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Text ClassificationText Classification

● Characteristics of Machine Learning Problems
● Text Classification Algorithms

 k nearest-neighbor algorithm, Rocchio algorithm
 naïve Bayes classifier
 Support Vector Machines
 decision tree and rule learning

● Occam's Razor and Overfitting Avoidance
● Evaluation of classifiers

 evaluation metrics
 cross-validation
 micro- and macro-averaging

● Multi-Label Classification
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Type of Training InformationType of Training Information

● Supervised Learning:
 A „teacher“ provides the value for the target function for all 

training examples (labeled examples)
 concept learning, classification, regression

● Semi-supervised Learning:
 Only a subset of the training examples are labeled (labeling 

examples is expensive!)
● Reinforcement Learning:

 A teacher provides feedback about the values of the target 
function chosen by the learner

● Unsupervised Learning:
 There is no information except the training examples
 clustering, subgroup discovery, association rule discovery
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Example AvailabilityExample Availability

● Batch Learning
 The learner is provided with a set of training examples 

● Incremental Learning / On-line Learning
 There is constant stream of training examples

● Active Learning
 The learner may choose an example and ask the teacher for 

the relevant training information
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Document RepresentationDocument Representation

● The vector space models allows to transform a text into a 
document-term table

● In the simplest case
 Rows: 

● training documents
 Columns:

● words in the training documents
 More complex representation possible

● Most machine learning and data mining algorithms need 
this type of representation
 they can now be applied to, e.g., text classification
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Example RepresentationExample Representation

● Attribute-Value data:
 Each example is described with values for a fixed number of 

attributes
● Nominal Attributes:

 store an unordered list of symbols (e.g., color)
● Numeric Attributes:

 store a number (e.g., income)
● Other Types:

 hierarchical attributes
 set-valued attributes

 the data corresponds to a single relation (spreadsheed)
● Multi-Relational data:

 The relevant information is distributed over multiple relations 
● e.g., contains_word(Page,Word), linked_to(Page,Page),...
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Bag-of-Words vs. Set-of WordsBag-of-Words vs. Set-of Words

● Set-of-Words: boolean features
each dimension encodes wether the feature appears in 
the document or not

● Bag-of-words: numeric features
each dimension encodes how often the feature occurs 
in the document (possibly normalized)

● Which one is preferable depends on the task and the 
classifier
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Concept RepresentationConcept Representation

● Most Learners generalize the training examples into an 
explicit representation 
(called a model, function, hypothesis, concept...)
 mathematical functions (e.g., polynomial of 3rd degree)
 logical formulas (e.g., propositional IF-THEN rules)
 decision trees
 neural networks
....

● Lazy Learning
 do not compute an explicit model
 generalize „on demand“ for an example 
 e.g., nearest neighbor classification
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A Selection of Learning TechniquesA Selection of Learning Techniques

 Decision and Regression Trees
 Classification Rules
 Association Rules
 Inductive Logic Programming
 Neural Networks
 Support Vector Machines
 Statistical Modeling
 Clustering Techniques
 Case-Based Reasoning
 Genetic Algorithms
 ....
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Induction of ClassifiersInduction of Classifiers

The most „popular“ learning problem:
● Task:

 learn a model that predicts the outcome of a dependent 
variable for a given instance

● Experience:
 experience is given in the form of a data base of examples
 an example describes a single previous observation

● instance: a set of measurements that characterize a situation
● label: the outcome that was observed in this siutation

● Performance Measure:
 compare the predicted outcome to the observed outcome
 estimate the probability of predicting the right outcome in a 

new situation
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Text Classification: ExamplesText Classification: Examples

Text  Categorization: Assign labels to each document

● Labels are most often topics such as Yahoo-categories
 e.g., "finance," "sports," "news::world::asia::business"

● Labels may be genres
 e.g., "editorials" "movie-reviews" "news“

● Labels may be opinion
 e.g., “like”, “hate”, “neutral”

● Labels may be binary concepts
 e.g., "interesting-to-me" : "not-interesting-to-me”
 e.g., “spam” : “not-spam”
 e.g., “contains adult language” :“doesn’t”

Manning and Raghavan

More than one 
learning task could
be defined over the
same documents
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Induction of ClassifiersInduction of Classifiers

Training

ClassificationExample

Inductive Machine Learning 
algorithms induce a 

classifier from labeled 
training examples. The 

classifier generalizes the 
training examples, i.e. it is 
able to assign labels to new 

cases.

An inductive learning 
algorithm searches in a given 

family of hypotheses (e.g., 
decision trees, neural 

networks) for a member that 
optimizes given quality 
criteria (e.g., estimated 
predictive accuracy or 

misclassification costs).

Classifier
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Induction of ClassifiersInduction of Classifiers

● Typical Characteristics
 attribute-value representation (single relation)
 batch learning from off-line data (data are available from 

external sources)
 supervised learning (examples are pre-classified)
 numerous learning algorithms for practically all concept 

representations (decision trees, rules, neural networks, SVMs, 
statistical models,...)

 often greedy algorithms (fast processing of large datasets)
 evaluation by estimating predictive accuracy (on a portion of 

the available data)
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?

Training

ClassificationNew Example

K-Nearest Neighbor 
algorithms classify a new 

example by comparing it to all 
previously seen examples. 
The classifications of the k 
most similar previous cases 
are used for predicting the 
classification of the current 

example.

