
 Plan-Space Planning © J. Fürnkranz1

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

 Introduction
 Planning vs. Problem-Solving
 Representation in Planning Systems

 Situation Calculus
 The Frame Problem

 STRIPS representation language
 Blocks World

 Planning with State-Space Search
 Progression Algorithms
 Regression Algorithms

 Planning with Plan-Space Search
 Partial-Order Planning
 The Plan Graph and GraphPlan
 SatPlan

Planning

Slides based on Slides
by Russell/Norvig,

Lise Getoor
and Tom Lenaerts

Material from
Russell & Norvig,

 chapters 10.3. and 11

 Plan-Space Planning © J. Fürnkranz2

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Partial-Order Planning (POP)
 Progression and regression planning are totally ordered plan

search forms
 this means that in all searched plans the sequence of actions

is completely ordered
 Decisions must be made on how to sequence actions in all the

subproblems
→ They cannot take advantage of problem decomposition

 If actions do not interfere with each other, they could be
made in any order (or in parallel) → partially ordered plan

 if a plan for each subgoal only makes minimal commitments to
orders

 only orders those actions that must be ordered for a successful
completion of the plan

 it can re-order steps later on (when subplans are combined)
 Least commitment strategy:

 Delay choice during search

 Plan-Space Planning © J. Fürnkranz3

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Shoe Example

Action(RightShoe,
PRECOND: RightSockOn
ADD: RightShoeOn
DELETE: -
)

Action(LeftShoe,
PRECOND: LeftSockOn
ADD: LeftShoeOn
DELETE: -
)

Action(RightSock,
PRECOND: -
ADD: RightSockOn
DELETE: -
)

Action(LeftSock,
PRECOND: -
ADD: LeftSockOn
DELETE: -
)

Initial State: nil
 Goal State: RightShoeOn & LeftShoeOn

 Plan-Space Planning © J. Fürnkranz4

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Shoe Example
 Total-Order Planner

 all actions are completely
ordered

 Partial-Order Planner
 may leave the order of

some actions undetermined
 any order is valid

 Plan-Space Planning © J. Fürnkranz5

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

POP as a Search Problem
 A solution can be found by a search through Plan-Space:

 States are (mostly unfinished) plans

Each plan has 4 components:
 A set of actions (steps of the plan)
 A set of ordering constraints: A < B (A before B)

 Cycles represent contradictions.
 A set of causal links (A adds p for B)

 The plan may not be extended by adding a new action C that
conflicts with the causal link.

 An action C conflicts with causal link
 if the effect of C is ¬ p and if C could come after A and before B

 A set of open preconditions
 Preconditions that are not achieved by action in the plan

A pB

A pB

 Plan-Space Planning © J. Fürnkranz6

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example of Final Plan
 Actions = {RightSock, RightShoe,
 LeftSock, LeftShoe,
 Start, Finish}

 Orderings =
 { RightSock < RightShoe;
 LeftSock < LeftShoe}

 Causal Links =
{ RightSock→RightSockOn→RightShoe,
 LeftSock→LeftSockOn→LeftShoe,
 RightShoe→RightShoeOn→Finish,
 …}

 Open preconditions = { }

 Plan-Space Planning © J. Fürnkranz7

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Search through Plan-Space
 Initial State (empty plan):

 contains only virtual Start and Finish actions
 ordering constraint Start < Finish
 no causal links
 all preconditions in Finish are open

 these are the original goal
 Successor Function (refining the plan):

generates all consistent successor states
 picks one open precondition p on an action B
 generates one successor plan for every possible consistent

way of choosing action that achieves p
 a plan is consistent iff

 there are no cycles in the ordering constraints
 no conflicts with the causal links

 Goal test (final plan):
 A consistent plan with no open preconditions is a solution.

 Plan-Space Planning © J. Fürnkranz8

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Subroutines
 Refining a plan with action A, which achieves p for B:

 add causal link A→p→B
 add the ordering constraint A < B
 add Start < A and A < Finish to the plan (only if A is new)
 resolve conflicts between

 new causal link A→p→B and all existing actions
 new action A and all existing causal links (only if A is new)

 Resolving a conflict between a causal link A→p→B and an
action C

 we have a conflict if the effect of C is ¬ p and C could come
after A and before B

 → resolved by adding the ordering constraints C < A or B < C
 both refinements are added (two successor plans) if both are

consistent

 Plan-Space Planning © J. Fürnkranz9

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Search through Plan-Space
 Operators on partial plans

 Add an action to fulfill an open condition
 Add a causal link
 Order one step w.r.t another to remove possible conflicts

 Search gradually moves from incomplete/vague plans to
complete/correct plans

 Backtrack if an open condition is unachievable or if a conflict
is irresolvable

 pick the next condition to achieve at one of the previous choice
points

 ordering of the conditions is irrelevant for completeness (the
same plans will be found), but may be relevant for consistency

 Plan-Space Planning © J. Fürnkranz10

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Executing Partially Ordered Plans
 Any particular order that is consistent with the ordering

constraints is possible
 A partial order plan is executed by repeatedly choosing any of

the possible next actions.
 This flexibility is a benefit in non-cooperative environments.

