

Automatensynthese

Automatensynthese

01011101010001010110111

Minimales Ziel: 100011

Wir wollen einen Becher mit Kaffee aus dem Automaten erhalten.

Maximales Ziel:

Wir wollen verstehen, wie der Automat funktioniert, um planmäßig (und beliebig oft) aus dem Automaten einen Becher mit Kaffee erhalten zu können.

01011101010001010110111010111000100011

Kann man die Funktionsweise des Automaten erlernen?

Automatensynthese

01011101010001010110111 010111000100011

Es gibt 3 Knöpfe: A, B und C.

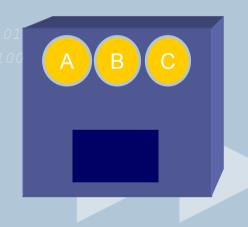
Wir sind 4 Ausgaben des Systems möglich:

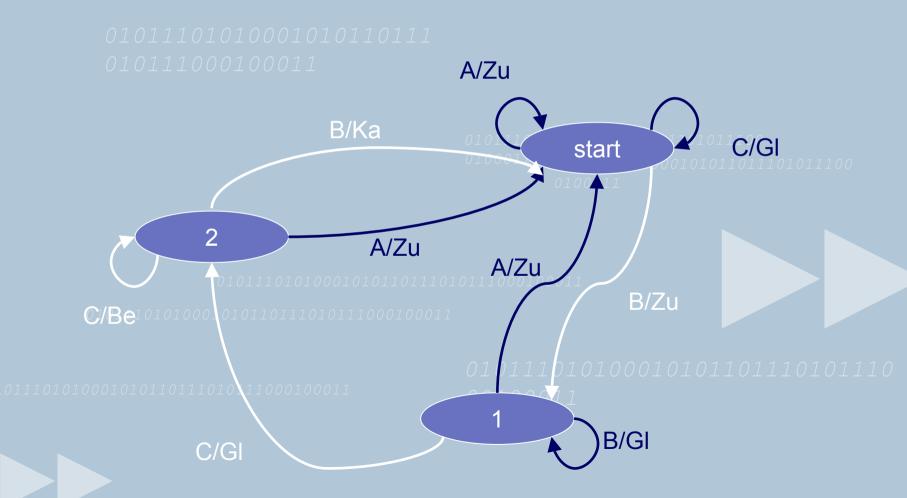
Ertönen einer Glocke Gl

Becher Be

Zucker 010111010100010101111 Zu111

Kaffee, 1010100010101101110101110001000 Ka





Automatensynthese

01011101010001010110111

Klasse zu lernender Objekte

endlich deterministische Automaten A (mit Ausgabe)

Informationen

über das Verhalten eines unbekannten Automaten A werden Interaktionsfolgen vorgelegt

Lernziel 10001010110111010111000100011

es soll ein Automat B gelernt werden, der sich genauso wie A verhält 101110

Automatensynthese

0101110101000101011111

Vorgehensweise: 0011

- Minimierung von DFA
 - •mittels Äquivalenzklassenbildung
- Leichte Änderung am Äquivalenzbegriff
- Minimierungsalgorithmus für DFA liefert einen Lernalgorithmus für

010111010100001010110111010111000100DFA aus deren Verhalten

01011101010001010110111010111000100011

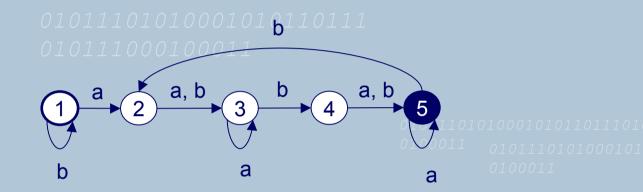
Automatensynthese

Zur Erinnerung: endl. det. Automaten (ohne Ausgabe)

$$A = [X, Z, \delta, \{z_0\}, F]$$

- Eingabealphabet X
- Zustandsmenge Z
- Zustandsüberführungsfunktion δ: Z x X → Z
- Anfangzustand $z_0 \in Z$
- Endzustände $F \subseteq Z$

