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Text ClassificationText Classification
● Characteristics of Machine Learning Problems

 Example representation
 Concept representation

● Text Classification Algorithms
 k nearest-neighbor algorithm, Rocchio algorithm
 naïve Bayes classifier
 Support Vector Machines
 decision tree and rule learning

● Occam's Razor and Overfitting Avoidance
● Evaluation of classifiers

 evaluation metrics
 cross-validation
 micro- and macro-averaging
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Type of Training InformationType of Training Information

● Supervised Learning:
 A „teacher“ provides the value for the target function for all 

training examples (labeled examples)
 concept learning, classification, regression

● Semi-supervised Learning:
 Only a subset of the training examples are labeled (labeling 

examples is expensive!)
● Reinforcement Learning:

 A teacher provides feedback about the values of the target 
function chosen by the learner

● Unsupervised Learning:
 There is no information except the training examples
 clustering, subgroup discovery, association rule discovery
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Example AvailabilityExample Availability

● Batch Learning
 The learner is provided with a set of training examples 

● Incremental Learning / On-line Learning
 There is constant stream of training examples

● Active Learning
 The learner may choose an example and ask the teacher for 

the relevant training information
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Document RepresentationDocument Representation

● The vector space models allows to transform a text into a 
document-term table

● In the simplest case
 Rows: 

● training documents
 Columns:

● words in the training documents
 More complex representation possible

● Most machine learning and data mining algorithms need 
this type of representation
 they can now be applied to, e.g., text classification
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Example RepresentationExample Representation

● Attribute-Value data:
 Each example is described with values for a fixed number of 

attributes
● Nominal Attributes:

 store an unordered list of symbols (e.g., color)
● Numeric Attributes:

 store a number (e.g., income)
● Other Types:

 hierarchical attributes
 set-valued attributes

 the data corresponds to a single relation (spreadsheed)
● Multi-Relational data:

 The relevant information is distributed over multiple relations 
● e.g., contains_word(Page,Word), linked_to(Page,Page),...
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Bag-of-Words vs. Set-of WordsBag-of-Words vs. Set-of Words

● Set-of-Words: boolean features
each dimension encodes wether the feature appears in 
the document or not

● Bag-of-words: numeric features
each dimension encodes how often the feature occurs 
in the document (possibly normalized)

● Which one is preferable depends on the task and the 
classifier
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Concept RepresentationConcept Representation

● Most Learners generalize the training examples into an 
explicit representation 
(called a model, function, hypothesis, concept...)
 mathematical functions (e.g., polynomial of 3rd degree)
 logical formulas (e.g., propositional IF-THEN rules)
 decision trees
 neural networks
....

● Lazy Learning
 do not compute an explicit model
 generalize „on demand“ for an example 
 e.g., nearest neighbor classification
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A Selection of Learning TechniquesA Selection of Learning Techniques

 Decision and Regression Trees
 Classification Rules
 Association Rules
 Inductive Logic Programming
 Neural Networks
 Support Vector Machines
 Statistical Modeling
 Clustering Techniques
 Case-Based Reasoning
 Genetic Algorithms
 ....
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Induction of ClassifiersInduction of Classifiers

The most „popular“ learning problem:
● Task:

 learn a model that predicts the outcome of a dependent 
variable for a given instance

● Experience:
 experience is given in the form of a data base of examples
 an example describes a single previous observation

● instance: a set of measurements that characterize a situation
● label: the outcome that was observed in this siutation

● Performance Measure:
 compare the predicted outcome to the observed outcome
 estimate the probability of predicting the right outcome in a 

new situation
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Text Classification: ExamplesText Classification: Examples

Text  Categorization: Assign labels to each document

● Labels are most often topics such as Yahoo-categories
 e.g., "finance," "sports," "news::world::asia::business"

● Labels may be genres
 e.g., "editorials" "movie-reviews" "news“

● Labels may be opinion
 e.g., “like”, “hate”, “neutral”

● Labels may be binary concepts
 e.g., "interesting-to-me" : "not-interesting-to-me”
 e.g., “spam” : “not-spam”
 e.g., “contains adult language” :“doesn’t”

Manning and Raghavan
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Induction of ClassifiersInduction of Classifiers

Training

ClassificationExample

Inductive Machine Learning 
algorithms induce a 

classifier from labeled 
training examples. The 

classifier generalizes the 
training examples, i.e. it is 
able to assign labels to new 

cases.

