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Web Search EnginesWeb Search Engines
➔ Crawler

 Simple Crawler
 Large-Scale Crawler
 Efficient DNS Resolution
 Robot Exclusion Protocol
 (Near-)Duplicate Detection

● Indexer
● Query Interface
● Ranker
● Scalability
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Web search enginesWeb search engines

● Rooted in Information Retrieval (IR) systems
 Prepare a keyword index for corpus 
 Respond to keyword queries with a ranked list of documents.

● ARCHIE
 Earliest application of 

rudimentary IR systems 
to the Internet

 Title search across sites 
serving files over FTP
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Search EnginesSearch Engines
● Crawler

 collect internet addresses
● Indexer

 break up text into tokens (words)
 create inverted index
 advanced indices include position information and hyperlink 

information
● Query interface

 query for words and phrases
 Boolean expressions
 search for location, site, url, domain, etc.

● Ranker
 heuristics based on frequency/location of words
 heuristics based on hyperlink structure (page rank (Google))
 pre-defined categories or clustering of results

http://www.searchenginewatch.com
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Crawling and indexingCrawling and indexing

● Purpose of crawling and indexing
 quick fetching of large number of Web pages into a local 

repository 
 indexing based on keywords
 Ordering responses to maximize user’s chances of the first 

few responses satisfying his information need.

● Earliest search engine: 
 Lycos (Jan 1994)

● Followed by….
 Alta Vista (1995), HotBot and Inktomi, Excite

http://www.searchenginewatch.com/
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Simple Crawler / SpiderSimple Crawler / Spider

Source: www.codeproject.com
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Simple Crawler / SpiderSimple Crawler / Spider

1. Initialize Queue with a (set of) random starting URL(s)
2. retrieve the first URL in the Queue
3. find all hyperlinks in the retrieved page
4. add new hyperlinks to the Queue (remove duplicates)
5. store retrieved page
6. goto 2.
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Crawling procedureCrawling procedure

● Simple Crawlers are easy
● But a great deal of engineering goes into industry-strength 

crawlers 
 Industry crawlers crawl a substantial fraction of the Web
 many times (as quickly as possible)
 E.g.: Google, AltaVista, Yahoo! (bought Inktomi)

● No guarantee that all accessible Web pages will be 
located in this fashion

● Crawler may never halt …….
 pages will be added continually even as it is running.
 usually stopped after a certain amount of work
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Crawling overheadsCrawling overheads

● Delays involved in
 Resolving the host name in the URL to an IP address using 

DNS
 Connecting a socket to the server and sending the request
 Receiving the requested page in response

● Solution: Overlap the above delays by
 fetching many pages at the same time



10 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan 10

Anatomy of a crawlerAnatomy of a crawler
● (Logical) Page fetching threads

 Starts with DNS resolution 
 Finishes when the entire page has been fetched

● Each page 
 stored in compressed form to disk/tape 
 scanned for outlinks

● Work pool of outlinks
 maintain network utilization without overloading it

● Dealt with by load manager
● Continue till the crawler has collected a sufficient number 

of pages.
 a crawler never completes it job, it is simply stopped 

(and re-started)
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Typical Anatomy of a Typical Anatomy of a 
Large-Scale CrawlerLarge-Scale Crawler
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Normalizing URLsNormalizing URLs

● URLs may appear in many forms
 absolute vs. relative links (e.g., „../photo.jpg“)
 with or without ports, etc.

● To recognize duplicates, a Canonical URL is formed by
 Using a standard string for the protocol 

● e.g., http vs. Http
 Canonicalizing the host name

● lower case
● resolving relative URLs

 Adding an explicit port number (default: 80)
 Normalizing and cleaning up the path

● e.g., removing /./ or /xxx/../ from path



13 J. Fürnkranz

DNS CachingDNS Caching
● A crawler will spend a substantial amount of time in 

resolving DNS requests
● Crucial performance enhancements

  A large, persistent DNS cache
● need not be super-fast (disk/network are the bottlenecks)

 Custom client for DNS name resolution
● allows to concurrently handle multiple outstanding requests
● issue them and poll at a later time for completion
● distribute load among multiple DNS servers
● Compaq Mercator crawler reduced time spent in DNS resolution 

from 87% to 25% by using a custom crawler
 Prefetching

● immediately after URL is extracted, the domain-host is sent to a 
pre-fetching client that makes sure the address is in the cache.
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Per-server work queuesPer-server work queues

