Clustering

e Given:
= g set of documents
= no labels (— unsupervised learning)

e Find:
= a grouping of the examples into meaningful clusters

= so that we have a high
e intra-class similarity:
m similarity between objects in same cluster
e Iinter-class dissimilarity:
m dissimilarity between objects in different clusters
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Some Applications of Clustering

e Query disambiguation

= Eqg: Query“Star” retrieves documents about astronomy,
plants, animals, movies efc.

— Solution:
o Clustering document responses to queries
e e.g., http://www.vivisimo.com/

e Manual construction of topic hierarchies and
taxonomies

— Solution:
e Preliminary clustering of large samples of web documents.

e Speeding up similarity search
— Solution:

e Restrict the search for documents similar to a query to most
representative cluster(s).
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http://www.vivisimo.com/

For better navigation of search results

e For grouping search results thematically
= clusty.com / Vivisimo
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Application: Build up a Web Catalogue

www.yahoo.com/Science

agriculture biology physucs space
dair \
Y crops botany cell courses craft
agronomy : magnetism HCI missions
forestry evolution relativity
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Browsing Documents: Scatter/Gather

(Cutting, Karger, and Pedersen)

Blew Youk Times Mews Sewvice, Angust L9990

Sceatter

Education Domestic Iraq A= Spouls Germany Legal

Interhati onal Stoves

Soertter

Dreployment Folitics Germany Pakistan Africa Mackels Ol Hostages

Seither
¥

Smaller Interbational Stovies

Soertter

Turnidad W. Africa 5. Afiica Securly Intechational  Lebabon Falkistan  Japan
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k-means Clustering

e Based on EM (Expectation Maximization) algorithm

o Efficiently find £ clusters:

1. Randomly select & points as cluster centers
2. E-Step: Assign each example to the nearest cluster center

3. M-Step: Compute new cluster centers as the average of all
points assigned to the cluster

4. Goto 2. unless no improvement
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: Example

k-rmeans
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e find the best 2 clusters
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Seed: (9 0) (8 1)
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Termination Conditions and
Convergence

e Several possibilities for termination conditions, e.g.,
= repeat for a fixed number of iterations.
= repeat until document partition unchanged
= repeat until centroid positions unchanged

e Convergence

= Why should the K-means algorithm ever reach a fixed point?
e Fixed Point: A state in which clusters don’t change.

= K-means is a special case of a general procedure known as
the Expectation Maximization (EM) algorithm.

e EM is known to converge, but number of iterations could be
large.

e However, K-means typically converges quickly
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Convergence of K-Means

Define goodness measure of cluster k£ as sum of squared
distances from cluster centroid c,:

= G, Z d.—c,)’ (sumover alld, in cluster k)
and goodness measure for clustering as the sum

" G=) G,

E-Step (reassignment) monotonically decreases G since
each vector is assigned to the closest centroid

= |.e., the distance to the cluster center cannot increase
M-Step (recomputation) monotonically decreases each G,

1 2
because x=—Z,. d,=c, minimizes the function f(x)=2_ (d,—x)
| ;

G|
= Proof:

x)zzi—2(di—x)20 & Zixzzi d, & |Gk|x=Zi d,
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Time Complexity

Computing distance between two docs:

= O(m) where m is the dimensionality of the vectors.

Reassigning clusters:

= (J(Kn) distance computations, in total O(Knm)

Computing centroids:

= Fach doc gets added once to some centroid: O(nm).

Repeat this for / iterations:
— Complexity is O(IKnm) in total

18
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Seed Choice

* Results can vary based on random Example ShOWi“§
seed selection. sensitivity to seeds
= Some seeds can result in poor A B c
convergence rate, or convergence e O
to sub-optimal clusterings. 5 o a
e Possible Strategies: o B .
= Select good seeds using a heuristic In the above, if you start
(e._g.,_ doc least similar to any with B and E as centroids
existing mean) you converge to {A,B,C}
. : : and {D,E.F}
o Tr.y. ogt mu.ltlple starting points If you start with D and F
= |nitialize with the results of another you converge to
method. {A,B,D,E} {C,F}
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How Many Clusters?

The number of desired clusters K is not always given
Finding the “right” K may be part of the problem

= Given documents, partition into an “appropriate” number of

subsets.

= E.g., for query results - ideal value of K not known up front -

though Ul may impose limits.

Simple Strategy:

= Compute a clustering for various values of K

= choose the best one

But how can we measure Cluster Quality?
= Why can't we use, e.g., the G-measure?

