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Text ClassificationText Classification
● Characteristics of Machine Learning Problems

 Example representation
 Concept representation

● Text Classification Algorithms
 k nearest-neighbor algorithm, Rocchio algorithm
 naïve Bayes classifier
 Support Vector Machines
 decision tree and rule learning

● Occam's Razor and Overfitting Avoidance
● Evaluation of classifiers

 evaluation metrics
 cross-validation
 micro- and macro-averaging
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Type of Training InformationType of Training Information

● Supervised Learning:
 A „teacher“ provides the value for the target function for all 

training examples (labeled examples)
 concept learning, classification, regression

● Semi-supervised Learning:
 Only a subset of the training examples are labeled (labeling 

examples is expensive!)
● Reinforcement Learning:

 A teacher provides feedback about the values of the target 
function chosen by the learner

● Unsupervised Learning:
 There is no information except the training examples
 clustering, subgroup discovery, association rule discovery
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Example AvailabilityExample Availability

● Batch Learning
 The learner is provided with a set of training examples 

● Incremental Learning / On-line Learning
 There is constant stream of training examples

● Active Learning
 The learner may choose an example and ask the teacher for 

the relevant training information
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Document RepresentationDocument Representation

● The vector space models allows to transform a text into a 
document-term table

● In the simplest case
 Rows: 

● training documents
 Columns:

● words in the training documents
 More complex representation possible

● Most machine learning and data mining algorithms need 
this type of representation
 they can now be applied to, e.g., text classification
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Example RepresentationExample Representation

● Attribute-Value data:
 Each example is described with values for a fixed number of 

attributes
● Nominal Attributes:

 store an unordered list of symbols (e.g., color)
● Numeric Attributes:

 store a number (e.g., income)
● Other Types:

 hierarchical attributes
 set-valued attributes

 the data corresponds to a single relation (spreadsheed)
● Multi-Relational data:

 The relevant information is distributed over multiple relations 
● e.g., contains_word(Page,Word), linked_to(Page,Page),...
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Bag-of-Words vs. Set-of WordsBag-of-Words vs. Set-of Words

● Set-of-Words: boolean features
each dimension encodes wether the feature appears in 
the document or not

● Bag-of-words: numeric features
each dimension encodes how often the feature occurs 
in the document (possibly normalized)

● Which one is preferable depends on the task and the 
classifier
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Concept RepresentationConcept Representation

● Most Learners generalize the training examples into an 
explicit representation 
(called a model, function, hypothesis, concept...)
 mathematical functions (e.g., polynomial of 3rd degree)
 logical formulas (e.g., propositional IF-THEN rules)
 decision trees
 neural networks
....

● Lazy Learning
 do not compute an explicit model
 generalize „on demand“ for an example 
 e.g., nearest neighbor classification



8 © J. Fürnkranz

A Selection of Learning TechniquesA Selection of Learning Techniques

 Decision and Regression Trees
 Classification Rules
 Association Rules
 Inductive Logic Programming
 Neural Networks
 Support Vector Machines
 Statistical Modeling
 Clustering Techniques
 Case-Based Reasoning
 Genetic Algorithms
 ....
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Induction of ClassifiersInduction of Classifiers

The most „popular“ learning problem:
● Task:

 learn a model that predicts the outcome of a dependent 
variable for a given instance

● Experience:
 experience is given in the form of a data base of examples
 an example describes a single previous observation

● instance: a set of measurements that characterize a situation
● label: the outcome that was observed in this siutation

● Performance Measure:
 compare the predicted outcome to the observed outcome
 estimate the probability of predicting the right outcome in a 

new situation
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Text Classification: ExamplesText Classification: Examples

Text  Categorization: Assign labels to each document

● Labels are most often topics such as Yahoo-categories
 e.g., "finance," "sports," "news::world::asia::business"

● Labels may be genres
 e.g., "editorials" "movie-reviews" "news“

● Labels may be opinion
 e.g., “like”, “hate”, “neutral”

● Labels may be binary concepts
 e.g., "interesting-to-me" : "not-interesting-to-me”
 e.g., “spam” : “not-spam”
 e.g., “contains adult language” :“doesn’t”

After Manning, Stanford CS276A 2004
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Induction of ClassifiersInduction of Classifiers

Training

ClassificationExample

Inductive Machine Learning 
algorithms induce a 

classifier from labeled 
training examples. The 

classifier generalizes the 
training examples, i.e. it is 
able to assign labels to new 

cases.