 Plan-Space Planning © J. Fürnkranz11

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem

Action(remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD: at(spare,ground)
DELETE: at(spare,trunk)
)

Action(remove(flat,axle),
PRECOND: at(flat,axle)
ADD: at(flat,ground)
DELETE: at(flat,axle)
)

Action(putOn(spare,axle),
PRECOND: at(spare,ground),
 not(at(flat,axle)),
ADD: at(spare,axle)
DELETE: at(spare,ground)
)

Action(leave-overnight,
PRECOND: -
ADD: -
DELETE: at(spare,ground),
 at(spare,axle),
 at(spare,trunk),
 at(flat,ground),
 at(flat,axle)
)

Initial State: at(flat,axle),
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not
part of the original STRIPS language!

 Plan-Space Planning © J. Fürnkranz12

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 Initial plan:

 Action start has the current state as effects
 Action finish has the goal as preconditions

 Plan-Space Planning © J. Fürnkranz13

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 Action putOn(spare,axle) is the only action that achieves the goal
at(spare,axle)

 the current plan is refined to one new plan:
 putOn(spare,axle) is added to the list of actions
 add constraint putOn(spare,axle) < finish
 add causal link putOn(spare,trunk)→at(spare,axle)→finish
 the preconditions of putOn(spare,trunk) are now open

 Plan-Space Planning © J. Fürnkranz14

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 we select the next open precondition at(spare,ground) as a goal
 only at(spare,ground) can achieve this goal
 the current plan is refined to a new one as before

 Plan-Space Planning © J. Fürnkranz15

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 we select the next open precondition not(at(flat,axle)) as a goal
 could be achieved with two actions

 leave-overnight
 remove(flat,axle)
→ we have two successor plans

 Plan-Space Planning © J. Fürnkranz16

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
Plan 1: leave-overnight
 is in conflict with the constraint
remove(spare,trunk)→at(spare,ground)→putOn(spare,axle)
→ has to be ordered before remove(spare,trunk)

 cannot be ordered after putOn(spare,axle)because it achieves its
precondition

 Plan-Space Planning © J. Fürnkranz17

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
Plan 1: leave-overnight
 the condition at(spare,trunk) has to be achieved next

 start is the only action that can achive this
 however, start→at(spare,trunk)→remove(spare,trunk)

is in conflict with leave-overnight
 this conflict cannot be resolved → backtracking

LeaveOvernight cannot be ordered
before Start, and cannot be ordered
after Start → irresolvable conflict

 Plan-Space Planning © J. Fürnkranz18

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
Plan 2: remove(flat,axle)
 achieves goal not(at(flat,axle))
 corresponding causal link and order relation are added
 at(flat,axle) becomes open precondition

 Plan-Space Planning © J. Fürnkranz19

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal

 action start is added
 corresponding causal link and order relation are added

 Plan-Space Planning © J. Fürnkranz20

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal

 action start is added
 corresponding causal link and order relation are added

 open precondition at(flat,axle)is selected as goal
 action start is added
 corresponding causal link and order relation are added

 no more open preconditions remain
→ plan is completed

 Plan-Space Planning © J. Fürnkranz21

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

POP in First-Order Logic
 Operators may leave some

variables unbound
 Example

 Achieve goal on(a,b) with
action move(a,From,b)

 It remains unspecified from
where block a should be
moved (PRECOND: on(a,From))

 Two approaches
 Decide for one binding and backtrack later on (if necessary)
 Defer the choice for later (least commitment)

 Problems with least commitment:
 e.g., an action that has on(a,From)on its delete-list will only

conflict with above if both are bound to the same variable
 can be resolved by introducing inequality constraint.

