Theorie des Algorithmischen Lernens
Sommersemester 2006

Teil 2.4: Lernen formaler Sprachen:
Inkrementelles Lernen

Version 1.1

Gliederung der LV

Teil 1: Motivation
1. Was ist Lernen
2. Das Szenario der Induktiven Inf erenz
3. Natulrlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen
1. Grundlegende Begriffe und Erkennungstypen
2. Die Rolle des Hypothesenraums
3. Lernen von Patternsprachen
4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen
1. Grundlegende Begriffe und Erkennungstypen
2. Reflexion

Teil 5: Informationsextraktion

1. Island Wrappers
2. Query Scenarios

2.4-1

© G. Grieser

Incremental Learning

Basic idea:
Modify previous hypothesis instead of recomputing it from scratch

2.4-2 (© G. Grieser

Iterative Learning

First approach to incremental learning:

e extend |IM to two arguments:
— previous hypothesis
— current example

e need initial hypothesis
— need some convention, lets setitto —1

Properties
e new hypothesis only depends on previous hypothesis and new example

® no per se information about the number of examples already seen

2.4-3 © G. Grieser

Iterative Learning

First approach to to definition:

An IIM M ItTxty—identifies L iff, for every text t = (x,)new for L, the following
conditions are fulfilled:

(1) ho = M(—1,m0)
hn—i—l — M(hna ajn—i—l)

(2) the sequence (1,)ncv converges to a number j with h,; = L.

2.4-4 © G. Grieser

Iterative Learning

Definition 2.4.1:

Let £ be an indexable class, let L € L be a language, and let H = (h,) e be a
hypothesis space.

An IIM M ItTxty—identifies L iff, for every text t = (x,)new for L, the following
conditions are fulfilled:

(1) foralln € IN, M,,(t) is defined, where
() Mo(t) = M(—1,),
(ii) Mn—l—l(t) — M(Mn(t)a xn—l—l)-

(2) the sequence (M, (t))ne converges to a number j with h,;, = c.

Surprise?
We could also use our old (unary) concept of IIM:
An IIM M works iteratively iff M (t,) = M (t!,) implies M (t, oy) = M(t., o y)

T

2.4-5 (© G. Grieser

Encoding Ideas

Example 1:

Consider the set of all finite languages
M(-1,w) = {w}
M(h,w)=hU{w}

Hypothesis encodes information about the previous examples

e but it can only contain finite amount of information
— Otherwise no convergence could be achieved

Counterexample:
Consider the set of all co-finite languages

2.4-6

© G. Grieser

Bounded Example Memory

Another approach to incremental learning:

e Why only use the last example?
— Use the last 17 examples...

e Extension: the learning IIM decides which examples to store

— has an internal example memory
— hypotheses are computed as usual in dependence on

x the previous hypothesis
x the current example
x the stored examples
— example memory needs to be bounded
*x otherwise we would be in the Lim setting

e approach results in 2 sequences:
— sequence of hypotheses
— sequence of content of example memory

2.4-7

© G. Grieser

Bounded Example Memory

Definition 2.4.2:

Let £ be an indexable class, let L € L be a language, and let H = (h;) ;e be a
hypothesis space.

Moreover, let & € IN. An IIM M Bemy, Txty—identifies L iff, for every text ¢ =
(5)nemw for L, the following conditions are fulfilled:

(1) foralln € IN, M,,(t) is defined, where

(I) MO() — M(<_17@>7Qj0) — <j07SO>
e with Sy C {xg} and card(Sy) < k
(ii) Mn-l—l(t) — M(Mn(t)yxn—l—l) — <jn—|—17 Sn—l—1>
e with Sn_|_1 g Sn U {xn_|_1} and Card(Sn+1) S k.

(2) the j, in the sequence ({J,, Sn))nemw of M’s guesses converge to a number j
with hj = C.

Remark: ItTxt = Bemg T xt.

2.4-8 (© G. Grieser

Incremental vs. Standard Learning

Theorem 2.4.1:
FinTxt C [tTxt

Proof:

Theorem 2.4.2:
For all £k € IN: Bem;, Txt C ConsvTxt.