An inductive learning 
algorithm searches in a given 

family of hypotheses (e.g., 
decision trees, neural 

networks) for a member that 
optimizes given quality 
criteria (e.g., estimated 
predictive accuracy or 

misclassification costs).

Classifier
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Induction of ClassifiersInduction of Classifiers

● Typical Characteristics
 attribute-value representation (single relation)
 batch learning from off-line data (data are available from 

external sources)
 supervised learning (examples are pre-classified)
 numerous learning algorithms for practically all concept 

representations (decision trees, rules, neural networks, SVMs, 
statistical models,...)

 often greedy algorithms (fast processing of large datasets)
 evaluation by estimating predictive accuracy (on a portion of 

the available data)
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?

Training

ClassificationNew Example

K-Nearest Neighbor 
algorithms classify a new 

example by comparing it to all 
previously seen examples. 
The classifications of the k 
most similar previous cases 
are used for predicting the 
classification of the current 

example.

The training examples 
are used for 

• providing a library of 
sample cases 

• re-scaling the similarity 
function to maximize 

performance

Nearest Neighbor ClassifierNearest Neighbor Classifier
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kNN ClassifierkNN Classifier

● To learn from a training set:
 Store the training set

● To classify a new document :
 Compute similarity of document vector Q with all available 

document vectors D (e.g., using cosine similarity)
 Select the k nearest neighbors (hence the name k-NN)
 Combine their classifications to a new prediction (e.g., 

majority, weighted majority,...)

● "Lazy" learning or local learning
 because no global model is built
 generalization only happens when it is needed
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Rocchio ClassifierRocchio Classifier
● based on ideas for Rocchio Relevance Feedback
● compute a prototype vector for each class

 average the document vectors for each class
● classify a new document according to distance to prototype 

vectors instead of documents 

● assumption:
 documents that belong

to the same class
are close to each other 
(form one cluster)
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Probabilistic Document ModelProbabilistic Document Model
● A document is a sequence of words (tokens, terms, features...)

                            where  
 Assume that a document D has been generated by 

repeatedly selecting a word wij at random 
● The probability that a word occurs in a document is 

dependent on the document's class c


● Independence Assumption:
The occurrence of a word in a class is independent of its 
context


● Goal of Classification:
 Determine the probability p(c|D) that document D belongs to 

class c

p t i∣c≠ p  t i

p t i∣t j , c= p t i∣c

D=t1 , t2 , ... , t∣D∣ t j=w i j
∈W
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Simple Naïve Bayes Classifier for TextSimple Naïve Bayes Classifier for Text
(Mitchell 1997)(Mitchell 1997)

● Bayes Theorem:
● p(D) is only for normalization:

 can be omitted if we only need a ranking 
of the class and not a probability estimate

● Bayes Classifier:
 predict class with largest posterior probability

● a document is a sequence of n words

● Apply Independence Assumption:
 p(ti|c) is the probability with which the 

word                occurs in documents of class c
● Naïve Bayes Classifier

 putting things together:

p c∣D=
p D∣c  p c

p D

c=arg maxc pD∣c p c

p D∣c=∏
i=1

∣D∣

p ti ∣c

p D=∑c
p D∣c p c

p D∣c=p t 1 , t 2 , .... t n∣c

t i=wi j

c=arg maxc ∏
i=1

∣D∣

p t i∣c p c
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Estimating Probabilities (1)Estimating Probabilities (1)
● Estimate for prior class probability p(c)

 fraction of documents that are of class c

● Word probabilities can be estimated from data
 p(ti|c) denotes probability that term              occurs at a 

certain position in the document
● assumption: probability of occurrence is independent of 

position in text
 estimated from fraction of document positions in each 

class on which the term occurs
● put all documents of class c into a single (virtual) document
● compute the frequencies of the words in this document

