Reinforcement Learning

Viktor Seifert

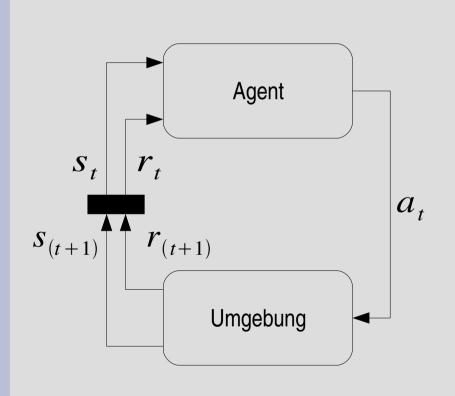
Seminar: Knowledge Engineering und Lernen in Spielen SS06

Prof. Johannes Fürnkranz

Übersicht

- 1. Definition
- 2. Allgemeiner Lösungsansatz
- 3. Temporal-Difference Learning
- 4. Funktionsapproximation
- 5. Vor- & Nachteile (pers. Einschätzung)
- 6. Beispiele

1. Definition



- Agent:
 - "die KI"
 - wählt nächste Aktion
- Umgebung:
 - gibt Zustand & Reward an Agent

Agent:

- entscheidet über nächste Aktion anhand des aktuellen Zustandes
- gehört dazu: alles was Agent beliebig ändern kann

Umgebung:

- alles "außerhalb" des Agenten
 - auch Wahrnehmung des Agenten!
- bestimmt Rewards & Zustände
- bestimmt mögliche Aktionen

Zustand:

- ist genaue Konfiguration der Umgebung
- Agent darf/muss Aktion wählen
- Nachfolgezustand ist n\u00e4chste Entscheidungsm\u00f6glichkeit des Agenten
 - z. B. im Schach:
 - Agent ist schwarzer Spieler
 - Zustände sind am Anfang des Zuges des schwarzen Spielers
 - d.h.: Sicht eines Spielers
- bei Echtzeit: Zustände müssen nicht gleichen zeitlichen Abstand haben

Reward:

- Belohnung oder Strafe für Handlungen des Agenten
- kann und wird verzögert auftreten (delayed Reward)
- für Agent auch nicht ersichtlich: welche Aktion hat Reward ausgelöst
- z. B.: im Schach:
 - +1 für Sieg
 - 0 für Remis
 - -1 für Niederlage

Return:

- ist Reward aufsummiert über die Zeit
- Agent versucht diesen zu maximieren

Aufgabentypen:

- episodisch:
 - Aufgabe ist in Episoden unterteilt, mit Anfangs- & Endzuständen
 - Return = Summe der Rewards
- nicht episodisch:
 - Aufgabe läuft fortwährend weiter
 - Rewards werden mit Faktor < 1 discountet
 - d.h. Rewards die weit in der Zukunft liegen werden abgwertet

1. Definition

- Aufgabe des Agenten:
 - Kontrolle der Umgebung & Maximieren des Returns
 - soll sich durch Erfahrung verbessern
- Vergleich zu anderen ML Techniken:
 - kein Supervised Learning
 - d.h.: keine Aussage darüber welche Aktion die *richtige* gewesen wäre
 - sondern Performance Feedback mit (verzörten) Rewards
 - d.h.: keine Aussage darüber welche Aktion gut oder schlecht gewesen ist
 - Agent hat direkten Einfluss auf Umgebung

1. Definition

- Grundsätzlich: jede Methode die die Aufgabe löst ist Reinforcement Learning
- z.B.: Evolutionsstragien, ...
- aber: sie nutzen die Struktur der Umgebung nicht direkt aus (Rewards)
- weiteres in nächsten Abschnitt

1. Definition - Zusammenfassung

- Agent, Aktionen, Umgebung
- Zustände & Rewards
- Agent versucht Return zu maximieren
- Lernt durch Erfahrung