The training examples 
are used for 

• providing a library of 
sample cases 

• re-scaling the similarity 
function to maximize 

performance

Nearest Neighbor ClassifierNearest Neighbor Classifier
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kNN ClassifierkNN Classifier

● To learn from a training set:
 Store the training set

● To classify a new document :
 Compute similarity of document vector q with all available 

document vectors D (e.g., using cosine similarity)
 Select the k nearest neighbors (hence the name k-NN)
 Combine their classifications to a new prediction 

(e.g., majority, weighted majority,...)

● "Lazy" learning or local learning
 because no global model is built
 generalization only happens when it is needed
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Nearest Neighbor with Inverted IndexNearest Neighbor with Inverted Index

● Naively finding nearest neighbors requires comparing the 
test document q to |D| documents in collection (O(|D|))

● But determining k nearest neighbors is the same as 
determining the k best retrievals using the test document 
as a query to a database of training documents.

● Use standard vector space inverted index methods to find 
the k nearest neighbors
 retrieve all documents containing at least one of the words in 

the query document and rank them
● Testing Time: O(B∙|q|)         

 where B is the average number of training documents in 
which a query-document word appears.

 Typically B << |D|
Manning and Raghavan
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Rocchio ClassifierRocchio Classifier
● based on ideas for Rocchio Relevance Feedback
● compute a prototype vector pc for each class c

 average the document vectors for each class
● classify a new document according to distance to prototype 

vectors instead of documents 

● assumption:
 documents that belong

to the same class
are close to each other 
(form one cluster)
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Bag of Words ModelBag of Words Model

● assumes that the document 
has been generated by 
repeatedly drawing one word 
out of a bag of words 
 like drawing letters out of a 

Scrabble-bag, but with 
replacement

● words in the bag may occur 
multiple times, some more 
frequently than others
 like letters in a Scrabble-bag
 each word w is drawn with a 

different probability 

WORDS

Peace
Peace

p w
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Probabilistic Document ModelProbabilistic Document Model
● Repeatedly drawing from the bag of words results in a 

sequence of randomly drawn words → a document
                            where  d=t1 , t 2 , ... , t∣d∣ t j=wk j

∈W

WORDS

Peace
Peace

PeacePeace

WarWar andand

d = (War, and, Peace)
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Class-conditional ProbabilitiesClass-conditional Probabilities

● Different classes have different bags of words

● probabilities of words in different classes are different
 the sports bag contains more sports words, etc.
 Formally:  

Politics

Change

Change

Sports 

Soccer

Soccer

Business 

Crisis
Crisis

p w∣ci≠ p w∣c j≠ p w
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Independence AssumptionIndependence Assumption

● the probability that a word occurs does not depend on the 
context (the occurrence or not-occurrence of other words)
 it only depends on the class of the document

● In other words:
 Knowing the previous word in the document (or any other 

word) does not change the probability that a word occurs in 
position ti

we will write this shorter as

● Important:
 the independence assumption does not hold in real texts!
 but it turns out that it can still be used in practice

p t i=wk i
∣t j=w k j

, c= p t i=wk i
∣c

p t i∣t j , c= p t i∣c
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Probabilistic Text ClassificationProbabilistic Text Classification
● Answer the question:

 From which bag was a given document d generated?

● Answer is found by estimating the probabilities

PeacePeace

WarWar andand

p c∣d 

d = (War, and, Peace)

p Sports∣d

p Business∣d 

p Politics∣d
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Probabilistic Document ModelProbabilistic Document Model
● A document is a sequence of words (tokens, terms, features...)

                            where  
 Assume that a document d has been generated by 

repeatedly selecting a word wij at random 
● The probability that a word occurs in a document is 

dependent on the document's class c


● (Class-Conditional) Independence Assumption:
The occurrence of a word in a class is independent of its 
context


● Goal of Classification:
 Determine the probability p(c|d) that document d belongs to 

class c

p t i∣c≠ p  t i

p t i∣t j , c= p t i∣c

d=t1 , t 2 , ... , t∣d∣ t j=w i j
∈W
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Bayesian ClassificationBayesian Classification
● Maximum a posteriori classification

 predict the class c that has the highest probability given the 
document D

 Problem:
● we have not seen the document often enough to directly 

estimate p(c|d)
● Bayes Theorem:

 equivalently

● p(d) is only for normalization:
 can be omitted if we only need a ranking of the class and not a 

probability estimate

● Bayes Classifier:
    If all prior probabilites p(c) are identical → maximum likelihood prediction

p c∣d= pd∣c pc
p d

c=arg maxc pd∣c pc

p d=∑c
pd∣c pc 

c=arg maxc p c∣d

p c∣d⋅pd =p d∣c⋅pc 
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Simple Naïve Bayes Classifier Simple Naïve Bayes Classifier 
for Text  for Text  (Mitchell 1997)(Mitchell 1997)

● a document is a sequence of n terms

● Apply Independence Assumption:
 p(ti|c) is the probability with which the 

word                occurs in documents of class c

● Naïve Bayes Classifier
 putting things together:

p d∣c =∏
i=1

∣d∣

pt i ∣c 

p d∣c =p t1 , t2 ,.... t n∣c 

t i=wi j

c=arg maxc ∏
i=1

∣d∣

p t i ∣c p c
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Estimating Probabilities (1)Estimating Probabilities (1)
● Estimate for prior class probability p(c)

 fraction of documents that are of class c

● Word probabilities can be estimated from data
 p(ti|c) denotes probability that term              occurs at a 

certain position in the document
● assumption: probability of occurrence is independent of 

position in text
 estimated from fraction of document positions in each 

class on which the term occurs
● put all documents of class c into a single (virtual) document
● compute the frequencies of the words in this document