Wt∈

t i=w i j
∈W
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Estimating Probabilities (2)Estimating Probabilities (2)
● Straight-forward approach:

 estimate probabilities from the frequencies 
in the training set

 word w occurs n(D,w) times in document D
● Problem:

 test documents may contain new words
 those will be have estimated probabilities 0
 assigned probability 0 for all classes

● Smoothing of probabilities:
 basic idea: assume a prior distribution on 

word probabilities
 e.g., Laplace correction p t i=w∣c =

nw ,c1

∑
w∈W

nw , c1
=

nw ,c1

∑
w∈W

nw , c∣W∣

p t i=w∣c =
nw, c

∑
w∈W

nw ,c

nw ,c=∑D∈c
nD ,w
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Full Multinomial ModelFull Multinomial Model
Two basic shortcomings of the simple Naïve Bayes:
● If we consider the document as a „bag of words“, many 

sequences correspond to the same bag of words
 better estimate:

● we assumed that all documents have the same length
 a better model will also include the document length l = |D| 

conditional on the class

                   may be hard to estimate

p D∣c= p l=∣D∣∣c ∣D∣
{n D , ww∈D }∏w∈D

p w∣cnD ,w

p D∣c= ∣D∣
{nD , ww∈D }∏w∈D

p w∣cn D, w

         iterates over vocabulary
         iterates over document positions 

p l=∣D∣∣c

∏
w∈D

 

∏
i=1...∣D∣

  n
i1,i 2, ... i k = n !

i1 !⋅i2 !⋅...⋅ik !
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Binary ModelBinary Model
● a document is represented as a set of words

● model does not take into account document length or word 
frequencies

● aka Multi-variate Bernoulli Model
● in this case p(w|c) indicates the probability that a document 

in class c will mention term w at least once.
● estimated by fraction of documents in each class in which the 

term occurs
● the probability of seeing document D in class c is 

● the product of probabilities for all words occurring in the 
document

● times the product of the counter-probabilities of the words that 
do not occur in the document

  
Dfor taccount  to

,

))|(1(
)|(1

)|())|(1()|()|(

∉

∈∈∉∈∈
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=−=

WtDtDtWtDt
ctp

ctp
ctpctpctpcDp
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Numerics of Naïve Bayes ModelsNumerics of Naïve Bayes Models

● Multiply together a large number of small probabilities,
 Result: extremely small probabilities as answers.
 Solution: store all numbers as logarithms

 to get back to the probabilities:

● Class which comes out at the top wins by a huge margin
 Sanitizing scores using likelihood ratio LR

● Also called the logit function

)|1(
)|1()(     ,

1
1)(logit )( DCp

DCpDLR
e

D DLR −=
+==

+
= −

c = arg maxc pc∏
i=1

∣D∣

pt i ∣c = arg maxclog  pc ∑
i=1

∣D∣

log  pt i ∣c
p c∣D =

el c

∑c'
e lc'

=
1

1∑c '≠c
el c'−lc

lc
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Rainbow Rainbow (McCallum)(McCallum)

● advanced implementation of a Naïve Bayes text classifier 
with numerous options
 http://www.cs.umass.edu/~mccallum/bow/rainbow/

http://www.cs.umass.edu/~mccallum/bow/rainbow/
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Performance analysisPerformance analysis
● Multinomial naive Bayes classifier generally outperforms 

the binary variant
 but the binary model is better with smaller vocabulary sizes

● K-NN may outperform Naïve Bayes 
 Naïve Bayes is faster and more compact
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NB: Decision boundaries NB: Decision boundaries 
● Bayesian classier partitions the multidimensional term 

space into regions
 Within each region, the probability of one class is higher than 

others
 On the boundaries, the probability of two or more classes are 

exactly equal

● 2-class NB has a linear decision boundary
 easy to see in the logarithmic representation of the 

multinomial version

    αNB weight vector: weight of w is log(p(w|c))
d document vector consisting of term frequencies n(D,w)

log p D∣c=log  ∣D∣
{nD ,ww∈D }∑w∈D

nD , w⋅log p w∣c=bd⋅NB
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Fitting a linear decision boundaryFitting a linear decision boundary
● Probabilistic approach

 fixes the policy that               (w-th component of the linear 
discriminant) depends only on the statistics of term w in the 
corpus.