An inductive learning 
algorithm searches in a given 

family of hypotheses (e.g., 
decision trees, neural 

networks) for a member that 
optimizes given quality 
criteria (e.g., estimated 
predictive accuracy or 

misclassification costs).

Classifier
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Induction of ClassifiersInduction of Classifiers

● Typical Characteristics
 attribute-value representation (single relation)
 batch learning from off-line data (data are available from 

external sources)
 supervised learning (examples are pre-classified)
 numerous learning algorithms for practically all concept 

representations (decision trees, rules, neural networks, SVMs, 
statistical models,...)

 often greedy algorithms (fast processing of large datasets)
 evaluation by estimating predictive accuracy (on a portion of 

the available data)
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?

Training

ClassificationNew Example

K-Nearest Neighbor 
algorithms classify a new 

example by comparing it to all 
previously seen examples. 
The classifications of the k 
most similar previous cases 
are used for predicting the 
classification of the current 

example.

The training examples 
are used for 

• providing a library of 
sample cases 

• re-scaling the similarity 
function to maximize 

performance

Nearest Neighbor ClassifierNearest Neighbor Classifier
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kNN ClassifierkNN Classifier

● To learn from a training set:
 Store the training set

● To classify a new document :
 Compute similarity of document vector Q with all available 

document vectors D (e.g., using cosine similarity)
 Select the k nearest neighbors (hence the name k-NN)
 Combine their classifications to a new prediction 

(e.g., majority, weighted majority,...)

● "Lazy" learning or local learning
 because no global model is built
 generalization only happens when it is needed
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Nearest Neighbor with Inverted IndexNearest Neighbor with Inverted Index

● Naively finding nearest neighbors requires a linear 
search through |D| documents in collection

● But determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

● Use standard vector space inverted index methods to 
find the k nearest neighbors.

● Testing Time: O(B|Vt|)         
 where B is the average number of training documents in 

which a test-document word appears.
 Typically B << |D|

Manning and Raghavan
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Rocchio ClassifierRocchio Classifier
● based on ideas for Rocchio Relevance Feedback
● compute a prototype vector for each class

 average the document vectors for each class
● classify a new document according to distance to prototype 

vectors instead of documents 

● assumption:
 documents that belong

to the same class
are close to each other 
(form one cluster)
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Probabilistic Document ModelProbabilistic Document Model
● A document is a sequence of words (tokens, terms, features...)

                            where  
 Assume that a document D has been generated by 

repeatedly selecting a word wij at random 
● The probability that a word occurs in a document is 

dependent on the document's class c


● (Class-Conditional) Independence Assumption:
The occurrence of a word in a class is independent of its 
context


● Goal of Classification:
 Determine the probability p(c|D) that document D belongs to 

class c

p t i∣c≠ p  t i

p t i∣t j , c= p t i∣c

D=t1 , t2 , ... , t∣D∣ t j=w i j
∈W
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Bayesian ClassificationBayesian Classification
● Maximum a posteriori classification

 predict the class c that has the highest probability given the 
document D

 Problem:
● we have not seen the document often enough to directly 

estimate p(c|D)
● Bayes Theorem:

 equivalently

● p(D) is only for normalization:
 can be omitted if we only need a ranking 

of the class and not a probability estimate

● Bayes Classifier:
    If all prior probabilites p(c) are identical → maximum likelihood prediction

p c∣D=
p D∣c  p c

p D

c=arg maxc pD∣c p c

p D =∑c
p D∣c p c

c=arg maxc p c∣D

p c∣D⋅p D= p D∣c⋅p c 
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Simple Naïve Bayes Classifier for TextSimple Naïve Bayes Classifier for Text
(Mitchell 1997)(Mitchell 1997)

