Theorie des Algorithmischen Lernens
Sommersemester 2007

Teill 2.1: Lernen formaler Sprachen:
Standarderkennungstypen

Version 1.0

Gliederung der LV

Teil 1: Motivation
1. Was ist Lernen
2. Das Szenario der Induktiven Inf erenz
3. Natulrlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen
1. Grundlegende Begriffe und Erkennungstypen
2. Die Rolle des Hypothesenraums
3. Lernen von Patternsprachen
4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen
1. Grundlegende Begriffe und Erkennungstypen
2. Reflexion

Teil 5: Informationsextraktion

1. Island Wrappers
2. Query Scenarios

2.1-1

© G. Grieser

7 Parameters of Inductive Inference

1. objects to be learned

formal languages

2. examples (syntax) strings / pairs of strings and classification
3. examples (semantics, i.e. connection to object to be learnt)

correct and complete in the limit (text / informant)
4. learning device computable devices
5. hypothesis space (syntax of hypotheses) natural numbers
6. semantics of hypotheses index in some enumeration
/. success criteria convergence in the limit

2.1-2

© G. Grieser

Terms

e IN=1{0,1,2,...} natural numbers
e (-,-}: IN x IN — IN Cantor’s pairing function
- (2,y) = ((z+y)* + 3z +y)/2
— 71: projection to first argument, i.e. w1 ({(z,y)) = «,

— o projection to second argument, i.e. mo({x,y)) =y
— canonically extended to arbitrary number of arguments

® O:concatenation of sequences

2.1-3 (© G. Grieser

Formal Languages

e alphabet >_: finite set
o ¥ 3T

e Janguage over >_: set of words over X
ie. L C X*
— empty, finite, infinite
— Chomsky hierarchy: regular, context-free, context-sensitive languages

— complement L
— sometimes identify language L with its characteristic function
x ie. L(r)=+iffx € Land L(z) = —iffx ¢ L
e a”means a...aq
\.,_/
n times
—a’ =¢
e |w]| length of w

o T7": 7is a prefix of 7’

2.1-4 (© G. Grieser

Indexable classes

Definition 2.1.1: (Angluin 1980)

A class of non-empty languages L is said to be an indexable class with uniformly
decidable membership (indexable class, for short) provided there are

e an effective enumeration (L), ;e of all and only the concepts in £ and

e a recursive function f

such that, for all 7 € IN and all x € X*, the following holds:

f (j, x) — { (1): gthgjrvffife{ ’ ZC: set of all indexable classes

Examples for indexable classes:

® context-sensitive languages, context-free languages, regular languages, and of
all pattern languages

® can be extended to arbitrary concept classes
— use arbitrary learning domain X instead of >.*; concepts are subsets of X .

— X = set of all n-bit Boolean vectors: monomials, k-CNF, £-DNF, and
k-decision lists are indexable classes of recursive concepts

2.1-5 (© G. Grieser

Pattern Languages

alphabet > and enumerable set X of variables, > N X = ()
a patternis astringm € (X U X)™

a (non-erasing) substitution o is a mapping from X — X7

e Canonically extend substitutions to patterns

L(7m) ={w | w € X7 and there exists a substitution o such that o(7) = w}

pattern language: language describable by a pattern

PAT: set of all pattern languages

PAT ¢ IC

2.1-6 (© G. Grieser

Text

Definition 2.1.2:
Let L be language and t = (x,,),e be an infinite sequence of elements from >*
such that

o {r,|nelN}=L.
Then, t is said to be a positive presentation or, synonymously, a text for L.

o Text(L): set of all texts for L.

e i, initial segment of length y of text ¢
— SegText(L): set of all finite initial segments of texts for L.

