TUD 2008 Poker Challenge

"Creating an SVM to play Strong Poker"
Blank, Soh, Scott

"Explaining Winning Poker - A Data Mining Approach"

Johansson, Sönströd, Niklasson

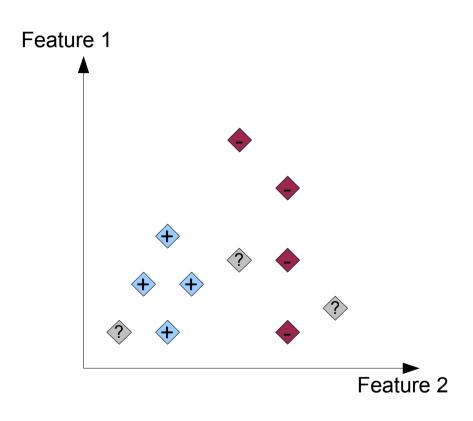
Benjamin Herbert bherbert@rbg.informatik.tu-darmstadt.de

Agenda

- Einführung
- Klassifikation
- Experimente 1
- Entscheidungsbäume
- Experimente 2
- Fazit/Ausblick
- Links

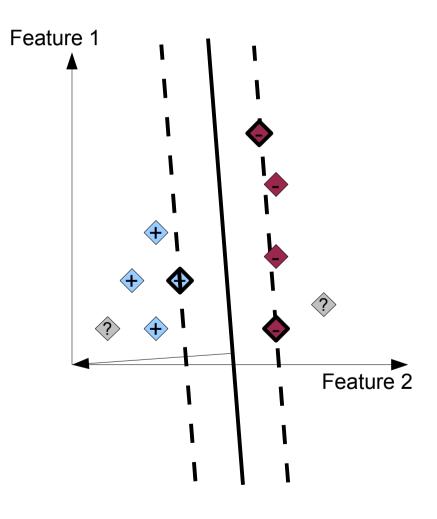
Klassifikation

- Menge von Beispielen
- Beispiele gegeben durch Merkmale und zugehörige Klasse
- Tupel der Form (Feature, Klasse)
- Trainieren eines Klassifikators
- Eingabe Feature
- Ausgabe Klasse*



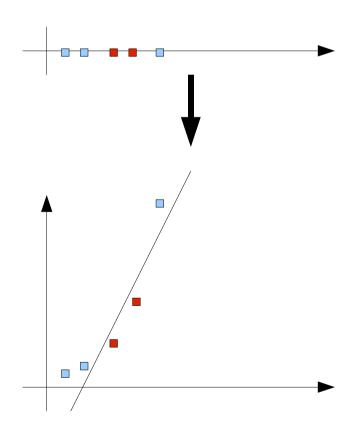
Support Vector Machines

- Beispiele als Punkte im Featureraum
- Hyperebene finden, die die Punkte der zwei Klassen trennt
- Dabei Abstand zu den jeweils nächsten Punkten p maximieren
- "Maximum Margin"
- Sicherheitsbereich



Support Vector Machines

- Quadratic Optimization Problem
- Nicht linear separierbare Probleme können durch Transformation in höherdimensionale Vektorräume linear separierbar werden
- Viele Implementierungen verfügbar
- Parameterwahl oft durch Cross-Validation



SVM^{light} in Aktion

- Ziel: Strategie eines Bots nachahmen
- Spieldaten
 - Neun Bots spielen gegeneinander in Poker Academy
 - ~5000 Hände
 - "Hari" eine Simbot Version gewinnt
 - Spieldaten des besten Bots werden verwendet
 - Parsen des Logs von Poker Academy
 - Berechnung der Features
 - Welche Aktion wurde gewählt
- Beispiele
 - (Feature, Klassen)

