Recommender Systems

- Scenario:
 - Users have a potential interest in certain items
- Goal:
 - Provide recommendations for individual users
- Examples:
 - recommendations to customers in an on-line store
 - movie recommendations

	Book 1	Book 2	Book 3	Book 4	Book 5	Book 6
Customer A	Х			Х		
Customer B		Х	Х		Х	
Customer C		Х	Х			
Customer D		Х				Х
Customer E	Х				Х	

1

Recommender Systems

- User provide recommendations
 - implicit

(buying decisions, click streams, reading time of articles,...)

explicit

(feedback forms, texts, mining public sources, ...)

- The recommender system
 - computes recommendations
 - can direct them to the right users
 - filter out items with negative recommendations
 - sort items
 - present evaluations
 - place ads tailored to the user's interests

Example: amazon.com

- "If I have 2 million customers on the Web, I should have 2 million stores on the Web" (Jeff Bezos, CEO)
- Types of recommendations:
 - display of customer comments
 - personalized recommendations based on buying decisions
 - customers who bought also bought.... (books/authors/artists)
 - email notifications of new items matching pre-specified criteria
 - explicit feedback (rate this item) to get recommendations
 - customers provide recommendation lists for topics



🔿 Kindor 9. Esmilio

IHRE EMPFEHLUNGEN

<u>Alle Produkte</u> Alles gebraucht

Ihre Favoriten

Ändern

<u>English Books</u> <u>Software</u> <u>DVD</u> <u>Bücher</u>

Mehr Shops

Zeitschriften <u>Musik</u> <u>Klassik</u> <u>VHS</u> <u>PC- & Videospiele</u> <u>Spielwaren & Kinderwelt</u> <u>Elektronik</u> <u>Computer & Zubehör</u> <u>Kamera & Foto</u> <u>Küche & Haushalt</u> <u>Heimwerken</u> <u>Garten</u>

<u>Körperpflege & Bad</u>

Persönliche Empfehlungen

Hallo, Johannes Fürnkranz. Entdecken Sie die heute vorgestellten Empfehlungen. (Wenn Sie nicht Johannes Fürnkranz sind, <u>klicken Sie hier</u>.)

<u>Software Empfehlungen</u>

Lernspaß - 1. Klasse

LERNSPASS 1 Aus der Amazon.de-Redaktion

Verheißungsvoll klingt der Titel, bei dem sich wohl alle Eltern erträumen, es möge den eigenen Kindern zeitlebens so ergehen: *Lernen macht Spaβ*. Diese Software unterstützt Erstklässler in den Fächern Mathematik und Deutsch, steigert ihr Konzentrationsvermögen… <u>Mehr dazu</u>

Mehr gibt es in <u>Kinder & Familie, Schule & Studium</u>, und anderen <u>Software Empfehlungen</u>

DVD-Empfehlungen The King And I [UK IMPORT]

Kingel Aus der Amazon de-Redaktion

Der König und ich ist der dritte Broadway-Hit des berühmten Komponistenduos Rogers & Hammerstein. Der Film zeigt eine schauspielerische Leistung Yul Brynners, die seiner Karriere einen Schwung nach oben verlieh. Brynner wiederholte seinen Bühnenerfolg in der Hauptrolle und bewies den... <u>Mehr dazu</u>

Mehr gibt es in Originalfassungen, und anderen DVD-Empfehlungen

<u>Buch-Empfehlungen</u>

Guck mal, was hier passiert!

Kurzbeschreibung

Ein Wimmelbilderbuch zum Schauen, Entdecken, Wiedererkennen und natürlich zum Geschichtenerfinden und -erzählen. (Ab 2 Jahren.)

