Künstliche Intelligenz

Übungsblatt #6 Lernen Version 1.0

Prof. Dr. J. Fürnkranz, Dr. G. Grieser

Aufgabe 6.1

Es sei das folgende Neuronale Netz gegeben:

- das Neuron 0 ist ein Biasneuron, das immer den Wert +1 liefert.
- die Neuronen 1,2,3,4 sind die Eingabeneuronen, das Neuron 8 ist das Ausgabeneuron
- das Neuron 8 ist durch die Aktivierungsfunktion g₈(in₈) = 1/(1+e^{-in₈} beschrieben.
 die Neuronen 5, 6 und 7 sind durch die Aktivierungsfunktion g_i(in_i) = 0, 1·in_i beschrieben

Die Gewichte sind durch die folgende Matrix $[w_{i,j}]_{i,j}$ gegeben:

					$j \rightarrow$				
i	[0	0	0	0	0	1	-0,5	1,2	3
	0	0	0	0	0	2	0,5	0,3	-0,8
	0	0	0	0	0	-1,2	1,5	3	7
	0	0	0	0	0	3	0,4	-3	-4
ι	0	0	0	0	0	-2	4	0,1	2
↓	0	0	0	0	0	0	0	0	4
	0	0	0	0	0	0	0	0	-2
	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0

- a) In Russel/Norvig ist das Bias-Neuron so definiert, daß es immer den Wert −1 liefert. Diskutieren Sie den Unterschied in der Leistungsfähigkeit/Repräsentationsfähigkeit von Netzen mit Biasneuron +1 bzw. -1.
- b) Visualisieren Sie die Netzwerkstruktur einschl. der Gewichte.
- c) Was ist die Ausgabe des Netzwerkes für die Eingabe (0, 1, 2, 3)?

- d) Sei nun die Zielklassifikation für die Instanz (0, 1, 2, 3) der Wert 0. Passen Sie die Gewichte aller Neuronen mittels des Backpropagation-Algorithmus an, Als Lernrate benutzen Sie $\alpha = 0, 1$.
- e) Berechnen Sie den Ausgabewert des neuen Netzes und vergleichen Sie ihn mit der ursprünglichen Berechnung.

Aufgabe 6.2

Ein Agent bewegt sich in einer einfachen Welt, die wie folgt angeordnet ist:

a	b	c
d	e	f
g	h	i

Der Agent kann sich jeweils ein Feld nach unten, oben, links oder rechts bewegen, falls dort ein Feld ist. Jeder Schritt kostet 0,1 Punkt. Wenn der Agent im Feld f landet, erhält er einen Reward von 1 Punkt und kann sich von dort nicht mehr wegbewegen, auf allen anderen Feldern erhält er einen Reward von 0 Punkten.

Als Discountfaktor setzen wir $\gamma = 0, 9$.

- a) Formulieren Sie die Reward-Funktion.
- b) Berechnen Sie die Bewertungsfunktion $V^{\pi}(s)$ für die Strategie π :
 - wenn dies möglich ist, gehe nach oben; ansonsten:
 - wenn dies möglich ist, gehe nach rechts; ansonsten:
 - wenn dies möglich ist, gehe nach unten; ansonsten:
 - gehe nach links
- c) Berechnen Sie die optimale Bewertungsfunktion $V^*(s)$.
- d) Bestimmen Sie die Q-Funktion.
- e) Geben Sie eine optimale Policy an.
- f) Versuchen Sie, mittels Q-Learning die Q-Funktion zu lernen, indem Sie den Agenten auf ein zufällig gewähltes Anfangsfeld stellen und die jeweils beste Aktion nach der momentanen Q-Funktion ausführen (bei Gleichheit zufällige Auswahl), bis der Agent am Ziel angekommen ist und das ganze bis zur Konvergenz wiederholen. Als Lernrate können Sie 1 annehmen.