● http servers protect against Denial Of Service (DoS) 
attacks
 limit the speed or frequency of responses to any fixed 

client IP address
● Avoiding DOS

 limit the number of active requests to a given server IP 
address at any time

 maintain a queue of requests for each server
● supported by HTTP/1.1 persistent socket capability 

 distribute attention relatively evenly between a large 
number of sites

● Access locality vs. politeness dilemma



15 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Robot exclusionRobot exclusion
● Check 

 whether the server prohibits crawling a normalized URL
 In robots.txt file in the HTTP root directory of the server

● species a list of path prefixes which crawlers should not 
attempt to fetch.

● Meant for crawlers only
● Examples:

• http://www.google.de/robots.txt

• http://www.fleiner.com/robots.txt
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Spider trapsSpider traps

Protecting from crashing on 
● Ill-formed HTML

 E.g.: page with 68 kB of null characters
● Misleading sites

 indefinite number of pages dynamically generated by CGI 
scripts

 paths of arbitrary depth created using 
● soft directory links and 
● path remapping features in HTTP server

 e.g.,http://www.fleiner.com/bots
       http://www.fleiner.com/botsv/

http://www.google.de/robots.txt
http://www.fleiner.com/robots.txt
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  Spider Traps: SolutionsSpider Traps: Solutions
● Guards

 Preparing regular crawl statistics
● Adding dominating sites to guard module

 Disable crawling active content such as CGI form queries
 Eliminate URLs with non-textual data types
 Monitor URL length


● No automatic technique can be foolproof

http://www.fleiner.com/bots
http://www.fleiner.com/botsv/
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Eliminating already-visited URLsEliminating already-visited URLs

● Checking if a URL has already been fetched 
 Before adding a new URL to the work pool
 Needs to be very quick.
 Achieved by computing MD5 hash function on the URL

● 32 – 128 bit signature (depending on size of crawling task)
● Exploiting spatio-temporal locality of access

● Two-level hash function.
 most significant bits (say, 24) derived by hashing the host name 
 lower order bits (say, 40) derived by hashing the path

● concatenated bits used as a key in a B-tree
 thus spatio-temporal locality is maintained

● new URLs added to frontier of the crawl.
 hash values added to B-tree.
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Avoiding duplicate pagesAvoiding duplicate pages

● Reduce redundancy in crawls
● Duplicate detection

 Identify Mirrored Web pages and sites
1.Detecting exact duplicates via hyperlink information

● Checking against MD5 digests of stored URLs
● Representing a relative out-link v (relative to pages u1 and u2) as 

tuples (hash(u1); v) and (hash(u2); v)

2.Detecting near-duplicates based on text
● Hard problem: Even a single altered character will completely 

change the digest !
● E.g.: date of update, name and email of the site administrator
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ShinglingShingling
● Automated detection of near-duplicate pages

 Typically during indexing
● shingle (n-gram)

 sequence of n sucessive words
● in practice, n = 10 has been found to be useful

● assumption:
 overlap in sets of words only indicates similar topic
 But overlap in sequences of words (n-grams) indicates identity

● compute a similarity in terms of shingles using the 
Jaccard co-efficient

 can be approximated efficiently by not computing all shingles
● e.g., eliminating frequent words that occur in almost all documents

r ' d 1 , d 2 =
∣S d1 ∩S d 2 ∣

∣S d 1∪S d 2 ∣
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Determining page changesDetermining page changes
● High variance of rate of page changes
● „If-modified-since” request header with HTTP protocol

 Impractical for a crawler

● “Expires” HTTP response header
 For pages that come with an expiry date

● Otherwise need to guess if revisiting that page will yield a 
modified version.
 Score reflecting probability of page being modified
 Crawler fetches URLs in decreasing order of score.
 Assumption on update rate: recent past predicts the future

● Small scale intermediate crawler runs
 to monitor fast changing sites

● E.g.: current news, weather, etc.
 Patched intermediate indices into master index
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Text repositoryText repository

● Fetched pages are dumped into a repository
● Decoupling crawler from other functions for efficiency and 

reliability preferred
 e.g., building a topic hierarchy, a hyperlink graph, etc.