— SegText(L) = |J, . SegText(L).

o t?‘;: set of all words contained in ¢,

2.1-7 (© G. Grieser

Informant

Definition 2.1.3:
Let L be language and ¢ = ((x,,, by,))ne be any infinite sequence of elements from
> % {+, —} such that

e {x,|n€N, b, =+}=1L,and
e {x,|neNb,=—-}=1L.
Then, 1 is said to be a complete presentation or, synonymously, an informant for L.

e Info(L): set of all informants for L.

e 1, initial segment of length ¥ of informant :
— Seglinfo(L): set of all finite initial segments of informants for L.
— Seginfo(L) = |J, . Seginfo(L).

e content(%,): set of all words contained in i,

° z; and z; sets of all positive and all negative words contained in 7,, i.e.
Z;:{ij‘]§y7 b]:—l_}andzy_:{xj ’JSya bj:_}

2.1-8 (© G. Grieser

Special Types of Text/Informant

e assume lexicographic order of strings in 2.*: (wj)jE]N

e Jexicographically ordered text. all strings appear in lexicographic order exactly
once

— exist only for infinite languages
e canonical textt = (x,,)neN

— search the lexicographic smallest w € L
- setxyg = w
— forany 7 > 0:ifw; € L setx; = w;, otherwise set z; = x;_;

e for informant both terms lexicographically ordered informant and canonical
informant coincide

2.1-9 (© G. Grieser

Inductive Inference Machines

An inductive inference machine (abbr. IIM) for some indexable class L is

e a total computable mapping from SegText(L)/Seginfo(L) to IN U {7}.

the numbers output by an IIM M are interpreted with respect to a hypothesis space
H = (h;) e, i.e. when M outputs some j, hypothesizes h;

the output “?” means “don’t have enough information”

2.1-10 (© G. Grieser

Convergence

Definition 2.1.4:
Let h = (h,) e be an infinite sequence.

We say that h converges in the limit to x iff all but finitely many terms of it are equal
o x.

e This means, there exists an m such that for every n > m it holds h,, = .

e Notionlimh = x

2.1-11 © G. Grieser

Learning in the Limit

Definition 2.1.5:

Let £ € ZC, let L € L be alanguage, and let H = (h;) ;e be a hypothesis space.
An [IM M LimTxty—identifies L iff,

e foreveryt € Text(L)
— thereisa j € INwith h; = L
such that

e the sequence (M (t,)) e converges to j.

M LimTxty—identifies L iff M LimTxty—identifies each L' € L.

LimTxt denotes the collection of all classes L’ € ZC for which there are a hypothesis
space H' = (h)je and an IIM M that LimTxt;;—identifies L.

LimTxty (M): set of all languages that are LimTxt;—identified by M

2.1-12 (© G. Grieser

Learning in the Limit

Definition 2.1.6:

Let £ € ZC, let L € L be alanguage, and let H = (h;) ;e be a hypothesis space.
An [IM M Liminfy—identifies L iff,

e for every i € Info(L)
— thereisa j € INwith h; = L
such that

e the sequence (M (i,)),eN converges to j.

M Liminfy—identifies L iff M Liminf—identifies each L' € L.

Liminf denotes the collection of all classes L' € ZC for which there are a hypothesis
space H' = (h) je and an IIM M that Liminfy,—identifies L'.

Liminfy (M): set of all languages that are LimInfy—identified by M

2.1-13 (© G. Grieser

Learning of indexable class

When we have to learn an indexable class £ = (L ;) e, we can choose the
hypothesis space as follows:

1. use L = (L,),c as hypothesis space: exact identification

2. use another enumeration of £ = (L) e as hypothesis space:
class-preserving identification

3. use another indexable class £’ = (L) e as hypothesis space that contains
each L,: class-comprising identification

— currently we consider class-comprising learning

e the other variants will be discussed later

2.1-14 (© G. Grieser

Learning in the Limit

Theorem 2.1.1:
Liminf = IC

Proof.

|dentification by enumeration

Theorem 2.1.2:
LimTxt C Liminf
Proof.
Consider class Lgf:

® LOZ{CLn‘REN}
e Li.1=1{a,...,a" "} foralli € IN
Lo & LimTxt

2.1-15 (© G. Grieser

Learning in the Limit

Theorem 2.1.3:
PAT € LimTxt

Sketch of proof.
1. PAT is enumerable

2. consistency is decidable

3. for any example set, there are only finitely many consistent hypotheses (apart
from variable renamings)