Sketch of proof.
Bem;. Txt C ConsvTxt

e search for a stabilizing sequence similar to the constructions in the last proofs

2.4-9 (© G. Grieser

Incremental vs. Standard Learning

ConsvTxt \ Bemy, Txt # (:

Consider £ = (L;)jen with L; = {a}* \ {da’ }.
: Show L € ConsvTxt.
L ¢ Bemy, Txtfor any k € IN:
e there exists a stabilizing sequence o for L4
e let m be the maximal length of strings in o

e now consider sequences of the following form:

1 2
g o am—l— 7am—|— . .am+n’am—|—n—l—2’am—l—n—|—3’ .. 0Qqo---

J/

Vs

M
— which form texts for languages L, 1 n11

e but:

— after seeing o, M cannot encode any further information in its hypothesis
until a appears

— hence, all information must be stored in the example memory
— but: this memory is limited, hence for long 7, M cannot distinguish it

2.4-10 (© G. Grieser

Influence of the Size of the Example Memory

Theorem 2.4.3:
For all K € IN: Bem;, Txt C Bemy,, 1 Txt.

Separating class Lyen,,
LO — {CL}* |
Lijtg..;, ={a™ |1 <m <jpu{dpi ao, ... a*}

It holds Lyep,,,, € Bemyi1Txt\ Bemy Txt

2.4-11 © G. Grieser

Incremental Learning from Informant

Definition for informant analogously.

Theorem 2.4.4:
Fininf C [tinf C LimiInf

Proof:

2.4-12 (© G. Grieser

Incremental Learning from Informant

Surprise:

Theorem 2.4.5:
Bem; Inf = LimInf

Proof.

|dea:

e the 1-bounded example-memory learner M outputs as hypothesis a triple
(F, m, j) along with a singleton set containing the one data element stored

— the triple (F),m, j) consists of a finite set /" and two numbers 1m and j.

— it is used to describe a finite variant of the language L ;, namely the language
FUL?

— intuitively, Lf’” is the part of the language L ; that definitely does not contradict
the data seen so far, while F' is used to handle exceptions.

2.4-13 (© G. Grieser

Incremental Learning from Informant

Let L € Landleti = ((xy,,by))new be any informant for L.
Let (w;) ;e denote the lexicographically ordered enumeration of all elements in >*.

Forallm € INandall L C ¥*, weset L = {w, | 2 <m, w, € L} and
L™ ={w,|z>m, w, € L}.

2.4-14 (© G. Grieser

Incremental Learning from Informant

Stage 0. On input (g, by) do the following:
Fix m € IN with w,, = x(. Determine the least j such that L; is consistent with

(z0,b0). Set F' = L7 and S = {(z0, bo)}. Output ((F, m, j), S) and goto Stage 1.

Stage n, n > 1. Oninput ((F,m, j),S) and (x, b,) proceed as follows:
Let S = {(x,b)}. Fix 2,2’ € IN such that w, = x and w, = x,. If 2/ > z,
set S' = {(zn,bn)}. Otherwise, set 5" = S. Test whether hyp,, jy = F'U L7" is

consistent with (a:n, bn). In case it is, goto (A). Otherwise, goto (B).

(A) Output {((F,m,j),S’) and goto Stage n + 1.

(B) If 2/ < m, goto (B1). If 2/ > m, goto (52).

B1) fb, = +,set IV = FU{x,}. Ifb, = —, set I/ = F \ {x,}. Output
((F',m,j),S") and goto Stage n + 1.

(82) Determinel = max{z,z'}and F' = {w, | 7 < I, wy € hippm)} by =+,
set I/ = F'U{x,}. ltb, = —, set " = F’"\ {x,}. Search for the least index
k > j such that Ly, is consistent with (z,,, by,). Then, output {(F", 1, k), S’) and
goto Stage n + 1.

2.4-15 (© G. Grieser

Summary

Bem; Inf = Liminf = ZC
U
LimTxt
U U
ConsvTxt
U
Itinf Uren Bemy, Txt
U

Bemo Txt
U U
Bemy Txt
U
FinInf It Txt
) C
FinTxt

2.4-16

© G. Grieser

