
 Planning © J. Fürnkranz1

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

 Introduction
 Planning vs. Problem-Solving
 Representation in Planning Systems

 Situation Calculus
 The Frame Problem

 STRIPS representation language
 Blocks World

 Planning with State-Space Search
 Progression Algorithms
 Regression Algorithms

 Partial-Order Planning
 Plan-Space Planning

Planning

Slides based on Slides
by Lise Getoor

and Tom Lenaerts

Material from
Russell & Norvig,

 chapters 10.3. and 11

 Planning © J. Fürnkranz2

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Planning problem
 Planning is the task of coming up with a sequence of actions

that will achieve a goal starting from an initial state
 many search-based problem-solving agents are special cases

 Given:
 a set of action descriptions (defining the possible primitive

actions by the agent),
 an initial state description, and
 a goal state description or predicate,

 Find a plan, which is
 a sequence of action instances, such that executing them in

the initial state will change the world to a state satisfying the
goal-state description.

 Goals are usually specified as a conjunction of subgoals to
be achieved

 Planning © J. Fürnkranz3

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Application Scenario
 Classical planning environment

 fully observable, deterministic, finite, static, discrete
 Practical Applications

 design and manufacturing
 military operations
 games
 space exploration

 Planning © J. Fürnkranz4

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Planning vs. Problem Solving
 Planning and problem solving methods can often solve the

same sorts of problems
 Planning is more powerful because of the representations

and methods used
 States, goals, and actions are decomposed into sets of

sentences (usually in first-order logic)
 Planning can analyze the effects of actions

 The successor function is a black box: it must be “applied” to
a state to know which actions are possible in that state and
what are the effects of each one

 An explicit representation of the possible actions and their
effects would help the problem solver

 Subgoals can often be planned independently, reducing the
complexity of the planning problem

 Search may be through plan space rather than state space

 Planning © J. Fürnkranz5

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Key Problems
 Which actions are relevant?

 Example: Goal is have(milk)
 the agent may have billions of possible actions

 e.g., one buy-action for each possible product in a store
 an intelligent planner will know that buy(X) will cause own(X),

and only consider the action buy(milk)
 What is a good heuristic functions?

 Problem:
 states are domain-specific data structures, and new heuristics

must be supplied for each new problem
 Example: Goal is buying n different items

 Number of plans grows exponentially with n
→ Problem-independent heuristics are needed

 e.g., number of subgoals that have already been reached
 How to decompose a problem?

 Planning © J. Fürnkranz6

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Decomposable Problems
 Goals are often given as a conjunction of subgoals

 e.g., have(milk) & have(bread)
 each subgoal can be solved independently

Other problems can be decomposed into subproblems:
 Example: overnight delivery of a set of packages

 Planning a complete route for all packages at once is very
expensive (O(n!) different routes)

→ Better decompose the problem:
 First distribute the packages according to nearest airport to

destination
 Then plan to distribute the package from each airport

separately
→ O(k∙(n/k)!) different routes (much less than O(n!))

 Planning © J. Fürnkranz7

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Nearly Decomposable Problems
 Completely decomposable Problems are rare

 typically there are interactions between subgoals

→ Nearly decomposable Problems
 planning for subgoals is possible
 but additional work may be required to bring the partial results

together
 Example:

 Independent plans for have(milk)and have(bread) may
have the result that two different super-markets are visited

 Planning © J. Fürnkranz8

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Representation in Planning

Problem solving Logic representation

Planning

 In Problem Solving, actions, states, and goals are black
boxes

 each problem has its own representation
 agent does not understand the representations of actions,

states, and goals
→ cannot exploit relations between them

 Planning works with explicit representations of actions,
states, and goals

 typically in some form of logical calculus

 Planning © J. Fürnkranz9

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Major Approaches to Planning
 Situation calculus
 State space planning
 Partial order planning
 Planning graphs
 Planning with Propositional Logic
 Hierarchical decomposition (HTN planning)
 Reactive planning

 Planning © J. Fürnkranz10

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Planning in First-Order Logic
Principal Idea:
 Formulate planning problem in First-Order Logic (FOL)

 states (and goals) are conjunctions of literals
 actions are logical rules

 Use theorem prover to find a proof for the goal
 the actions used in this proof are the plan
 e.g., use PROLOG

Key Problem:
 How to represent change?

