

Perl Tutorial

based on a tutorial by Nano Gough
http://www.computing.dcu.ie/~ngough/perl/tutorial.ppt

Why Perl?

• Perl is

– Pathologically Eclectic Rubbish Lister

– the duct tape of the internet

– the Swiss-army chain saw of UNIX

• good at

– text processing

– rapid development

– flexibility

– operating system stuff
• in particular UNIX/LINUX

– code re-use
• CPAN:large repository of re-usable modules

• bad at

– numeric processing

– debugging

– efficiency

The Three Virtues of a Good Programmer
(not necessarily of a good Student)

• LAZINESS:

– The quality that makes you go to great effort to
reduce overall energy expenditure.

– makes you want to re-use other people's code

• IMPATIENCE:

– The anger you feel when the computer is being lazy.

– makes you get things done quickly (rapid prototyping)
and efficiently (optimize code)

• HUBRIS:
– Excessive pride.
– makes you want to show off (code sharing) and write

(and maintain) programs that other people won't want
to say bad things about.

Running Perl

 #!/usr/local/bin/perl (tells the file to run through perl)

 Use .pl extension

 Perl programName (to run the program)

 Perl -d programName (to run using debugger)

 Perl – w programName (to run with warnings)

Printing

#The hash symbol (#) is use to comment lines of code

; Every statement in perl ends with a semi-colon (;)

Print “Hello World. I love perl.”;

#prints: Hello World. I love perl.

Print “Hello World\nI love perl\n”;

#prints:

Hello World.

I love perl.

 Scalar Variables

Examples:

$name = ‘mary’;

$age = 27;

Operations and Assignment

(* multiplication) (\ division) (- subtraction)

$a = 1 + 2; # Add 1 and 2 and store in $a

$a = 5 % 2; # Remainder of 5 divided by 2

 ++$a; # Increment $a and then return it

 $a++; # Return $a and then increment it

--$a; # Decrement $a and then return it

 $a--; # Return $a and then decrement it

• scalars store a single value
• regardless of type (there are no types)
• scalar variables always start with a '$'

Operations and Assignment contd..

$a = 5; $b=7;

$a = $b; # Assign $b to $a ($a=7)

$a += $b; or $a=$a+b; # Add $b to $a ($a=12)

$a -= $b; or $a=$a-$b; # Subtract $b from $a ($a=-2)

Concatenation

$a = 'Monday'; $b='Tuesday';

$c=$a . ' ' . $b;

$c= 'Monday Tuesday';

$d= $a . ' and ' . $b;

$d=‘Monday and Tuesday’;

Interpolation

double quotations may include vars

$c= “$a $b”;

c is now 'Monday Tuesday';

$d= “$a and $b”;

$d is now 'Monday and Tuesday';

Testing

Numbers

$a == $b # Is $a numerically equal to $b?

don’t use $a=$b as this will not compare but just assign $b to $a

 $a != $b # Is $a numerically unequal to $b?

$a<$b / $a>$b # Is $a less than/greater than $b

$a <=$b / $a >=$b # Is a less than or equal to/ g.t or eq to $b

Strings

$a eq $b # Is $a string-equal to $b?

$a ne $b # Is $a string-unequal to $b?

#You can also use logical and, or and not:

($a && $b) # Is $a and $b true?

($a || $b) # Is either $a or $b true? !($a)

There are no Boolean values
• false are

• the empty string ''
• the number 0
• undefined value undef
• empty list

• everything else is true

Conditionals

#if $a is equal red print the colour is red

If($a eq ‘red’) { print “the colour is $a\n”;}

#in any other case (if $a not equal to red) print $a is not red

else { print “The colour $a is not red\n”;}

######################################

#if $a is equal to 1 , add 2 to $a

If($a ==1){ $a = $a+2;}

#elsif $a is equal to 2, add 3 to $a

elsif ($a ==2) {$a =$a+3;}

#in any other case add 1 to $a

else { $a++;}

#################################

#if $a is equal to 1 AND $b is equal to red: print Colour 1 is red

If(($a==1) || ($b eq ‘red’)){print “Colour $a is $b\n”;}

Arrays

 Initialize an array/set to null

@colours=();

Functions push and pop

#assign elements to array @colours

@colours=(“red”,”blue”,”yellow”);

#use push function to add an element to the end of array

push(@colours,”green”);

#colours now contains:

“red”,”blue”,”yellow”,”green”

#use pop function to remove an element from the end of array

pop(@colours);

#colours now contains

“red”, “blue”, “yellow”

#Functions shift and unshift

@colours=(“red”,”blue”,”yellow”);

$new_el=“green”;

#use unshift to append $new_el to start of array

unshift(@colours, $new_el);

@colours is now:

“green”,“red”,”blue”,”yellow”

#use shift to remove an element from the front of array

shift(@colours);

@colours is now:

“red”,”blue”,”yellow”

 Accessing an element of the array

@colours = (“red”,”blue”,”yellow”);

print “$colours[0]”; #prints: red

$#colours points to index of last element of array @colours

print “$colours[$#colours]; #prints: yellow

print @colours; #prints: redblueyellow

print “@colours”; #print: red blue yellow

$colours = "@colours"; #assigns colours to string

print $colours; #prints: red blue yellow

Loops

#Loops can be used to iterate through elements of an array

 Foreach Loop

foreach $el (@colours)

{

print “The colour is : $el\n”;

}

#The foreach loop iterates through the array element by #element. In
#the first iteration $el is assigned the value of the first element of
#colours (ie; red) etc..

