Information Extraction

® Definition (after Grishman 1997, Eikvil 1999):

"The identificiation and extraction of instances of a particular
class of events or relationships in a natural language text and
their transformation into a structured representation (e.q. a
database).”

= /R retrieves relevant documents from collections

= |E retrieves relevant information from documents

e Example: AutoSlog (Riloff)

= nput:
® general syntactic patterns
¢ annotated (marked-up) training documents

= ouput:
® instantiated patterns that extract particular information

= Autoslog-TS: Extension that replaces need for annotated corpus
with manual post-processing of sorted pattern list

® On the Web: natural language text -> (semi-)structured text

1 © J. Furnkranz
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Example: A Solution
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What is “Information Extraction”

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates
railed against the economic philosophy of open-
source software with Orwellian fervor, denouncing
its communal licensing as a "cancer" that stifled

technological innovation. //'

Today, Microsoft claims to "love" the open-source
concept, by which software code is made public to NAME TITLE ORGANIZATION
encourage improvement and development by
outside programmers. Gates himself says Microsoft
will gladly disclose its crown jewels--the coveted
code behind the Windows operating system--to

select customers. ~—

"We can be open source. We love the concept of
shared source," said Bill Veghte, a Microsoft VP.
"That's a super-important shift for us in terms of
code access.”

Richard Stallman, founder of the Free Software
Foundation, countered saying...
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Landscape of |IE Tasks (3/4):

E.g. word patterns:

Closed set
U.S. states

He was born in Alabama...

The big Wyoming sky...

Complex pattern

U.S. postal addresses

University of Arkansas
P.O. Box 140
Hope, AR 71802

Complexity

Reqgular set

U.S. phone numbers

Phone: (413) 545-1323

The CALD main office can be
reached at 412-268-1299

Ambiguous patterns,
needing context and

many sources of evidence

Person names

...was among the six houses sold by
Hope Feldman that year.

Headquarters:
1128 Main Street, 4th Floor
Cincinnati, Ohio 45210

Pawel Opalinski, Software
Engineer at WhizBang Labs.
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Landscape of |IE Tasks (4/4):
Single Field/Record

Jack Welch will retire as CEO of General Electric tomorrow. The top role
at the Connecticut company will be filled by Jeffrey Immelt.

Single entity Binary relationship N-ary record
Person: Jack Welch Relation: Person-Title Relation: Succession
Person: Jack Welch Company: General Electric
Title: CEO Title: CEO
Person: Jeffrey Immelt Out: Jack Welsh
In: Jeffrey Immelt

Relation: Company-Location
Company: General Electric
Location: Connecticut

Location: Connecticut

“Named entity” extraction



Recognizers

e Simple procedures to find pieces of information based on
its appearance

= e-mail addresses (easy)

= telephone numbers (tricky)

= street addresses (difficult)
® Examples:

= Simple Web Crawlers can (and do) collect huge databases of
e-mail addresses

= Can also be used to automatically generate training examples
for wrapper induction (Kushmerick, 2000)

12 © J. Furnkranz



Wrappers

® Wrapper: (in an Information Extraction context)

= A procedure that extracts certain pieces of information from
(semi-)structured text (HTML)

® Examples:
= Comparison Shoppers (Junglee, Shopbot/Jango, mySimon)
= Meta-Search engines (citeseer, metacrawler)
= News Agents (google news)
¢ Building Wrappers by hand:
= time-consuming and error-prone (=> expensive)

= \Web-sites change frequently
® mean-time to failure of wrappers: 1 month (Weld, 1998)
e monthly failure rates of wrappers: 8% (Norvig, 1998)

13 © J. Furnkranz



Wrapper Induction: Motivation

N\ N .
* Wrappers @fr C
= parse the Tque”%

contents of wrepper A

several sites lresults
® Mediators
= Integrate the 0
extracted information User
® Example:

User:
Show me reviews of Fellini movies showing in Dublin

Slide adapted from Nick Kushmerick 14 © J. Furnkranz



Wrapper Induction

e Automatic generation of wrappers from a few
(annotated) sample pages

® Assumptions:

= regularity in presentation of information

= often machine-generated answers to queries
® same header
® same tail

® inbetween a table/list of items that constitute the answer to
the query

® | earn the delimiters between items of interest

15 © J. Furnkranz



LR Wrappers (Kushmerick 2000)

e Very simple but nevertheless powerful wrapper class
® Assume that

= only one "database" per page

= information can be separated into tuples (records)

= each tuple contains exactly k items (attributes)
e Wrapper consists of k delimiter pairs <I, , r;>,

= || and ri are patterns that have to matched in the text

r epeat
foreach <l,,ri> e {<ly,r;>, ..., <l r>}

find next occurrence of |,
find next occurrence of r;

extract text inbetween and store as the i-th value for this tuple
unt i I no more occurrences of |,

16 © J. Furnkranz



Induction of LR Wrappers

Web Pages Web Pages Labeled for Extraction
EE [8] Metzcape: Some Country Codes [e] <HTML><HEAD>Some Country Codes</HEAD>
L8] [ MNetscape: Some Country Codes (8] 4 <HTML><HEAD>Some Country Codes</HEAD>
: 19 <HTML><HEAD>Some Country Codes</HEAD>
N J R ] J { <HTML><HEAD>Some Country Codes</HEAD>
i [8] [8] Metecape: Some Country Codes [e]ET ] 9 9 <B>C0ng0</B> <|>242</1><BR>
% H 9 9 <B>Egypt</B> <|>20</|><BR>
. Some Country Codes E‘?? 1 9 <B>Bédlize</B> <I1>501</I><BR>
Congo 242 | 1 <B>Spain</B> <I>34</I><BR>
= © © Belize 5017 :
== | Spain 34

Extracted Wrapper

[¥B>, </B>, <|>, </I>[]
7, r,, L, r,Q

Slide adapted from Nick Kushmerick 17 © J. Firnkranz



Induction of LR Wrappers

® Heads: text before first tuple for each page
® Talls: text after last tuple for each page
® Separators: text between subsequent attributes

e Candidate delimiters:

= | eft: suffixes of the shortest of all separators to the left
(including heads for i = 1)

= Right: prefixes of the shortest of all separators to the right
(including tails for | = k)

® Among the candidate delimiters, any one that satisfies a
set of constraints can be selected

® Constraints must ensure that the wrapper does not try to extract
irrelevant parts of text (false positives)

18 © J. Furnkranz



Constraints for Delimiters

e the left delimiter I,

= must be a proper suffix of the text before each instance of the
target

® a proper suffix of a string means that
m it is a suffix of the string
m and it does not occur in any other place of the string
e Example:
m cde is a proper suffix of deabcde, de is a suffix but not proper

= |; must not be part of any pages tail
e otherwise extraction of a new tuple will be started at the end

e the right delimiterr,

= must be a prefix of the text after each instance of the target
= must not be part of any value for attribute |
® otherwise extraction will terminate prematurely

19 © J. Furnkranz



A Problem with LR-Wrappers

® Distracting text in Head or Tall

<HTML><TITLE>Some Country Codes</TITLE>
<BODY z<B>Some Country Codes</B><P>

I fires <B>Congo</B> <BR>
<B>Egypt</B> <BR>
<B>Belize</B> <BR>
<B>Spain</B> <BR>

<HR><B>End</B></BODY></HTML>

®* an LR-Wrapper cannot learn an extractor for this case
= every candidate delimiter for |, occurs in the head

= every candidate delimiter for [; occurs in the tall

Slide adapted from Nick Kushmerick 20 © J. Firnkranz



HLRT-Wrappers

e Head-Tail-Left-Right Wrappers:
= |earn a separate delimiter for identifying head and tail

o & e

Ignore page’s head and tail

<HTML><TITLE>Some Country Codes<¢( LE>} et
<BODY><B>Some Country Codes</B><P>

<B>Congo</B> <I>242</I><BR>

<B>Egypt</B> <[>20</|><BR> hod
<B>Belize</B> <I>501</I><BR> ody
<B>Spain</B> <|>34</I><BR>
<HR><B>End</B></BODY></HTML> } tail

|
\start of tall

Slide adapted from Nick Kushmerick 21 © J. Firnkranz



More Expressive Wrapper Classes

* HLRT:

= |earn 2 additional delimiters to separate the head and the tail
= ignores occurrence of |; and r; before h and after t

= allows to process multiple "databases"” in one document

® OCLR and HOCLRT:
= for each tuple: learn an opening and closing delimiter

® N-LR and N-HLRT:
= allows multi-valued attributes

= allows optional attributes

e RESTRICTION: if a value is specified, all previous values (of
this tuple) must also be specified.