Mehr gibt es in Kochen & Lifestyle, und anderen Buch-Empfehlungen

<u>Verbessern Sie Ihre</u> Empfehlungen

Haben wir mit den empfohlenen Artikeln Ihren Geschmack noch nicht ganz getroffen? Lassen Sie uns genauer wissen, was Sie interessiert:

<u>Ändern Sie Ihre</u> <u>bisherigen Angaben</u>

<u>Wählen Sie Ihre</u> <u>bevorzugten</u> Interessensgebiete

<u>Bewerten Sie Artikel, die</u> <u>Sie schon haben</u>

Empfohlene Autoren, Künstler & Regisseure

- Samba kurz & gut
- <u>Um die Ecke gedacht</u>
- <u>Agile</u> <u>Softwareentwicklung</u> <u>im Großen</u>

Mehr Autoren

• Anthology [DOPPEL-CD] © J. Fürnkranz

Unser Vorschlag

Kaufen Sie jetzt diesen Artikel zusammen mit Wenn der Partner geht. Wege zur Bewältigung vo

Kunden, die diesen Artikel gekauft haben, kauften auch:

Wenn der Partner geht. Wege zur Bewältigung von Trennung und Scheidung von Doris Wolf ****** (48) EUR 12,80

Quelle: http://fun.sdinet.de/pics/german/waschmaschine.jpg, gefunden von Erik Tews

Recommendation Techniques

- non-personalized recommendations
 - most frequently bought items (Harry Potter)
- attribute-based recommendations
 - books of the same authors
 - books with similar titles
 - books in same category
- item-to-item correlations
 - users who bought this book, also bought...
 - items are similar if they are bought by the same users
- user-to-user correlations
 - people like you also bought...
 - users are similar if they buy the same items

Attribute-Based Recommendations

- Recommendations depend on properties of the items
- Each item is described by a set of attributes
 - Movies: e.g director, genre, year, actors
 - Documents: bag-of-word
- Similarity metric defines relationship between items
 - e.g. cosine similarity

Collaborative Filtering

- Recommends products to a target customer based on opinions of other customers
- Representation:
 - user/item matrix (customer/product matrix)
 - similar to document/term matrix
- Neighborhood formation:
 - identify similar customers based on similar buying decisions / recommendations (e.g., cosine similarity), may be optional (i.e., all users are neighborhood)
- Recommendation System:
 - derive a recommendation based on the information obtained from similar customers (e.g., most frequent items in neighborhood, weighted sum,...)

Collaborative Filtering (CF)

user/item matrix Item for which prediction **Prediction Task:** is sought i, i2 I_n predict the interest . . of user a for item j u₁ u_2 $\mathsf{P}_{\mathsf{a},\mathsf{j}}$ (prediction on item *i* for the active Prediction user) u_a Recommendation {T_{i1}, T_{i2}, ..., T_{iN}} *Top-N* list of items for the u_m active user Active user Input (ratings table) **CF-Algorithm** Output interface **Recommendation Task:** the matrix contains recommendations predict a list of items of each user for each product, e.g. that are most 1 if the user bought the item interesting for user a 0 if the user did not buy the item "

Source: Sarwar, Karypis, Konstan, Riedl, WWW-10, 2001

Memory-Based Collaborative Filtering

- Simple approach:
 - The weight that user u_a attributes to an item i is the sum of the votes that the item receives from other users
 - weighted by the similarity of the user to the other users

$$v_p(u_a, i) = \kappa \sum_{u \in U} w(u_a, u) v(u, i)$$

v(u,i) ...vote of user u for item i v_p ...predicted vote $w(u_1,u_2)$...weight between user u_1 and user u_2 u_a ...active user κ ...normalization factor for weights in the sum

Memory-Based Collaborative Filtering

- Problem with the simple approach:
 - different users may have different scales
 - a recommendation of 6 out of 10 may be pretty good for critical users, or quite bad for others
- Solution:
 - Only consider deviations from the mean
 - normalize each vote with the average vote m(u) so that a vote of 0 is an average vote
 - add the predicted average deviation to the average vote of the active user

$$v_p(u_a, i) = m(u_a) + \kappa \sum_{u \in U} w(u_a, u)(v(u, i) - m(u))$$

m(u) ... expected value (mean) over all votes of user

$$\kappa = \frac{1}{\sum_{u \in U} w(u_a, u)}$$

Memory-Based Collaborative Filtering

- The weight matrix $w(u_1, u_2)$ user-to-user correlations
- can be measured in different ways, e.g.:
 - cosine similarity:

$$w(u_1, u_2) = \frac{\sum_{i \in I} v(u_1, i) v(u_2, i)}{\sqrt{\sum_{i \in I_{u_1}} v(u_1, i)^2 \sum_{i \in I_{u_2}} v(u_2, i)^2}}$$