4. overgeneralisation can be avoided

2.1-16 (© G. Grieser

Consistent Learning

Definition 2.1.7:

Let £ € ZC, let L € L be alanguage, and let H = (h;) ;e be a hypothesis space.
An IIM M ConsTxty, / Consinfy—identifies L iff,

e forevery s € Text(L) /s € Info(L)
e thereisa j € IN with h; = L

such that
e the sequence (M (s,)) e converges to j and

e every hypothesis is consistent, i.e.
— (text) for each x € s it holds = € My (s,)

— (informant) for each x & 3; it holds « & hM(Sy) and for each x &€ S, it holds
40 §é hM<3y)

ConsTxty (M), Consinfy (M), ConsTxt, ConsInf are defined analogously to
LimTxt...

2.1-17 (© G. Grieser

Consistent Learning

Observation:
e consistency is uniformly decidable in indexable classes

— every hypothesis can be made consistent

Corollary 2.1.4:

Consinf = LimInf
ConsTxt = LimTxt

Proof.
Informant: Identification by enumeration works consistently

Text: Let M be an IIM. For any t,,, pad the hypothesis M (t,) with ¢, i.e. add all

strings w € 1,7 to hpye,).-

Consistency is no restriction for learning indexable classes!

© G. Grieser

2.1-18

Finite Learning

Definition 2.1.8:
Let £ € ZC, let L € L be alanguage, and let H = (h;) ;e be a hypothesis space.
An IIM M FinTxty / Fininfy—identifies L iff,

e forevery s € Text(L) /s € Info(L)
o thereisaj € INwithh; = L

such that

e there is exactly one index m in the sequence (M (sy))y e with M (s,,,) € IN
(all other hypotheses are “?”)

and
= M(Sm) =)

2.1-19 (© G. Grieser

Finite Learning

Corollary 2.1.5:

FinTxt C LimTxt
Fininf C Liminf

Proof.

Consider the following alternative definition:

Definition 2.1.9:

An IIM M FinTxty / Finlnfy—identifies L iff,
e forevery s € Text(L) /s € Info(L)
e thereisa j € IN with h; = L

such that .
e the sequence (M (s,)) e converges to j and

o if M(sy) = M(syt1)then M(sy+1) = M(sy12)

both are equivalent —

2.1-20

© G. Grieser

Finite Learning

Theorem 2.1.6:
LimTxt \ Fininf = ()

Proof.
Consider the set L f;, of all finite languages. Clearly L, € LimTxt\ Fininf.

Corollary 2.1.7:

FinTxt C LimTxt
Fininf C Liminf

2.1-21 (© G. Grieser

Finite Learning: Characterization Info

Can we find a characterization for Fin-learnability?

Definition 2.1.10:
An indexable class £ = (L,) e of languages is said to be discrete iff

e for every j € IN there exists a finite set D; C >~

— such that for every j' € IN with L,; # L, it holds that
* thereis an x € D; with L;(x) # L;/(x).

L is said to be effectively discrete iff there is a computable function f : IN — o (X*)
such that f(7) = Dy, for every j € IN.

Theorem 2.1.8:
L € Fininfiff L is effectively discrete.

2.1-22 © G. Grieser

Finite Learning: Characterization Info

Proof. Suffiency:

Use £ = (L,) e as hypothesis space, i.e. set h; = L, forall j € IN.

M (iz):
fz =0o0r M(t,_1) ="“?, goto (*). Otherwise output M (7,_1).

(*) Forj =0,1,...,x, generate D; = f(j) and test whether D; C content(i,)
and h;(w) = i, (w), forallw € D;.
If such a 7 has been found, output the minimal one. Otherwise output “?”.

Verification. Let ¢ be an informant for L ;.
1. M always outputs a hypothesis
2. there is an x such that M (i,) € IN
e set v = max{j, 2}, where % is the smallest x with D; C content(i,,)

3. ha(i;) = L; holds by properties of f

2.1-23 © G. Grieser

Finite Learning: Characterization Info

Necessity:

Let M be an IIM finitely learning L. Define f as follows:

f(3):

Search for the least x € IN such that M (i,.) € IN, where i is the canonical informant
for L ;. Output content(i.,).