● Page-related information stored in two parts
 meta-data

● includes fields like content-type, last-modified date, content-
length, HTTP status code, etc.

 page contents 
● stored in compressed form

 often distributed over multiple servers
● simple access methods for 

 crawler to add pages 
 Subsequent programs (Indexer etc) to retrieve documents
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Web Search EnginesWeb Search Engines
● Crawler
➔ Indexer

 Tokenization
 Document/Term Matrix
 Inverted Index
 Index Compression Techniques

● Sparse Encoding
● Gap Encoding and Gamma Code
● Lossy Compression Techniques

● Query Interface
● Ranker
● Scalability
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Document preprocessing:Document preprocessing:
TokenizationTokenization

● Filter textual parts that are not meant to be indexed
 tags
 Optional: 

● stop-word removal
● stemming/conflation of words

● Tokens 
 regarded as nonempty sequence of characters excluding 

spaces and punctuations.
 represented by a suitable integer, tid, typically 32 bits

● Result of Tokenization
 document (did) transformed into a sequence of integers 

(tid, pos)

will be covered later
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A Document is a Bag of WordsA Document is a Bag of Words
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Document / Term MatrixDocument / Term Matrix

baseball specs graphics .... quicktime computer

D1 0 3 0 .... 2 0

D2 1 2 0 ... 0 0

D3 0 0 2 ... 1 5

..... .... .... .... .... .... ....

● A collection of documents can be represented as a 
matrix
 ROWS: documents
 COLUMNS: feature values
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Inverted IndexInverted Index

● To optimize retrieval generate 
an inverted index

● This is the document/term 
matrix transposed

● facilitates efficient look-up of 
query term

D1 D2 D3

baseball 0 1 0

specs 3 2 0

graphics 0 0 2

..... .... .... ....

quicktime 2 0 1

computer 0 0 5
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Sparse Encoding of DocumentsSparse Encoding of Documents

● Storing the inverted index is too costly
 most of the entries will be 0

● Solution
 store the list of documents associated with each term
 extensions allow to store additional information

● location of term in document
● location of term in paragraph
● etc.
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Term Offsets: The mapping from terms to documents and positions 
(written as “document/position”) may be implemented using a B-tree or 
a hash-table.

Sparse Encoding ExamplesSparse Encoding Examples

Two variants of the inverted index data structure, usually stored on disk. 
w/o term offset with term offset (Positional Index)



30 J. Fürnkranz

Size of Positional IndexSize of Positional Index

● We need an entry for each occurrence of a word, not 
just once per document
→ Index size depends on average document size

● Rules of Thumb
 A positional index is 2–4 times as large as a 

non-positional index
 Positional index size 35–50% of volume of original text
 Caveat: all of this holds for “English-like” languages

Manning and Raghavan
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Index Size Reduction by FilteringIndex Size Reduction by Filtering

● Stemming/case folding/no numbers cuts may reduce
 number of terms by ~35%
 number of list entries by 10-20%

● Stop words
 Rule of 30: ~30 words account for ~30% of all term 

occurrences in written text [ = # term offsets] 
 Eliminating 150 commonest terms from index will reduce 

list entries ~30% without considering compression
● With compression, you save ~10%

Manning and Raghavan

will be covered later
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Index compression techniquesIndex compression techniques

● Compressing the index so that much of it can be held in 
memory
 Required for high-performance IR installations (as with Web 

search engines),
● Redundancy in index storage

 Storage of document IDs.

Delta encoding or Gap Encoding

 Sort Doc IDs in increasing order
 Store the first ID in full
 Subsequently store only difference (gap) from previous ID
 Example:

● word appears in documents (10000, 10030, 10100)
● word appears in documents (10000, +30, +70)
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Zipf’s LawZipf’s Law

● The kth most frequent term has frequency proportional 
to 1/k.

most frequent
term occurs ca.
100,000 times

10th frequent
term occurs ca.
10,000 times



34 J. FürnkranzMining the Web Chakrabarti and Ramakrishnan

Encoding gapsEncoding gaps

Goal: Small gap must cost far fewer bits than a full did.
● Binary encoding

 regular encoding for integers
 Optimal when all symbols are equally likely

● Unary code
 the number n is represented with n consecutive 0's followed 

by a 1 (or, conversely, consecutive 1's followed by a 0)

 optimal if probability of gaps of size n decays exponentially 
● Gamma code 

 Represent gap x as
● Order of Magnitude: Unary code for                   followed by
● Exact Value:                 represented in binary (            bits)

● Golomb codes
 Further enhancement

1⌊log x ⌋
x−2⌊log x ⌋

⌊log x ⌋

Pr n =2−n

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Gamma CodingGamma Coding

1. Separate the integer 
into the highest power 
of 2 it contains (2N) and 
the remaining N binary 
digits of the integer.