SVM^{light} in Aktion

Features

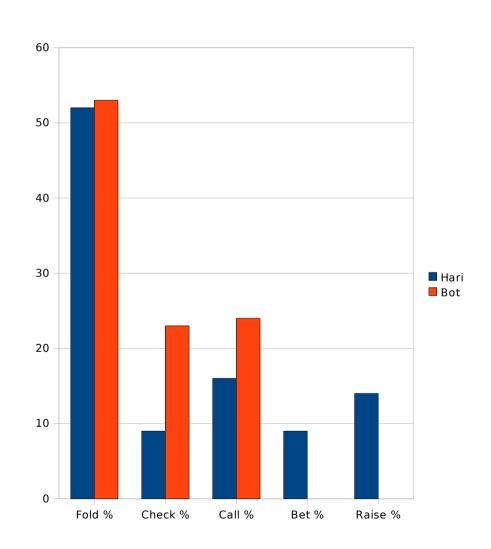
- Hand Strength
- Pot Odds
- Positive Potential
 - Straight Draw
 - Flush Draw
 - Potential
- Klassen
 - Fold
 - Check/Call
 - Bet/Raise

SVM^{light} in Aktion

- Erlernen von drei binären Klassifikatoren mit SVM^{light}
 - Fold Check/Call
 - Fold Bet/Raise
 - Check/Call Bet/Raise
- Parameterwahl f
 ür SVM^{light}
 - 2194 Entscheidungen im Training Set
 - 366 Entscheidungen im Test Set
 - Parameter mit bester Accuracy wird benutzt
- Modelle werden durch MultiClass Klassifikator benutzt
 - Aktion Mehrheitsentscheidung
 - Bei Unentschieden wird sicherste Klassifikation gewählt

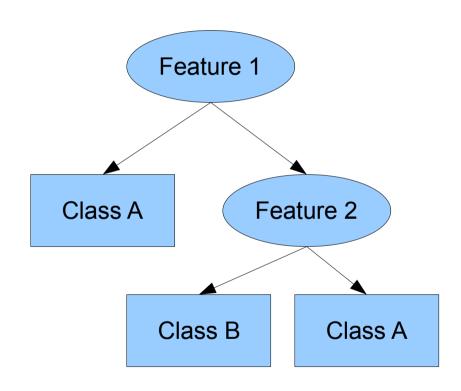
SVM^{light} in Aktion - Ergebnis

- Test gegen Poker Academy Bots
- "Hari" spielt auch mit
- Aktuelle Spielsituation wird erfasst
- Mit gelernten Modellen berechnete Aktion wird durchgeführt
- 0,53 Small Bets pro Hand
 Verlust
- Hari gewinnt immerhin 0,103 Small Bets pro Hand



Entscheidungsbäume

- Entscheidungsknoten
- Klassifikationsergebnis als Blätter
- Verschiedene Heuristiken um Baum zu erlernen
 - "Beste" Features weiter oben
 - Information Gain
- Training mit Beispielen
- Klassifikation durch Traversieren



Explaining Winning Poker

- Studie auf Spieldaten
 - Ladbroke's Online Poker
 - 105 Spieler
 - Mindestens 500 Hände pro Spieler (Ø 1126 Hände)
- Anwendung von Data Mining Methoden um Erklärungen für erfolgreiches Spielen zu finden
 - Regellerner G-REX
 - Entscheidungsbaumlerner J48
 (Wekas Implementierung von C4.5)
- "Concept Description"

Datenextraktion

- Importieren der Daten aus Ladbrokes Poker mit PokerOffice
- Beobachtung von Spielen
 - März bis Mai 2006
 - Alle 6 Spieler Tische rund um die Uhr
 - Limit \$0.5 / \$1
 - Bester Spieler \$645 Dollar Gewinn
 - Schlechtester Spieler \$357 Verlust
 - Ø \$15,18 Verlust
- Speichern in MySQL Datenbank
- Berechnung von verschiedenen Features

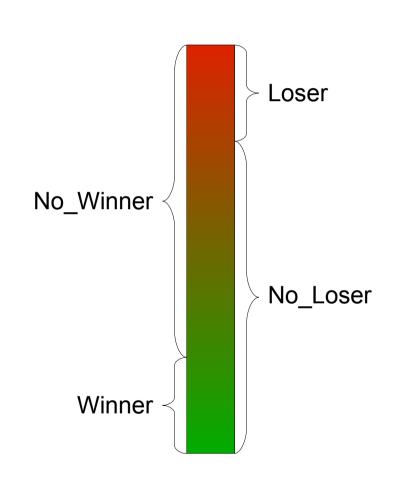
Attribute

- CPRE CallPreFlop%
- AFPRE –
 AggressionFactorPreFlop
- AFPOST –
 AggressionFactorPostFlop
- SF SawFlop%
- FT FlopTurn%