Wt ∈

t i=w i j
∈W
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Estimating Probabilities (2)Estimating Probabilities (2)
● Straight-forward approach:

 estimate probabilities from the frequencies 
in the training set

 word w occurs n(d,w) times in document d
● Problem:

 test documents may contain new words
 those will be have estimated probabilities 0
 assigned probability 0 for all classes

● Smoothing of probabilities:
 basic idea: assume a prior distribution on word probabilities
 e.g., Laplace correction

assumes each word occurs
at least once in a document

p t i=w∣c =
nw ,c1

∑
w∈W

nw , c1
=

nw ,c1

∑
w∈W

nw , c∣W∣

p t i=w∣c =
nw, c

∑
w∈W

nw ,c

nw , c=∑d∈c
n d , w
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Full Multinomial ModelFull Multinomial Model
Two basic shortcomings of the simple Naïve Bayes:
● If we consider the document as a „bag of words“, many 

sequences correspond to the same bag of words
 better estimate:

● we assumed that all documents have the same length
 a better model will also include the document length l = |d| 

conditional on the class

                   may be hard to estimate

p d∣c= p l=∣d∣∣c  ∣d∣
{n d , ww∈d}∏w∈d

p w∣cnd ,w 

p d∣c = ∣d∣
{n d ,ww∈d}∏w∈d

p w∣cnd , w

         iterates over vocabulary
         iterates over document positions 

p l=∣d∣∣c

∏
w∈d

 

∏
i=1...∣d∣

  n
i1,i 2,... i k = n !

i1 !⋅i2 !⋅...⋅ik !
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Binary ModelBinary Model
● a document is represented as a set of words

● model does not take into account document length or word 
frequencies

● aka Multi-variate Bernoulli Model
● in this case p(w|c) indicates the probability that a document 

in class c will mention term w at least once.
● estimated by fraction of documents in each class in which the 

term occurs
● the probability of seeing document d in class c is 

● the product of probabilities for all words occurring in the 
document

● times the product of the counter-probabilities of the words that 
do not occur in the document

p d∣c=∏
t∈d

p t∣c ∏
t∈W ,t∉d

1− p t∣c=∏
t∈d

p t∣c
1− p t∣c∏t∈W

1− p t∣c


 to account for t∉d
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Numerics of Naïve Bayes ModelsNumerics of Naïve Bayes Models

● We need to multiply a large number of small probabilities,
 Result: extremely small probabilities as answers.
 Solution: store all numbers as logarithms

 to get back to the probabilities:

● Class which comes out at the top wins by a huge margin
 Sanitizing scores using likelihood ratio LR

● Also called the logit function

c = arg maxc p c∏
i=1

∣d∣

p t i ∣c = arg maxc log  p c∑
i=1

∣d∣

log  p t i ∣c
l c

p c∣d= el c

∑c'
e l c'

=
1

1∑c '≠c
e lc'−l c

logit d= 1
1e−LRd , LR d = pc∣d

1− pc∣d
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Rainbow Rainbow (McCallum)(McCallum)

● advanced implementation of a Naïve Bayes text classifier 
with numerous options
 http://www.cs.umass.edu/~mccallum/bow/rainbow/

http://www.cs.umass.edu/~mccallum/bow/rainbow/
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Performance analysisPerformance analysis
● Multinomial naive Bayes classifier generally outperforms 

the binary variant
 but the binary model is better with smaller vocabulary sizes

● K-NN may outperform Naïve Bayes 
 Naïve Bayes is faster and more compact



© J. Fürnkranz32Web Mining | Text Classification | V2.0

G
ra

ph
s t

ak
en

 fr
om

  A
nd

re
w

 M
cC

al
lu

m
 a

nd
 K

am
al

 N
ig

am
:A

 C
om

pa
ris

on
 o

f E
ve

nt
 M

od
el

s f
or

 
N

ai
ve

 B
ay

es
 T

ex
t C

la
ss

ifi
ca

tio
n.

 A
A

A
I-

98
 W

or
ks

ho
p 

on
 "

Le
ar

ni
ng

 fo
r T

ex
t C

at
eg

or
iz

at
io

n"
.

ht
tp

://
w

w
w

.c
s.u

m
as

s.e
du

/~
m

cc
al

lu
m

/p
ap

er
s/

m
ul

tin
om

ia
l-a

aa
i9

8w
.p

s



© J. Fürnkranz33Web Mining | Text Classification | V2.0Mining the Web Chakrabarti & Ramakrishnan

NB: Decision boundaries NB: Decision boundaries 
● Bayesian classier partitions the multidimensional term 

space into regions
 Within each region, the probability of one class is higher than 

others
 On the boundaries, the probability of two or more classes are 

exactly equal

● 2-class NB has a linear decision boundary
 easy to see in the logarithmic representation of the 

multinomial version

    wNB weight vector: weight of word w is log ( p(w|c) )
d document vector consisting of term frequencies n(d,w)

log pd∣c =log  ∣d∣
{nd ,ww∈d}∑w∈d

n d , w ⋅log p w∣c=bd⋅wNB
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Fitting a linear decision boundaryFitting a linear decision boundary
● Probabilistic approach

 fixes the policy that               (the component of the linear 
discriminant corresponding to term w) depends only on the 
statistics of term w in the corpus.

