reduce redundancy in crawls
● Duplicate detection

 Identify Mirrored Web pages and sites
1.Detecting exact duplicates via hyperlink information

● Checking against MD5 digests of stored URLs
● Representing a relative out-link v (relative to pages u1 and u2) as

tuples (hash(u1); v) and (hash(u2); v)

2.Detecting near-duplicates based on text
● Hard problem: Even a single altered character will completely

change the digest !
● E.g.: date of update, name and email of the site administrator

20 J. Fürnkranz

ShinglingShingling
● Automated detection of near-duplicate pages

 Typically during indexing
● shingle (n-gram)

 sequence of n sucessive words
● in practice, n = 10 has been found to be useful

● assumption:
 overlap in sets of words only indicates similar topic
 But overlap in sequences of words (n-grams) indicates identity

● compute a similarity in terms of shingles using the
Jaccard co-efficient

 can be approximated efficiently by not computing all shingles
● e.g., eliminating frequent words that occur in almost all documents

r ' d 1 , d 2 =
∣S d1 ∩S d 2 ∣

∣S d 1∪S d 2 ∣

21 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Determining page changesDetermining page changes
● High variance of rate of page changes
● „If-modified-since” request header with HTTP protocol

 Impractical for a crawler

● “Expires” HTTP response header
 For pages that come with an expiry date

● Otherwise need to guess if revisiting that page will yield a
modified version.
 Score reflecting probability of page being modified
 Crawler fetches URLs in decreasing order of score.
 Assumption on update rate: recent past predicts the future

● Small scale intermediate crawler runs
 to monitor fast changing sites

● E.g.: current news, weather, etc.
 Patched intermediate indices into master index

22 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Text repositoryText repository

● Fetched pages are dumped into a repository
● Decoupling crawler from other functions for efficiency and

reliability preferred
 e.g., building a topic hierarchy, a hyperlink graph, etc.

● Page-related information stored in two parts
 meta-data

● includes fields like content-type, last-modified date, content-
length, HTTP status code, etc.

 page contents
● stored in compressed form

 often distributed over multiple servers
● simple access methods for

 crawler to add pages
 Subsequent programs (Indexer etc) to retrieve documents

23 J. Fürnkranz

Web Search EnginesWeb Search Engines
● Crawler
➔ Indexer

 Tokenization
 Document/Term Matrix
 Inverted Index
 Index Compression Techniques

● Sparse Encoding
● Gap Encoding and Gamma Code
● Lossy Compression Techniques

● Query Interface
● Ranker
● Scalability

24 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Document preprocessing:Document preprocessing:
TokenizationTokenization

● Filter textual parts that are not meant to be indexed
 tags
 Optional:

● stop-word removal
● stemming/conflation of words

● Tokens
 regarded as nonempty sequence of characters excluding

spaces and punctuations.
 represented by a suitable integer, tid, typically 32 bits

● Result of Tokenization
 document (did) transformed into a sequence of integers

(tid, pos)

will be covered later

25 J. Fürnkranz

A Document is a Bag of WordsA Document is a Bag of Words

26 J. Fürnkranz

Document / Term MatrixDocument / Term Matrix

baseball specs graphics quicktime computer

D1 0 3 0 2 0

D2 1 2 0 ... 0 0

D3 0 0 2 ... 1 5

.....

● A collection of documents can be represented as a
matrix
 ROWS: documents
 COLUMNS: feature values

27 J. Fürnkranz

Inverted IndexInverted Index

● To optimize retrieval generate
an inverted index

● This is the document/term
matrix transposed

● facilitates efficient look-up of
query term

D1 D2 D3

baseball 0 1 0

specs 3 2 0

graphics 0 0 2

.....

quicktime 2 0 1

computer 0 0 5

28 J. Fürnkranz

Sparse Encoding of DocumentsSparse Encoding of Documents

● Storing the inverted index is too costly
 most of the entries will be 0

● Solution
 store the list of documents associated with each term
 extensions allow to store additional information

● location of term in document
● location of term in paragraph
● etc.

29 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Term Offsets: The mapping from terms to documents and positions
(written as “document/position”) may be implemented using a B-tree or
a hash-table.