2. Allgemeiner Lösungsansatz Bestandteile

Policy

- $-\pi(s,a)$
- Wahrscheinlichkeit dass Agent in Zustand s Aktion a wählt
- oben: theoretische Sicht
- praktische Beispiele:
 - e-greedy: mit Warscheinlichkeit e beliebige Aktion, sonst beste
 - soft-max: wähle zufällige Aktion, mit höherer Wahrscheinlichkeit für bessere Aktionen

Bewertungsfunktion

- gibt erwarteten Return an
- d.h.: Return verrechnet mit der Wahrscheinlichkeit ihn zu bekommen

2. Allgemeiner Lösungsansatz Bewertungsfunktion

Arten:

- Zustandswertefunktion: $V^{\pi}(s)$
 - bewertet Zustand *vor* eigener Aktion unter einer Policy π
 - man sollte Nachfolgezustand sicher voraussagen können (Modell der Umgebung)
- Zustandswertefunktion für Afterstates:
 - wenn nächster Zustand nicht eindeutig
 - bewertet Zustand *nach* eigener Aktion (-> Afterstate)
 - kein Modell benötigt, aber Vorhersage über Aftersate
- Aktionswertefunktion: $Q^{\pi}(s, a)$
 - bewertet Aktion a in Zustand s
 - benötigt keine Aussagen über Zukunft

2. Allgemeiner Lösungsansatz

- 1. Policy Evaluation:
 - durch Anwendung der Policy wird die Wertefunktion der Policy bestimmt
 - geschieht durch beobachten von Rewards
- 2. Policy Improvement:
 - verändere Policy so dass bessere Aktionen wahrscheinlicher werden
 - geschieht bei den obigen Beispielen automatisch
- 3. Wiederhole 1 & 2 bis optimale Funktion und Policy vorliegen

2. Allgemeiner Lösungsansatz Aufgaben der Policy

Exploitation:

- nutze aktuelles Wissen über die Umwelt um möglichst gute Aktionen zu wählen
- je besser das aktuelle Wissen desto besser die Leistung des Agenten
- bei schlechtem Wissen keine Verbesserung der Leistung durch Erfahrung

Exploration:

- wähle irgendeine, nicht beste, Aktion um herauszufinden ob diese besser ist als die aktuell beste
- mehr Exploration -> Performance verschlechtert sich
- aber auch Möglichkeit neue gute Aktionen zu finden

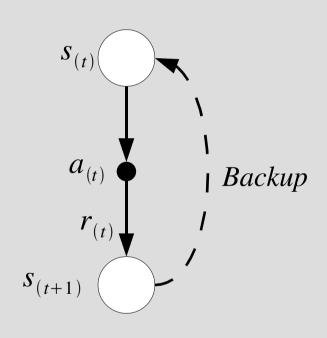
2. Allgemeiner Lösungsansatz

- Dynamic Programming:
 - bestimme Wert eines Zustandes durch "sweep" durch den gesamten Zustandsraum
 - ineffizient bei großen Zustandsmengen
 - z.B.: Backgammon hat ca. 10^22 Zustände
- Monte Carlo Ansatz:
 - beobachte ganze Episode
 - benutze diese um Funktion zu verbessern
 - kein on-line-Lernen möglich

2. Allgemeiner Lösungsansatz Zusammenfassung

- Policy, Bewertungsfunktion
- Policy Evaluation, Policy Improvement
- Exploitation & Exploration, trade-off

3. Temporal-Difference Learning



- 1. Wähle Aktion
- 2. Beobachte nächsten Reward & nächsten Zustand
- 3. Passe den Wert des voherigen Zustandes anhand des Rewards und des Wertes des neuen Zustandes an

$$V(s_{(t)}) < -V(s_{(t)}) + \alpha [r_{(t)} + \gamma V(s_{(t+1)}) - V(s_{(t)})]$$