 Therefore it cannot pick from the entire set of possible linear 
discriminants

● Discriminative approach
 try to find a weight vector w so that the discrimination 

between the two classes is optimal
 statistical approaches:

● perceptrons (neural networks with a single layer)
● logistic regression

 most common approach in text categorization
→ support vector machines

wNB w 
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Finding a Linear Decision BoundaryFinding a Linear Decision Boundary

Find w1, w2, b, such that
w1 x1 + w2 x2 + b ≥ 0 for red points
w1 x1 + w2 x2 + b ≤ 0 for green points

Find w1, w2, b, such that
w1 x1 + w2 x2 + b ≥ 0 for red points
w1 x1 + w2 x2 + b ≤ 0 for green points

Manning and Raghavan
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Which Hyperplane?Which Hyperplane?

In general, many possible
solutions for w = (w1, w2), b

Manning and Raghavan

 Intuition 1: If there are no points near the decision surface, then 
there are no very uncertain classifications
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Support Vector Machines: IntuitionSupport Vector Machines: Intuition
● Intuition 2: If you have to place a fat separator between 

classes, you have less choices, and so overfitting is not so 
easy

Manning and Raghavan
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Support Vector Machine (SVM)Support Vector Machine (SVM)
Support vectors

Maximize
margin

● SVMs maximize the margin around 
the separating hyperplane.

● a.k.a. large margin classifiers

● The decision function is fully specified 
by a subset of training samples, 
the support vectors.

● Formalization
 w: normal vector to decision hyperplane
 xi: i-th data point 
 yi: class of data point i (+1 or −1)     NB: Not 1/0
 Classifier is:  

                                  f (xi) =  sign(wTxi + b)

Manning and Raghavan

wT⋅xib=0
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Geometric MarginGeometric Margin
● Distance from example to the separator is 
● Examples closest to the hyperplane are support vectors. 
● Margin ρ of the separator is the width of separation between 

support vectors of classes.

w
xw byr

T +=

r

ρx

x′

Manning and Raghavan

w
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Linear Support Vector Machine (SVM)Linear Support Vector Machine (SVM)

● Assumption:
 w is normalized so that:

        mini=1,…,n |wTxi + b| = 1

● This implies:
        wT(xr–xs) = 2
 ρ = ||xr–xs||2 = 2/||w||2

wT x + b = 0

wTxs + b = 1

wTxr + b = −1

ρ

Manning and Raghavan
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Linear SVM MathematicallyLinear SVM Mathematically

● Only the direction of w is important, i.e., we can choose it so 
that the closest points to the hyperplane have the value 1.

● If all data is at least value 1, the following two constraints follow 
for a training set {(xi ,yi)} 

 For support vectors, the inequalities become equalities, 
which can be rewritten as 

● Then, since each example’s distance from the hyperplane is
                           → the margin is 

     (the margin is twice the distance r to the support vectors)

wTxi + b ≥ 1    if yi = +1

wTxi + b ≤ -1   if yi = −1

w
2=ρ

w
xw byr

T +=

Manning and Raghavan

yi⋅w
T xib=1
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Linear SVMs Mathematically (cont.)Linear SVMs Mathematically (cont.)

● Then we can formulate the quadratic optimization problem: 

● A better formulation (max 1/||w|| = min ||w|| = min wTw): 

Find w and b such that the margin

                is maximized; 

and for all {(xi , yi)}
    wTxi + b ≥ +1   if yi=1;   
    wTxi + b ≤ ‒1   if yi = -1

Find w and b such that the margin

                is maximized; 

and for all {(xi , yi)}
    wTxi + b ≥ +1   if yi=1;   
    wTxi + b ≤ ‒1   if yi = -1

w
2=ρ

Find w and b such that

Φ(w) = ½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) = ½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Manning and Raghavan



© J. Fürnkranz43Web Mining | Text Classification | V2.0

Solving the Optimization ProblemSolving the Optimization Problem
● This is now 

 optimizing a quadratic function 
 subject to linear constraints

● Quadratic optimization problems are a well-known class of 
mathematical programming problems
 many (rather intricate) algorithms exist for solving them

● The solution involves constructing a dual problem 

 where a Lagrange 
multiplier αi is associated 
with every constraint 
in the primary problem:

Find α1…αn such that
Q(α) =Σαi  - ½ΣΣαiαjyiyjxi

Txj is maximized 
and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Find α1…αn such that
Q(α) =Σαi  - ½ΣΣαiαjyiyjxi

Txj is maximized 
and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Manning and Raghavan

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1
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The Optimization Problem SolutionThe Optimization Problem Solution
● The solution has the form: 

 αi ≠ 0 indicates that corresponding xi is a support vector.
● Then the classifying function will have the form:

 Notice that it relies on an inner product between the test point x 
and the support vectors xi – we will return to this later.

 Also keep in mind that solving the optimization problem involved 
computing the inner products xi

T
 xi between all pairs of training 

points.

w = Σαiyixi             b = yk − wTxk for any xk such that αk≠ 0w = Σαiyixi             b = yk − wTxk for any xk such that αk≠ 0

f (x) = wTx + b = Σαiyixi
Tx + bf (x) = wTx + b = Σαiyixi

Tx + b

Manning and Raghavan
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Soft Margin Classification  Soft Margin Classification  

● If the training set is not 
linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

● Allow some errors
 Let some points be moved 

to where they belong, at a 
cost

● Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi

Manning and Raghavan
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Soft Margin Classification Soft Margin Classification 
MathematicallyMathematically

● The old formulation:

● The new formulation incorporating slack variables:

 Parameter C can be viewed as a way to control overfitting – 
a regularization term

Find w and b such that

Φ(w) =½ wTw + CΣξi  is minimized 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1- ξi   and  ξi ≥ 0

Find w and b such that

Φ(w) =½ wTw + CΣξi  is minimized 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1- ξi   and  ξi ≥ 0

Manning and Raghavan

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1



© J. Fürnkranz47Web Mining | Text Classification | V2.0

Soft Margin Classification – SolutionSoft Margin Classification – Solution
● The dual problem for soft margin classification:

 NOTE: Neither slack variables ξi  nor their Lagrange multipliers 
appear in the dual problem!