● a document is a sequence of n terms

● Apply Independence Assumption:
 p(ti|c) is the probability with which the 

word                occurs in documents of class c

● Naïve Bayes Classifier
 putting things together:

p D∣c=∏
i=1

∣D∣

p ti ∣c

p D∣c=p t 1 , t 2 , .... t n∣c

t i=wi j

c=arg maxc ∏
i=1

∣D∣

p t i∣c p c
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Estimating Probabilities (1)Estimating Probabilities (1)
● Estimate for prior class probability p(c)

 fraction of documents that are of class c

● Word probabilities can be estimated from data
 p(ti|c) denotes probability that term              occurs at a 

certain position in the document
● assumption: probability of occurrence is independent of 

position in text
 estimated from fraction of document positions in each 

class on which the term occurs
● put all documents of class c into a single (virtual) document
● compute the frequencies of the words in this document

Wt ∈

t i=w i j
∈W
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Estimating Probabilities (2)Estimating Probabilities (2)
● Straight-forward approach:

 estimate probabilities from the frequencies 
in the training set

 word w occurs n(D,w) times in document D
● Problem:

 test documents may contain new words
 those will be have estimated probabilities 0
 assigned probability 0 for all classes

● Smoothing of probabilities:
 basic idea: assume a prior distribution on 

word probabilities
 e.g., Laplace correction p t i=w∣c =

nw ,c1

∑
w∈W

nw , c1
=

nw ,c1

∑
w∈W

nw , c∣W∣

p t i=w∣c =
nw, c

∑
w∈W

nw ,c

nw ,c=∑D∈c
nD , w
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Full Multinomial ModelFull Multinomial Model
Two basic shortcomings of the simple Naïve Bayes:
● If we consider the document as a „bag of words“, many 

sequences correspond to the same bag of words
 better estimate:

● we assumed that all documents have the same length
 a better model will also include the document length l = |D| 

conditional on the class

                   may be hard to estimate

pD∣c= p l=∣D∣∣c ∣D∣
{n D , ww∈D }∏w∈D

pw∣cnD , w

p D∣c= ∣D∣
{nD ,ww∈D }∏w∈D

p w∣cn D, w

         iterates over vocabulary
         iterates over document positions 

p l=∣D∣∣c

∏
w∈D

 

∏
i=1...∣D∣

  n
i1,i 2, ... i k = n !

i1 !⋅i2 !⋅...⋅ik !
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Binary ModelBinary Model
● a document is represented as a set of words

● model does not take into account document length or word 
frequencies

● aka Multi-variate Bernoulli Model
● in this case p(w|c) indicates the probability that a document 

in class c will mention term w at least once.
● estimated by fraction of documents in each class in which the 

term occurs
● the probability of seeing document D in class c is 

● the product of probabilities for all words occurring in the 
document

● times the product of the counter-probabilities of the words that 
do not occur in the document

  
Dfor taccount  to

,

))|(1(
)|(1

)|())|(1()|()|(

∉

∈∈∉∈∈
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Numerics of Naïve Bayes ModelsNumerics of Naïve Bayes Models

● We need to multiply a large number of small probabilities,
 Result: extremely small probabilities as answers.
 Solution: store all numbers as logarithms

 to get back to the probabilities:

● Class which comes out at the top wins by a huge margin
 Sanitizing scores using likelihood ratio LR

● Also called the logit function

)|1(
)|1()(     ,

1
1)(logit )( DCp

DCpDLR
e

D DLR −=
+==

+
= −

c = arg max c pc∏
i=1

∣D∣

pt i ∣c = arg maxclog  pc ∑
i=1

∣D∣

log  pt i ∣c
p c∣D =

el c

∑c'
e lc'

=
1

1∑c '≠c
el c'−lc

lc
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Rainbow Rainbow (McCallum)(McCallum)

