Outline

- **Best-first search**
	- **Greedy best-first search**
	- A* search
	- **Heuristics**
- **Local search algorithms**
	- **Hill-climbing search**
	- **Beam search**
	- **Simulated annealing search**
	- **Genetic algorithms**
- **Constraint Satisfaction Problems**

Constraint Satisfaction Problems

Special Type of search problem:

- state is defined by variables *Xi* with values from domain *Dⁱ*
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Examples:

Sudoku

 cryptarithmetic **SEND** MOR_F puzzle

MONEY

n-queens

Real-world:

- assignment problems
- timetables
	- classes, lecturers rooms, studies ...

Constraint Graph

- nodes are variables
- **Example 3 random** edges indicate constraints between them

Constraint Graph

- **nodes are variables**
- **Example 3 redges indicate constraints between them**

Types of Constraints

- **Unary constraints involve a single variable,**
	- e.g., *South Australia ≠ green*
- **Binary constraints involve pairs of variables,**
	- e.g., *South Australia ≠ Western Australia*
- **Higher-order constraints involve 3 or more variables**
	- $e.g., 2·W+X_1=10·X_2+U$
- **Preferences (soft constraints)**
	- e.g., *red is better than green*
	- are not binding, but task is to respect as many as possible
	- \rightarrow constrained optimization problems

Backtracking Search

■ CSP are typically solved with backtracking

- **add one constraint at a time without conflict**
- **succeed if a legal assignment is found**

```
function \text{BACKTRACKING-SEARCH}(csp) returns solution/failure
  return RECURSIVE-BACKTRACKING(\{ \}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
  for each value in ORDER-DOMAIN-VALUES (var, assignment, csp) do
       if value is consistent with assignment given CONSTRAINTS [csp] then
           add \{var = value\} to assignment
           result \leftarrowRECURSIVE-BACKTRACKING(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```
Worst-Case Complexity of Backtracking Search

- Assumptions
	- we have *n* variables
		- \rightarrow all solutions are a depth *n* in the search tree
	- all variables have *v* possible values
- **Then**
	- at level 1 we have *n*∙*v* possible assignments
		- (we can choose one of *n* variables and one of *v* values for it)
	- at level 2, we have (*n-1*)∙*v* possible assignments for each previously assigned variable

(we can choose one of the remaining *n-1* variables and one of the *v* values for it)

- In general: branching factor at depth *l*: (*n-l+1*)∙*v*
- **Hence**
	- The search tree has $n!v^n$ leaves
- \rightarrow heuristics are needed in SELECT-UNASSIGNED-VARIABLE

General Heuristics for CSP

- **Domain-Specific Heuristics**
	- Depend on the particular characteristics of the problem
	- Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- **General-purpose heuristics**
	- For CSP, good general-purpuse heuristics are known:
	- Mininum Remaining Value Heuristic
		- choose the variable with the fewest consistent values
	- Degree Heuristic
		- choose the variable that imposes the most constraints on the remaining values
	- **Least Constraining Value Heuristic**
		- Given a variable, choose the value that rules out the fewest values in the remaining variables
	- used in this order, these three can greatly speed up search
		- e.g., n-queens from 25 queens to 1000 queens

- keep track of remaining legal values for unassigned variables
- **terminate search when any variable has no more legal values**

- keep track of remaining legal values for unassigned variables
- **terminate search when any variable no legal values**

- keep track of remaining legal values for unassigned variables
- **terminate search when any variable no legal values**

- keep track of remaining legal values for unassigned variables
- **terminate search when any variable no legal values**

Constraint Propagation

- **Problem:**
	- forward checking propagates information from assigned to unassigned variables
	- but doesn't provide early detection for all failures

Arc Consistency

A binary constraint between variables *X* and *Y* is consistent iff for every value of *X*, there is some legal value for *Y*

 If one variable (NSW) looses a value (blue), we need to recheck its neighbors as well:

Arc Consistency Algorithm

function $AC-3(csp)$ returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in csp while *queue* is not empty \bf{do} $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then If X loses a value, for each X_k in NEIGHBORS[X_i] do neigbors of X need to be rechecked. add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i , X_j) returns true iff succeeds $removed \leftarrow false$ for each x in $DOMAIN[X_i]$ do if no value y in $\text{DOMAIN}[X_j]$ allows (x, y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from $\text{DOMAIN}[X_i]$; removed $\leftarrow true$ return removed

Run-time: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$) more efficient than forward checking

Local Search for CSP

- **Modifications for CSPs:**
	- work with complete states
	- **allow states with unsatisfied constraints**
	- operators reassign variable values
- **Min-conflicts Heuristic:**
	- randomly select a conflicted variable
	- choose the value that violates the fewest constraints
	- hill-climbing with $h(n) = #$ of violated constraints

• Performance:

- can solve randomly generated CSPs with a high probability
- except in a narrow range of

$$
R = \frac{\text{number of constraints}}{\text{number of variables}}
$$