2. Encode N in unary; that 
is, as N zeroes  
followed by a one
(which may also be 
viewed as the first digit, 
representing 2N)

3. Append the remaining 
N binary digits to this 
representation of N.

Wikipedia
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Lossy compression mechanismsLossy compression mechanisms

● one does not need to identify the exact document 
 identify group of documents and then search for the right one

→ collect documents into buckets
 Construct inverted index from terms to bucket IDs
 Document IDs shrink to half their size.

● Cost: time overheads
 For each query, all documents in that bucket need to be 

scanned
● Trading off space for time

 Solution: index documents in each bucket separately
● the same technique can also be used for encoding 

positions in documents
 index block IDs instead of position IDs (block addressing)
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Indexing PhrasesIndexing Phrases

● Including phrases to rank complex queries
 Operators to specify word inclusions and exclusions
 With operators and phrases queries/documents can no longer 

be treated as ordinary points in vector space

● Dictionary of phrases
 Could be catalogued manually
 Could be derived from the corpus itself 

using statistical techniques
 Two separate indices: 

● one for single terms and another for phrases

will be covered later
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Other issuesOther issues

● Spamming
 Adding popular query terms to a page unrelated to those 

terms 
● E.g.: Adding “Hawaii vacation rental” to a page about “Internet 

gambling”
 Little setback due to hyperlink-based ranking

(now we have link-spam...)

● Titles, headings, meta tags and anchor-text
 TFIDF framework treats all terms the same
 Meta search engines:

● Assign weight age to text occurring in tags, meta-tags
 Using anchor-text on pages u which link to v

● Anchor-text on u offers valuable information about v as well.
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Web Search EnginesWeb Search Engines
● Crawler
● Indexer
➔ Query Interface

 Simple Boolean Queries
 Efficient Processing 

● Sparse Encoding 
● Skip Pointers

 Advanced Processing
● Ranker
● Scalability
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Simple Boolean QueriesSimple Boolean Queries

look up the inverted index

● One-term queries (T1):
⇒ look up term, return documents  
     with non-zero entries

● Conjunctive queries (T1 AND T2):
⇒ Intersection of documents with 
     non-zero entries

● Disjunctive queries (T1 OR T2):
⇒ Union of documents with non-zero 
     entries

● Negation (NOT T1):
⇒ documents with zero entries

D1 D2 D3

baseball 0 1 0

specs 3 2 0

graphics 0 0 2

..... .... .... ....

quicktime 2 0 1

computer 0 0 5
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Boolean Queries with List Boolean Queries with List 
RepresentationRepresentation

● Walk through the two postings simultaneously, in time 
linear in the total number of postings entries

● Example: 

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Manning and Raghavan

Query 
“Brutus AND Caesar”
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Augment Lists withAugment Lists with Skip Pointers Skip Pointers  

● Why?
 To quickly skip over positions that will not appear in 

the search result.
● How?
● Where do we place skip pointers?

1282 4 8 16 32 64

311 2 3 5 8 17 21

318

16 128

Manning and Raghavan
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Query processing with skip pointersQuery processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21

318

16 128

Suppose we’ve stepped through the lists until we process 8 on 
each list.
When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Manning and Raghavan
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Where do we place skips?Where do we place skips?
● Tradeoff:

 More skips → shorter skip spans ⇒ more likely to skip.  
But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then long 
skip spans ⇒ few successful skips.

Manning and Raghavan

● Simple heuristic: 
 for lists of length L, use        evenly spaced skip pointers.
 This ignores the distribution of query terms.
 Easy if the index is relatively static; harder if L keeps 

changing because of updates.
● This definitely used to help; with modern hardware it 

may not (Bahle et al. 2002)
 The cost of loading a bigger lists outweighs the gain 

from quicker in-memory merging

L
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Advanced QueriesAdvanced Queries

● location of query words in text
 document title
 anchor text

● collocations
 phrases 
 words in proximity 
 words in same sentence/paragraph

● location on Web
 restrict domains
 restrict hosts

● pages that link to a page
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Example: Altavista Advanced SearchExample: Altavista Advanced Search
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Example: Altavista Search SyntaxExample: Altavista Search Syntax
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Web Search EnginesWeb Search Engines
● Crawler
● Indexer
● Query Interface
➔ Ranker

 The Vector-Space Model
 Similarity-Based Ranking
 Evaluation of Ranking Results

● Recall and Precision
● Recall and Precision Curves
● (N)DCG

 Improving Retrieval Efficiency
● Scalability
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The Vector Space ModelThe Vector Space Model

● Origin: 
Information Retrieval, SMART system (Salton et al.)