- TR Turn-River%
- SDN Showdown%
- PFR PreFlopRaise%
- FIR FirstInRaise%
- CR –
 CheckRaisePerHand
- CC- ColdCallPerHand

Experimente

- Klassen
 - Winner / No Winner
 - Loser / No_Loser
- Verschiedene "Sortierungen"
 - WIN: Gesamtgewinn
 - WIN_AVG: Gewinn pro Hand
 - LOSE: Gesamtverlust
 - LOSE_AVG: Verlust pro Hand
- "Top" 25 Spieler in Zielklasse
- Jeweils Modell erstellen mit/von allen Datensätzen



Ergebnisse

	WIN		WIN_AVG		LOSE		LOSE_AVG	
	Acc.	Size	Acc.	Size	Acc.	Size	Acc.	Size
J48	88.6	15	89.5	11	76.2	1	78.1	3
G-REX	91.4	11	90.5	19	90.5	21	93.3	13

- In LOSE ordnet J48 alle Spieler als No_Losers ein
- In LOSE_AVG gibt es nur eine einzige Entscheidung

CPRE <= 0.4609: No_Loser (65/4) CPRE > 0.4609: Loser (40/19)

- Accuracy: 1-(falsch klassifiziert/n)
- Size: Anzahl Knoten/Blätter

Ergebnisse

	WIN		WIN_AVG		LOSE		LOSE_AVG	
	Acc.	Size	Acc.	Size	Acc.	Size	Acc.	Size
J48	88.6	15	89.5	11	76.2	1	78.1	3
G-REX	91.4	11	90.5	19	90.5	21	93.3	13

- G-REX hat höhere Genauigkeit
- Dafür komplexere Regeln

G-REX für WIN

```
FT > 0.7265: No Winner (41/3)
FT <= 0.7265
   CR <= 0.0078 No Winner (26/3)
   CR > 0.0078
       TR > 0.7625
          SDN <= 0.2374: Winner (5/0)
          SDN > 0.2374: No Winner (2/0)
       TR <= 0.7625
          PFR <= 0.1010: No_Winner (18/2)
          PFR > 0.1010: Winner (13/1)
```

G-REX für WIN

```
FT > 0.7265: No Winner (41/3)
FT <= 0.7265
   CR <= 0.0078 No Winner (26/3)
   CR > 0.0078
       TR > 0.7625
          SDN <= 0.2374: Winner (5/0)
          SDN > 0.2374: No Winner (2/0)
       TR <= 0.7625
          PFR <= 0.1010: No_Winner (18/2)
          PFR > 0.1010: Winner (13/1)
```


G-REX für WIN

```
FT > 0.7265: No Winner (41/3)
FT <= 0.7265
   CR <= 0.0078 No Winner (26/3)
   CR > 0.0078
       TR > 0.7625
          SDN <= 0.2374: Winner (5/0)
          SDN > 0.2374: No Winner (2/0)
       TR <= 0.7625
          PFR <= 0.1010: No_Winner (18/2)
          PFR > 0.1010: Winner (13/1)
```

Wenn man weniger als 0.78% ein Check-Raise spielt gewinnt man auch nicht

Fazit

- Creating an SVM to Play Strong Poker
 - Spieler und seine Aktionen beobachten
 - Mit SVM^{light} mehrere Klassifikatoren erstellen und Aktion vorhersagen lassen
 - Ergebnis war ein schlecht spielender Bot
 - Hat 0.53 Small Bets pro Hand verloren
- Explaining Winning Poker A Data Mining Approach
 - J48 bildet kompakte Regeln (dank Pruning)
 - Relativ gute Konzeptbeschreibung durch G-REX
 - G-REX Regeln sind konform mit allgemeinem Pokerwissen
 - Kleine Datengrundlage

Ausblick

- Mehr Features betrachten
 - Position ist elementar
- Gegner grob einschätzen
- Vielleicht sinnvolle Regeln findbar aus größeren Datenmengen
- SVM^{light} und Weka nützlich für eigenen Bot
 - Siehe Handout

Literatur

- http://www.learning-with-kernels.org/
- http://paul.rutgers.edu/~dfradkin/papers/svm.pdf
- http://svmlight.joachims.org/
- http://www.cs.waikato.ac.nz/ml/weka/