● Solution to the dual problem is:

w = Σαiyixi             

b= yk(1- ξk) - wTxk 
      where k = argmaxk αk

w = Σαiyixi             

b= yk(1- ξk) - wTxk 
      where k = argmaxk αk

f(x) = Σαiyixi
Tx + bf(x) = Σαiyixi

Tx + b

But w not needed explicitly 
for classification!

Manning and Raghavan

Find α1…αN such that
Q(α) = Σαi  – ½ΣΣαiαjyiyjxi

Txj is maximized 

and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

Find α1…αN such that
Q(α) = Σαi  – ½ΣΣαiαjyiyjxi

Txj is maximized 

and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi
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Classification with SVMsClassification with SVMs

● Given a new point (x1,x2), we can score its projection 
onto the hyperplane normal:
 In 2 dims:       score = w1x1+w2x2+b.
 in general:      score = wTx + b = Σαiyixi

Tx + b

score ≥ 0: yes

score < 0: no

Manning and Raghavan

sum runs over all 
support vectors
(all αi other are 0)
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Linear SVMs:  SummaryLinear SVMs:  Summary
● The classifier is a separating hyperplane.

● Most “important” training points are 
support vectors; they define the 
hyperplane.

● Quadratic optimization algorithms can 
identify which training points xi are support vectors with non-
zero Lagrangian multipliers αi. 

● Both in the dual formulation of the problem and in the 
solution training points appear only inside inner products:

Manning and Raghavan

Foto by Burr Settles, http://www.cs.cmu.edu/~bsettles/ 
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Non-linear SVMsNon-linear SVMs
● Datasets that are linearly separable (with some noise) work 

out great:

● But what are we going to do if the dataset is just too hard? 

● How about … mapping data to a higher-dimensional space:
0 x

0 x

0

x2

x

Manning and Raghavan
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Non-linear SVMs:  Feature spacesNon-linear SVMs:  Feature spaces

● General idea:   the original feature space can always 
be mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x → φ(x)

Manning and Raghavan
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The “Kernel Trick”The “Kernel Trick”
● The linear classifier relies on an inner product between vectors 

K(xi,xj)=xi
Txj

● If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi) 
Tφ(xj)

● A kernel function is some function that corresponds to an inner product 
in some expanded feature space.

● Example: 
     2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi

Txj)2
,

     Need to show that K(xi,xj)= φ(xi) 
Tφ(xj):

     K(xi,xj) = (1 + xi
Txj)2 

,= 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

                  = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2] 

                  = φ(xi) 
Tφ(xj)          where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2]

Manning and Raghavan



© J. Fürnkranz53Web Mining | Text Classification | V2.0

KernelsKernels
● Why use kernels?

 Make non-separable problem separable.
 Map data into better representational space

● Common kernels
 Linear:

 Polynomial:
                   
 Radial basis function (infinite dimensional space)

Manning and Raghavan

K xi , x j=1xi
T⋅x j

d

K xi , x j=xi
T⋅x j

K xi , x j=e
−∥xi−x j∥

2

22
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High Dimensional DataHigh Dimensional Data

● Pictures like the one at right are misleading!
 Documents are zero along almost all axes
 Most document pairs are very far apart 

● (i.e., not strictly orthogonal, but only 
share very common words and a few 
scattered others)

● In classification terms: 
 virtually all document sets are separable, for almost any 

classification

● This is part of why linear classifiers are quite successful in 
text classification
→ SVMs with linear Kernels are usually sufficient!

Manning and Raghavan
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PerformancePerformance

● Comparison with other classifiers
 Amongst most accurate classifier for text
 Better accuracy than naive Bayes and decision tree 

classifier,
● Different Kernels

 Linear SVMs suffice for most text classification tasks
 standard text classification tasks have classes almost 

separable using a hyperplane in feature space
● becaue of high dimensionality of the feature space

● Computational Efficiency
 requires to solve a quadratic optimization problem.

● Working set: refine a few λ at a time holding the others fixed.
 overall quadratic run-time

● can be reduced by clever selection of the working set
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Multi-Class ClassificationMulti-Class Classification

Many problems have c > 2 classes not just two
● naïve Bayes, k-NN, Rocchio can handle multiple classes 

naturally
● Support Vector Machines  

need to be extended
 SVM learns a hyperplane that 

separates the example space 
into two regions

 Simple idea: 
Learn multiple such surfaces 
and combine them
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One-against-all One-against-all 

 c binary problems, one for each class
 label examples of class positive, all others negative
 predict class with the highest response value 
  e.g., closest to to decision boundary 

(not trivial for SVMs because of different scales of hyperplanes
© J. Fürnkranz57
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Pairwise ClassificationPairwise Classification

 c(c-1)/2 problems
 each class against each other 

class

 smaller training sets
 simpler decision boundaries
 larger margins
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Aggregating Pairwise PredictionsAggregating Pairwise Predictions

 Aggregate the predictions                   of the binary classifiers into a final 
ranking by computing a score si for each class I