Sparse Encoding ExamplesSparse Encoding Examples

Two variants of the inverted index data structure, usually stored on disk.
w/o term offset with term offset (Positional Index)

30 J. Fürnkranz

Size of Positional IndexSize of Positional Index

● We need an entry for each occurrence of a word, not
just once per document
→ Index size depends on average document size

● Rules of Thumb
 A positional index is 2–4 times as large as a

non-positional index
 Positional index size 35–50% of volume of original text
 Caveat: all of this holds for “English-like” languages

Manning and Raghavan

31 J. Fürnkranz

Index Size Reduction by FilteringIndex Size Reduction by Filtering

● Stemming/case folding/no numbers cuts may reduce
 number of terms by ~35%
 number of list entries by 10-20%

● Stop words
 Rule of 30: ~30 words account for ~30% of all term

occurrences in written text [= # term offsets]
 Eliminating 150 commonest terms from index will reduce

list entries ~30% without considering compression
● With compression, you save ~10%

Manning and Raghavan

will be covered later

32 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Index compression techniquesIndex compression techniques

● Compressing the index so that much of it can be held in
memory
 Required for high-performance IR installations (as with Web

search engines),
● Redundancy in index storage

 Storage of document IDs.

Delta encoding or Gap Encoding

 Sort Doc IDs in increasing order
 Store the first ID in full
 Subsequently store only difference (gap) from previous ID
 Example:

● word appears in documents (10000, 10030, 10100)
● word appears in documents (10000, +30, +70)

33 J. Fürnkranz

Zipf’s LawZipf’s Law

● The kth most frequent term has frequency proportional
to 1/k.

most frequent
term occurs ca.
100,000 times

10th frequent
term occurs ca.
10,000 times

34 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Encoding gapsEncoding gaps

Goal: Small gap must cost far fewer bits than a full did.
● Binary encoding

 regular encoding for integers
 Optimal when all symbols are equally likely

● Unary code
 the number n is represented with n consecutive 0's followed

by a 1 (or, conversely, consecutive 1's followed by a 0)

 optimal if probability of gaps of size n decays exponentially
● Gamma code

 Represent gap x as
● Order of Magnitude: Unary code for followed by
● Exact Value: represented in binary (bits)

● Golomb codes
 Further enhancement

1⌊log x ⌋
x−2⌊log x ⌋

⌊log x ⌋

Pr n =2−n


35 J. Fürnkranz

Gamma CodingGamma Coding

1. Separate the integer
into the highest power
of 2 it contains (2N) and
the remaining N binary
digits of the integer.

2. Encode N in unary; that
is, as N zeroes
followed by a one
(which may also be
viewed as the first digit,
representing 2N)

3. Append the remaining
N binary digits to this
representation of N.

Wikipedia

36 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Lossy compression mechanismsLossy compression mechanisms

● one does not need to identify the exact document
 identify group of documents and then search for the right one

→ collect documents into buckets
 Construct inverted index from terms to bucket IDs
 Document IDs shrink to half their size.

● Cost: time overheads
 For each query, all documents in that bucket need to be

scanned
● Trading off space for time

 Solution: index documents in each bucket separately
● the same technique can also be used for encoding

positions in documents
 index block IDs instead of position IDs (block addressing)

37 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Indexing PhrasesIndexing Phrases

● Including phrases to rank complex queries
 Operators to specify word inclusions and exclusions
 With operators and phrases queries/documents can no longer

be treated as ordinary points in vector space

● Dictionary of phrases
 Could be catalogued manually
 Could be derived from the corpus itself

using statistical techniques
 Two separate indices:

● one for single terms and another for phrases

will be covered later

38 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Other issuesOther issues

● Spamming
 Adding popular query terms to a page unrelated to those

terms
● E.g.: Adding “Hawaii vacation rental” to a page about “Internet

gambling”
 Little setback due to hyperlink-based ranking

(now we have link-spam...)

● Titles, headings, meta tags and anchor-text
 TFIDF framework treats all terms the same
 Meta search engines:

● Assign weight age to text occurring in tags, meta-tags
 Using anchor-text on pages u which link to v

● Anchor-text on u offers valuable information about v as well.