Wie in Schöning / Gdl IV eingeführt



- $X = \{a, b\}$ $Z = \{1, 2, 3, 4, 5\}$
- $\sum_{i=1}^{n} z_{i} = 1$
- $F = \{5\}$

		а	b
, 0	1	2	1
	2	3	3
1	3	1300	1040
9	4	5	5
	5	5	2

Automatensynthese

End. det. Automaten (mit Ausgabe)

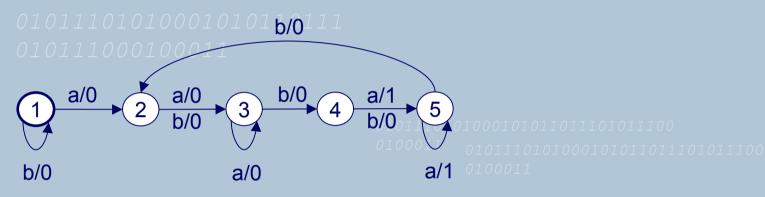
A = [X, Y, Z,
$$\delta$$
, λ , { z_0 }]

- Eingabe-/Ausgabealphabet X, Y
- Zustandsmenge Z
- Zustandsüberführungsfunktion δ: Z x X → Z
- Ausgabefunktion 12: 12 x X 19 Y 00011
- Anfangzustand $z_0 \in Z$

01011101010001010110111010111 00100011

Moore/Mealy-Automat

Automatensynthese



• X = {	[a, b]	
	[0, 1]	
•1010Z0±1{	1, 2,	3, 4, 5 }
• z ₀ =	1	

	а	b
1	2/0	1/0
2	3/0	3/0
3	3/0	4/0
4	5/1	5/0
5	5/1	2/0

... beschreibt dasselbe Akzeptierungsverhalten; letztes Bit der Ausgabe ist relevant

Automatensynthese

End. det. Automaten (mit Ausgabe)

A = [X, Y, Z,
$$\delta$$
, λ , { z_0 }]

- Eingabe-/Ausgabealphabet X, Y
- Zustandsmenge Z
- Zustandsüberführungsfunktion δ: Z x X → Z
- Ausgabefunktion λ: Z x X → Y
- Anfangzustand z₀ ∈ Z

010111010100010101101110101110 00100011

Verhalten von A: $V(A) = \{ (w, \lambda^*(z_0, w)) \mid w \in X^+ \}$

Automatensynthese

Fortsetzung von δ und λ

sei A = [X,Y,Z,
$$\delta$$
, λ ,{z₀}]
$$\lambda^*(z_0,x) = \lambda(z_0,x), \text{ falls } x \in X$$

$$\lambda^*(z_0,wx) = \lambda^*(z_0,w) \lambda(\delta^*(z_0,w),x), \text{ falls } w \in X^+, x \in X$$

$$\delta^*(z_0,x) = \delta(z_0,x), \text{ falls } x \in X$$

$$\delta^*(z_0,x) = \delta(z_0,x), \text{ falls } x \in X$$

$$\delta^*(z_0,x) = \delta(z_0,x), \text{ falls } x \in X$$

$$\delta^*(z_0,x) = \delta(z_0,x), \text{ falls } x \in X$$

Foliensatz freundlicherweise überlassen von Prof. S. Lange

Automatensynthese

 $\begin{array}{c} 010111010100001010110111\\ \textbf{Grundlagen}_{00100011} \end{array}$

- Es sei A ein endl. det. Automat. Dann gibt es einen (/* bis auf Isomorphie */) eindeutig bestimmten minimalen endl. det. Automaten A' mit V(A') = V(A).
- Es gibt einen effizienten Algorithmus zur Bestimmung von A'.