3. Temporal-Difference Learning

- vorherige Folie: TD(0)-Algorithmus
- Backup eines Zustandes mit Information die erst nach einiger Zeit verfügbar ist -> Temporal-Difference
- Wert des Zustandes wird anhand einer anderen Schätzung geschätzt -> Bootstrapping
- Backups können online erfolgen

3. Temporal-Difference Learning

- Variationsmöglichkeiten:
- 1-step-backups -> n-step-backups (TD(lambda))
- on-policy & off-policy
- Zustände & Aktionen

4. Funktionsapproximation

- bisher implizit angenommen:
- Werte der Funktion sind in einer Tabelle gespeichert
- also pro Zustand 1 Eintrag in der Tabelle
- für grössere Probleme ungeeignet
 - z.B.: Backgammon 10^22 Zustände
- keine Generalisierung
 - nur bereits besuchte Zustände können richtig beurteilt werden

4. Funktionsapproximation

- daher: Funktionsapproximation
- Funktion nicht mehr tabellarisch gespeichert sondern durch andere Funktion approximiert (Beispiele folgen)
- Speicherverbrauch sinkt dramatisch
- Generalisierung auf nicht besuchte Zustände möglich
- aber: nicht alle Zustände können gleich gut beurteilt werden, wegen geringerer Parameterzahl
- deswegen Fokussierung auf häufig besuchte Zustände

4. Funktionsapproximation

- Beispiele:
- lineare Funktion
- neuronales Netz
 - Backpropagation von Fehlern $r_{(t+1)}+V(s_{(t+1)})-V(s_{(t)})$
- Tabelle aber Zustände nicht mit allen Merkmalen gespeichert

3. & 4. Zusammenfassung

- Backups von Zustandswerten anhand von Beobachtungen
- in vielen Fällen zu viele Zustände um explizit zu speichern
- deswegen: Funktionsapproximation
- Speichereduzierung & Generalisierung

5. Vor- & Nachteile von RL

Vorteile:

- Anpassungsfähigkeit
 - verschiedene Gegenspieler
 - veränderte Regeln
- automatisiertes Lernen bzw. Lösungssuche
 - Ziel bekannt, aber nicht dessen Lösung
 - keine menschlichen Resourcen vorhanden, aber Rechner
- kann aus Erfahrung anderer lernen (siehe Beispiel 2)
- bei vielen Spielen sind Rewards relativ leicht zu erkennen

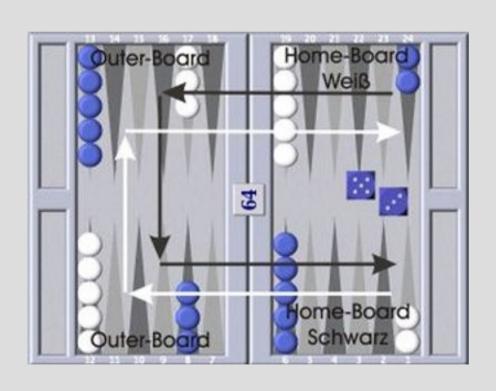
5. Vor- & Nachteile von RL

- Nachteile:
 - muss erst lernen:
 - braucht Zeit und Rechenkapazität
 - Erfolg ist nicht garantiert
 - auch nicht dessen Qualität
 - recht komplex
 - viele Parameter
 - kann Experimentieren notwendig machen
 - nicht immer ersichtlich was Rerwards sind

Reinforcement Learning

Fragen?

Beispiel 1 TD-Gammon



- Backgammon: sehr beliebtes Brettspiel
- 2 Spieler: Schwarz & Weiß
- Würfelwurf bestimmt über Zugmöglichkeiten
- Zugrichtung in Grafik
- Spieler gewinnt wenn alle seine Steine vom Brett entfernt wurden