22 © J. Furnkranz



Evaluation

Study on 30 randomly selected Web-sites from ww. sear ch. com

(at that time a catalogue of hubs for various topics)

= | R Wrapper was able to wrap 53%

= | R+ HLRT wrapped 60%

= Addition of OC wrapping did not bring improvements
= Addition of N-HLRT improved to 70%

LR Wrappers are not limited to HTML-documents

= any string can be extracted for delimiters, not just HTML tags

All wrapper classes are PAC learnable
Constraints become hard to handle

23
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SoftMealy (Hsu & Dung, 1998)

® Problems with LR-Wrappers:

no permutations of attributes allowed
delimiters may not be sufficient to identify texts

e SoftMealy provides a general solution to problems with

missing attributes
attributes with multiple values
variable order of attributes

o Approach

® |earn a finite-state transducer (FST) that encodes all possible
sequences of attributes

each state represents a fact to be extracted
dummy states are used to skip parts of text
use separators ("invisible" borders) instead of delimiters

learn to recognize separators by defining their left and right
context with contextual rules (state transitions)

24 © J. Furnkranz



U (URL
Labelled Web Page <LIokA HRER=“tman b
A (Academic title)
Mani Chandy</A>, <I>ﬂ)r0fessor of Computer Scienc%</l> and
M (Admin title)
<I>Executive Officer for Computer Science%/l>
U (URL)
<LI#§<A HREF=“daVid.html”>t\
M (Admin title)
David E. Breen</A>, <I%:Assistant Director of Computer Graphics \

‘j Laboratory\%/ >

Sample FST

m  Contextual rule looks like:

TRANSFER FROM state N TO state -N IF
left context = capitalized string
right context = HTML tag “</A>"

Slide adapted from Chun-Nan Hsu



Wrapper Induction by
Inductive Rule Learning

® Training Examples:
= treat each slot independently (single slot extraction)

= generate training example that represent the context of
the slot (tokens before, after, and in the slot)

® Features are extracted from the context of a slot:
= foken type: word, number, punctuation, htmi-tag, ...
= formatting: capitalized, italics, bold, font, ...
= Jocation: after/before line break, paragraph, ...
s html structure: h1, a, href, table, td, center, ...
= relative position: previous token, next token

® | earn Rules:

= evaluate rules by counting correct matches as positive,
wrong matches as negative (e.g., Laplace heuristic)
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Example Systems

e RAPIER (Califf & Mooney, 1997):
= based in a logic framework (ILP)
= integrates some NLP (part-of-speech tags)

= pottom-up learning with /gg: select two examples and
compute the minimal generalization that covers both

SRV (Freitag, 1998):

= uses a large variety of features both for structured and
unstructured text

= top-down rule learning (Ripper-like)

® Expressive, general rule learning systems (e.g., ILP) could be used as
well, but would lack domain-specific optimizations
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WHISK (Soderland, 1999)

multi-slot extraction
rules represented as perl-like regular expressions
can handle (semi-)structured and unstructured text

top-down rule learning with seed instance (AQ-like)

= choose a random training example

= start with the most general rule

= refine the rule using heuristics as in RIPPER-like algorithms
(e.g., Laplace accuracy)

= put only with conditions that appear in the training example

use of user-specified semantic classes
= ¢.g. BEDROOM = {brs|br|bds|bdrm|bd|bedroom|bedrooms|bed}

integrated with interactive training based on a simple form of
active learning
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Example - WHISK

Training example:

<B>Capitol HII -</B> 1 bedroomtwnhne. fplc DW
WD. Undergrnd pkg incl. $675. 3 BR, 2™ flr of
turn of ctry HOVE. incl. gar, grt N HII loc

$995. (206) 999-9999 <br >

Label: Starting Rule:

® Rental: x (R ) x () Kk (x)
= area: Capitol Hill
= bedrooms: 1

= price: 675 Final Ru_le:
e Rental: (after seeing several examples):
= area: Capitol Hill START<B> ( * ) ' -' * ( DIGT)