2.1-24 (© G. Grieser

Finite Learning: Characterization Text

Theorem 2.1.9:
L € FinTxtiff there are an indexing £ = (L) e and a recursively generable family
(1) ;e of finite sets such that

e forally € IN,7; C L;
e forall j,z € IN,if7T; C L,then L, = L,

recursively generable: there is a total-computable function f : IN — ©(3*) such
that f(j) = T}, forevery j € IN.

2.1-25 © G. Grieser

Finite Learning: Characterization Text

Proof. Suffiency:

M(t,):
fz =0o0r M(t,_1) =“?, goto (*). Otherwise output M (t,_1).

(*) Forj =0,1,...,x, generate T; and test whether T; C t and t} C h;.
If such a 7 has been found, output the minimal one. Otherwise output “?”.

Verification of correctness —
Necessity:

Let 7 € IN and let ¢ be the canonical text for L.

We let = be the smallest number such that M () € IN. We set T; = t.
Verification of correctness —

2.1-26 © G. Grieser

Conservative Learning

Definition 2.1.11;

Let £ € ZC, let L € L be alanguage, and let H = (h;) ;e be a hypothesis space.
An lIM M ConsvTxt;, /| Consvinfy—identifies L iff,

e forevery s € Text(L) /s € Info(L)
e thereisa j € IN with h; = L
such that
e the sequence (M (s,)) e converges to j and

e for any two consecutive hypotheses k = M (s,) and j = M (s,+1):
- if k € IN and k # 7, then Ay is inconsistent with 5,41

conservative learning must be done without overgeneralisation (a hypothesis 7 is
overgeneralizedif h; O L)

Gold 67: The problem with text is that, if you guess too large a language, the text will
never tell you that you are wrong.

2.1-27 © G. Grieser

Conservative Learning: Characterization Info

Corollary 2.1.10:
Consvinf = LimlInf.

Proof.

|dentification by enumeration works conservativley

2.1-28 © G. Grieser

Conservative Learning: Characterization Text

Theorem 2.1.11:
L € ConsvTxt iff there are a hypothesis space H = (h;);en and a recursively
generable family (1) ;e of finite sets such that

e H contains all languages from L
e forallj € IN,T; C h;
o forall j,z € IN,if I; C h,then h, Z h;

important concept: the sets 1' ; are called Telltales

2.1-29 © G. Grieser

Conservative Learning: Characterization Text

Example 1:

e set of all finite languages on > = {a, b, c}:
— telltale for L is L

o [, =%\ {a’}
- Ty = {1}

e LopLlo={a"|neN}; Ly ={a,...,a"}
— There is no telltale for L

2.1-30 © G. Grieser

Conservative Learning: Characterization Text

Proof. Suffiency:

M(t,):
fx =0or M(t,_1) =*“?", goto (B). Otherwise, goto (A).
(A) Letj = M(t,_1). Testwhether ornott;” C h;. Incaseitis, output j. Otherwise,

goto (B).
(B) Forj =0,1,...,z, generate T; and test whether or not 7; C t C h;.
If such a 7 has been found, output the minimal one. Otherwise output “?”.

Verification. Let t be a text for some L € L.
1. M always outputs a hypothesis

2. M convergesont
e let k£ be the minimal index of L in H
e there must be an & such that T, C ¢
e after point max{k, z}, M outputs a number

— whichis < k
e) only changes the hypothesis in case of inconsistencies

2.1-31 (© G. Grieser

Conservative Learning: Characterization Text

3. if M converges (say to j), then h; = L

Suppose the converse

case ‘L \ h; # 0
the string w with w € L \ h; will appear and M will change its hypothesis - a
contradiction

case “h; \ L # 0
e may assume L C hj (otherwise we are in the former case)
o forx >, T, Ctf
e since ¢ C L thisimplies 7; C L
e by property 3 of 1 this implies L ¢ h, - a contradiction

Remark:
In fact, M not only ConsvTxt-identifies L, but the potentially larger set H.