Beispiel 1 TD-Gammon

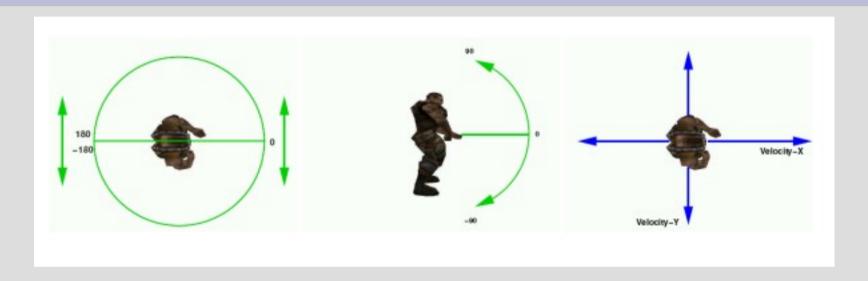
- TD-Gammon: Programm von Gerry Tesauro
- TD(lambda) Algorithmus
- Funktionsapproximation durch multi-layer neural network & backpropagation von TD-errors
- generierte Erfahrung durch Spielen gegen sich selbst
- Version 0.0 enthielt kein Backgammon Wissen
- war gleichauf mit allen vorherigen Programmen
- in der Version 1.0 wurde das Netz mit Backgammon Wissen ergänzt
- war für menschliche Spieler bereits herausfordernd

Beispiel 1 TD-Gammon

- weitere Versionen enthielten eine two-ply Suche und mehr hidden-units
- V 3.0 enthält eine three-ply Suche
- spielt auf Weltmeister Niveau
- sein Erfolg und weitere Analysen veränderten die Weise in der menschliche Spieler Eröffnungen spielen

Beispiel 2 Agent für Quake2 Deathmatches

- Quake2
- Agent sollte lernen Deathmatches zu spielen
- Erfahrung aus aufgezeichneten Matches von menschlichen Spielern (Demos)
- genaues Ziel: Moving & Aiming
- Zustand:
 - 3d-Postion der Figur auf der Karte
 - Abstand zum nächsten Gegner
 - horizontaler & vertikaler Winkel zu diesem Gegner



Aktionen

- Änderung des Sichtfeldes
 - YAW -180 bis +180 Grad (linkes Bild)
 - PITCH -90 bis +90 Grad (mittleres Bild)
- Änderung der Bewegungsgeschwindigkeit
 - in x-Richtung von -400 bis +400
 - in y-Richtung von -200 bis +200

Beispiel 2 Agent für Quake2 Deathmatches

- für Sicht und Bewegung jeweils 1 neurales Netz
- Lernziele & Erfolge
 - Learning Efficient Paths
 - abgeschaut von menschlichen Spielern
 - Bot lernte einen möglichst guten (kreisförmigen) Weg um möglichst effizient Gegenstände einzusammeln
 - Learning to Run Crossed Paths
 - wenn die Pfade aus erstem Ziel sich kreuzen ist das Lernen fehlerhaft weil vorherige Zustände betrachet werden
 - Verbesserung durch beachten der 2 vorherigen Zustände

Beispiel 2 Agent für Quake2 Deathmatches

- Lernziele & Erfolge forts.
 - Learning to Switch between Movement and Aiming Behaviors:
 - vorherige Ansätze immitieren nur das Laufen
 - aber nicht das Umschalten von 2 versch. Verhaltensweisen, in diesem Fall: Moving & Aiming
 - entsteht wenn einem ein Gegner über den Weg läuft
 - die 2 neuralen Netze reichen nicht mehr
 - gute Erfolge mit Clustern der Daten mit Self-Organized-Maps

Reinforcement Learning

Vielen Dank für die Aufmerksamkeit

Noch Fragen?

Quellen

- http://www2.informatik.hu-berlin.de/
 Forschung_Lehre/wm/mldm2004/ReinforcementLernen.pdf
- Richard S. Sutton & Andrew G. Barto: Reinforcement Learning, An Introduction
- http://de.wikipedia.org/wiki/Backgammon
- Learning Human-like Opponent Behavior for Interactive Computer
 Games; Christian Bauckhage, Christian Thurau, and Gerhard Sagerer