a) add and delete sentences from the KB to reflect changes
b) all facts are indexed by a situation variable → situation

calculus

 Planning © J. Fürnkranz11

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

PROLOG-like Logical Notation
 Constant: represents some objects

 starts with a number or a lower-case letter
 e.g., pam, bob, liz, 1, pi, true, etc.

 functions are like constants, but complex expressions
 Variable: denotes some unknown object/constant

 starts with an upper-case letter or an underscore
 e.g. X, Person, Nummer, _42, etc.

 within a conjunction of literals, same variables refer to same objects
 but may be different objects in different conjunctions / rules

 Predicate: denotes a relation between two objects
 starts with a lower-case letter

 e.g., parent, male, female
 Literal: a predicate symbol with some arguments

 e.g., parent(pam,bob), at(pam,X), airport(X)
 Rule: an implication, typically written Head :- Cond1, Cond2,

 e.g., grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

 Planning © J. Fürnkranz12

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Situation Calculus
 A situation is a snapshot of the world at some instant in time
 Every true or false statement is made with respect to a

particular situation
 Add situation variables to every predicate.
 at(agent,1,1) becomes at(agent,1,1,s0):
at(agent,1,1) is true in situation (i.e., state) s0.

 Add a new function, result(a,s), that maps a situation s
into a new situation as a result of performing action a.

 For example, result(forward,s) is a function that returns
the successor state (situation) to s after performing action a

 Note that this is just notation!
 Logical functions are not implemented or evaluated!
 They are used in pattern matching

 Planning © J. Fürnkranz13

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Situation Calculus
 Actions can be respresented as logical rules that describe

which states can be valid
 Example:

 The action agent-walks-to-location-y could be represented by
the PROLOG rule
at(A,Y,result(walk(Y),S)) :- at(A,X,S).
agent A is at location Y in state result(walk(Y),S)
if it was at location X in state S (and performed action walk(Y))

 Action sequences are also useful: results(l,s) is the
result of executing the list of actions l starting in s:

 corresponding rules could be included as short-hand notation
into inference engine

results([],S) = S
results([A|P],S) = results(P,result(A,S))

 Planning © J. Fürnkranz14

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Situation Calculus Planning
 Initial state

 a logical sentence that describes current situation S0

at(home,s0), not(have(milk,s0)), not(have(bread,s0)),
not(have(drill,s0))

 Goal state
 a logical sentence that describes the goal state
at(home,G), have(milk,G), have(bread,G), have(drill,G)

 Actions (Operators)
 logical rules that describe the effects of actions
 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).
 have(milk,result(A,S)) :- have(milk,S),
 A != drop(milk).
 etc.

 Planning © J. Fürnkranz15

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Situation Calculus Planning
 Solution

 A sequence of actions P (a plan) that, when applied to the
initial state, yields a situation satisfying the goal query
at(home,G), have(milk,G), have(bread,G), have(drill,G)
with
G = results(P,s0)

 P could, for example, be something like

 Projection
 determine the effect of a sequence of actions

 Planning
 find the sequence of action with the desired effect

P = [go(grocery), buy(milk), buy(bread),
 go(hardwareStore), buy(drill), go(home)]

 Planning © J. Fürnkranz16

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

The Frame Problem
 the action rules only specify what aspects change when an

action is performed
 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).

 we also need rules that describe what does not change!
 at(grocery,result(A,S)) :- at(grocery,S),
 A = buy(milk).
If we are in a grocery store and buy milk, we remain in the grocery store.

 such frame axioms are necessary for all possible
combination of state predicates and actions

 representational frame problem:
 we do not want to represent each such possible combination

 inferential frame problem:
 most of the work will be spent in deriving that nothing changes

 Planning © J. Fürnkranz17

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

SC Planning: More Problems
 Qualification problem:

 difficulty in specifying all the conditions that must hold in order
for an action to work

 e.g., go action might fail for various reasons
(locked doors, hit by a truck while crossing the street, ...)