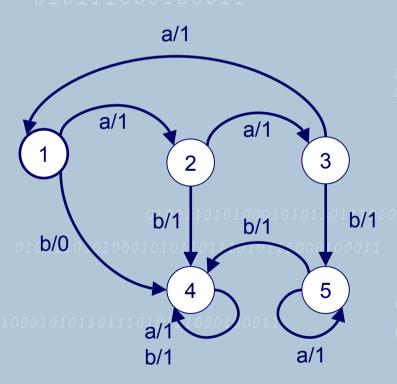
0101110101000101011011101011100010001

0101110101000101011011101011100010001

21000101011011101011100010001

Automatensynthese

Ist folgender endl. det. Automat A minimal?



minimal, falls gilt:

es gibt keinen äquivalenten Automaten endl. det. Automat 11100010B mit weniger Zuständen

Automatensynthese

es sei A = [X,Y,Z, δ , λ ,{z₀}]

- zwei Zustände z, z' heißen äquivalent, falls für alle $w \in X^+$ gilt: $\lambda^*(z,w) = \lambda^*(z',w)$
- zwei Zustände z, z' heißen k-äquivalent, falls für alle $w \in X^+$ mit |w| = k gilt: $\lambda^*(z,w) = \lambda^*(z',w)$

Beobachtung: 010001010111010111000100011

Zustände z und z' sind k+1-äquivalent gdw.

o1110101000101es gilt für alle x ∈X:

- die Zustände $\delta(z,x)$ und $\delta(z',x)$ sind k-äquivalent

Automatensynthese

01011101010001010110111

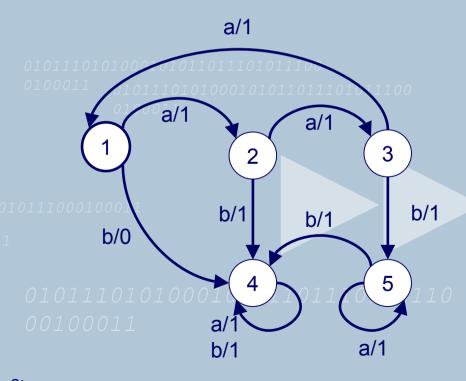
Minimierungsalgorithmus

1-äquivalent: { 1 } { 2, 3, 4, 5}

2-äquivalent: { 1 } { 2, 4, 5 } { 3 }

3-äquivalent: { 1 } { 2 } { 4, 5 } { 3 }

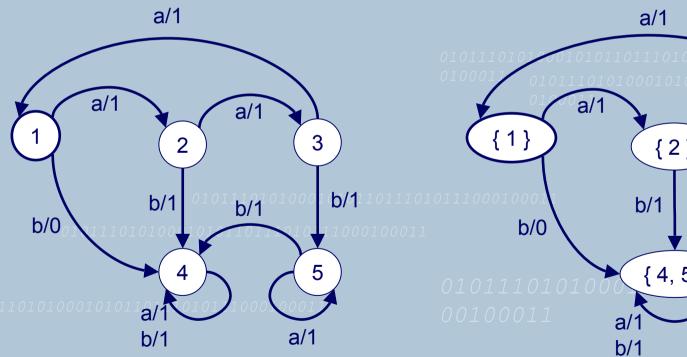
4-äquivalent: {1} { 2} { 4, 5 } { 3 }

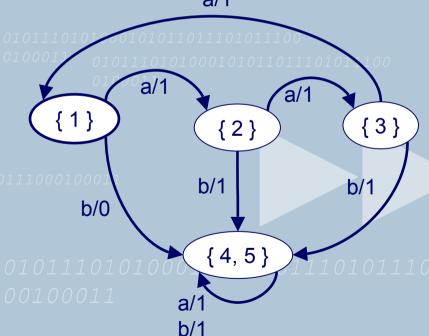


geht in Zeit O(mn²)

Automatensynthese

zugehöriger minimaler Automat





äquivalente Zustände: { 1 } { 2 } { 4, 5 } { 3 }

Automatensynthese

0101110101000101011111

Klasse zu lernender Objekte

endlich deterministische Automaten A (mit Ausgabe)

Informationen

über das Verhalten eines unbekannten Automaten A werden Interaktionsfolgen vorgelegt