Action(move(Block,From,To),
PRECOND: on(Block,From),
 clear(Block),
 clear(To),
ADD: on(Block,To),
 clear(From),
DELETE: on(Block,From),
 clear(To)
)

 Plan-Space Planning © J. Fürnkranz22

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Heuristics for Plan-Space Planning
 Not as well understood as heuristics for state-space planning
 General heuristic: number of distinct open preconditions

 maybe minus those that match the initial state
 underestimates costs when several actions are needed to

achieve a condition
 overestimates costs when multiple goals may be achieved with

a single action
 Choosing a good precondition to refine has also a strong

impact
 select open condition that can be satisfied in the fewest

number of ways
 analogous to most-constrained variable heuristic from CSP

 Two important special cases:
 select a condition that cannot be achieved at all (early failure!)
 select deterministic conditions that can only be achived in one

way

 Plan-Space Planning © J. Fürnkranz23

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Planning Graph
 A planning graph is a special structure used to

 achieve better heuristic estimates.
 directly extract a solution using GRAPHPLAN algorithm

 Consists of a sequence of levels (time steps in the plan)
 Level 0 is the initial state.

 Each level consists of a set of literals and a set of actions.
 Literals = all those that could be true at that time step

 depending on the actions executed at the preceding time step
 Actions = all those actions that could have their preconditions

satisfied at that time step
 depending on which of the literals actually hold.

 Only a restricted subset of possible negative interactions
among actions is recorded

 Planning graphs work only for propositional problems
 STRIPS and ADL can be propositionalized

 Plan-Space Planning © J. Fürnkranz24

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Cake Example

Action(eat(cake),
PRECOND: have(cake)
ADD: eaten(cake)
DELETE: have(cake)
)

Action(bake(cake),
PRECOND: not(have(cake))
ADD: have(cake)
DELETE: -
)

 Initial state: have(cake)
 Goal state: have(cake), eaten(cake)

Persistence Actions
 pseudo-actions for which the

effect equals the precondition
 analogous to frame axioms
 are automatically added by

the planner

Mutual exclusions
 link actions or

preconditions that are
mutually exclusive
(mutex)

 Plan-Space Planning © J. Fürnkranz25

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Cake Example

Persistence Actions ()
 pseudo-actions for which the

effect equals the precondition
 analogous to frame axioms
 are automatically added by

the planner

Mutual exclusions ()
 link actions or

preconditions that are
mutually exclusive
(mutex)

 Plan-Space Planning © J. Fürnkranz26

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Cake Example

 Start at level S0, determine action level A0 and next level S1

 A0 contains all actions whose preconditions are satisfied in the
previous level S0

 Connect preconditions and effects of these actions
 Inaction is represented by persistence actions

 Level A0 contains the actions that could occur
 Conflicts between actions are represented by mutex links

 Plan-Space Planning © J. Fürnkranz27

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Cake Example

 Per construction, Level S1 contains all literals that could
result from picking any subset of actions in A0

 Conflicts between literals that can not occur together are
represented by mutex links.

 S1 defines multiple states and the mutex links are the
constraints that define this set of states

 Continue until two consecutive levels are identical
 Or contain the same amount of literals (explanation later)

 Plan-Space Planning © J. Fürnkranz28

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Mutex Relations
 A mutex relation holds between two actions when:

 Inconsistent effects:
 one action negates the effect of another.

 Interference:
 one of the effects of one action is the

negation of a precondition of the other
 Competing needs:

 one of the preconditions of one action is
mutually exclusive with the precondition
of the other.

 A mutex relation holds between two literals when:
 Inconsistent support:

 If one is the negation of the other OR
 if each possible action pair that could achieve the literals is mutex

x
not(x)

x
not(x)

x
y

 Plan-Space Planning © J. Fürnkranz29

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Deriving Heuristics from the PG
 Planning Graphs provide information about the problem

 Example:
 A literal that does not appear in the final level of the graph cannot

be achieved by any plan
 Useful for backward search

 Any state with an unachievable precondition has cost = +∞
 Any plan that contains an unachievable precond has cost = +∞
 In general: level cost = level of first appearance of a literal

 clearly, level cost are an admissible search heuristic
 Serial Plan Graph

 PG allows several actions to occur simultaneously at a level
 can be serialized by restricting PG to one action per level

 add mutex links between every pair of actions
 provides a better heuristic for serial plans

 PG may be viewed a relaxed problem
 checking only for consistency between pairs of actions/literals

 Plan-Space Planning © J. Fürnkranz30

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Costs for Conjunctions of Literals
 Max-level: maximum level cost of all literals in the goal

 admissible but not accurate
 Sum-level: sum of the level costs

 makes the subgoal independence assumption
 inadmissible, but works well in practice
 Cake Example:

 estimated costs for have(cake) ∧ eaten(cake) is 0+1=1
 true costs are 2

 Cake Example without action bake(cake)
 estimated costs are the same
 true costs are +∞

 Set-level: find the level at which all literals appear and no
pair has a mutex link

 gives the correct estimate in both examples above
 dominates max-level heuristic, works well with interactions