39 J. Fürnkranz

Web Search EnginesWeb Search Engines
● Crawler
● Indexer
➔ Query Interface

 Simple Boolean Queries
 Efficient Processing

● Sparse Encoding
● Skip Pointers

 Advanced Processing
● Ranker
● Scalability

40 J. Fürnkranz

Simple Boolean QueriesSimple Boolean Queries

look up the inverted index

● One-term queries (T1):
⇒ look up term, return documents
 with non-zero entries

● Conjunctive queries (T1 AND T2):
⇒ Intersection of documents with
 non-zero entries

● Disjunctive queries (T1 OR T2):
⇒ Union of documents with non-zero
 entries

● Negation (NOT T1):
⇒ documents with zero entries

D1 D2 D3

baseball 0 1 0

specs 3 2 0

graphics 0 0 2

.....

quicktime 2 0 1

computer 0 0 5

41 J. Fürnkranz

Boolean Queries with List Boolean Queries with List
RepresentationRepresentation

● Walk through the two postings simultaneously, in time
linear in the total number of postings entries

● Example:

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Manning and Raghavan

Query
“Brutus AND Caesar”

42 J. Fürnkranz

Augment Lists withAugment Lists with Skip Pointers Skip Pointers

● Why?
 To quickly skip over positions that will not appear in

the search result.
● How?
● Where do we place skip pointers?

1282 4 8 16 32 64

311 2 3 5 8 17 21

318

16 128

Manning and Raghavan

43 J. Fürnkranz

Query processing with skip pointersQuery processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21

318

16 128

Suppose we’ve stepped through the lists until we process 8 on
each list.
When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Manning and Raghavan

44 J. Fürnkranz

Where do we place skips?Where do we place skips?
● Tradeoff:

 More skips → shorter skip spans ⇒ more likely to skip.
But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then long
skip spans ⇒ few successful skips.

Manning and Raghavan

● Simple heuristic:
 for lists of length L, use evenly spaced skip pointers.
 This ignores the distribution of query terms.
 Easy if the index is relatively static; harder if L keeps

changing because of updates.
● This definitely used to help; with modern hardware it

may not (Bahle et al. 2002)
 The cost of loading a bigger lists outweighs the gain

from quicker in-memory merging

L

45 J. Fürnkranz

Advanced QueriesAdvanced Queries

● location of query words in text
 document title
 anchor text

● collocations
 phrases
 words in proximity
 words in same sentence/paragraph

● location on Web
 restrict domains
 restrict hosts

● pages that link to a page

46 J. Fürnkranz

Example: Altavista Advanced SearchExample: Altavista Advanced Search

47 J. Fürnkranz

Example: Altavista Search SyntaxExample: Altavista Search Syntax

48 J. Fürnkranz

Web Search EnginesWeb Search Engines
● Crawler
● Indexer
● Query Interface
➔ Ranker

 The Vector-Space Model
 Similarity-Based Ranking
 Evaluation of Ranking Results

● Recall and Precision
● Recall and Precision Curves
● (N)DCG

 Improving Retrieval Efficiency
● Scalability

49 J. Fürnkranz

The Vector Space ModelThe Vector Space Model

● Origin:
Information Retrieval, SMART system (Salton et al.)

● Basic idea:
 A document is regarded as a vector in an n-dimensional

space
● 1 dimension for each possible word (feature, token)
● the value in each dimension is (in the simplest case)

the number of times the word occurs in the document
(term frequency – TF)

 a document is a linear combination of the base vectors
 linear algebra can be used for various computations

50 J. Fürnkranz

IntuitionIntuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

Manning and Raghavan

di=d i ,1 , d i ,2 , d i ,3

51 J. Fürnkranz

Term Weighting Term Weighting

Different ways for computing the d
i,j
:

● Boolean
 possible values are only

● 0 (term does not occur in document)
● 1 (term does occur)

● Term Frequency (TF)
 term is weighted with the frequency of its

occurrence in the text
● Term Frequency - Inverse Document Frequency (TF-IDF)

 Idea: A term is characteristic for a document if
● it occurs frequently in this document (TF)
● occurs infrequently in other documents (IDF)

 divides TF by DF
(or multiplies TF with IDF)

d i , j=TF di , t j

d i , j=
TF di , t j

DF t j
=TF di , t j⋅IDF t j

d i , j={0 if t j∉di

1 if t j∈di

52 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan 52

Term frequency Term frequency

● Measures the frequency of the occurrence of a term t in
the document d

● Common modifications:
 normalization with document length

(relative frequency)

 normalization with
 maximum frequency

 logarithmic scaling

 Cornell SMART system

d i , j=TF di , t j

TF d , t =
nd , t 

∑


nd ,

 document length

TF d , t =
nd , t 

max nd ,

TF d , t ={ 0 if t ∉d
1log 1log nd , t  if t ∈d

TF d , t =log1n d , t  

TF d , t =n d , t 

53 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Inverse document frequencyInverse document frequency