 Voting: count the number of predictions for each class
             (number of points in a tournament)

 Weighted Voting: weight the predictions by their probability

 General Pairwise Coupling problem:
 Given                                            for all i, j 
 Find             for all i 
 Can be turned into an (underconstrained) system of linear equations

si=∑
j=1

c

 {P C iC j0.5}  {x }={1 if x= true 
0 if x= false 

P C iC j

si=∑
j=1

c

P C iC j

P C iC j=P C i∣C i ,C j
P C i
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Rule-based ClassifiersRule-based Classifiers

● A classifier basically is a function that computes the output 
(the class) from the input (the attribute values)

● Rule learning tries to represent this function in the form 
of (a set of) IF-THEN rules
IF (att

i
 = val

iI
) AND (att

j
 = val

jJ
) THEN class

k
 

● Coverage
 A rule is said to cover an example if the example satisfies 

the conditions of the rule.
● Correctness

 completeness: Each example should be covered by (at 
least) one rule

 consistency: For each example, the predicted class should 
be identical to the true class.
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Separate-and-Conquer StrategySeparate-and-Conquer Strategy

● Learn rules for each class separately
 use the biggest class as the default class

● To learn rules for one class:
 Add rules to a theory until all examples of a class are 

covered (completeness)
 remove the covered examples

● To learn a single rule:
 Add conditions to the rule that 

● Cover as many examples p from the class as possible
● Exclude as many examples n from other classes as possible
● E.g., maximize            or better the Laplace estimatep

 pn
 p1

 pn2
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Set-valued FeaturesSet-valued Features

● Use binary conditions of the form             
● Efficient representation of binary conditions by listing all 

words that occur 
(vector-based representation also lists those that do not occur)

● Several, separate set-valued features are possible (thus 
it is an extension of the vector-space model)
 this allows conditions of the form, e.g.,  

● Useful for tasks with 
 more than one text-based features
 combining regular features with text-based features
 e.g. seminar announcements, classifying e-mails

t i∈title D 

t i∈D
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Occam's RazorOccam's Razor

● Machine Learning Interpretation:
 Among theories of (approximately) equal quality on the 

training data, simpler theories have a better chance to be 
more accurate on the test data

 It is desirable to find a trade-off between accuracy and 
complexity of a model

● (Debatable) Probabilistic Justification:
 There are more complex theories than simple theories. 

Thus a simple theory is less likely to explain the observed 
phenomena by chance.

Entities should not be multiplied beyond necessity.
William of Ockham (1285 - 1349) 
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OverfittingOverfitting
● Overfitting

 Given 
● a fairly general model class (e.g., rules)
● enough degrees of freedom (e.g., no length restriction)

 you can always find a model that explains the data
● Such concepts do not generalize well!
● Particularly bad for noisy data

 Data often contain errors due to
● inconsistent classification
● measurement errors
● missing values

→ Capacity control
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Capacity ControlCapacity Control

● Choose the right complexity of a classifier

Manning and Raghavan
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Overfitting Avoidance in SVMsOverfitting Avoidance in SVMs

● Choose simpler model classes
 Linear kernels or polynomial kernels with a low degree d

● Choose a lower regularization parameter C
 High values of C force better fit to the data
 Low values of C allow more freedom in selecting the slack 

variables

● Note:
 Overfitting Avoidance in SVMs is also known as Capacity 

Control or Regularization
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Overfitting Avoidance Overfitting Avoidance 
in Rule Learningin Rule Learning

● Choose a simpler model class
 restrict number of conditions in a rule
 demand minimum coverage for a rule

● Pruning
 simplify a theory after it has been learned

● Reduced Error Pruning
1.Reserve part of the data for validation
2.Learn a rule set
3.Simplify rule set by deleting rules and conditions as long 

as this does not decrease accuracy on the validation set 
● Incremental REP

 Do this after each individual rule is learned
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RIPPER RIPPER (Cohen, 1995)(Cohen, 1995)

Efficient algorithm for learning classification rules
 covering algorithm (aka separate-and-conquer)
 incremental pruning of rules (I-REP)
 set-valued features support text mining
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The Compress AlgorithmThe Compress Algorithm
● Simple, elegant algorithm capturing a Minimum-

Description Length Idea:
1. Put all documents of one class into a separate directory
2.compress/zip each directory into file <class_i>.zip

 To classify a new document:
1. Tentatively assign the document to each class (by adding it 

to the respective directories)
2. compress/zip each directory into file <class_i>_new.zip
3. assign document to the class for which the distance 

measure |<class_i>.zip|-|<class_i>_new.zip| is 
minimal

 Benedetto et al. (Phys. Rev. Letters 2002) report results for
 language recognition (100% accuracy for 10 EC languages)
 authorship determination (93.3% for 11 Italian authors)
 document clustering (similarity tree of European languages)
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Language Tree generated with Language Tree generated with 
Variant of Compress-AlgorithmVariant of Compress-Algorithm

Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto, 
Language Trees and Zipping, Physical Review Letters 88, 2002
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Evaluation of Learned ModelsEvaluation of Learned Models
● Validation through experts

 a domain experts evaluates the plausibility of a learned model
+ subjective, time-intensive, costly
– but often the only option (e.g., clustering)

● Validation on data
 evaluate the accuracy of the model on a separate dataset 

drawn from the same distribution as the training data
– labeled data are scarce, could be better used for training
+ fast and simple, off-line, no domain knowledge needed, methods 

for re-using training data exist (e.g., cross-validation)
● On-line Validation

 test the learned model in a fielded application
+ gives the best estimate for the overall utility
– bad models may be costly
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Out-of-Sample TestingOut-of-Sample Testing

● Performance cannot be measured on training data
 overfitting!