● advanced implementation of a Naïve Bayes text classifier 
with numerous options
 http://www.cs.umass.edu/~mccallum/bow/rainbow/

http://www.cs.umass.edu/~mccallum/bow/rainbow/
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Performance analysisPerformance analysis
● Multinomial naive Bayes classifier generally outperforms 

the binary variant
 but the binary model is better with smaller vocabulary sizes

● K-NN may outperform Naïve Bayes 
 Naïve Bayes is faster and more compact
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NB: Decision boundaries NB: Decision boundaries 
● Bayesian classier partitions the multidimensional term 

space into regions
 Within each region, the probability of one class is higher than 

others
 On the boundaries, the probability of two or more classes are 

exactly equal

● 2-class NB has a linear decision boundary
 easy to see in the logarithmic representation of the 

multinomial version

    αNB weight vector: weight of w is log(p(w|c))
d document vector consisting of term frequencies n(D,w)

log p D∣c=log  ∣D∣
{nD , ww∈D }∑w∈D

nD , w⋅log p w∣c=bd⋅NB
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Fitting a linear decision boundaryFitting a linear decision boundary
● Probabilistic approach

 fixes the policy that               (w-th component of the linear 
discriminant) depends only on the statistics of term w in the 
corpus.

 Therefore it cannot pick from the entire set of possible linear 
discriminants

● Discriminative approach
 try to find a weight vector α so that the discrimination between 

the two classes is optimal
 statistical approaches:

● perceptrons (neural networks with a single layer)
● logistic regression

 most common approach in text categorization
→ support vector machines

)(wNBα
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Finding a Linear Decision BoundaryFinding a Linear Decision Boundary

Find a,b,c, such that
ax + by ≥ c for red points
ax + by ≤ c for green points.

Manning and Raghavan
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Which Hyperplane?Which Hyperplane?

In general, many possible
solutions for a,b,c.

Manning and Raghavan

● Intuition 1: If there are no points near the decision surface, then there 
are no very uncertain classifications
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Support Vector Machines: IntuitionSupport Vector Machines: Intuition
● Intuition 2: If you have to place a fat separator between 

classes, you have less choices, and so overfitting is not so 
easy

Manning and Raghavan
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Support Vector Machine (SVM)Support Vector Machine (SVM)

Support vectors

Maximize
margin

● SVMs maximize the margin around 
the separating hyperplane.

● A.k.a. large margin classifiers

● The decision function is fully specified 
by a subset of training samples, 
the support vectors.

● Formalization
 w: normal vector to decision hyperplane
 xi: i-th data point 
 yi: class of data point i (+1 or −1)     NB: Not 1/0
 Classifier is:  f(xi) =  sign(wTxi + b)

Manning and Raghavan

wT⋅x ib=0
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Geometric MarginGeometric Margin
● Distance from example to the separator is 
● Examples closest to the hyperplane are support vectors. 
● Margin ρ of the separator is the width of separation between 

support vectors of classes.

w
xw byr

T +=

r

ρx

x′

Manning and Raghavan

w



35 © J. Fürnkranz

Linear SVM MathematicallyLinear SVM Mathematically
● If all data is at least distance 1 from the hyperplane, the 

following two constraints follow for a training set {(xi ,yi)} 

 For support vectors, the inequality becomes an equality
● Then, since each example’s distance from the hyperplane is

→ the margin is:

wTxi + b ≥ 1    if yi = +1

wTxi + b ≤ -1   if yi = −1

w
2=ρ

w
xw byr

T +=

Manning and Raghavan
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Linear Support Vector Machine (SVM)Linear Support Vector Machine (SVM)

● Extra scale constraint:
 w is normalized so that:

        mini=1,…,n |wTxi + b| = 1

● This implies:
        wT(xr–xs) = 2
 ρ = ||xr–xs||2 = 2/||w||2

wT x + b = 0

wTxs + b = 1

wTxr + b = −1

ρ

Manning and Raghavan
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Linear SVMs Mathematically (cont.)Linear SVMs Mathematically (cont.)