Lernziel 10001010110111010111000100011

es soll ein Automat B gelernt werden, der sich genauso wie A verhält 101110

Automatensynthese

Interaktionsfolge für A

unendliche Folge {V_i} endlicher Mengen, so daß für alle i gilt:

- $V_i \subseteq V(A)$
- V_i ist anfangsstückvollständig (/* d.h. falls
 ¹⁰¹¹¹⁰¹⁰¹ u,λ*(u)) ∈ V_i, so (u',λ*(u')) ∈ V_i für alle
 Anfangsstücke u' von u */)₁₀₁₀₀₀₁₀₁₀₁₁₀₁₁₁₀₁
- $V_{i}^{0101000101} = V_{i+1}^{01011}$
 - $V_1 \cup V_2 \cup ... = V(A)$

Automatensynthese

Lernverfahren (Idee) 01010110111

wir betrachten V(A) als Automaten (/* V(A) ist äquivalent zu A */)

- V(A) ist unendlich
- V(A) ist zu jedem endlichen Zeitpunkt nur unvollständig beschrieben

Ansatz: Wir minimieren V(A).

Beobachtung:

Das Ergebnis ist ein Automat B mit den Eigenschaften:

- B ist äquivalent zu V(A) (und damit auch zu A).01101110101110
- B ist minimal.

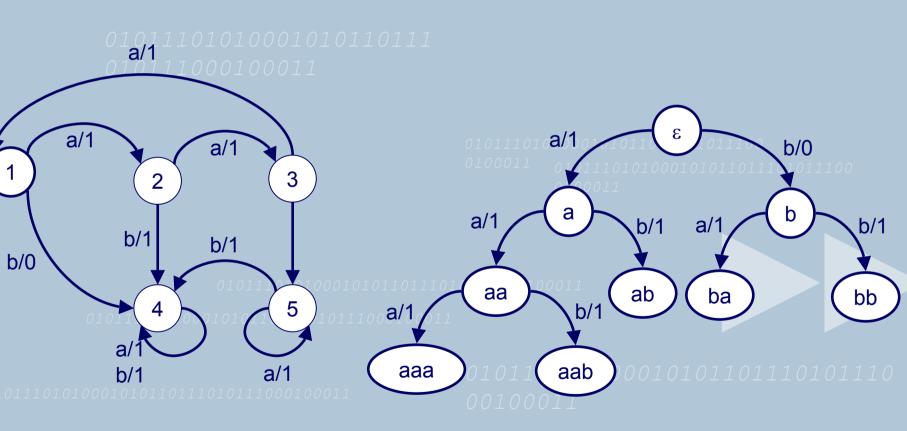
Automatensynthese

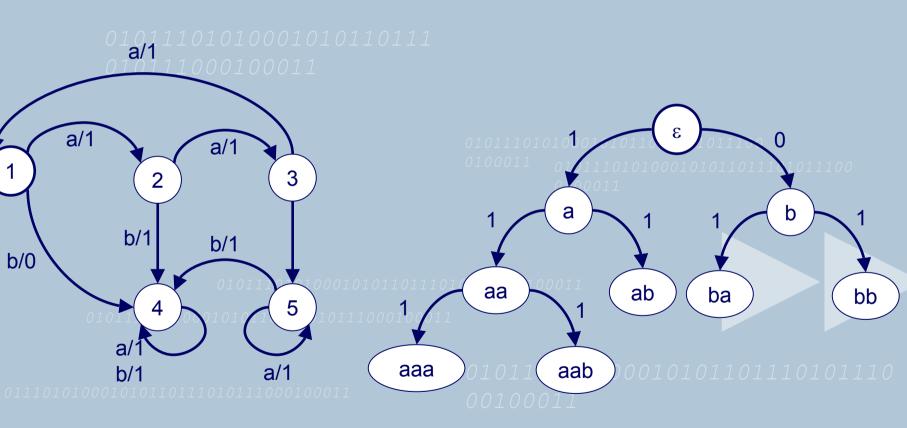
01011101010001010110111 010111000100011

Wir betrachten V(A) als Automaten. 01011011101011100

$$V(A) = [X, Y, X^*, \delta^{\infty}, \lambda^{\infty}, \{\epsilon\}]$$
 mit:

- $\delta^{\infty}(z,x) = zx$





Automatensynthese

Grobstruktur des Lernalgorithmus:

betrachten V(A) = [X, Y, X*, δ^{∞} , λ^{∞} , { ϵ }]

und $V_1 \subseteq V_2 \subseteq V_3 \subseteq V_4 \subseteq V_5 \subseteq ... V(A)$.