 Therefore it cannot pick from the entire set of possible linear 
discriminants

● Discriminative approach
 try to find a weight vector α so that the discrimination between 

the two classes is optimal
 statistical approaches:

● perceptrons (neural networks with a single layer)
● logistic regression

 most common approach in text categorization
→ support vector machines

)(wNBα
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Support vector machines: Basic IdeaSupport vector machines: Basic Idea
● Decision Boundary

 Hyperplane that is close to many training data points has a 
greater chance of misclassifying test instances

 A hyperplane which passes through a “no-man's land”, has 
lower chances of misclassifications

● Finding an optimal boundary
 Goal: Find an          which maximizes the distance of any 

training point from the hyperplane
 the closest points to the decision boundary are called 

support vectors
● they will be put on the planes 

 their distance           to the hyperplane (the margin) should 
be maximized

 thus:

SVMα

1,.....n  i  1b)  .d(c        subject to

)|||| 
2
1 (   . 

2
1        Minimize

ii

2

=∀≥+

=

α

ααα
c i={1   if c=

−1   if c=−

1 /∥∥

⋅db=0

⋅d SVb=±1
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margin
margin

support
vectors

Mining the Web Chakrabarti & Ramakrishnan

Illustration of theIllustration of the
SVM Optimization ProblemSVM Optimization Problem

d ib=−1 d ib=0
 d ib=1
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SVMs: non separable classesSVMs: non separable classes
● Classes in the training data not always separable.
● Introduce fudge variables ξi

n 1,........i            0                       and
n.1,....,i  -1b).d(c              subject to

.
2
1              Minimize

i

iii

=∀≥
=∀≥+

+ ∑

ξ
ξα

ξαα
i

iC
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Dual Representation and Kernel TrickDual Representation and Kernel Trick
● The optimization problem can be formulated in a different 

way (the so-called dual representation)

● regular SVMs can only find a linear decision boundary
● Non-linearity can be achieved by replacing the dot-

product <di,dj> with a function k(di,dj)
 k is also called a kernel
 note relation to nearest neighbor algorithms!

n 1,........i            C1                       and

    0c              subject to

).(
2
1             Maximize

i

i
i

,i
i

=∀≤≤

=

−

∑

∑∑

λ

λ

λλλ

i

ji
jijiji ddcc

dot product of
document vectors
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PerformancePerformance

● Comparison with other classifiers
 Amongst most accurate classifier for text
 Better accuracy than naive Bayes and decision tree 

classifier,
● Different Kernels

 Linear SVMs suffice for most text classification tasks
 standard text classification tasks have classes almost 

separable using a hyperplane in feature space
● becaue of high dimensionality of the feature space

● Computational Efficiency
 requires to solve a quadratic optimization problem.

● Working set: refine a few λ at a time holding the others fixed.
 overall quadratic run-time

● can be reduced by clever selection of the working set
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Rule-based ClassifiersRule-based Classifiers

● A classifier basically is a function that computes the output 
(the class) from the input (the attribute values)

● Rule learning tries to represent this function in the form 
of (a set of) IF-THEN rules
IF (att

i
 = val

iI
) AND (att

j
 = val

jJ
) THEN class

k
 

● Coverage
 A rule is said to cover an example if the example satisfies 

the conditions of the rule.
● Correctness

 completeness: Each example should be covered by (at 
least) one rule

 consistency: For each example, the predicted class should 
be identical to the true class.
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Separate-and-Conquer StrategySeparate-and-Conquer Strategy

● Learn rules for each class separately
 use the biggest class as the default class

● To learn rules for one class:
 Add rules to a theory until all examples of a class are 

covered (completeness)
 remove the covered examples

● To learn a single rule:
 Add conditions to the rule that 

● Cover as many examples p from the class as possible
● Exclude as many examples n from other classes as possible
● E.g., maximize            or better the Laplace estimatep

 pn
 p1

 pn2
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Set-valued FeaturesSet-valued Features

