Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 2.4: Lernen formaler Sprachen: Inkrementelles Lernen

Version 1.1

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

Incremental Learning

Basic idea:

Modify previous hypothesis instead of recomputing it from scratch

Iterative Learning

First approach to incremental learning:

- extend IIM to two arguments:
 - previous hypothesis
 - current example
- need *initial hypothesis*
 - need some convention, lets set it to -1

Properties

- new hypothesis only depends on previous hypothesis and new example
- no per se information about the number of examples already seen

Iterative Learning

First approach to to definition:

An IIM M ItTxt $_{\mathcal{H}}$ -identifies L iff, for every text $t=(x_n)_{n\in\mathbb{I}\mathbb{N}}$ for L, the following conditions are fulfilled:

(1)
$$h_0 = M(-1, x_0)$$

 $h_{n+1} = M(h_n, x_{n+1})$

(2) the sequence $(h_n)_{n\in\mathbb{N}}$ converges to a number j with $h_j=L$.

Iterative Learning

Definition 2.4.1:

Let \mathcal{L} be an indexable class, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{I} \mathbb{N}}$ be a hypothesis space.

An IIM M ItTxt_{7-t}—identifies L iff, for every text $t=(x_n)_{n\in\mathbb{N}}$ for L, the following conditions are fulfilled:

- (1) for all $n \in \mathbb{N}$, $M_n(t)$ is defined, where
 - (i) $M_0(t) = M(-1, x_0)$,
 - (ii) $M_{n+1}(t) = M(M_n(t), x_{n+1}).$
- (2) the sequence $(M_n(t))_{n\in\mathbb{N}}$ converges to a number j with $h_j=c$.

Surprise?

We could also use our old (unary) concept of IIM:

An IIM M works *iteratively* iff $M(t_x)=M(t'_{x'})$ implies $M(t_x\circ y)=M(t'_{x'}\circ y)$

Encoding Ideas

Example 1:

Consider the set of all finite languages

$$M(-1, w) = \{w\}$$

$$M(h, w) = h \cup \{w\}$$

Hypothesis *encodes* information about the previous examples

- but it can only contain finite amount of information
 - Otherwise no convergence could be achieved

Counterexample:

Consider the set of all co-finite languages

Bounded Example Memory

Another approach to incremental learning:

- Why only use the last example?
 - Use the last 17 examples...
- Extension: the learning IIM decides which examples to store
 - has an internal example memory
 - hypotheses are computed as usual in dependence on
 - * the previous hypothesis
 - * the current example
 - * the stored examples
 - example memory needs to be bounded
 - * otherwise we would be in the *Lim* setting
- approach results in 2 sequences:
 - sequence of hypotheses
 - sequence of content of example memory

Bounded Example Memory

Definition 2.4.2:

Let \mathcal{L} be an indexable class, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{I} \mathbb{N}}$ be a hypothesis space.

Moreover, let $k \in \mathbb{N}$. An IIM M $\operatorname{Bem}_k \operatorname{Txt}_{\mathcal{H}}$ —identifies L iff, for every text $t = (x_n)_{n \in \mathbb{N}}$ for L, the following conditions are fulfilled:

- (1) for all $n \in \mathbb{N}$, $M_n(t)$ is defined, where
 - (i) $M_0(t) = M(\langle -1, \emptyset \rangle, x_0) = \langle j_0, S_0 \rangle$
 - with $S_0 \subseteq \{x_0\}$ and $card(S_0) \le k$
 - (ii) $M_{n+1}(t) = M(M_n(t), x_{n+1}) = \langle j_{n+1}, S_{n+1} \rangle$
 - with $S_{n+1} \subseteq S_n \cup \{x_{n+1}\}$ and $\operatorname{card}(S_{n+1}) \leq k$.
- (2) the j_n in the sequence $(\langle j_n, S_n \rangle)_{n \in \mathbb{N}}$ of M's guesses converge to a number j with $h_j = c$.

Remark: $ItTxt = Bem_0 Txt$.

Incremental vs. Standard Learning

Theorem 2.4.1:

 $FinTxt \subset ItTxt$

Proof: Exercise

Theorem 2.4.2:

For all $k \in \mathbb{N}$: $\textit{Bem}_k \textit{Txt} \subset \textit{ConsvTxt}$.

Sketch of proof.

 $Bem_k Txt \subseteq ConsvTxt$:

search for a stabilizing sequence similar to the constructions in the last proofs

Incremental vs. Standard Learning

$ConsvTxt \setminus Bem_kTxt \neq \emptyset$:

Consider $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ with $L_j = \{a\}^* \setminus \{a^j\}$.