● Basic idea: 
 A document is regarded as a vector in an n-dimensional 

space
● 1 dimension for each possible word (feature, token)
● the value in each dimension is (in the simplest case) 

the number of times the word occurs in the document 
(term frequency – TF)

 a document is a linear combination of the base vectors 
 linear algebra can be used for various computations
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IntuitionIntuition

Postulate: Documents that are “close together” 
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

Manning and Raghavan

di=d i ,1 , d i ,2 , d i ,3
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Term Weighting Term Weighting 

Different ways for computing the d
i,j
: 

● Boolean
 possible values are only 

● 0 (term does not occur in document) 
● 1 (term does occur)

● Term Frequency (TF)
 term is weighted with the frequency of its 

occurrence in the text
● Term Frequency - Inverse Document Frequency (TF-IDF)

 Idea: A term is characteristic for a document if
● it occurs frequently in this document (TF)
● occurs infrequently in other documents (IDF)

 divides TF by DF 
(or multiplies TF with IDF)

d i , j=TF di , t j

d i , j=
TF di , t j

DF t j
=TF di , t j⋅IDF t j

d i , j={0  if t j∉di

1  if t j∈di
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Term frequency Term frequency 

● Measures the frequency of the occurrence of a term t in 
the document d

● Common modifications:
 normalization with document length

(relative frequency)

 normalization with
 maximum frequency

 logarithmic scaling

 Cornell SMART system 

d i , j=TF di , t j

TF d , t =
nd , t 

∑


nd ,

 document length 

TF d , t =
nd , t 

max nd ,

TF d , t ={ 0 if t ∉d
1log 1log nd , t  if t ∈d

TF d , t =log1n d , t  

TF d , t =n d , t 
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Inverse document frequencyInverse document frequency

● Measure the „rareness“ of a word by counting in how 
many documents it occurs

● Given
 D is the document collection
 D

t
 is the set of documents containing t

● Formulae
 mostly dampened functions of 

 e.g., in the SMART retrieval system

● used for term weighting together with term frequency

IDF t =
∣D∣

∣Dt∣

IDF t =log1∣D∣

∣Dt∣ 
d i , j=

TF di , t j

DF t j
=TF di , t j⋅IDF t j
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Relevance rankingRelevance ranking

● Keyword queries
 In natural language
 Queries are not precise

● entire set of matching documents for response unacceptable
 Solution

● Rate each document for how likely it is to satisfy the user's 
information need (relevance)

● Sort in decreasing order of the score
● Present results in a ranked list.

● No algorithmic way of ensuring that the ranking strategy 
always favors the information need
 Query: only a part of the user's information need
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Similarity of Document VectorsSimilarity of Document Vectors

● First Idea: 
 Distance between d1 and d2 is the length of the 

vector |d1 – d2| (measured with Euclidean distance)

● Why is this not a great idea?
 Short documents would be more similar to each other by 

virtue of length, not topic

→ We have to deal with the issue of length normalization
 explicit normalization (as, e.g., through normalized TF)

● Alternative proposal:
 We can also implicitly normalize by looking at angles 

between document vectors instead

Manning and Raghavan
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Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the 
cosine of the angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ
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Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the 
cosine of the angle θ between them.

t 1

d 2

d 1

t 3

t 2

θ

cos =
d1⋅d2

∥d1∥⋅∥d2∥
=

∑
i=1

n

d 1,i d 2, i

∑
i=1

n

d 1, i
2

⋅∑
i=1

n

d 2, i
2
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Cosine similarityCosine similarity

● Distance between vectors d1 and d2 captured by the 
cosine of the angle θ between them.