● Reserve a portion of the available data for testing
● Problem:

 waste of data
 labelling may be expensive
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Cross-ValidationCross-Validation
● split dataset into n (usually 10) partitions
● for every partition p

 use other n-1 partitions for learning and partition p for 
testing

● average the results
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EvaluationEvaluation

● In Machine Learning: 
Accuracy = percentage of correctly classified examples

● Confusion Matrix:

n
daaccuracy )( +=

Classified
as +

Classified
as -

Is + a c a+c

Is - b d b+d

a+b c+d n
)( ba

aprecision
+

=

)( ca
arecall
+
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Evaluation for Multi-Class ProblemsEvaluation for Multi-Class Problems

A B C D

A nA,A nB,A nC,A nD,A nA

B nA,B nB,B nC,B nD,B nB

C nA,C nB,C nC,C nD,C nC

D nA,D nB,D nC,D nD,D nD

n

classified as

n A nB nC nD

tru
e 

cl
as

s
● for multi-class problems, the confusion matrix has many 

more entries:

● accuracy is defined analogously to the two-class case:

accuracy=
nA , AnB, BnC ,CnD , D

n
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Recall and Precision for Recall and Precision for 
Multi-Class ProblemsMulti-Class Problems

● For multi-class text classification tasks, recall and 
precision can be defined for each category separately

● Recall of Class X:
 How many documents of class X have been recognized 

as class X?
● Precision of Class X:

  How many of our predictions for class X were correct?
● Predictions for Class X 

can be summarized in 
a 2x2 table
 z.B:

classified
X

classified
not X

is X

is not X
X=A , X ={B , C , D }

nX , X

nX , X

nX , X
nX , X

nX
nX

nX nX n
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Micro- and Macro-AveragingMicro- and Macro-Averaging
● To obtain a single overall estimate for recall and precision

 we have to combine the estimates for the individual classes
● Two strategies:

 Micro-Averaging:
● add up the 2x2 contingency tables for each class
● compute recall and precision from the summary table

 Macro-Averaging:
● compute recall and precision for each contingency table
● average the recall and precision estimates

● Basic difference:
 Micro-Averaging prefers large classes

● they dominate the sums
 Macro-Averaging gives equal weight to each class

● r/p on smaller classes counts as much as on larger classes
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Macro-AveragingMacro-Averaging

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

prec c2=20
32

=0.625 prec c3=45
50

=0.900prec c1= 15
25

=0.600

avg. prec= prec c1 prec c2 prec c3
3

=0.708

recl c1=15
20

=0.750 recl c2=20
30

=0.667 recl c3=45
50

=0.900

avg.recl= recl c1recl c2recl c3
3

=0.772
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Micro-AveragingMicro-Averaging

C C
C 80 20 100

C 27 173 200

107 193 300

Predicted

Tr
ue

Σ

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

avg.recl= 80
100

=0.800

avg. prec= 80
107

=0.748
Micro-Averaged estimates
are in this case higher
because the performance
on the largest class (C3)
was best
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Benchmark DatasetsBenchmark Datasets
Publicly available Benchmark Datasets facilitate standardized 
evaluation and comparisons to previous work
● Reuters-21578
• 12,902 labeled documents 
• 10% documents with multiple class labels

● OHSUMED
• 348,566 abstracts from medical journals

● 20 newsgroups
• 18,800 labeled USENET postings
• 20 leaf classes, 5 root level classes
•more recent 19 newsgroups

● WebKB
• 8300 documents in 7 academic categories.

● Industry sectors
• 10,000 home pages of companies from 105 industry sectors
• Shallow hierarchies of sector names
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● Most (over)used data set
● originally 21578 documents, not all of them are useful
● 9603 training, 3299 test articles (ModApte split)
● 118 categories

 Multilabel Classification: An article can be in more than one category
 Simple approach: Learn 118 binary category distinctions

● Average document: about 90 types, 200 tokens
● Average number of classes assigned

 1.24 for docs with at least one category
● Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Reuters-21578 DatasetReuters-21578 Dataset

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Manning and Raghavan
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Reuters-21578 Sample DocumentReuters-21578 Sample Document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" 
NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off 
tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining 
industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

    Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including 
the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also 
debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, 
the NPPC said.

    A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the 
industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

Manning and Raghavan
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Reuters – Reuters – 
Accuracy with different AlgorithmsAccuracy with different Algorithms

Manning and Raghavan

Results taken from S. Dumais et al. 1998

Rocchio NBayes Trees LinearSVM
earn 92,9% 95,9% 97,8% 98,2%
acq 64,7% 87,8% 89,7% 92,8%

money-fx 46,7% 56,6% 66,2% 74,0%
grain 67,5% 78,8% 85,0% 92,4%
crude 70,1% 79,5% 85,0% 88,3%
trade 65,1% 63,9% 72,5% 73,5%

interest 63,4% 64,9% 67,1% 76,3%
ship 49,2% 85,4% 74,2% 78,0%

wheat 68,9% 69,7% 92,5% 89,7%
corn 48,2% 65,3% 91,8% 91,1%

Avg Top 10 64,6% 81,5% 88,4% 91,4%
Avg All Cat 61,7% 75,2% na 86,4%
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Reuters - SVM with different KernelsReuters - SVM with different Kernels

Results taken from Th. Joachims 1998



© J. Fürnkranz85Web Mining | Text Classification | V2.1

Reuters – Micro F1 vs. Macro F1Reuters – Micro F1 vs. Macro F1

Source:Yang & Liu, SIGIR 1999 

● Results of five Text Classification Methods on the 
REUTERS-21578 benchmark
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● Comparison of Linear SVM, Decision Tree, (Binary) Naive 
Bayes, and a version of nearest neighbor on one Reuters 
category

Graph taken from S. Dumais, LOC talk, 1999.