Exercise: Show $\mathcal{L} \in ConsvTxt$.

 $\mathcal{L} \notin \textit{Bem}_k \textit{Txt}$ for any $k \in \mathbb{N}$:

- ullet there exists a stabilizing sequence σ for L_1
- ullet let m be the maximal length of strings in σ
- now consider sequences of the following form:

$$\sigma \circ \underbrace{a^{m+1}, a^{m+2}, \dots a^{m+n}, a^{m+n+2}, a^{m+n+3}, \dots}_{\mathcal{T}} \circ a \circ \cdots,$$

- which form texts for languages L_{m+n+1}
- but:
 - after seeing σ , M cannot encode any further information in its hypothesis until a appears
 - hence, all information must be stored in the example memory
 - but: this memory is limited, hence for long au, M cannot distinguish it

Influence of the Size of the Example Memory

Theorem 2.4.3:

For all $k \in \mathbb{N}$: $\textit{Bem}_k \textit{Txt} \subset \textit{Bem}_{k+1} \textit{Txt}$.

Separating class \mathcal{L}_{bem_k} :

$$L_0 = \{a\}^*$$

$$L_{j,l_0,\dots,l_k} = \{a^m \mid 1 \le m \le j\} \cup \{b^{j+1}, a^{l_0}, \dots, a^{l_k}\}$$

It holds $\mathcal{L}_{bem_{k+1}} \in \textit{Bem}_{k+1} \textit{Txt} \setminus \textit{Bem}_{k} \textit{Txt}$

Definition for informant analogously.

Theorem 2.4.4:

 $FinInf \subset ItInf \subset LimInf$

Proof: Exercise

Surprise:

Theorem 2.4.5:

 $Bem_1Inf = LimInf$

Proof.

Idea:

- \bullet the 1-bounded example-memory learner M outputs as hypothesis a triple (F,m,j) along with a singleton set containing the one data element stored
 - the triple (F, m, j) consists of a finite set F and two numbers m and j.
 - it is used to describe a finite variant of the language L_j , namely the language $F \cup L_j^{\vec{m}}$.
 - intuitively, $L_j^{\vec{m}}$ is the part of the language L_j that definitely does not contradict the data seen so far, while F is used to handle exceptions.

Let $L \in \mathcal{L}$ and let $i = ((x_n, b_n))_{n \in \mathbb{N}}$ be any informant for L.

Let $(w_j)_{j\in\mathbb{I}\mathbb{N}}$ denote the lexicographically ordered enumeration of all elements in Σ^* .

For all $m\in\mathbb{N}$ and all $L\subseteq\Sigma^*$, we set $L^m=\{w_z\mid z\leq m,\,w_z\in L\}$ and $L^{\vec{m}}=\{w_z\mid z>m,\,w_z\in L\}.$

Stage 0. On input (x_0, b_0) do the following:

Fix $m \in \mathbb{N}$ with $w_m = x_0$. Determine the least j such that L_j is consistent with (x_0,b_0) . Set $F=L_j^m$ and $S=\{(x_0,b_0)\}$. Output $\langle (F,m,j),S\rangle$ and goto Stage 1.

Stage $n, n \ge 1$. On input $\langle (F, m, j), S \rangle$ and (x_n, b_n) proceed as follows:

Let $S=\{(x,b)\}$. Fix $z,z'\in\mathbb{N}$ such that $w_z=x$ and $w_{z'}=x_n$. If z'>z, set $S'=\{(x_n,b_n)\}$. Otherwise, set S'=S. Test whether $h_{(F,m,j)}=F\cup L_j^{\vec{m}}$ is consistent with (x_n,b_n) . In case it is, goto (A). Otherwise, goto (B).

- (A) Output $\langle (F, m, j), S' \rangle$ and goto Stage n + 1.
- (B) If $z' \leq m$, goto $(\beta 1)$. If z' > m, goto $(\beta 2)$.
- (β 1) If $b_n=+$, set $F'=F\cup\{x_n\}$. If $b_n=-$, set $F'=F\setminus\{x_n\}$. Output $\langle (F',m,j),S'\rangle$ and goto Stage n+1.
- (β 2) Determine $l=\max\{z,z'\}$ and $F'=\{w_r\mid r\leq l,\,w_r\in h_{(F,m,j)}\}$. If $b_n=+$, set $F''=F'\cup\{x_n\}$. If $b_n=-$, set $F''=F'\setminus\{x_n\}$. Search for the least index k>j such that L_k is consistent with (x_n,b_n) . Then, output $\langle (F'',l,k),S'\rangle$ and goto Stage n+1.

Summary