● the distance is invariant to re-scaling the vector
 e.g., if two copies of document d1 are concatenated to a new 

document d3, the similarity to d2 remains the same

t 1

d 2

d 1

t 3

t 2

θ

d3=2⋅d1

cos =
d1⋅d2

∥d1∥⋅∥d2∥
=

2⋅d1⋅d2

2⋅∥d1∥⋅∥d2∥
=

d3⋅d2

∥d3∥⋅∥d2∥
because ∥c⋅x∥=c⋅∥x∥
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Relevance Ranking Relevance Ranking 

● A query is represented as a document vector q
● Compute similarity of q with all retrieved document 

vectors d 
 similarity is computed as the cosine of the angle between 

the query vector and the document vector

● Rank the documents highest that have the smallest 
angle with the query

● Problem:
 Web queries are too short
 typically no good weights for query terms available

cos=
q⋅d

∥q∥⋅∥d∥
=

∑
i=1

n

d q , i d d ,i

∑
i=1

n

d d , i
2

⋅∑
i=1

n

d q , i
2

will be covered later
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Evaluation of a Retrieval ResultEvaluation of a Retrieval Result

all documents

retrieved 
documents

relevant 
documents

retrieved
& 

relevant
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retrieved not
retrieved

Is
relevant a c

Is not
relevant b d

a + b c + d

Evaluation - AccuracyEvaluation - Accuracy

Confusion Matrix:

 Accuracy: percentage of correctly retrieved documents

∣D∣

accuracy=
ad
∣D∣

ac=∣D q∣

bd=∣D ∖D q∣
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Recall and PrecisionRecall and Precision
● Accuracy is not a good evaluation for IR

 Accuracy can be made arbitrarily high by adding irrelevant 
documents to the document base (increasing d)

 Accuracy must be interpreted relative to default accuracy
(accuracy of the learner that always predicts majority 
class)

● Alternative: 
 Recall: Percentage of 

retrieved relevant documents 
among all relevant documents

 Precision: Percentage of 
retrieved relevant documents 
among all retrieved documents

R=
a

ac

P=
a

ab
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F-MeasureF-Measure
● Weighted harmonic mean of recall and precision

 equivalent form for                :  

 The parameter  can be used to trade off the relative 
importance of recall and precision

● F
0
  = P

● F
∞
 = R

● F
1
: P and R equally weighted

● F
2
: recall is four times more important than precision

● F
0.5

: precision is four times more important than recall

F =


2
1⋅P⋅R

2⋅PR
F =

1


1
R

1−
1
P

=
2

21
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Recall-Precision TradeoffRecall-Precision Tradeoff

0

20

40

60

80

100

0 20 40 60 80 100

Recall

Pr
ec

isi
on

● Recall and Precision form a trade-off:
 Precision can typically be 

increased by decreasing 
recall

 Recall can typically be 
increased by sacrificing 
precision

 e.g.: 100% recall can 
always be obtained by 
retrieving all documents

● Recall/Precision Curves
 Trade-off can be visualized by plotting precision values

over the corresponding recall values
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Evaluating Performance in PracticeEvaluating Performance in Practice
● Given benchmark

 Corpus of documents D 
 A set of queries Q
 For each query            an exhaustive 

set of relevant documents              
identified manually

● Each query is submitted to the system
 result is a ranked list of documents                         

 compute a 0/1 relevance list

● recall                       ,  precision

q∈Q
Dq⊆D

 r1 , r 2 , , rn

R=
1

∣Dq∣
∑

1≤i≤n

r i
P=

1
n ∑

1≤i≤n

r i

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

d1, d2, ,dn 

r i={1  if di∈Dq

0  otherwise
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Recall and Precision at RankRecall and Precision at Rank

● In many cases, we are not only interested in recall and 
precision of all retrieved documents
 but only of the top k documents (those that we can browse)

● Recall at rank
 Fraction of all relevant documents included in                          



● Precision at rank
 Fraction of the top          responses that are actually relevant.



k≥1

R[ k ]=
1

∣Dq∣
∑

1≤i≤ k

ri

P [k ]=
1
k

∑
1≤i≤k

r i

d1,d2, , dk 
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Recall and Precision at RankRecall and Precision at Rank

Precision at rank plotted against 
recall at rank for the given 
relevance vector.  

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0
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Interpolated PrecisionInterpolated Precision
● Goal: 

 get a precision value for each recall point

● Simple strategy:
 take the maximum precision obtained for the query for any 

recall greater than or equal to the current recall value r
 basic idea: the best achievable precision for a given recall is 

shown 

● can be used for combining results from multiple queries
 e.g., to evaluate the performance of a search engine over 

multiple queries
 average the interpolated precision values for each of a set of 

fixed recall levels and plot the result for this recall level
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rk

Interpolated PrecisionInterpolated Precision

Precision and interpolated 
precision plotted against 
recall for the given 
relevance vector.  