20
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Trading Off Cluster Quality and
Number of Clusters

e Measures that measure the quality of a clustering by
average distances to cluster centers are easy to optimize
= the optimum is always the largest K
® See convergence pI’OOf
e |imiting case: for K = N, we have G=0
e Strategy: Combine quality measures with a penalty for high
number of clusters

= For each cluster, we have a Cost C.
= Thus for a clustering with K clusters, the Total Cost is KC.
= Define the Value of a clustering to be =
Average Distances + Total Cost.
= Find the clustering of lowest value, over all choices of K.

e Total benefit increases with increasing K. But can stop when it
doesn’t increase by “much”. The Cost term enforces this.
21 © J. Furnkranz




K-means issues, variations, etc.

e Recomputing the centroid after every assignment (rather
than after all points are re-assigned) can improve speed of

convergence of K-means
e Assumes clusters are spherical in vector space
= Sensitive to coordinate changes, weighting etc.

e Disjoint and exhaustive
= Doesn’t have a notion of “outliers”
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Hierarchical Clustering

e Produces a tree hierarchy of clusters
= root: all examples
= Jeaves: single examples
= jnterior nodes: subsets of examples

e Two approaches

= Top-down:
e start with maximal cluster (all examples)

e successively split existing clusters
m e.g., recursive application of k-means Clustering

= Bottom-up:
e start with minimal clusters (single examples)
e successively merge existing clusters
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Hierarchical Agglomerative Clustering

* Assumes a similarity function for determining
= the similarity of two instances
(and more generally the similarity of two clusters)

* Bottom-up strategy:
= Starts with all instances in a separate cluster
= then repeatedly joins the two clusters that are most similar

= until there is only one cluster. |

* The history of merging forms a binary tree
or hierarchy or dendrogram

= a clustering can be obtained by cutting
the dendrogram at a given level

= all connected components form a cluster H l H l | [1
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Hierarchical Agglomerative Clustering

1. Start with one cluster for each example: C={C} ={{o} |o 0O}

2. compute distance d(C, C,) between all pairs of Cluster C;, C

3. Join clusters C, und C, with minimum distance into a
new cluster C; make C the parent node of C, and C, :

C,={C,C}

C=(C\{C,CHO{C}
4. Compute distances between C, and other clusteres in C
5. If |C|>1, goto 3.
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Similarity between Clusters

ways of computing a similarity/distance between clusters C; and C,

e Single-link:

= minimum distance between two elements of C; and C,

d(C,, C,) = min{ d(x,y) | x €C,,y €C,)

y
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Similarity between Clusters

ways of computing a similarity/distance between clusters C; and C,

e Complete-link:

= maximum distance between two elements of C; and C,
d(Cp, C) = max{ d(x, y) [ x€C,,y €C, }

y
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Similarity between Clusters

ways of computing a similarity/distance between clusters C; and C,

e Average-link:

= average distance between two elements of C; and C,
d(C,, C)=X{dxy) |xeC,,yeC,}/[Cil/|Cy

y
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Bottom-up clustering (average-link):

min distance = 2.00000
min distance = 2.82843
min distance = 2.82843
min distance = 2.82843
min distance = 2.82843
min distance = 2.82843
min distance = 2.82843
min distance = 3.16228
min distance = 3.16228
min distance = 4.73756
min distance = 4.73756
min distance = 4.74131
min distance = 4.74131
min distance = 5.57143
min distance = 9.90476

(8)(0)

(2)(1)

(4)(3)

(6)(5)

(10)(9)
(12)(11)
(14)(13)
(7)(34)

(15) (1112)
(347)(12)
(111215)(910)
(12347)(56)
(910111215) (1314)
(08)(5612347)

(1314910111215)(561234708)

0




Computational Complexity

In the first iteration, all HAC methods need to compute
similarity of all pairs of n individual instances

= complexity is O(n?).

In each of the subsequent n—2 merging iterations, it must
compute the distance between the most recently created
cluster and all other existing clusters.

= Since we can just store unchanged similarities

In order to maintain an overall O(n?) performance,
computing similarity to each other cluster must be done In

constant time.
= can be obtained if, e.g., each cluster is represented with a
single representative (a centroid)

Else O(n? log n) or O(n3) if done naively
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How to Label Clusters

* Show titles of typical documents
= Titles are easy to scan
= Authors create them for quick scanning!

= But you can only show a few titles which may not fully
represent cluster

* Show words/phrases prominent in cluster
= More likely to fully represent cluster

" naive approach:
* use the 5-10 most frequent words in each cluster

* Problem: clusters might have a uniform topic (e.g., computers)
= Use distinguishing words/phrases

* that appear more frequently in one class than in other classes

* e.g., significance tests
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Learning with Labelled and
Unlabelled Data

e Supervised learning
= Assign each example to a group (class)
= Given: Training set with class labels

e Unsupervised learning
= Find groups of examples that "belong together"
= No class information is given in the training set

e On the Web

= many tasks are supervised (require labeled examples)
= there are many unlabeled documents
= put labeling them is expensive
— semi-supervised learning
= augment unlabeled data with a (small) set of labeled data
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Semi-Supervised Learning

e Goal:
= Reduce the amount of labelled data needed by letting
classifiers make use of additional unlabelled data

e Some Techniques:

= Active Learning:

e Classifier chooses examples that should be labelled
= Self-Training:

e Classifier labels its own examples
= Co-Training:

e Two classifier label each others examples

e Multi-View Learning: Special case where the classifiers are
identical, but trained on different features sets

33 © J. Furnkranz



Uncertainty Sampling

(Lewis, Catlett/Gale, 1994)

e The Learner decides which examples the teacher should
label

1. Train aclassifier on the labeled training set

2. Let thelearner predict for each example in the unlabeled set

3. Choose the n examples where it has the least confidence in its
predictions (is most uncertain about the classification)

4. Let the teacher label these examples

5. Goto 1. unless no improvement

e Properties:

= Needs classifiers with (good) confidence estimates in its
predictions

= Reduces work-load for teacher
= may oversample certain classes
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Results Uncertainty Sampling

s data: AP newswire articles

= results show that uncertainty sampling (999 examples) is
more efficient than random selection (10,000 examples)

3 + 996 uncertainty 3 + 9997 random

Reject C4.5 (LR=5) prob. (L1I=1) C4.5 (LR=1) prob. (L =1)
Category All Average SD Average SD Average SD Average SD
tickertalk | 0.077 0.077  (0.000) 0.078 (0.001) 0.078  (0.003) 0.109 (0.044)
boxoffice | 0.081 0.047 (0.002) 0.048 (0.008) 0.061 (0.018) 0.077 (0.021)

bonds 0.115 0.064 (0.002) | 0.069 (0.006) 0.076 (0.020) | 0.145 (0.069)
nielsens | 0.167 0.094 (0.011) | 0.062 (0.005) 0.107 (0.006) | 0.100 (0.026)
burma 0.179 0.090 (0.008) | 0.098 (0.006) 0.115 (0.040) | 0.193 (0.046)

dukakis | 0.206 0.197 (0.014) | 0208 (0.020) 0.210 (0.039) | 0235 (0.036)
ireland 0.225 0.188 (0.005) | 0.189 (0.011) 0.220 (0.024) | 0228 (0.016)
quayle 0.256 0.161 (0.009) | 0222 (0.012) 0.143 (0.010) | 0263 (0.035)
budget 0.379 0.336  (0.010) | 0361 (0.009) 0.350 (0.014) | 0.392 (0.016)
hostages | 0.439 0.415 (0.024) | 0360 (0.016) 0.466 (0.039) | 0431 (0.018)

Table 2: Average and standard deviation of percentage error of various classifiers. Reject all 1s a classifier that deems all
instances non-members of the category. Two types of training set were used: an uncertainty sample of size 999 and a
random sample of size 10.000. Two types of classifier are built from each training set: a decision rule classifier trained
using C4.5, and the probabilistic classifier described in the text. When C4.5 was used on the uncertainty sample, a loss
ratio of 5 was used: for the random sample a loss ratio of 1 was used (original C4.5). Figures are averages over 20 runs for
classifiers built from random samples using the probabilistic method, and over 10 runs for the other three combinations.
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Self-Training

(Nigam, McCallum, Thrun &Mitchell, 2000)

e Using EM (Expectation Maximization) algorithm

1. Train an initial classifier on the labeled documents

2. E-Step: Assign class labels to the unlabeled documents
3. M-Step: Train a classifier from all examples

4. Goto 2. unless no significant changes

e Properties:
= Works well for classifiers that use all of the features
(e.g., Naive Bayes)
e Unlabelled data help to estimate the word probabilities
= Does not work well for classifiers that use only a few
features (e.g., decision trees, rule learners)

e Subsequent iterations only reinforce the use of the same
features as in the concept constructed in step 1.
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Accuracy

Self-Training: Performance

unlabelled documents the more unlabelled
improve performance documents the better
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Co-Training

(Blum & Mitchell, 1998)

e Using two classifier to label each other's data

1. Train Classifiers 1 and 2 on labelled data

2. Let Classifier i pick the n examples where it has the highest
confidence in its predictions

3. Add the examples labelled by classifier 2 to the training set of
classifier 1 and vice versa

4. Goto 2. aslong asthere is some improvement

e Properties:
= Works well if the two classifiers
e provide (good) confidence estimates in their own predictions

e are diverse (tend to be correct on different regions of the
example space)

= Could be generalized to more than 2 classifiers
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Multi-View Learning

e To obtain diverse and independent classifiers for co-
training, use two different feature sets (two views)

= T = bag of words in document D
= T, = bag of anchor texts from HREF tags that target D

= alternatively, two random subsets of all available features
could be used

e Co-training with multiple views reduces the error of each
individual view (classifier)

e Further reduction can be obtained by combining the
predictions of the two classifiers

= e.g., pick a class ¢ by maximizing p(c|7p) p(c|Ta)
(assumes independence of Tpand Tp)

e Multi-View Learning is still a hot research topic

Mining the ' Web ) ..
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Results Multi-View Learning
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