 Plan-Space Planning © J. Fürnkranz31

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

The GRAPHPLAN Algorithm

function GRAPHPLAN(problem) returns solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
 solution ← EXTRACT-SOLUTION(graph, goals,LENGTH(graph))
 if solution ≠ failure then return solution
 else if NO-SOLUTION-POSSIBLE(graph) then return failure

 graph ← EXPAND-GRAPH(graph, problem)

 Algorithm for extracting a solution directly from the PG
 alternates solution extraction and graph expansion steps

 EXTRACT-SOLUTION:
 checks whether a plan can be found searching backwards

 EXPAND-GRAPH:
 adds actions for the current and state literals for the next level

 Plan-Space Planning © J. Fürnkranz32

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 S0 consist of 5 literals (initial state and the CWA literals)

 Plan-Space Planning © J. Fürnkranz33

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 S0 consist of 5 literals (initial state and the CWA literals)
 EXPAND-GRAPH adds actions with satisfied preconditions

 add the effects at level S1
 also add persistence actions and mutex relations

 Plan-Space Planning © J. Fürnkranz34

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 Repeat

Note: Not all mutex links are shown!

Inconsistent
Effects

Interference

Competing
Needs



Inconsistent
Support

 Plan-Space Planning © J. Fürnkranz35

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 Repeat until all goal literals are pairwise non-mutex in Si

 Solution might exist and EXTRACT-SOLUTION will try to find it



 Plan-Space Planning © J. Fürnkranz36

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

EXTRACT-SOLUTION
A state consists of

 a pointer to a level in the planning graph
 a set of unsatisfied goals

 Initial state
 last level of PG
 set of goals from the planning problem

 Actions
 select any set of non-conflicting subset of the actions of Ai-1

that cover the goals in the state
 Goal

 success if level S0 is reached with such with all goals satisfied
 Cost

 1 for each action

Could also be formulated as a Boolean CSP

 Plan-Space Planning © J. Fürnkranz37

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 Start with goal state at(spare,axle) in S2

→ only action choice is puton(spare,axle) with preconditions
 not(at(spare,axle)) and at(spare,ground) in S1

→ two new goals in level 1



 Plan-Space Planning © J. Fürnkranz38

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

GRAPHPLAN Example
 remove(spare,trunk) is the only action to achieve at(spare,trunk)
 not(at(flat,axle)) can be achieved with leave-overnight and

remove(flat,axle)
 leave-overnight is mutex with remove(spare,trunk)

→ remove(spare,trunk) and remove(flat,axle)
 preconditions are satisfied in S0 → we're done



 Plan-Space Planning © J. Fürnkranz39

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Termination of GRAPHPLAN
1. The planning graph converges because everything is finite

 number of literals is monotonically increasing
 a literal can never disappear because of the persistence actions

 number of actions is monotonically increasing
 once an action is applicable it will always be applicable

(because its preconditions will always be there)
 number of mutexes is monotonically decreasing

 If two actions are mutex at one level, they are also mutex in all
previous levels in which they appear together

 inconsistent effects and interferences are properties of actions
→ if they hold once, they will always hold
 competing needs are properties of mutexes
→ if the number of actions goes up, chances increase that there is

 a pair of non-mutex actions that achieve the preconditions
2. After convergence, EXTRACT-SOLUTION will find an existing

solution right away or in subsequent expansions of the PG
 more complex proof (not covered here)

 Plan-Space Planning © J. Fürnkranz40

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

SATPLAN
 Key idea:

 translate the planning problem into propositional logic
 similar to situation calculus, but all facts and rules are ground

 the same literal in different situations is represented with two
different propositions (we call them propositions at a depth i)

 actions are also represented as propositions
 rules are used to derive propositions of depth i+1 from actions

and propositions of depth i
 Goal:

 find a true formula consisting of propositions of the initial state,
propositions of the goal state, and some action propositions

 Method:
 use a satisfiability solver with iterative deepening on the depth

 first try to prove the goal in depth 0 (initial state)
 then try to prove the goal in depth 1
 until a solution is found in depth n

the plan!

 Plan-Space Planning © J. Fürnkranz41

 TU Darmstadt, SS 2009 Einführung in die Künstliche Intelligenz

Key Problem
 Complexity

 In the worst case, a proposition has to be generated
 for each of a actions with
 each of o possible objects in the n arguments
 for a solution depth d

→ maximum number of propositions is
 the number of rules is even larger

Solution Attempt: Symbol Splitting
 a possible solution is to convert each n-ary relation into n

binary relations
 “the i-th argument of relation r is y”

 this will also reduce the size of the knowledge base because
arguments that are not used can be omitted from the rules

 Drawback: multiple instances of the same rule get mixed up
→ no two actions of same type at the same time step

 Nevertheless, SATPLAN is very competitive

d⋅a⋅on