● Use binary conditions of the form             
● Efficient representation of binary conditions by listing all 

words that occur 
(vector-based representation also lists those that do not occur)

● Several, separate set-valued features are possible (thus 
it is an extension of the vector-space model)
 this allows conditions of the form, e.g.,  

● Useful for tasks with 
 more than one text-based features
 combining regular features with text-based features
 e.g. seminar announcements, classifying e-mails

t i∈title D 

t i∈D
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Occam's RazorOccam's Razor

● Machine Learning Interpretation:
 Among theories of (approximately) equal quality on the 

training data, simpler theories have a better chance to be 
more accurate on the test data

 It is desirable to find a trade-off between accuracy and 
complexity of a model

● (Debatable) Probabilistic Justification:
 There are more complex theories than simple theories. 

Thus a simple theory is less likely to explain the observed 
phenomena by chance.

Entities should not be multiplied beyond necessity.
William of Ockham (1285 - 1349) 
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OverfittingOverfitting

● Overfitting
 Given 

● a fairly general model class (e.g., rules)
● enough degrees of freedom (e.g., no length restriction)

 you can always find a model that explains the data
● Such concepts do not generalize well!
● Particularly bad for noisy data

 Data often contain errors due to
● inconsistent classification
● measurement errors
● missing values



38 © J. Fürnkranz

Overfitting AvoidanceOverfitting Avoidance

● Choose a simpler model class
 restrict number of conditions in a rule
 demand minimum coverage for a rule

● Pruning
 simplify a theory after it has been learned

● Reduced Error Pruning
1.Reserve part of the data for validation
2.Learn a rule set
3.Simplify rule set by deleting rules and conditions as long 

as this does not decrease accuracy on the validation set 
● Incremental REP

 Do this after each individual rule is learned
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RIPPER RIPPER (Cohen, 1995)(Cohen, 1995)

Efficient algorithm for learning classification rules
 covering algorithm (aka separate-and-conquer)
 incremental pruning of rules (I-REP)
 set-valued features support text mining
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The Compress AlgorithmThe Compress Algorithm
● Simple, elegant algorithm capturing a Minimum-

Description Length Idea:
1. Put all documents of one class into a separate directory
2.compress/zip each directory into file <class_i>.zip

 To classify a new document:
1. Tentatively assign the document to each class (by adding it 

to the respective directories)
2. compress/zip each directory into file <class_i>_new.zip
3. assign document to the class for which the distance 

measure |<class_i>.zip|-|<class_i>_new.zip| is 
minimal

 Benedetto et al. (Phys. Rev. Letters 2002) report results for
 language recognition (100% accuracy for 10 EC languages)
 authorship determination (93.3% for 11 Italian authors)
 document clustering (similarity tree of European languages)
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Evaluation of Learned ModelsEvaluation of Learned Models
● Validation through experts

 a domain experts evaluates the plausibility of a learned model
+ subjective, time-intensive, costly
– but often the only option (e.g., clustering)

● Validation on data
 evaluate the accuracy of the model on a separate dataset 

drawn from the same distribution as the training data
– labeled data are scarce, could be better used for training
+ fast and simple, off-line, no domain knowledge needed, methods 

for re-using training data exist (e.g., cross-validation)
● On-line Validation

 test the learned model in a fielded application
+ gives the best estimate for the overall utility
– bad models may be costly
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Out-of-Sample TestingOut-of-Sample Testing

● Performance cannot be measured on training data
 overfitting!