 Ramification problem:
 difficulty in specifying all of the effects that will hold after an

action is taken
 e.g., if the agent carries something, a go action will move that

thing too...
 Complexity:

 problem solving (search) is exponential in the worst case
 Optimality:

 resolution theorem proving can only find a proof (plan), not
necessarily a good plan

 Planning © J. Fürnkranz18

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Representation Languages
 for Planning

 Some of the afore-mentioned problems can be solved by
better knowledge representation
 some of them will necessarily remain

(e.g., qualification and ramification problems)
 Alternative approach

 we restrict the language
 use a special-purpose algorithm (a planner) rather than

general theorem prover
 Criteria for a good representation language

 Expressive enough to describe a wide variety of problems
 Restrictive enough to allow efficient algorithm
 Planning algorithm should be able to take advantage of the

logical structure of the problem.

 Planning © J. Fürnkranz19

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

The STRIPS Language
 STRIPS (STanford Research Institute Problem Solver)

 classical planning system (Fikes & Nilsson, 1971)
 representation of states and actions quite influential

 Planning © J. Fürnkranz20

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

STRIPS: Representation of States
 Decompose the world in logical conditions and represent a

state as a conjunction of positive literals.
 Propositional literals

 e.g., poor ∧ unknown
 First-Order literals

 e.g., at(plane1, melbourne) ∧ at(plane2, sydney)
 grounded (contain no variables)
 function-free (contain no function symbols)

 Closed world assumption
 what is not known to be true, is assumed to be false

 Planning © J. Fürnkranz21

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

STRIPS: Representation of Goals
 like any other state, a goal is a conjunction of positive ground

literals
 e.g. rich ∧ famous

 may be partially instantiated:
 e.g., at(P,paris) ∧ plane(P)

(some plane should be in Tahiti)

 A goal is satisfied if the state contains all literals in goal
 e.g. rich ∧ famous ∧ miserable satisfies goal

 In the case of partially instantiated first-order predicates, the
state must contain some instantiation of the literals

 e.g., at(spirit_of_st_louis,paris) ∧
 plane(spirit_of_st_louis)

 satisfies the goal with the substitution
θ = {X/spirit_of_st_louis}

 Planning © J. Fürnkranz22

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

STRIPS: Representation of Actions
Preconditions: determine the applicability of an action

 conjunction of function-free literals
 all variables that occur here, must also occur in the effects
 the action is applicable if the preconditions match the current

state (similar to goals)

Effects: describe the state change after executing an action
 conjunction of function-free

literals
 typically divided into:

 ADD-list:
 facts that become true

after executing the action
 DELETE-list

 facts that become false
after executing the action

Action(fly(P, From, To),
PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning © J. Fürnkranz23

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Semantics of the STRIPS Language
 What actions are applicable in a state?

 An action is applicable in any state that satisfies the
precondition.

 For First-Order action schema applicability involves a
substitution θ for the variables in the PRECOND.

 Example:
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)

satisfies
at(P,From), plane(P), airport(From), airport(To)

with
θ ={P/p1,From/jfk,To/sfo}

 Thus the action fly(P, From, To) is applicable.

 Planning © J. Fürnkranz24

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Semantics of the STRIPS Language
 What effects do the actions have?

 The result of executing action a in state s is the state t
 t is same as s except

 Any literal P in the ADD-list is added
 Any literal P in the DELETE-list is removed

 Example
ADD: at(P,To)
DELETE: at(P,From)

with substitution θ ={P/p1,From/jfk,To/sfo} results in state
at(p1,sfo), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)

 STRIPS assumption
 every literal NOT in the effect remains unchanged
 avoids representational frame problem

 Planning © J. Fürnkranz25

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Example: Blocks World
 Very famous AI toy domain
 The blocks world is a micro-world

that consists of
 a table
 a set of blocks
 a robot hand

 Operation
 The robot hand can grasp a single block
 The robot hand can move over the table (with or without a

block)
 The robot hand can release a block it is holding
 Blocks can be stacked on top of each other if the top is clear
 Any number of blocks can be on the table
 The hand can only hold one block

A

B

C

TABLE

 Planning © J. Fürnkranz26

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

State Representation

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty

A B

C

TABLE

 Planning © J. Fürnkranz27

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Goal Representation

A

B

C

on(a,table), on(b,a), on(c,b)

 Planning © J. Fürnkranz28

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Action Application
Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,
holding(c), clear(a)

A B

C

TABLE

unstack(c,a)

 Planning © J. Fürnkranz29

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Action Application
Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table),
clear(b),
holding(c), clear(a)

TABLE
A B

C

unstack(c,a)