● Then we can formulate the quadratic optimization problem: 

● A better formulation (min ||w|| = max 1/||w|| ): 

Find w and b such that the margin

                is maximized; and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1
w
2=ρ

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Manning and Raghavan
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Solving the Optimization ProblemSolving the Optimization Problem
● This is now 

 optimizing a quadratic function 
 subject to linear constraints

● Quadratic optimization problems are a well-known class of 
mathematical programming problems
 many (rather intricate) algorithms exist for solving them

● The solution involves constructing a dual problem 

 where a Lagrange 
multiplier αi is associated 
with every constraint 
in the primary problem:

Find α1…αN such that
Q(α) =Σαi  - ½ΣΣαiαjyiyjxi

Txj is maximized 
and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Manning and Raghavan

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1
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The Optimization Problem SolutionThe Optimization Problem Solution
● The solution has the form: 

 αi ≠ 0 indicates that corresponding xi is a support vector.
● Then the classifying function will have the form:

 Notice that it relies on an inner product between the test point x 
and the support vectors xi – we will return to this later.

 Also keep in mind that solving the optimization problem involved 
computing the inner products xi

T
 xi between all pairs of training 

points.

w = Σαiyixi             b = yk − wTxk for any xk such that αk≠ 0

f (x) = Σαiyixi
Tx + b

Manning and Raghavan
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Soft Margin Classification  Soft Margin Classification  
● If the training set is not 

linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

● Allow some errors
 Let some points be moved 

to where they belong, at a 
cost

● Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi

Manning and Raghavan
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Soft Margin Classification Soft Margin Classification 
MathematicallyMathematically

● The old formulation:

● The new formulation incorporating slack variables:

 Parameter C can be viewed as a way to control overfitting – 
a regularization term

Find w and b such that

Φ(w) =½ wTw + CΣξi  is minimized 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1- ξi   and  ξi ≥ 0

Manning and Raghavan

Find w and b such that

Φ(w) =½ wTw  is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1
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Soft Margin Classification – SolutionSoft Margin Classification – Solution
● The dual problem for soft margin classification:

 NOTE: Neither slack variables ξi  nor their Lagrange multipliers 
appear in the dual problem!

● Solution to the dual problem is:

w  =Σαiyixi             

b= yk(1- ξk) - wTxk 
      where k = argmaxk αk

f(x) = Σαiyixi
Tx + b

But w not needed explicitly 
for classification!

Manning and Raghavan

Find α1…αN such that
Q(α) =Σαi  - ½ΣΣαiαjyiyjxi

Txj is maximized 
and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi
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Classification with SVMsClassification with SVMs
● Given a new point (x1,x2), we can score its projection 

onto the hyperplane normal:
 In 2 dims:       score = w1x1+w2x2+b.
 in general:      score = wTx + b = Σαiyixi

Tx + b
 Set confidence threshold t:

3
5
7

score > +t: yes

score < −t: no

else: don’t know

Manning and Raghavan
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Linear SVMs:  SummaryLinear SVMs:  Summary
● The classifier is a separating hyperplane.

● Most “important” training points are support vectors; they 
define the hyperplane.

● Quadratic optimization algorithms can identify which training 
points xi are support vectors with non-zero Lagrangian 
multipliers αi. 

● Both in the dual formulation of the problem and in the 
solution training points appear only inside inner products:

Manning and Raghavan



45 © J. Fürnkranz

Non-linear SVMsNon-linear SVMs
● Datasets that are linearly separable (with some noise) work 

out great:

● But what are we going to do if the dataset is just too hard? 

● How about … mapping data to a higher-dimensional space:
0 x

0 x

0

x2

x

Manning and Raghavan
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Non-linear SVMs:  Feature spacesNon-linear SVMs:  Feature spaces

● General idea:   the original feature space can always 
be mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x → φ(x)

Manning and Raghavan
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The “Kernel Trick”The “Kernel Trick”
● The linear classifier relies on an inner product between vectors 

K(xi,xj)=xi
Txj

● If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi) 
Tφ(xj)

● A kernel function is some function that corresponds to an inner product 
in some expanded feature space.