- correlation: $w(u_1, u_2) = \frac{\sum_{i \in I_{u_1} \cap I_{u_2}} v_m(u_1, i) v_m(u_2, i)}{\sqrt{\sum_{i \in I_{u_1} \cap I_{u_2}} v_m(u_1, i)^2 \sum_{i \in I_{u_1} \cap I_{u_2}} v_m(u_2, i)^2}}$
 - = cosine similarity of adjusted votes $v_m(u,i)=v(u,i)-m(u)$ restricted to all items where both users vote

Extensions

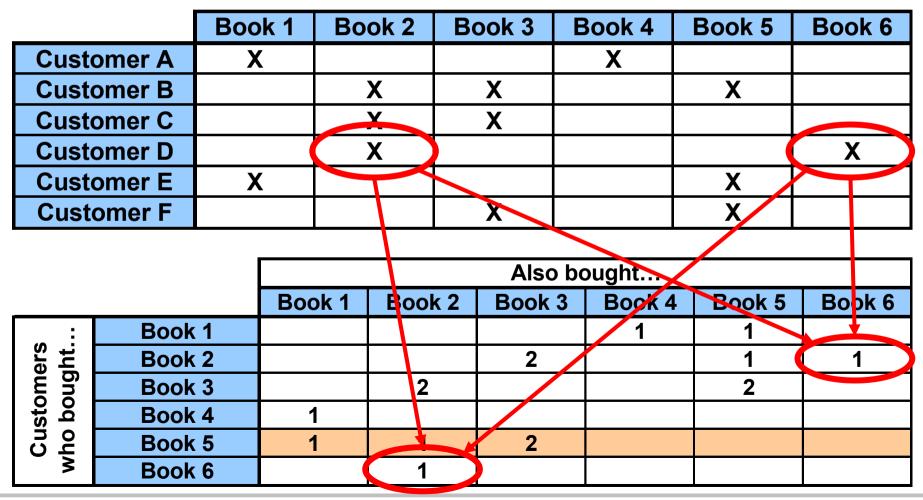
- Default Voting
 - default votes for items without explicit votes
 - allows to compute correlation from union instead of intersection (more items → more reliable)
- Inverse user frequency
 - reduce weights for objects popular with many users
 - assumption: universally liked items are less useful
 - cf. IDF
- Combine collaborative filtering with content-based similarities
 - user similarities: based on user profiles
 - item similarities:
 e.g., product categories, textual similarities, etc.

Extensions (Ctd.)

- Addition of pseudo users
 - use background knowledge (e.g., musical genres)
 - generate pseudo users that comment positively on all items of the genre
 - might be extracted automatically by wrappers (Cohen & Fan 2000)

Item Correlations

 Past purchases are transformed into relationships of common purchases



Original Slide by Arnaud De Bruyn, Penn State University

Item Correlations

- Such correlation tables can then used to made recommendations
- If a visitor has some interest in Book 5, he will be recommended to buy Book 3 as well

		Also bought							
		Book 1	Book 2	Book 3	Book 4	Book 5	Book 6		
	Book 1				1	1			
ustomers o bought.	Book 2			2		1	1		
bno	Book 3		2			2			
bc	Book 4	1							
who	Book 5	1	1	2					
3	Book 6		1						

Original Slide by Arnaud De Bruyn, Penn State University

Model-Based Collaborative Filtering

- learn an explicit model that predicts ratings and/or items
- examples
 - clustering of users
 - each user is characterized by her recommendations
 - apply any clustering algorithm that works for clustering documents
 - clustering of items
 - each item is characterized by the users that recommend it
 - apply any clustering algorithm that works for clustering documents
 - clustering of both users and items (*co-clustering*)
 - advantage: items and users are mutually dependent, a good clustering needs to consider both dimensions.
 - association rules
 - model associations between items
 - advantage: explicit, understandable representation