● Measure the „rareness“ of a word by counting in how
many documents it occurs

● Given
 D is the document collection
 D

t
 is the set of documents containing t

● Formulae
 mostly dampened functions of

 e.g., in the SMART retrieval system

● used for term weighting together with term frequency

IDF t =
∣D∣

∣Dt∣

IDF t =log1∣D∣

∣Dt∣ 
d i , j=

TF di , t j

DF t j
=TF di , t j⋅IDF t j

54 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Relevance rankingRelevance ranking

● Keyword queries
 In natural language
 Queries are not precise

● entire set of matching documents for response unacceptable
 Solution

● Rate each document for how likely it is to satisfy the user's
information need (relevance)

● Sort in decreasing order of the score
● Present results in a ranked list.

● No algorithmic way of ensuring that the ranking strategy
always favors the information need
 Query: only a part of the user's information need

55 J. Fürnkranz

Similarity of Document VectorsSimilarity of Document Vectors

● First Idea:
 Distance between d1 and d2 is the length of the

vector |d1 – d2| (measured with Euclidean distance)

● Why is this not a great idea?
 Short documents would be more similar to each other by

virtue of length, not topic

→ We have to deal with the issue of length normalization
 explicit normalization (as, e.g., through normalized TF)

● Alternative proposal:
 We can also implicitly normalize by looking at angles

between document vectors instead

Manning and Raghavan

56 J. Fürnkranz

Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the
cosine of the angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ

57 J. Fürnkranz

Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the
cosine of the angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ

cos =
d1⋅d2

∥d1∥⋅∥d2∥
=

∑
i=1

n

d 1,i d 2, i

∑
i=1

n

d 1, i
2

⋅∑
i=1

n

d 2, i
2

58 J. Fürnkranz

Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the
cosine of the angle θ between them.

● the distance is invariant to re-scaling the vector
 e.g., if two copies of document d1 are concatenated to a new

document d3, the similarity to d2 remains the same

t 1

d 2

d 1

t 3

t 2

θ

d3=2⋅d1

cos =
d1⋅d2

∥d1∥⋅∥d2∥
=

2⋅d1⋅d2

2⋅∥d1∥⋅∥d2∥
=

d3⋅d2

∥d3∥⋅∥d2∥
because ∥c⋅x∥=c⋅∥x∥

59 J. Fürnkranz

Relevance Ranking Relevance Ranking

● A query is represented as a document vector q
● Compute similarity of q with all retrieved document

vectors d
 similarity is computed as the cosine of the angle between

the query vector and the document vector

● Rank the documents highest that have the smallest
angle with the query

● Problem:
 Web queries are too short
 typically no good weights for query terms available

cos=
q⋅d

∥q∥⋅∥d∥
=

∑
i=1

n

d q , i d d ,i

∑
i=1

n

d d , i
2

⋅∑
i=1

n

d q , i
2

will be covered later

60 J. Fürnkranz

Evaluation of a Retrieval ResultEvaluation of a Retrieval Result

all documents

retrieved
documents

relevant
documents

retrieved
&

relevant

61 J. Fürnkranz

retrieved not
retrieved

Is
relevant a c

Is not
relevant b d

a + b c + d

Evaluation - AccuracyEvaluation - Accuracy

Confusion Matrix:

 Accuracy: percentage of correctly retrieved documents

∣D∣

accuracy=
ad
∣D∣

ac=∣D q∣

bd=∣D ∖D q∣

62 J. Fürnkranz

Recall and PrecisionRecall and Precision
● Accuracy is not a good evaluation for IR

 Accuracy can be made arbitrarily high by adding irrelevant
documents to the document base (increasing d)

 Accuracy must be interpreted relative to default accuracy
(accuracy of the learner that always predicts majority
class)

● Alternative:
 Recall: Percentage of

retrieved relevant documents
among all relevant documents

 Precision: Percentage of
retrieved relevant documents
among all retrieved documents

R=
a

ac

P=
a

ab

63 J. Fürnkranz

F-MeasureF-Measure
● Weighted harmonic mean of recall and precision

 equivalent form for :

 The parameter  can be used to trade off the relative
importance of recall and precision