● Example: 
     2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi

Txj)2
,

     Need to show that K(xi,xj)= φ(xi) 
Tφ(xj):

     K(xi,xj) = (1 + xi
Txj)2 

,= 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

                  = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2   xj2

2  √2xj1  √2xj2] 

                  = φ(xi) 
Tφ(xj)          where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2]

Manning and Raghavan
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KernelsKernels
● Why use kernels?

 Make non-separable problem separable.
 Map data into better representational space

● Common kernels
 Linear
 Polynomial:
                      K(xi, xj) = (1+xi

Txj)d

 Radial basis function (infinite dimensional space)

Manning and Raghavan
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High Dimensional DataHigh Dimensional Data

● Pictures like the one at right are misleading!
 Documents are zero along almost all axes
 Most document pairs are very far apart 

● (i.e., not strictly orthogonal, but only 
share very common words and a few 
scattered others)

● In classification terms: 
 virtually all document sets are separable, for almost any 

classification

● This is part of why linear classifiers are quite successful in 
text classification
→ SVMs with linear Kernels are usually sufficient!

Manning and Raghavan
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PerformancePerformance

● Comparison with other classifiers
 Amongst most accurate classifier for text
 Better accuracy than naive Bayes and decision tree 

classifier,
● Different Kernels

 Linear SVMs suffice for most text classification tasks
 standard text classification tasks have classes almost 

separable using a hyperplane in feature space
● becaue of high dimensionality of the feature space

● Computational Efficiency
 requires to solve a quadratic optimization problem.

● Working set: refine a few λ at a time holding the others fixed.
 overall quadratic run-time

● can be reduced by clever selection of the working set
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Rule-based ClassifiersRule-based Classifiers

● A classifier basically is a function that computes the output 
(the class) from the input (the attribute values)

● Rule learning tries to represent this function in the form 
of (a set of) IF-THEN rules
IF (att

i
 = val

iI
) AND (att

j
 = val

jJ
) THEN class

k
 

● Coverage
 A rule is said to cover an example if the example satisfies 

the conditions of the rule.
● Correctness

 completeness: Each example should be covered by (at 
least) one rule

 consistency: For each example, the predicted class should 
be identical to the true class.
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Separate-and-Conquer StrategySeparate-and-Conquer Strategy

● Learn rules for each class separately
 use the biggest class as the default class

● To learn rules for one class:
 Add rules to a theory until all examples of a class are 

covered (completeness)
 remove the covered examples

● To learn a single rule:
 Add conditions to the rule that 

● Cover as many examples p from the class as possible
● Exclude as many examples n from other classes as possible
● E.g., maximize            or better the Laplace estimatep

 pn
 p1

 pn2
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Set-valued FeaturesSet-valued Features

● Use binary conditions of the form             
● Efficient representation of binary conditions by listing all 

words that occur 
(vector-based representation also lists those that do not occur)

● Several, separate set-valued features are possible (thus 
it is an extension of the vector-space model)
 this allows conditions of the form, e.g.,  

● Useful for tasks with 
 more than one text-based features
 combining regular features with text-based features
 e.g. seminar announcements, classifying e-mails

t i∈title D 

t i∈D
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Occam's RazorOccam's Razor

● Machine Learning Interpretation:
 Among theories of (approximately) equal quality on the 

training data, simpler theories have a better chance to be 
more accurate on the test data

 It is desirable to find a trade-off between accuracy and 
complexity of a model

● (Debatable) Probabilistic Justification:
 There are more complex theories than simple theories. 

Thus a simple theory is less likely to explain the observed 
phenomena by chance.