2.1-32 © G. Grieser

Conservative Learning: Characterization Text

Necessity:
Let M ConsvTxty-identify £L = (L) e.

~

We first use an auxiliary construction H = (fL)]G]N and (7T) jeN:
(T

Foreach k£, x € IN, set f%,@ = hy. Define (7}) ;e as follows:

e Determine k, x with j = (k, x).
Let ¢ be the canonical text for hy..

e Determine the least 7 < x such that t, = t,, where t’ is the canonical text for
L,.

If no such r exists, set Tj =N}

e Determine the least y < x such that M (t,) = k.
If 3y has been found, set T; = ¢, otherwise set T = ().

2.1-33 © G. Grieser

Conservative Learning: Characterization Text

H = (h;);en and (T}) e are now destilled from H = (k) ;e and (T}) ;e by
simply deleting all entries j with 7, = ().
Analysis

e (T),c is a recursively generable family of finite sets

e condition 1 holds: for each L € L, there is an index j with L = h;

— there is a k with hy, = L and M converges to k when feeding the canonical
text ¢ for L (say convergence happens at 7))

— there is a smallest index r with L = L,
— then, for v = max{y, 7}, Tip.) = t #) and fa<k,x> =L

e condition 2 holds by definition
® verification of condition 3 is more involved, we skip it here (can be found in [2])

ged

2.1-34 (© G. Grieser

Set-Driven Learning

Definition 2.1.12;

Let M be an IIM.
M works rearrangement-independent iff for every texts t,t’ and every y € IN,

ti = implies M(t,) = M(t,).

Definition 2.1.13:

Let M be an IIM.

M works set-driven iff for every texts t,t’ and every y,y’ € IN, t?‘j =3 ;F, implies
M(t,) = M(t,).

Corresponding identification type: sd-LimTxt

set-driven |[IMs only consider the content, where rearrangement-independent |IMs
also can take the step number into account

2.1-35 © G. Grieser

Set-Driven Learning

Theorem 2.1.12:
sd-LimTxt = ConsvTxt

Sketch of proof.
ConsvTxt C sd-LimTxt:

L € ConsvTxtimplies existence of H = (h;) ;e and recursively generable
telltale-sets (7;) e

M(t,):
Forj =0,1,...,card(t]), generate T; and test whether or not 7; C ¢ C h;.

If such a j has been found, output the minimal one. Otherwise output a hypothesis for
tt.

2.1-36 © G. Grieser

Set-Driven Learning

Analysis:
e \ works set-driven

e M correctly learns L:
case “L is finite”: Consider the hypothesis computed when L is completely
contained in t,,i.e. tT = L
— the hypothesis is computed by the “otherwise”-statement:
correct by definition
— a j has been found with 7; C t1 C h;:
1; € L C hjimplies L = h;
case “L is infinite”: argumentation “as usual”

Remark: with a slight modification, M can be made conservative: use U, <;1;, N h,;
instead of 1

ConsvTxt C sd-LimTxt:
skipped (see [2]) ged

2.1-37 © G. Grieser

Learning in the Limit: Characterization Text

Theorem 2.1.13:
L € LimTxtiff there is an indexing (L) ;e of £ and a recursively enumerable family
(1) ;e of finite sets such that

e forally € IN,7;, C L;
o forall j,2 € IN,if7; C L,then L, ¢ L,

recursively enumerable means there exists a recursive function
fiINXIN — o(X*) such that | J,, .y f(j,) = Tj, forevery j € IN.

2.1-38 © G. Grieser

Learning in the Limit: Characterization Text

Proof. Suffiency:
Notation: Tj"” result of running the generation of 1’; for « time steps

M(t,):

Search for the least j < z with T C th C L.
If 7 has been found, output it; otherwise output “?”.