● F
0
 = P

● F
∞
 = R

● F
1
: P and R equally weighted

● F
2
: recall is four times more important than precision

● F
0.5

: precision is four times more important than recall

F =


2
1⋅P⋅R

2⋅PR
F =

1


1
R

1−
1
P

=
2

21

64 J. Fürnkranz

Recall-Precision TradeoffRecall-Precision Tradeoff

0

20

40

60

80

100

0 20 40 60 80 100

Recall

Pr
ec

isi
on

● Recall and Precision form a trade-off:
 Precision can typically be

increased by decreasing
recall

 Recall can typically be
increased by sacrificing
precision

 e.g.: 100% recall can
always be obtained by
retrieving all documents

● Recall/Precision Curves
 Trade-off can be visualized by plotting precision values

over the corresponding recall values

65 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Evaluating Performance in PracticeEvaluating Performance in Practice
● Given benchmark

 Corpus of documents D
 A set of queries Q
 For each query an exhaustive

set of relevant documents
identified manually

● Each query is submitted to the system
 result is a ranked list of documents

 compute a 0/1 relevance list

● recall , precision

q∈Q
Dq⊆D

 r1 , r 2 , , rn

R=
1

∣Dq∣
∑

1≤i≤n

r i
P=

1
n ∑

1≤i≤n

r i

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

d1, d2, ,dn 

r i={1 if di∈Dq

0 otherwise

66 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Recall and Precision at RankRecall and Precision at Rank

● In many cases, we are not only interested in recall and
precision of all retrieved documents
 but only of the top k documents (those that we can browse)

● Recall at rank
 Fraction of all relevant documents included in



● Precision at rank
 Fraction of the top responses that are actually relevant.



k≥1

R[k]=
1

∣Dq∣
∑

1≤i≤ k

ri

P [k]=
1
k

∑
1≤i≤k

r i

d1,d2, , dk 

67 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Recall and Precision at RankRecall and Precision at Rank

Precision at rank plotted against
recall at rank for the given
relevance vector.

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

68 J. Fürnkranz

Interpolated PrecisionInterpolated Precision
● Goal:

 get a precision value for each recall point

● Simple strategy:
 take the maximum precision obtained for the query for any

recall greater than or equal to the current recall value r
 basic idea: the best achievable precision for a given recall is

shown

● can be used for combining results from multiple queries
 e.g., to evaluate the performance of a search engine over

multiple queries
 average the interpolated precision values for each of a set of

fixed recall levels and plot the result for this recall level

69 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

rk

Interpolated PrecisionInterpolated Precision

Precision and interpolated
precision plotted against
recall for the given
relevance vector.

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

70 J. Fürnkranz

Sample Curve Before and After Sample Curve Before and After
InterpolationInterpolation

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

Recall

P
re

ci
si

o
n

71 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Summary MeasuresSummary Measures

Summary measures for evaluating the shape of the R/P curve:

● Average Precision
 the average of all precision values at rank positions with

relevant documents

 avgP = 1 iff

● engine retrieves all relevant documents and
● ranks them ahead of any irrelevant document

● 11point Average Precision
 average the 11 interpolated precision values for fixed recall

levels of 0, 0.1, 0.2, ... 0.9, 1.0

avg P=
1

∣Dq∣
∑

1≤k≤∣D∣

r k⋅P [k]

72 J. Fürnkranz

Summary MeasuresSummary Measures

Average Precision

11pt Average Precision

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

73 J. Fürnkranz

Breakeven PointBreakeven Point

= 91,76

● Another simple summary measure
 the point where recall equals precision
 Estimated by linear interpolation

● Assumption:
 Distance to origin determines quality

of recall/precision curve
● Example: 0

20

40

60

80

100

0 20 40 60 80 100

Recall

Pr
ec

is
io

n
B=

R2⋅P1−R1⋅P2

R2−R1P1−P2

Precision Recall

72.38 97.88

75.09 97.76

80.01 97.18

85.02 96.20

90.00 93.89

94.41 88.57

74 J. Fürnkranz

Discounted Cumulative GainDiscounted Cumulative Gain
● Discounted Cumulative Gain (DCG)

 Key idea:
● average precision gives equal weight to all positions
● but top positions in the ranking are more important and should

receive higher weights!
 Approach:

● Discount the relevance factor r
i
 with the logarithm of i

● Normalized Discounted Cumulative Gain (NDCG)
 Normalize the DCG-value of the ranking with the optimal