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0
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Sample Curve Before and After Sample Curve Before and After 
InterpolationInterpolation

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0
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P
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o
n
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Summary MeasuresSummary Measures

Summary measures for evaluating the shape of the R/P curve:

● Average Precision
 the average of all precision values at rank positions with 

relevant documents 

                                                                                       
 avgP = 1 iff 

● engine retrieves all relevant documents and 
● ranks them ahead of any irrelevant document

● 11point Average Precision
 average the 11 interpolated precision values for fixed recall 

levels of 0, 0.1, 0.2, ... 0.9, 1.0

avg P=
1

∣Dq∣
∑

1≤k≤∣D∣

r k⋅P [k ]
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Summary MeasuresSummary Measures

Average Precision

11pt Average Precision

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0
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Breakeven PointBreakeven Point

= 91,76

● Another simple summary measure
 the point where recall equals precision
 Estimated by linear interpolation

● Assumption: 
 Distance to origin determines quality 

of recall/precision curve
● Example: 0

20

40

60

80

100

0 20 40 60 80 100

Recall

Pr
ec

is
io

n
B=

R2⋅P1−R1⋅P2

R2−R1P1−P2

Precision Recall

72.38 97.88

75.09 97.76

80.01 97.18

85.02 96.20

90.00 93.89

94.41 88.57
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Discounted Cumulative GainDiscounted Cumulative Gain
● Discounted Cumulative Gain (DCG)

 Key idea:
● average precision gives equal weight to all positions
● but top positions in the ranking are more important and should 

receive higher weights!
 Approach:

● Discount the relevance factor r
i
 with the logarithm of i

● Normalized Discounted Cumulative Gain (NDCG)
 Normalize the DCG-value of the ranking with the optimal 

DCG-value for this query (i.e., the DCG value for the perfect ranking)

DCG [k ]= ∑
1≤i≤k

r i

log2 i1 

NDCG [k ]=
DCG [k ]

ODCG [k ]
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DCG ExampleDCG Example
● DCG at ranking position 5:

● NDCG at ranking position 5:
 we have 6 relevant documents, the perfect

has 5 relevant docs at the first 5 places
 

k r
k

1 1

2 0

3 1

4 1

5 0

6 1

7 0

8 0

9 1

10 0

11 0

12 0

13 0

14 0

15 1

16 0

17 0

18 0

19 0

20 0

DCG [5]=
1

log22


0
log2 3


1

log24


1
log2 5


0

log26

=1
1

1.585


1
2


1

2.34


1
2.585

=2.95

ODCG [5]=
1

log22


1
log23


1

log24


1
log25


1

log2 6

=10
1
2


1

2.34
0=1.93

NDCG [5 ]=
DCG 5

ODCG 5
=0.655
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Multi-Level Relevance ScoresMulti-Level Relevance Scores
● user Feedback about relevance need not be binary

 users may give feedback on multiple levels

● Example:
 How relevant is this page on a scale from 0 to 5?

● DCG and NDCG can be directly generalized to this case 
 r

i
 can then have values 0 to 5 instead of 0 to 1

 the optimal ranking for the computation of NDCG is any 
ranking that sorts all pages with a higher score before all 
pages with a lower score
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Improving Retrieval EfficiencyImproving Retrieval Efficiency

● Relevance Feedback
 user is willing to provide feedback

● Clustering Search Results
 results are summarized into different groups

● Meta-Search Engines
 query multiple engines and combine results

● Hyperlink-based Ranking
 later in this course
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Relevance Feedback Relevance Feedback 

1. Present an result for query q
i

2. Get feedback from the user
● Explicit Relevance Feedback:

User marks documents as relevant or not
● Implicit Relevance Feedback:

User's actions are observed 
(e.g., does he view the document or not?)

3. Formulate new query q
i+1

 by enriching original query with 
query terms from relevant documents

● e.g., select by log odds ratio, add relevant document vectors, 
subtract irrelevant document vectors

4. i = i + 1, Goto 1.