Verification. Let t be a text for some L € L.
1. M always outputs a hypothesis

2. M convergesont

e let k& be the minimal index of L in £
e let [be the time after which 1, 17, ... I} are completely enumerated

e let & be the time so that all elements of 1, 17, ... 1}, (if they belong to L) are
containedin t,, i.e. (L M szo’_“,k Tj> Ct,

e after point & = max{k, [, z}, M outputs a number < k
— once a value 7 has been rejected by M , it will never be output

2.1-39 © G. Grieser

Learning in the Limit: Characterization Text

3. if M converges (say to j), then L; = L
Suppose the converse
case ‘L \ L; # 0
the string w with w € L \ L; will appear and M will change its hypothesis -
a contradiction

case “L; \ L # 0
e may assume L C L, (otherwise we are in the former case)
o forx >z, T; Ctr
e since t” C L thisimplies 7; C L
e by property 3 of 1 this implies L ¢ L - a contradiction

2.1-40 (© G. Grieser

Learning in the Limit: Characterization Text

Necessity:

Generator for 1 :

Let S, S1,... be the canonical text for L; and (0;);eN be an enumeration of
SegText(L;) (i.e. of all finite sequences of strings from L).

Stage 0:Set 7 = spand T; = 77

Stage n > (: Search for the least j such that M (1) # M (7 o ;).
If such a j has been found, set7 =T 00,05, andT; =77

(f(J,n) can be defined by letting the generator for I; run n steps and output the
current value of 1’;.)

2.1-41 © G. Grieser

Learning in the Limit: Characterization Text

Analysis
e obvious: algorithm enumerates only strings from L, i.e. I; C L; holds

e to show: 1} is finite
— assume the contrary, i.e. 1; contains infinitely many elements
every stage is left

_
— in the limit, the 7 form a text for L (lets call it)
* 1 contains only strings from L;
* all strings from L are contained in ¢, since sg, S1, . . . is the canonical text
for L]
— but: M changes its hypothesis infitely often!
— Basic ldea: hunting for a stabilizing sequence:

Definition 2.1.14:
A finite sequence T is a stabilizing sequence for L w.r.t. M iff

x* 7t C L
* V7' € SegText(L):if 7 C 7/, then M (1) = M (1").

2.1-42 (© G. Grieser

Learning in the Limit: Characterization Text

remains to show: for all j, 2 € IN,if7; C L,then L, ¢ L,
e assume the contrary, i.e. thereare 7,z € INwith1; € L,and L, C L,

® let 7 be the one computed in the last stage which terminated

e lett' be atext for L, starting with 7

/ / /
7l Ve V2 -

— by construction, M (t|) = M(1T|+1) = M(TT|+2) == M(7)

7]

e considert

— M converges on t and t’ to the same hypothesis, but both are texts for two
different languages

— M fails to identify at least one of L; and L, !

ged

2.1-43 (© G. Grieser

Stabilizing Sequences

the last proof also shows the following insight

in fact, it proves an even stronger insight:

Lemma 2.1.15:
For any IIM M LimTxtlearning L and any 7 € SegText(L), there is a stabilizing

sequence 7’ for L w.r.t. M extending 7 (i.e. 7 T 7).

2.1-44 (© G. Grieser

Conservative vs. Learning in the Limit

Theorem 2.1.16:
ConsvTxt C LimTxt

2.1-45 (© G. Grieser

Excursion: Blum Complexity Measures

: acceptable numbering (Gédelnumbering) of all computable 1ary functions on IN

e forall f € P there exists a j € IN such that (j,z) = f(x),forallx € IN
® ... (some additional constraints)

Notations:
e ©.(x) instead of p(j, x)
e ,:the function f with f(x) = p(J, x)
e ;(x)]: computation of ;(x) terminates
e ., (x)T: computation of ¢;(x) does not terminate

Definition 2.1.15:

A Blum complexity measure ¢ is a 2ary computable function IN X IN — IN with
the following properties:

o 0i(z) |iff () |

e for each j, x, k € IN itis decidable whether ¢,;(z) < k holds

2.1-46 (© G. Grieser

Excursion: Blum Complexity Measures

Example 2:

the following methods are Blum complexity measures:
e time in seconds of computation on some fixed machine
e time in clock cycles of computation on some fixed machine
e number of branches executed when running a program

2.1-47 (© G. Grieser

Conservative vs. Learning in the Limit

Proof.
define Lconsy as follows:

o forallk € IN, L, = {a*b* | = € IN}

o for all k with o5, (k) | and all j € N with j < ¢p(k), Ly; = {a¥b* | z < j}

: Specify an IIM that learns L consy in the limit.