Clustering

	Book 1	Book 2	Book 3	Book 4	Book 5	Book 6
Customer A	Х			Х		
Customer B		Х	Х		Х	
Customer C		Х	Х			
Customer D		Х				Х
Customer E	Х				X	

- Two Clusters based on similarity on bought items
 - Customers B, C and D are clustered together
 - Customers A and E are clustered into another group
- « Typical » preferences for **CLUSTER BCD** are:
 - Book 2, very high
 - Book 3, high
 - Books 5 and 6, may be recommended
 - Books 1 and 4, not recommended at all

Clustering

	Book 1	Book 2	Book 3	Book 4	Book 5	Book 6
Customer A	Х			Х		
Customer B		Х	Х		Х	
Customer C		Х	Х			
Customer D		Х				Х
Customer E	Х				Х	
Customer F			Х		Х	

- How do we recommend within a cluster?
- Any customer that will be classified as a member of CLUSTER BCD will receive recommendations based on preferences of the group:
 - Book 2 will be highly recommended to Customer F
 - Book 6 will also be recommended to some extent

Problems

- Customers may belong to more than one cluster
 - in our example: Customer F could fit to both clusters
- there may be overlap in items between clusters
 - clusters may be overlapping (one example may belong to different clusters)
- Possible solution:
 - average predictions of all fitting clusters
 - weighted by their importance

Co-Clustering

- Cluster users and items simultaneously
 - Mutual reinforcement of similarity
 - separate clusterings might be suboptimal
- Need advanced clustering techniques
 - e.g., (Ungar & Foster, 1998)

	Batman	Rambo	Andre	Hiver	Whispers	StarWars
Lyle			1			1
Ellen			1	1		1
Jason				1	1	
Fred	1					1
Dean	1	1				1
Karen	?	?	1	?	?	?

From Clustering methods in collaborative filtering, by Ungar and Foster

Association Rule Discovery

- Association Rules describe frequent co-occurences in sets
 - generalize correlation tables to correlations between more than two values
- Example Problems:
 - Which products are frequently bought together by customers? (Basket Analysis)
 - DataTable = Receipts x Products
 - Results could be used to change the placements of products in the market
 - Which courses tend to be attended together?
 - DataTable = Students x Courses
 - Results could be used to avoid scheduling conflicts....
 - Which words co-occur in a text?
 - cf. efficient generation of n-grams

Association Rules

• General Form:

$$A_1, A_2, ..., A_n \Longrightarrow B_1, B_2, ..., B_m$$

- Interpretation:
 - When items A_i appear, items B_i also appear with a certain probability
- Examples:
 - Bread, Cheese => RedWine.

Customers that buy bread and cheese, also tend to buy red wine.

MachineLearning => WebMining, MLPraktikum. Students that take 'Machine Learning' also take 'Web Mining' and the 'Machine Learning Praktikum'

Basic Quality Measures

Support

$$s(A \to B) = \frac{n(A \cup B)}{n}$$

- relative frequency of examples for which both the head and the body of the rule are true
- Confidence c(A→B)= n(A∪B)/n(A)
 relative frequency of examples for which the head is true among those for which the body is true
- Example:
 - Bread, Cheese => RedWine (S = 0.01, C = 0.8)

80% of all customers that bought bread and cheese also bought red wine. 1% of all customers bought all three items.

Using Association Rules for Recommendations

- APRIORI:
 - efficient algorithm for finding all rules that have a given mimimum support and a given minimum confidence
 - phase 1: find frequent item sets (\rightarrow n-grams)
 - phase 2: construct all rules with min confidence from item set
- Simple Use of APRIORI for recommendations:
 - **1.** Input: database of all customers x all items they have bought
 - 2. Find association rules
 - 3. Find all rules whose conditions match the items previously bought by the active user
 - 4. Sort these rules by their confidence
 - 5. Predict the first N items on the top of the list