~ bezeichnet die Zustandsäquivalenz auf X*.

V_{i/∼} bezeichnet den nach ~ "faktorisierten" Automaten

Schritt 1:

Bilde $V_{1/\sim}$. Gib $H_1 = V_{1/\sim}$ aus.

Schritt n + 1:

Teste, ob H_n konsistent ist, d.h. $V_{n+1} \subseteq V(H_n)$.

Falls ja, gib $H_{n+1} = H_n$ aus.

Sonst bestimme $V_{n+1/\sim}$ und gib $H_{n+1} = V_{n+1/\sim}$ aus.

Automatensynthese

01011101010001010110111

Bestimmung von $V_{i/\sim}$:

Man betrachtet V_i als (partiellen) Automaten und versucht, V_i zu minimieren, d.h. $V_{i/\sim}$ zu konstruieren.

... aber aufgrund fehlender Information ist noch zu klären, wie man die Relation ~ bzw. eine Approximation davon berechnet ...

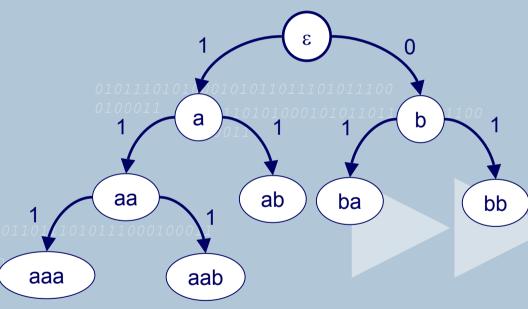
Automatensynthese

01011101010001010110111 1-äquivalent:

{ε} (a, b, aa)

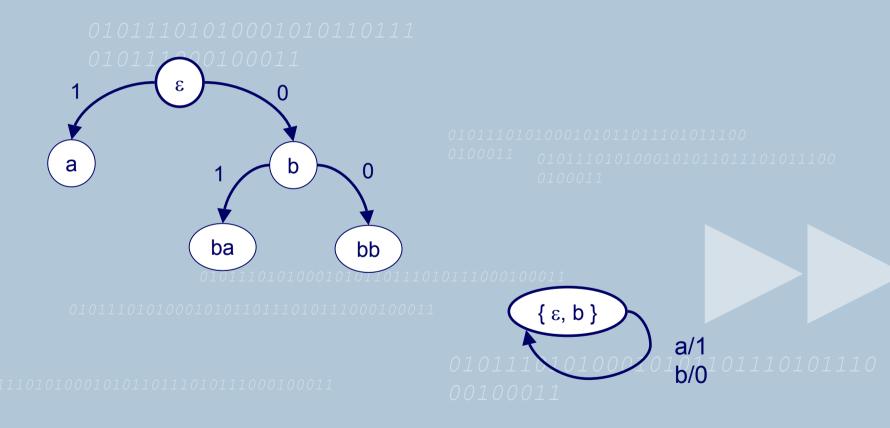
2-äquivalent:

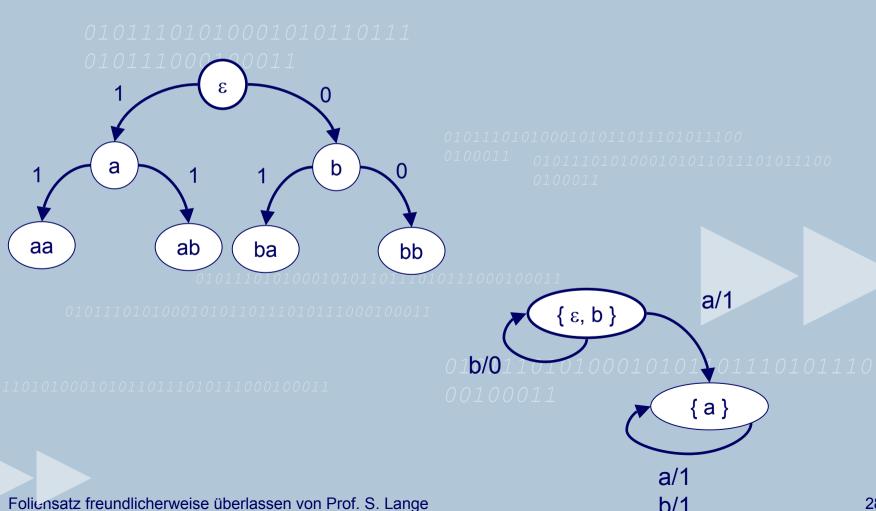
 $\{\epsilon\}\ \{a,???\}$

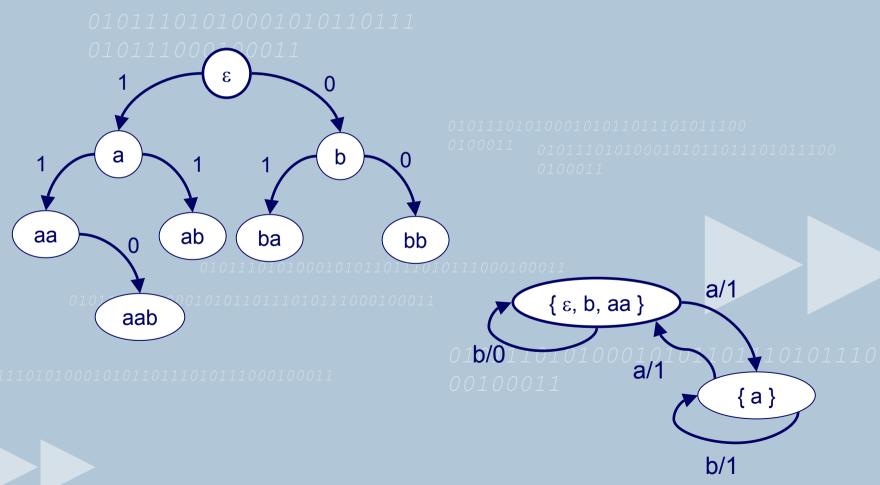


010111010100010101101111010111C 00100011

Idee: Zustände gelten als äquivalent, solange nichts dagegen spricht







Automatensynthese

0101110101000101011111

Bestimmung von $V_{i/\sim}$:

es gibt offenbar verschiedene Möglichkeiten, die Zustände von $V_{i/1011100}$ zusammenzufassen und nicht definierte Werte im hypothetischen Automaten $V_{i/\sim}$ festzulegen (Heuristiken, ...)

Festlegungen führen zu unterschiedlichen Lernverfahren

0101110101000101011011101011100010001

01011101010001010110111010111

Grundkonzept: nachweisbare Inäquivalenz

technische Voraussetzung: lexikographische Ordnung

Automatensynthese

01011101010001010110111

Bestimmung von V_{i/~}:

Bezeichnung:

 $u_1 \nabla u_2$, falls aus dem mit V_i verfügbaren Wissen folgt, daß die mit u_1 und u_2 bezeichneten Zustände nicht äquivalent sein können

0101110101000101011011101011100010001

0101110101000101011011101011100010001

d.h., die in u₁ und u₂ beginnenden Teilbäume unterscheiden sich, wenn man sie "übereinander legt"