Entities should not be multiplied beyond necessity.
William of Ockham (1285 - 1349) 
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OverfittingOverfitting
● Overfitting

 Given 
● a fairly general model class (e.g., rules)
● enough degrees of freedom (e.g., no length restriction)

 you can always find a model that explains the data
● Such concepts do not generalize well!
● Particularly bad for noisy data

 Data often contain errors due to
● inconsistent classification
● measurement errors
● missing values

→ Capacity control
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Capacity ControlCapacity Control

● Choose the right complexity of a classifier

Manning and Raghavan
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Overfitting AvoidanceOverfitting Avoidance

● Choose a simpler model class
 restrict number of conditions in a rule
 demand minimum coverage for a rule

● Pruning
 simplify a theory after it has been learned

● Reduced Error Pruning
1.Reserve part of the data for validation
2.Learn a rule set
3.Simplify rule set by deleting rules and conditions as long 

as this does not decrease accuracy on the validation set 
● Incremental REP

 Do this after each individual rule is learned



58 © J. Fürnkranz

RIPPER RIPPER (Cohen, 1995)(Cohen, 1995)

Efficient algorithm for learning classification rules
 covering algorithm (aka separate-and-conquer)
 incremental pruning of rules (I-REP)
 set-valued features support text mining
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The Compress AlgorithmThe Compress Algorithm
● Simple, elegant algorithm capturing a Minimum-

Description Length Idea:
1. Put all documents of one class into a separate directory
2.compress/zip each directory into file <class_i>.zip

 To classify a new document:
1. Tentatively assign the document to each class (by adding it 

to the respective directories)
2. compress/zip each directory into file <class_i>_new.zip
3. assign document to the class for which the distance 

measure |<class_i>.zip|-|<class_i>_new.zip| is 
minimal

 Benedetto et al. (Phys. Rev. Letters 2002) report results for
 language recognition (100% accuracy for 10 EC languages)
 authorship determination (93.3% for 11 Italian authors)
 document clustering (similarity tree of European languages)
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Evaluation of Learned ModelsEvaluation of Learned Models
● Validation through experts

 a domain experts evaluates the plausibility of a learned model
+ subjective, time-intensive, costly
– but often the only option (e.g., clustering)

● Validation on data
 evaluate the accuracy of the model on a separate dataset 

drawn from the same distribution as the training data
– labeled data are scarce, could be better used for training
+ fast and simple, off-line, no domain knowledge needed, methods 

for re-using training data exist (e.g., cross-validation)
● On-line Validation

 test the learned model in a fielded application
+ gives the best estimate for the overall utility
– bad models may be costly
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Out-of-Sample TestingOut-of-Sample Testing

● Performance cannot be measured on training data
 overfitting!

● Reserve a portion of the available data for testing
● Problem:

 waste of data
 labelling may be expensive
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Cross-ValidationCross-Validation
● split dataset into n (usually 10) partitions
● for every partition p

 use other n-1 partitions for learning and partition p for 
testing

● average the results
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EvaluationEvaluation

● In Machine Learning: 
Accuracy = percentage of correctly classified examples

● Confusion Matrix:

n
daaccuracy )( +=

Classified
as +

Classified
as -

Is + a c a+c

Is - b d b+d

a+b c+d n
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+
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Evaluation for Multi-Class ProblemsEvaluation for Multi-Class Problems

A B C D

A nA,A nB,A nC,A nD,A nA

B nA,B nB,B nC,B nD,B nB

C nA,C nB,C nC,C nD,C nC

D nA,D nB,D nC,D nD,D nD

n

classified as

n A nB nC nD

tru
e 

cl
as

s
● for multi-class problems, the confusion matrix has many 

more entries:

● accuracy is defined analogously to the two-class case:

accuracy=
nA , AnB, BnC ,CnD , D

n
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Recall and Precision for Recall and Precision for 
Multi-Class ProblemsMulti-Class Problems

● For multi-class text classification tasks, recall and 
precision can be defined for each category separately

● Recall of Class X:
 How many documents of class X have been recognized 

as class X?
● Precision of Class X:

  How many of our predictions for class X were correct?
● Predictions for Class X 

can be summarized in 
a 2x2 table
 z.B:

classified
X

classified
not X

is X

is not X
X=A , X ={B , C , D }

nX , X

nX , X

nX , X
nX , X

nX
nX

nX nX n
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Micro- and Macro-AveragingMicro- and Macro-Averaging
● To obtain a single overall estimate for recall and precision

 we have to combine the estimates for the individual classes
● Two strategies:

 Micro-Averaging:
● add up the 2x2 contingency tables for each class
● compute recall and precision from the summary table

 Macro-Averaging:
● compute recall and precision for each contingency table
● average the recall and precision estimates

● Basic difference:
 Micro-Averaging prefers large classes

● they dominate the sums
 Macro-Averaging gives equal weight to each class

● r/p on smaller classes counts as much as on larger classes
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Macro-AveragingMacro-Averaging

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

prec c2=20
32

=0.625 prec c3=45
50

=0.900prec c1= 15
25

=0.600

avg. prec= prec c1 prec c2 prec c3
3

=0.708

recl c1=15
20

=0.750 recl c2=20
30

=0.667 recl c3=45
50

=0.900

avg.recl= recl c1recl c2recl c3
3

=0.772
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Micro-AveragingMicro-Averaging

C C
C 80 20 100

C 27 173 200

107 193 300

Predicted

Tr
ue

Σ

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

avg.recl= 80
100

=0.800

avg. prec= 80
107

=0.748
Micro-Averaged estimates
are in this case higher
because the performance
on the largest class (C3)
was best
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Benchmark DatasetsBenchmark Datasets
Publicly available Benchmark Datasets facilitate standardized 
evaluation and comparisons to previous work
● Reuters-21578
• 12,902 labeled documents 
• 10% documents with multiple class labels

● OHSUMED
• 348,566 abstracts from medical journals

● 20 newsgroups
• 18,800 labeled USENET postings
• 20 leaf classes, 5 root level classes
•more recent 19 newsgroups

● WebKB
• 8300 documents in 7 academic categories.

● Industry sectors
• 10,000 home pages of companies from 105 industry sectors
• Shallow hierarchies of sector names
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● Most (over)used data set
● originally 21578 documents, not all of them are useful
● 9603 training, 3299 test articles (ModApte split)
● 118 categories

 Multilabel Classification: An article can be in more than one category
 Simple approach: Learn 118 binary category distinctions

● Average document: about 90 types, 200 tokens
● Average number of classes assigned

 1.24 for docs with at least one category
● Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Reuters-21578 DatasetReuters-21578 Dataset

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Manning and Raghavan
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Reuters-21578 Sample DocumentReuters-21578 Sample Document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" 
NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off 
tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining 
industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

    Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including 
the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also 
debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, 
the NPPC said.

    A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the 
industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

Manning and Raghavan
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Reuters – Accuracy with different Reuters – Accuracy with different 
AlgorithmsAlgorithms

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%

Manning and Raghavan

Results taken from S. Dumais et al. 1998
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Reuters - SVM with different KernelsReuters - SVM with different Kernels

Results taken from Th. Joachims 1998
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Reuters – Micro F1 vs. Macro F1Reuters – Micro F1 vs. Macro F1

Source:Yang & Liu, SIGIR 1999 

● Results of five Text Classification Methods on the 
REUTERS-21578 benchmark
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● Comparison of Linear SVM, Decision Tree, (Binary) Naive 
Bayes, and a version of nearest neighbor on one Reuters 
category

Graph taken from S. Dumais, LOC talk, 1999.

Reuters – Recall/Precision CurveReuters – Recall/Precision Curve
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New Reuters: RCV1: 810,000 docsNew Reuters: RCV1: 810,000 docs
● Top topics in Reuters RCV1

Manning and Raghavan
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Multiple DatasetsMultiple Datasets

● Comparison of accuracy across three classifiers: 
 Naive Bayes, Maximum Entropy and Linear SVM

● using three data sets: 
 20 newsgroups
 the Recreation sub-tree 

of the Open Directory
 University Web pages 

from WebKB.