= bedrooms: 3

. orice 995 BEDROOM * ' $' ( NUMBER ) *
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Example - WHISK

Training example:

<BjCapitol H |l |-</B>|1|bedroomtwnhrme. fplc D)W

rgrnd pkg inch. $675143 BR, 2™ flr of
rn onFtry H | ncl . r\grt N HII loc

(206) 999 9999 < r>

START<B> ( * ) ' -' * ( DIGT )BEDROOM * '$' ( NUVBER ) *

\

BREDROOM = {brs|br|bds|bdrm|bd|bedroom|bedrooms |bed}

30 © J. Furnkranz



Example - WHISK

Training example:

<BjCapitol HII|-</B> 1 bedroomtwnhne. fplc DW
D Undergrnd pkg incl. $675. |3|BR, 2™ flr of

turn of ctry HOVE. incl. gar, t4N. HIIl |oc

§995] (206) 999-9999 <br> /

\

START<B> ( * ) ' -' * ( DIG T )BED '$'" ( NUMBER ) *

BREDROOM = {brs|br|bds|bdrm|bd|bedroom|bedrooms |bed}
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Information Integration

¢ Data Integration (Data Warehousing):

= Join different databases into a single view

= Problem: Information may be encoded in different ways
® |nformation Integration:

= Join information originating from different wrappers

= Problem: extracted information is still free text
e Example:

= Data source 1: Wrapper for Movie database

= Data source 2: Wrapper Local movie show times

= Task: Generate a page that integrates reviews into the
local show times

= Problem: Key relation (movie titles) will not match exactly
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WHIRL (Cohen 1998)

extension of DATALOG (or SQL) database queries that

allows to deal with free text

= models the information extracted by a wrapper as a
relational table

adresses the problem that

= wrappers may not be able to extract the exact text
® e.g., irrelevant information (directors, ratings, actors, etc.)
might be extracted with title

= text may be formulated differently on different Web-Sites
® e.g., order and/or abbreviations of first, middle and last names

Approach:

= uses vector space model to represents textual fields

= uses similarity literals to specify approximate matches
http://www.cs.cmu.edu/~wcohen/whirl/

33
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DATALOG vs. WHIRL

e Hard Queries: e Soft Queries:

= jtems in a join must match = tems in a join need only be
exactly "similar"

® |tems match or do not ® Use cosine similarity to

match compute the degree of
match [0,1]

e Return all matches ® Return the best matches

satisfying the query according to similarity

s Use efficient A*-like search
to find the r best matches
according to similarity
score (r-materialization)
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WHIRL - Example

¢ Given two wrapped relations:
= revi ewm( Movi e, Revi ew)
= show | ne( G nema, Movi e, Ti ne)

® Sample Queries:

= Hard Query (DATALOG): M1 is similar to M2
showtime(C,MT) &review(MR) i
= Soft Query:

showtime(C ML, T) &reviem( M,R) & ML ~ M2

= |f the titles of the reviews could not be wrapped:
showtinmne(CMT) &revie(l R & M~ R

= Free text queries:
showtime(C M, T) &review( M,R) & ML ~ M2 &
R~"excell ent conmedy with Bruce WIl|is"
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WHIRL - Scoring

Possible answers ® to queries Q are scored, i.e., a

function SCORE(Q,®) is computed

For a regular literal: SCORE(B,0)=s

If BO is a ground fact, O otherwise
(usually s=1, "degree of belief in the proposition")

For a similarity literal X~Y:

SCORE(X ~Y ,0)=sim(X®,Y )

Conjunctive Query Q=B & ... & B_

SCORE(Q, ©) H SCORE (B)

A definite clause Head :- B1, B2, ... Bn.

SCORE (Head )=

36
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Using WHIRL as Text Classifier

represent labelled training documents in relation
trai n( Docunent, Cl ass)

The following clause returns labels C ordered by

similarity score of D to D1
classify(D, C :- train(D1,C, D ~ Di.

= NOTE: multiple ground instantiations of the head (i.e,
multiple bindings to the head) are combined using the
definite clause similarity score!

very similar to nearest neighbor classification
= minor differences in combining evidence (similarity score)

experimentally very competitive to conventional
approaches
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