DCG-value for this query (i.e., the DCG value for the perfect ranking)

DCG [k]= ∑
1≤i≤k

r i

log2 i1 

NDCG [k]=
DCG [k]

ODCG [k]

75 J. Fürnkranz

DCG ExampleDCG Example
● DCG at ranking position 5:

● NDCG at ranking position 5:
 we have 6 relevant documents, the perfect

has 5 relevant docs at the first 5 places

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

DCG [5]=
1

log22


0
log2 3


1

log24


1
log2 5


0

log26

=1
1

1.585


1
2


1

2.34


1
2.585

=2.95

ODCG [5]=
1

log22


1
log23


1

log24


1
log25


1

log2 6

=10
1
2


1

2.34
0=1.93

NDCG [5]=
DCG 5

ODCG 5
=0.655

76 J. Fürnkranz

Multi-Level Relevance ScoresMulti-Level Relevance Scores
● user Feedback about relevance need not be binary

 users may give feedback on multiple levels

● Example:
 How relevant is this page on a scale from 0 to 5?

● DCG and NDCG can be directly generalized to this case
 r

i
 can then have values 0 to 5 instead of 0 to 1

 the optimal ranking for the computation of NDCG is any
ranking that sorts all pages with a higher score before all
pages with a lower score

77 J. Fürnkranz

Improving Retrieval EfficiencyImproving Retrieval Efficiency

● Relevance Feedback
 user is willing to provide feedback

● Clustering Search Results
 results are summarized into different groups

● Meta-Search Engines
 query multiple engines and combine results

● Hyperlink-based Ranking
 later in this course

78 © J. Fürnkranz

Relevance Feedback Relevance Feedback

1. Present an result for query q
i

2. Get feedback from the user
● Explicit Relevance Feedback:

User marks documents as relevant or not
● Implicit Relevance Feedback:

User's actions are observed
(e.g., does he view the document or not?)

3. Formulate new query q
i+1

 by enriching original query with
query terms from relevant documents

● e.g., select by log odds ratio, add relevant document vectors,
subtract irrelevant document vectors

4. i = i + 1, Goto 1.

PROBLEM: increased effort for the user, only feasible for long-term
monitoring of interactions (e.g., WebWatcher)

79 J. Fürnkranz

Relevance Feedback: ExampleRelevance Feedback: Example

● Image search engine
http://nayana.ece.ucsb.edu/imsearch/imsearch.html

Manning and Raghavan

80 J. Fürnkranz

Results for Initial QueryResults for Initial Query

Manning and Raghavan

http://nayana.ece.ucsb.edu/imsearch/imsearch.html

81 J. Fürnkranz

Relevance FeedbackRelevance Feedback

Manning and Raghavan

82 J. Fürnkranz

Results after Relevance FeedbackResults after Relevance Feedback

Manning and Raghavan

83 J. Fürnkranz

Rocchio AlgorithmRocchio Algorithm

● increase weight of terms that appear in relevant
documents

● decrease weight of terms that appear in irrelevant
documents

● typical parameter settings

● A few iterations of this can significantly improve
performance

q i1=⋅qi⋅∑
j

r j−⋅∑
j

i j

=1 ; =
1

∣R∣
; =

1
∣I∣

r j∈R

i j∈I

84 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Pseudo Relevance FeedbackPseudo Relevance Feedback

● Pseudo-relevance feedback
 R and I generated automatically

● E.g.: Cornell SMART system
● top 10 documents reported by the first round of query execution

are included in R
 typically set to 0; I not used

● Not a commonly available feature
 Web users want instant gratification
 System complexity

● Executing the second round query slower and expensive for
major search engines

γ

85 J. Fürnkranz

Clustering of Search ResultsClustering of Search Results

● Search results are often ambigous
 e.g., 'jaguar' returns documents on cars and documents on

animals
 user is typically only interested in one meaning

● Solution: Clustering algorithms
 detect groups of pages that have similar outcomes
 basic idea:

● sort objects into classes in order to maximize
 intra-class similarity
 inter-class dissimilarity

86 J. Fürnkranz

http://www.clusty.com

87 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Meta-search systemsMeta-search systems