2.1-48 (© G. Grieser

Conservative vs. Learning in the Limit

Lconsy € LimTxt

Define hypothesis space H = (h,) e and telltale sets as follows:

h(k,@ — <

T(k,a:) — <

(Lk,j itz = ¢r(k) + 7 for some j < ¢p(k)

\Lk . otherwise
(L L if o = ¢r(k) + j for some j < @i (k)
{akb, akbP* B+ it o (k) | and (2 < ¢p(k) or x> 26 (k)

\ {a*b} . otherwise

: argue why 17, .y is enumerable

verification, that I ;, .y is really a telltale set for L, ,y:
case “1. (k) 17 forall x, hy 2 = L and Ty, 2 = {a"b} ..

case ‘2. pi(k) |
o if Atk sy = L, Tigwy = {akb, a¥b?+F)+11 which is not contained in any
h(k,a:’) with h<k7x/> # Ly
o if hir oy = Ly, Tije 2y = L o, therefore Ty, ,y € L implies g, 2y © L

2.1-49 (© G. Grieser

Conservative vs. Learning in the Limit

L consv §é ConsvTxt

Assume the contrary, i.e. let M ConsvTxty-identify Lconsy. Let (1) ;e be a
recursive family of finite telltale sets.

Then, the following procedure decides the halting problem:

On input £ do:
Search for a 7 with the following property:

o {a"b" | r <m;}U{a"b™i*t} C h;, where m; = max{r | a*b" € T;}
If ¢.(k) < m; output 1, otherwise output 0.

Verification:
e L is contained in H (lets say Ly = h;)

e so, T; U {a"b™i*} C L, = h; holds (whatever T} is)

e hence, the procedure terminates, we next have to verify its correctness

2.1-50 © G. Grieser

Conservative vs. Learning in the Limit

The procedure outputs 1 iff @ (k) |:

case “procedure returns 1”: obviously correct

case ‘procedure returns 0”: Suppose that ¢ (k) |, lets say ¢ (k) = v.

e Let 7 and m; be the values found in the procedure.

e since the procedure returns 0, m,; < ¢ (k) holds

e consider the language Ly ., = {a"b* | = < m;}
— Lk,mj e L
— by construction, T; C Ly, ,, C hy, a contradiction

2.1-51

ged

© G. Grieser

The missing Relation

Fininf C ConsvTxt
Proof.
Let M be an IIM Fininfy-identifying L.
We define recursive telltale sets as follows.
For 7 € IN, letz be the canonical informant for i ;. We set 1, = z; where 1 is such
that M (7)) € IN.
(If T7 = () by this construction, we repair it and set Tj = {w} for some w & hj).
Verification:

e obviously T; C h,, forall 7 € IN

o forall j,z € IN,if T; C h,thenh, ¢ h;:

— assume the contrary, i.e. let T; C h, C h;

— consider the canonical informants for i ; and h, — are identical up to y
— M fails to finitely identify A,

: Provide a set L € ConsvTxt \ Fininf.

2.1-52 (© G. Grieser

Summary

Consvinf = Liminf = 1C

U

LimTxt
U

ConsvTxt = ri-LimTxt = sd-LimTxt

U

Fininf
U

FinTxt

2.1-53

© G. Grieser

Literature

[1] E Mark Gold: Language ldentification in the Limit. Information and Control 14,
pp. 447-474, 1967.

[2] Steffen Lange: Algorithmic Learning of Recursive Languages.
Mensch-und-Buch-Verlag 2000.

[8] Thomas Zeugmann & Steffen Lange: A Guided Tour Across the Boundaries of

Learning Recursive Languages. In: Jantke & Lange (eds.) Algorithmic Learning
for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961,
pp. 190-258, Springer-Verlag 1995.

2.1-54 (© G. Grieser