#The result of executing this foreach statement is:

The colour is : red

The colour is : blue

The colour is : yellow

Loops contd…

 For Loop

for($i=0; $i <= $#colours; $i++)

{

print “The colour is : $colours[$i]\n”;

}

 While Loop

$i=0;

while($i <= $#colours)

{

print “$colours[$i]\n”;

$i++;

}

Can also be written as:
 $i < @colours

Explanation:

In a “scalar context”
(whenever the parser
expects a scalar) an array
is interpreted as the
number of elements
contained in it

Split

#split is a useful function : splits up a string and puts it on an
#array

$example = “My name is Nano Gough”;

@name=split(/\s+/,$example);

@name = “My”, “name”, “is”, “Nano”, “Gough”

#using split you can also assign elements to variables

$name = “Nano:Gough”;

($first_name, $surname)=split(/\:/,$name);

$first_name = “Nano”;

$surname = “Gough”;

Associative arrays / hashes

The elements of associative arrays have keys with associated values

Initialize

%Mygrades=();

Assign elements

$Mygrades{‘english’}=80;

$Mygrades{‘irish’}=70;

$Mygrades{‘maths’}=50;

Printing

while (($key,$value) = each %Mygrades)

{print “$key => $value\n”;}

Prints:

english => 80

irish => 70

maths => 50

File handling

 Opening a file

$filename =“MyFile.txt”;

open(FILE,"/users/capg/ngough/perl/MyFile.txt") || die ("Cannot open file

MyFile : $!\n");

File: Filehandle for MyFile.txt

Die: If the file cannot be opened for reading the program will ‘die’ (ie quit
execution) and the reason for this will be returned in $!

The above file has been opened for reading : open(FILE,”…..);

 To open a file for writing: open(FILE,”> OutFile.txt”);

Outfile.txt will be overwritten each time the program is executed

 To open a file for appending: open(FILE,”>> Append.txt”);

 Close File: close(FILE);

File processing

#open input file for reading

open(IN,”< InFile.txt”) || die “Can’t open file….$!\n”;

#open output file for writing

open(OUT,”> OutFile.txt”) || die “Cant open file….$!\n”;

while(<IN>) #while there are still lines in InFile.txt

{

$line=$_; #read in the lines one at a time

chop($line); #remove end of line character

#if $line meets conditional print to OutFile.txt

if($line eq “Number 7”)

{ print OUT “$line\n”; } #endif

}#endWhile

close(IN); close(OUT); #close Files

Regular expressions

#A regular expression is contained in slashes, and matching occurs with
the =~ operator.

#The following expression is true if the string the appears in variable
$sentence.

$sentence =~ /the/

#The RE is case sensitive, so if $sentence = "The quick brown fox"; then
the above match will be false.

$sentence !~/the/ (True) because the (lower case) is not in $sentence

#To eliminate case use i

$sentence =~ /the/i; (True) because case has been eliminated with i

These Special characters can be used to match the
following:
. # Any single character except a newline

 ^ # The beginning of the line or string

$ # The end of the line or string

 * # Zero or more of the last character

+ # One or more of the last character

? # Zero or one of the last character

#####################################

\s+ (matches one or more spaces)

\d+ (matches one or more digits)

\t (matches a tab)

\n (matches a new line)

\b (matches a word boundary)

An Example using RE’s

TASK : We have a file containing lines in different formats. We want to
pick out the lines which start with a digit and end in a full stop, but

remove the digit from the beginning of these lines

while(<FILE>)

{

$line=$_;

chop($line); # removes a newline at the end of the line

if($line =~ /^\d+(.*\.)$/)

{print “$1\n”;}

}

 ^\d+ (specifies that $line must begin with one or more digits)

 () are used for grouping and remembering parts of the RE

 .* This digit can be followed by any character any no. of times

 \. This is followed by a full stop (The slash is included to despecialise the ‘.’)

 $. This specifies that the previous character (‘.’) must be the last on the line

 $1 contains anything that has matched between the first pair of ()

RE’s contd

 [a-z] (matches any lower case letter)

 [a-zA-z] (matches any letter)

In the previous example a line was matched under the following
condition:

if($line =~/^\d+(.*)\.$)

The RE would match the line: 10 people went to the concert.

\d+ = 10; (.*) = “people went to the concert”;

Perl groups the elements specified by (.*) together and assigns it a
default variable name : $1;

Print “$1\n”; # prints : people went to the concert

Substitution

#substitution is a useful facility in perl which can be used to
replace one element with another

#replaces the first instance of london (lc) in $sentence to London (uc);

$sentence =~ s/london/London/;

#replaces all instances (because of g) of red in $sentence to blue

$sentence =~ s/red/blue/g;

Example

$sentence= “the red and white dress”;

$sentence =~ s/red/blue;

$sentence is now = “the blue and white dress”

Some on-line Perl Tutorials:

http://www.comp.leeds.ac.uk/Perl/start.html

http://archive.ncsa.uiuc.edu/General/Training/PerlIntro/

http://www.pageresource.com/cgirec/index2.htm

Text books:

Perl cookbook; Tom Christiansen and Nathan Torkington

Programming Perl; Larry Wall, Tom Christiansen, and Randal L
Schwartz

http://www.comp.leeds.ac.uk/Perl/start.html
http://archive.ncsa.uiuc.edu/General/Training/PerlIntro/
http://www.pageresource.com/cgirec/index2.htm