● Take the search engine to the document
 Forward queries to many geographically distributed

repositories
● Each has its own search service

 Consolidate their responses.
● Advantages

 Automatically perform non-trivial query rewriting
● Suit a single user query to many search engines with different

query syntax
 Surprisingly small overlap between crawls

● Consolidating responses
 Function goes beyond just eliminating duplicates
 Search services do not provide standard ranks which can be

combined meaningfully

http://www.clusty.com/

88 J. Fürnkranz

Example: MetaCrawlerExample: MetaCrawler
http://www.metacrawler.com/

89 J. Fürnkranz

Web Search EnginesWeb Search Engines
● Crawler
● Indexer
● Query Interface
● Ranker
➔ Scalability

 Index Sizes
 Estimating the Size of the Web
 Coverage

http://www.metacrawler.com/

Source:
searchenginewatch.com

Search Search
Engine Engine
Sizes Sizes

2001

Source
searchenginewatch.com

Searches Searches
per Dayper Day

Search Engine Market ShareSearch Engine Market Share

93 J. Fürnkranz

Estimating the Size of the WebEstimating the Size of the Web

● Lawrence & Giles, Science 1998
● Procedure

 Submitted 575 queries from real users to several search
engines

 Tried to avoid difficulties originating from different indexing
and retrieval schemes of the search engines

 Obtained different size estimates for number of indexed
documents from the pairwise overlap of search engines

 The largest was 320,000,000 pages
● Assumption

 pages indexed by search engines are independent
 unrealistic, hence true estimate is larger

94 J. Fürnkranz

Estimating the Size of the Web (2)Estimating the Size of the Web (2)

N ≈sa

nb

no

≈sb

na

no

sa

N
≈

no

nb

sb

N
≈

no

na

s
a
 = total number of pages indexed by search engine a

s
b
 = total number of pages indexed by search engine b

Graphic from NEC Research, http://www.neci.nj.nec.com/~lawrence/websize.html

95 J. Fürnkranz

Search Engine CoverageSearch Engine Coverage

● Based on the estimated size of the Web 1998
● The best engine indexes only 32% of the "indexable Web"

Graphic from NEC Research, http://www.neci.nj.nec.com/~lawrence/websize.html

http://www.neci.nj.nec.com/~lawrence/websize.html

Newer ResultsNewer Results

● Gulli & Signorini (WWW-14, 2005)
 based on a similar study by Bharat & Broder (1998)
 size of indexable web = 11.5 billion pages

● Google vs. Yahoo controversy (Cheney & Perry 2005)
 as a result, Google stopped announcing index sizes

http://www.neci.nj.nec.com/~lawrence/websize.html

98 J. Fürnkranz

Search Engine ResourcesSearch Engine Resources
● Search Engine Watch

 http://searchenginewatch.com/resources/

	Folie 2
	Web search engines
	Search Engine
	Crawling and indexing
	Folie 6
	Folie 7
	Crawling procedure
	Crawling overheads
	Anatomy of a crawler.
	PowerPoint Presentation
	Canonical URL
	Folie 13
	Per-server work queues
	Robot exclusion
	Spider traps
	Spider Traps: Solutions
	Eliminating already-visited URLs
	Avoiding repeated expansion of links on duplicate pages
	Folie 20
	Determining page changes
	Text repository
	Folie 23
	Document preprocessing
	Bag-Of-Words
	Document Matrix
	Inverted Index
	Sparse Encoding
	
	Rules of thumb
	Index size
	Index compression techniques
	Zipf’s law
	Encoding gaps
	Folie 35
	Lossy compression mechanisms
	Other issues (contd..)
	Other issues
	Folie 39
	Folie 40
	Recall basic merge
	Augment postings with skip pointers (at indexing time)
	Query processing with skip pointers
	Where do we place skips?
	Advanced Queries
	Folie 46
	Folie 47
	Folie 48
	Vector Space
	Intuition
	Extensions
	Term frequency
	Inverse document frequency
	Relevance ranking
	First cut
	Cosine similarity
	Folie 57
	Folie 58
	Ranking
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Evaluating procedure
	Recall and precision
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Other measures
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Relevance Feedback
	Relevance Feedback: Example
	Results for Initial Query
	Folie 81
	Results after Relevance Feedback
	Rocchio Algorithm
	Relevance feedback (contd.)
	Folie 85
	Folie 86
	Meta-search systems
	Folie 88
	Folie 89
	Search Engine Size 2001
	Folie 91
	Folie 92
	Web Size2
	Web Size 3
	Search Engine Coverage
	Folie 96
	Folie 98