 Planning © J. Fürnkranz30

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

More Blocks-World Actions

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
 on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
 on(X,table)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
 on(X,table)
DELETE: holding(X)
)

 Planning © J. Fürnkranz31

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Example: Air Cargo Transport
 Initial state:

at(c1,sfo), at(c2,jfk), at(p1,sfo),
at(p2,sfo), cargo(c1), cargo(c2),
plane(p1), plane(p2), airport(jfk),
airport(sfo)

 Goal state:
at(c1,jfk), at(c2,sfo)

Action(
unload(C,P,A),
PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: at(C,A)
DELETE: in(C,P)
)Action(load(C,P,A),

PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: in(C,P)
DELETE: at(C,A)
)

Action(fly(P,From,To),
PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning © J. Fürnkranz32

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Expressiveness and Extensions
 The STRIPS language is a very simple subset of FOL

 Important limitation: function-free literals
 All such problems can be represented in propositional logic

 use one proposition for each possible combination of predicate
symbol and arguments

 Function symbols lead to infinitely many states and actions
 infinitely many arguments can be constructed with function

symbols, hence propositionaliztion is not possible

 Various extensions have been proposed:
 Action Description language (ADL)

 recent extension to STRIPS language
 allows for types, explicit negation (no CWA), relations and

conditions in goals, equality predicate built in, ...
 Planning domain definition language (PDDL)

 standardization of various AI planning formalism

 Planning © J. Fürnkranz33

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Comparison ADL-STRIPS

 Planning © J. Fürnkranz34

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Comparison ADL-STRIPS

 Planning © J. Fürnkranz35

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Planning with State-Space Search
 Progression planners

 forward state-space search
 Regression planners

 backward state-space search

Progression

Regression

 Planning © J. Fürnkranz36

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Progression Algorithm
 Formulation as state-space search problem:

 Initial state = initial state of the planning problem
 Literals not appearing are false

 Actions = those whose preconditions are satisfied
 Add positive effects, delete negative

 Goal test = does the state satisfy the goal
 Step cost = each action costs 1

 could be changed if necessary

 Search Algorithms
 function-free → finite → any complete graph search algorithm

will yield a complete planner

 Efficiency is a problem
 irrelevant action problem
 good heuristic required for efficient search

 Planning © J. Fürnkranz37

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Regression Algorithm
 In order to be able to use a backward search, we must be

able to apply the STRIPS operators backwards
 What are the states from which applying a given action

leads to the goal?
 Goal state:

at(c1,a), at(c2,a),..., at(c20,a)
 Relevant action for first conjunct: unload(c1,P,a)

 Works only if pre-conditions are satisfied
→ Previous state:

in(c1,P), at(P,a), at(c2,a), ..., at(c20,a)
 Subgoal at(c1,a) should not be present in this state.

 Actions must not undo subgoals that are already achieved
(consistent actions)

 Example:
 load(c2,p) will never appear in a plan for the above task

 Planning © J. Fürnkranz38

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Regression Algorithm
 General process for predecessor construction

 Given a goal description G
 Let A be an action that is relevant and consistent
 The predecessor is as follows:

 Positive effects of A that appear in G are deleted.
 Each precondition literal of A is added , unless it already appears

 Any standard search algorithm can perform the search
 The initial state is the goal state of the original problem
 The goal state is the initial state of the original problem

 Termination when predecessor satisfied by initial state
 In FO case, satisfaction might require a substitution

 Main advantage of Regression Planning
 only relevant actions are considered.
→ often much lower branching factor than forward search.

 Planning © J. Fürnkranz39

 TU Darmstadt, SS 2007 Einführung in die Künstliche Intelligenz

Heuristics for State-Space Search
 Neither progression or regression are very efficient without a

good heuristic
 How many actions are needed to achieve the goal?
 Exact solution is NP hard, find a good estimate

 Two approaches to find admissible heuristic:
 The optimal solution to a relaxed problem

 remove all preconditions from actions
 almost identical to the number of open subgoals

 remove only the delete-list and find a (minimal) set of actions that
collectively achieve the goals

 problem: finding a minimal set cover is NP-hard, and relaxing the
constraint looses admissibility of heuristic

 The subgoal independence assumption:
 The cost of solving a conjunction of subgoals is approximated by

the sum of the costs of solving the subproblems independently