Reuters – Recall/Precision CurveReuters – Recall/Precision Curve



© J. Fürnkranz87Web Mining | Text Classification | V2.0

New Reuters: RCV1: 810,000 docsNew Reuters: RCV1: 810,000 docs
● Top topics in Reuters RCV1

Manning and Raghavan
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Multiple DatasetsMultiple Datasets

● Comparison of accuracy across three classifiers: 
 Naive Bayes, Maximum Entropy and Linear SVM

● using three data sets: 
 20 newsgroups
 the Recreation sub-tree 

of the Open Directory
 University Web pages 

from WebKB.
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Multi-Label ClassificationMulti-Label Classification

Multilabel Classification:
 there might be multiple label λi associated with each example
 e.g., keyword assignments to texts

 Relevant labels R for an example
 those that should be assigned to the example

 Irrelevant labels I = L \ R for an example
 those that should not be assigned to the examples

→ loss functions for classification can be adapted for multi-label 
classification 

   Hamming Loss
 average % of misclassified labels per example (R as I or I as R)

 corresponds to 0/1 loss (accuracy, error) for classification problems

HamLoss  R , R=1
c
⋅∣ R R∣
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  Multi-Label Classification AlgorithmsMulti-Label Classification Algorithms

Binary Relevance Classification (BR)
 Frequently taken approach to multi-label classification
 train one independent binary classifier for each label (one-vs-all)

 Disadvantage: 
 Each label is considered in isolation
 no correlations between labels can be modeled

Multilabel Multiclass Perceptrons (MMP) (Crammer & Singer, JMLR-03)
 variant of BR that does not train perceptrons independently
 instead, they are trained that they collectively optimize the ranking of the 

labels

 Disadvantage:
 additional methods are needed to convert rankings into multi-label 

classifications
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Preference LearningPreference Learning

● Can we adapt Pairwise Classification to Multi-Label 
problems?
 Multi-Class classification is a special case where only one 

label is relevant, i.e., for each example, R = {  λi }
● Relation to Preference Learning:

 We can say that for each training example, we know that the 
relevant label is preferred over all other labels (λi > λj)

 Pairwise classification learns a binary classifier C
i,j
 for each 

pair of labels {  λi, λj }, which indicates whether λi > λj or λi < λj 
 Predicted is the most preferred object (the one that receives 

the most votes from the binary classifiers)
 Actually, we can produce a ranking of all labels according to 

the number of votes
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Pairwise Multi-Label RankingPairwise Multi-Label Ranking
 Tranformation of Multi-Label Classification problems into 

preference learning problems is straight-forward

 at prediction time, the pairwise ensemble predicts a label ranking

Problem:
 Where to draw boundary between relevant and irrelevant labels?

relevant labels

irrelevant labels

|R|∙|I| preferences

λ7

λ4

λ6

λ2

λ5

λ1

λ3

 R 

 I
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Calibrated Multi-Label PCCalibrated Multi-Label PC
 Key idea:

 introduce a neutral label into the preference scheme
 the neutral label is 
 less relevant than all relevant classes
 more relevant than all irrelevant classes

 at prediction time, all labels that are ranked above
the neutral label are predicted to be relevant

λ7

λ4

λ6

λ2

λ5

λ1

λ3

λ0

neutral label
c = |R| + |I| 

new preferences

 R 

 I 
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Calibrated Multi-Label PCCalibrated Multi-Label PC

 Effectively, Calibrated Multi-Label Pairwise Classification (CMLPC) 
combines BR and PC

The binary training 
sets for preferences 
among the regular 
labels are those of 
pairwise classification

The binary training 
sets for preferences 
involving the neutral 

label are the same 
training sets that 

are used for binary 
relevance ranking!

 R 

 I 
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Results: Results: 
Reuters CV1 Text Classification TaskReuters CV1 Text Classification Task

 On REUTERS-CV1 text classification dataset
 804,414 Reuters newswire articles (535,987 train, 268,427 test)
 103 different labels, ≈ 3 labels per example
 base learner: perceptrons

 both pairwise methods outperform the one-against-all variants
 BR is regular binary relevance ranking
 MMP is an improvent that can optimize multi-label loss functions

(Crammer & Singer, JMLR-03)
 the calibrated version outperforms the uncalibrated version

 small difference, but statistically significant

Ranking Loss Functions
Multi-Label

Loss Function
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EuroVOC Classification EuroVOC Classification 
of EC Legal Textsof EC Legal Texts

 Eur-Lex database
 ≈ 20,000 documents
 ≈ 4,000 labels in EuroVOC

   descriptor
 ≈ 5 labels per document

 Pairwise modeling approach
learns ≈8,000,000 perceptrons
 memory-efficient dual

representation necessary

 Results:
 average precision of pairwise method is almost 50%
→ on average, the 5 relevant labels can be found within the first 10 labels of the  

 ranking of all 4000 labels
 one-against-all methods (BR and MMP) had a precision < 30%.
 but were more efficient (even though the pairwise approach used less arithmetic 

operations)
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