Automatensynthese

Bestimmung von V_{i/~} (/* Bestimmung der Zustandsmenge */)

sei V_i gegeben

```
\begin{split} k &= 1; \\ R &= \{\, u \mid es \, gibt \, x \in X, \, v \in Y^+ \colon (ux,v) \in V_i \,\} \\ \text{while } (\, R \neq \varnothing \,) \\ r_k &= \min \, \{\, r \mid r \in R \,\}; \\ R &= R \setminus \{\, r_k \,\}; \\ z_k &= \{\, r_k \,\}; \\ \text{while } (\, v = \min \, \{\, u \in R \,|\,\, \forall \, r \in z_k \colon \neg (\, u \, \nabla \, r \,) \,\} \,\, existiert) \\ R &= R \setminus \{\, v \,\}; \\ z_k &= z_k \cup \{\, v \,\}; \\ k &= k+1; \end{split}
```


Automatensynthese

01011101010001010111111

Bestimmung von $V_{i/\sim}$ (/* Bestimmung von δ und λ */)

sei V_i gegeben, sei z₁,...,z_n die bestimmte Zustandsmenge

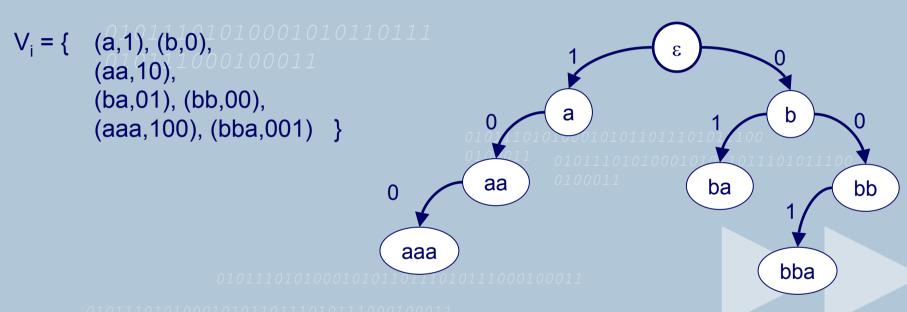
- $\delta(z_r,x) = z_k$, falls es ein $u \in z_r$ mit $\delta^{\infty}(u,x) \in z_k$ gibt
- $\delta(z_r,x) = z_r$, sonst
- $\lambda(z_r,x) = y$, falls es ein $u \in z_r$ gibt mit $\lambda^{\infty}(u,x) = y$
- $\lambda(z_r,x) = y'$, sonst

0111010100010101101110101111010**Bemerkung:**

 z_i ist Anfangszustand gdw. $\epsilon \in z_i$

y' ist ausgezeichnetes Zeichen in Y

Automatensynthese

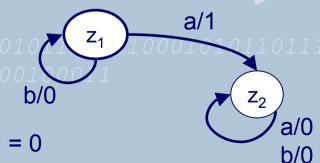


$$R_i = \{ \epsilon, a, b, aa, bb \}$$

$$z_1^{11101010} \{ \epsilon, b, bb \}^{1010111000100011}$$

$$z_2 = \{ a, aa \}$$

Anmerkung: y' = 0



Automatensynthese

Satz: Die Klasse aller endlichen deterministischen Automaten ist im Limes aus ihrem Verhalten erlernbar.

Verifikation:

- 1. In jedem Schritt wird eine Hypothese berechnet 1101010001010110111010111000
- 2. Die Folge der Hypothesen konvergiert
- 3. Konvergenz gegen korrekte Hypothese

Beobachtung:

~ bezeichnet die Zustandsäquivalenz auf X*.

V(A)_{/∼} bezeichnet den nach ~ "faktorisierten" Automaten

1010001010110111010111000100011

Es gibt eine endliche Teilmenge V von V(A), so daß gilt: $V(A)_{/\sim} = V_{/\sim}$.

Außerdem gilt für alle V' mit: $V' \supseteq V$: $V'_{/\sim} = V_{/\sim}$.

Automatensynthese

01011101010001010110111

Vorgehensweise: 0011

- Minimierung von DFA
 - mittels Äquivalenzklassenbildung
- Leichte Änderung am Äquivalenzbegriff
- Minimierungsalgorithmus für DFA liefert einen Lernalgorithmus für

010111010100001010110111010111000100 DFA aus deren Verhalten

01011101010001010110111010111000100011