PROBLEM: increased effort for the user, only feasible for long-term 
monitoring of interactions (e.g., WebWatcher)
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Relevance Feedback: ExampleRelevance Feedback: Example

● Image search engine 
http://nayana.ece.ucsb.edu/imsearch/imsearch.html

Manning and Raghavan
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Results for Initial QueryResults for Initial Query

Manning and Raghavan

http://nayana.ece.ucsb.edu/imsearch/imsearch.html
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Relevance FeedbackRelevance Feedback

Manning and Raghavan
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Results after Relevance FeedbackResults after Relevance Feedback

Manning and Raghavan
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Rocchio AlgorithmRocchio Algorithm

● increase weight of terms that appear in relevant 
documents

● decrease weight of terms that appear in irrelevant 
documents

● typical parameter settings

● A few iterations of this can significantly improve 
performance

q i1=⋅qi⋅∑
j

r j−⋅∑
j

i j

=1 ; =
1

∣R∣
; =

1
∣I∣

r j∈R

i j∈I
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Pseudo Relevance FeedbackPseudo Relevance Feedback

● Pseudo-relevance feedback
 R and I generated automatically

● E.g.: Cornell SMART system
● top 10 documents reported by the first round of query execution 

are included in R
   typically set to 0; I not used

● Not a commonly available feature
 Web users want instant gratification
 System complexity

● Executing the second round query slower and expensive for 
major search engines

γ
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Clustering of Search ResultsClustering of Search Results

● Search results are often ambigous
 e.g., 'jaguar' returns documents on cars and documents on 

animals
 user is typically only interested in one meaning

● Solution: Clustering algorithms
 detect groups of pages that have similar outcomes
 basic idea: 

● sort objects into classes in order to maximize
 intra-class similarity
 inter-class dissimilarity
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http://www.clusty.com
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Meta-search systemsMeta-search systems

● Take the search engine to the document
 Forward queries to many geographically distributed 

repositories
● Each has its own search service

 Consolidate their responses.
● Advantages

 Automatically perform non-trivial query rewriting 
● Suit a single user query to many search engines with different 

query syntax
 Surprisingly small overlap between crawls

● Consolidating responses
 Function goes beyond just eliminating duplicates
 Search services do not provide standard ranks which can be 

combined meaningfully

http://www.clusty.com/
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Example: MetaCrawlerExample: MetaCrawler
http://www.metacrawler.com/
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Web Search EnginesWeb Search Engines
● Crawler
● Indexer
● Query Interface
● Ranker
➔ Scalability

 Index Sizes
 Estimating the Size of the Web
 Coverage

http://www.metacrawler.com/


Source:
searchenginewatch.com

Search Search 
Engine Engine 
Sizes Sizes 

2001



Source
searchenginewatch.com

Searches Searches 
per Dayper Day



Search Engine Market ShareSearch Engine Market Share
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Estimating the Size of the WebEstimating the Size of the Web

● Lawrence & Giles, Science 1998
● Procedure

 Submitted 575 queries from real users to several search 
engines 

 Tried to avoid difficulties originating from different indexing 
and retrieval schemes of the search engines

 Obtained different size estimates for number of indexed 
documents from the pairwise overlap of search engines

 The largest was 320,000,000 pages
● Assumption

 pages indexed by search engines are independent
 unrealistic, hence true estimate is larger
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Estimating the Size of the Web (2)Estimating the Size of the Web (2)

N ≈sa

nb

no

≈sb

na

no

sa

N
≈

no

nb

sb

N
≈

no

na

s
a
 = total number of pages indexed by search engine a

s
b
 = total number of pages indexed by search engine b

Graphic from NEC Research, http://www.neci.nj.nec.com/~lawrence/websize.html
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Search Engine CoverageSearch Engine Coverage

● Based on the estimated size of the Web 1998
● The best engine indexes only 32% of the "indexable Web" 

Graphic from NEC Research, http://www.neci.nj.nec.com/~lawrence/websize.html

http://www.neci.nj.nec.com/~lawrence/websize.html


Newer ResultsNewer Results

● Gulli & Signorini (WWW-14, 2005)
 based on a similar study by Bharat & Broder (1998)
 size of indexable web = 11.5 billion pages

● Google vs. Yahoo controversy (Cheney & Perry 2005)
 as a result, Google stopped announcing index sizes

http://www.neci.nj.nec.com/~lawrence/websize.html


98 J. Fürnkranz

Search Engine ResourcesSearch Engine Resources
● Search Engine Watch

 http://searchenginewatch.com/resources/
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