● Reserve a portion of the available data for testing
● Problem:

 waste of data
 labelling may be expensive
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Cross-ValidationCross-Validation
● split dataset into n (usually 10) partitions
● for every partition p

 use other n-1 partitions for learning and partition p for 
testing

● average the results
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EvaluationEvaluation

● In Machine Learning: 
Accuracy = percentage of correctly classified examples

● Confusion Matrix:

n
daaccuracy )( +=

Classified
as +

Classified
as -

Is + a c a+c

Is - b d b+d

a+b c+d n
)( ba

aprecision
+

=

)( ca
arecall
+

=
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Evaluation for Multi-Class ProblemsEvaluation for Multi-Class Problems

A B C D

A nA,A nB,A nC,A nD,A nA

B nA,B nB,B nC,B nD,B nB

C nA,C nB,C nC,C nD,C nC

D nA,D nB,D nC,D nD,D nD

n

classified as

n A nB nC nD

tru
e 

cl
as

s
● for multi-class problems, the confusion matrix has many 

more entries:

● accuracy is defined analogously to the two-class case:

accuracy=
nA , AnB, BnC ,CnD , D

n



46 © J. Fürnkranz

Recall and Precision for Recall and Precision for 
Multi-Class ProblemsMulti-Class Problems

● For multi-class text classification tasks, recall and 
precision can be defined for each category separately

● Recall of Class X:
 How many documents of class X have been recognized 

as class X?
● Precision of Class X:

  How many of our predictions for class X were correct?
● Predictions for Class X 

can be summarized in 
a 2x2 table
 z.B:

classified
X

classified
not X

is X

is not X
X=A , X ={B , C , D }

nX , X

nX , X

nX , X
nX , X

nX
nX

nX nX n
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Micro- and Macro-AveragingMicro- and Macro-Averaging
● To obtain a single overall estimate for recall and precision

 we have to combine the estimates for the individual classes
● Two strategies:

 Micro-Averaging:
● add up the 2x2 contingency tables for each class
● compute recall and precision from the summary table

 Macro-Averaging:
● compute recall and precision for each contingency table
● average the recall and precision estimates

● Basic difference:
 Micro-Averaging prefers large classes

● they dominate the sums
 Macro-Averaging gives equal weight to each class

● r/p on smaller classes counts as much as on larger classes
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Macro-AveragingMacro-Averaging

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

prec c2=20
32

=0.625 prec c3=45
50

=0.900prec c1=15
25

=0.600

avg. prec= prec c1 prec c2 prec c3
3

=0.708

recl c1=15
20

=0.750 recl c2=20
30

=0.667 recl c3=45
50

=0.900

avg. recl= recl c1recl c2recl c3
3

=0.772
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Micro-AveragingMicro-Averaging

C C
C 80 20 100

C 27 173 200

107 193 300

Predicted

Tr
ue

Σ

C1 C1
C1 15 5 20

C1 10 70 80

25 75 100

Predicted

Tr
ue

C3 C3
C3 45 5 50

C3 5 45 50

50 50 100

Predicted

Tr
ue

C2 C2
C2 20 10 30

C2 12 58 70

32 68 100

Predicted

Tr
ue

avg. recl= 80
100

=0.800

avg. prec= 80
107

=0.748
Micro-Averged estimates
are in this case higher
because the performance
on the largest class (C3)
was best



50 © J. Fürnkranz
Mining the Web Chakrabarti & Ramakrishnan 50

Benchmark DatasetsBenchmark Datasets
Publicly available Benchmark Datasets facilitate standardized 
evaluation and comparisons to previous work
● Reuters-21578

• 10700 labeled documents 
• 10% documents with multiple class labels

● OHSUMED
• 348566 abstracts from medical journals

● 20 newsgroups
• 18800 labeled USENET postings
• 20 leaf classes, 5 root level classes
• more recent 19 newsgroups

● WebKB
• 8300 documents in 7 academic categories.

● Industry sectors
• 10000 home pages of companies from 105 industry sectors
• Shallow hierarchies of sector names
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Find Similar

● Comparison of Linear SVM, Decision Tree, (Binary) Naive 
Bayes, and a version of nearest neighbor

Graph taken from S. Dumais, LOC talk, 1999.

Sample ResultsSample Results
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Comparison of accuracy across three classifiers: Naive Bayes, Maximum Entropy and Linear 
SVM, using three data sets: 20 newsgroups, the Recreation sub-tree of the Open Directory, and 
University Web pages from WebKB.
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Sample ResultsSample Results

Source:Yang & Liu, SIGIR 1999 

● Results of five Text Classification Methods on the 
REUTERS-21578 benchmark


