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Abstract

We investigate the principal learning capabilities of iterative learners in some more
details. Thereby, we confine ourselves to study the learnability of indexable concept
classes. The general scenario of iterative learning is as follows. An iterative learner
successively takes as input one element of a text (an informant) for a target concept
as well as its previously made hypothesis and outputs a new hypothesis about the
target concept. The sequence of hypotheses has to converge to a hypothesis correctly
describing the target concept.

We study two variants of this basic scenario and compare the learning capabilities
of all resulting models of iterative learning to one another as well to the standard
learning models finite inference, conservative identification, and learning in the limit.

First, we consider the case that an iterative learner has to learn from fat texts (fat
informants), only. In this setting, it is guaranteed that relevant information is, in
principle, accessible at any time in the learning process. Second, we study a variant
of iterative learning, where an iterative learner is supposed to learn no matter which
initial hypothesis is actually chosen. This variant is suited to describe scenarios that
are typical for case-based reasoning.

1 Introduction

Induction constitutes an important feature of learning. The corresponding the-
ory is called inductive inference. Inductive inference may be characterized as
the study of systems that map evidence on a target concept into hypotheses
about it. The investigation of scenarios in which the sequence of hypotheses
stabilizes to an accurate and finite description of the target concept is of some
particular interest. The precise definitions of the notions evidence, stabiliza-
tion, and accuracy go back to Gold [9] who introduced the model of learning
in the limit.
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The general situation investigated in Gold’s [9] model can be described as
follows: Given more and more information concerning the concept to be learnt,
the learning device has to produce hypotheses about the phenomenon to be
inferred. The information sequence may contain only positive data, i.e., exactly
all elements that constitute the concept to be recognized, as well as both
positive and negative data, i.e., all elements of the underlying learning domain
which are classified with respect to their containment in the unknown concept.
Those information sequences are called text and informant, respectively. The
sequence of hypotheses has to converge to a hypothesis correctly describing
the object to be learnt. Consequently, the inference process is an ongoing one.

However, Gold’s [9] model makes the unrealistic assumption that the learner
has access to the whole initial segment of the information sequence provided
so far. If huge data sets are around, no learning algorithm can use all the data
or even large portions of it simultaneously for computing hypotheses about
concepts represented by the data. Since each practical learning system has to
deal with limitations of space, variants of the general approach restricting the
accessibility of input data have been discussed in the computational learning
theory community (cf., e.g., Wiehagen [29], Kinber and Stephan [13], Lange
and Zeugmann [19], Jain et al. [11], Case et al. [4], Lange and Grieser [16],
Lange [15]) as well as in the machine learning community (cf., e.g., Utgoff [26],
Gennari et al. [7], Porat and Feldmann [22], Godin and Missaoui [8], Maloof
and Michalski [21]). A prominent and intensively studied example is iterative
learning. Here, the learning device (henceforth called iterative learner) is re-
quired to produce its actual hypothesis exclusively from its previous one and
the next element in the information sequence.

Within the present paper, we investigate the principal learning capabilities of
iterative learners in some more detail. Thereby, we confine ourselves to study
the learnability of indexable concept classes (cf., e.g., Angluin [1], Zeugmann
and Lange [30]). Our study draws its motivation from the rather simple ob-
servation that there is no learning per se. Learning is embedded into scenarios
of a more comprehensive usage. Such an environment is usually putting con-
straints on the way information is accessible, requirements hypotheses have to
meet, and so on.

For illustration, consider the following scenario which is typical for several
approaches to case-based reasoning (cf., e.g., Kolodner [14]). A given case-
based reasoning system is in use, i.e., some user is putting in repeatedly query
cases and receives as the system’s response proposals how to proceed with the
query cases. If the proposals are satisfying, nothing has to be changed. If the
outputs do not meet the user’s expectations or the environmental needs, she
is requested to provide data illustrating the system’s misbehaviour. Based on
this information, the system is supposed to change its state, and thereby to
modify its behaviour appropriately. Thus, learning, in particular, some kind



of iterative learning takes place. Learning succeeds, if the initial state is suc-
cessfully transfered into a goal state (i.e., a state which meets all the users
expectations) by processing only finitely many information units.

In order to gain a better understanding of the principal learning capabilities
of those case-based reasoning systems, it seems to be reasonable to consider
them as a certain kind of iterative learners. However, the basic model of iter-
ative learning does not reflect all their specifics very well, and therefore some
modifications are in order. Within the present paper we consider the following
variants of the basic model of iterative learning:

First, in the learning scenario discussed above, it is highly desirable that ev-
ery possible initial state of the system can be transformed into a goal state.
The initial states of the system constitute treasures of experiences that have
proved their usefulness in the past; so it is justified to keep these treasures
if possible. Our notion of iterative learning with variable initial hypotheses
(cf. Definition 5) reflects this intention. In contrast, in the basic model of iter-
ative inference (cf. Definition 4), it is assumed that an iterative learner starts
with an a priori fixed hypothesis. Since the initial hypothesis is here the same
for all learning tasks, this hypothesis does not carry any message which in
turn gives the learner the freedom to code, up to a certain extent, information
about the progress made in the actual learning task directly into its intermedi-
ate hypotheses. In the modified model, such coding is meaningless, since every
intermediate hypothesis may serve as initial hypothesis of different learning
tasks, as well.

Second, in the basic model of iterative learning, a learner is supposed to learn
on every possible information sequence. Thus, it may happen that relevant
data items occur only once in the given information sequence. This may lead
to situations in which relevant data items are overlooked, since they appear
at the wrong time, and therefore learning may fail. However, this contradicts
daily life experiences: if information is really important, it will not be presented
only once. Fat information sequences have the property that every data item
appears infinitely often, and therefore relevant data are, in principle, accessible
at any time in the learning process. The corresponding learning model is called
iterative learning from fat texts and informants, respectively (cf. Definition 6).

As we will see, iterative learners that are supposed to learn from fat infor-
mation sequences, only, are much more powerful than those that have to be
successful on every text and informant, respectively. On the one hand, when
learning from positive data is concerned, iterative learning from fat informa-
tion sequences is exactly as powerful as conservative inference which itself is
less powerful than learning in the limit (cf. Corollary 4 and Proposition 1). On
the other hand, iterative learning from fat informants is exactly as powerful
as learning in the limit from informants (cf. Corollary 12). Consequently, if



exclusively fat information sequences have to be processed, it is justified to
use iterative learners instead of unconstrained ones.

Surprisingly, even iterative learning with variable initial hypotheses from fat
informants turns out to be of the same learning power as learning in the limit
(cf. Corollary 12). When learning from positive data is concerned, the situation
changes. There are concept classes that are iteratively learnable from arbitrary
texts and that cannot be iteratively learnt with variable initial hypotheses even
in case that exclusively fat texts have to be processed (cf. Theorem 6).

As one may expect, the power of iterative learning with variable initial hy-
potheses from arbitrary texts and informants, respectively, is rather limited. In
both cases, the corresponding learning model is incomparable to finite learning
which itself is known to be very restrictive (cf. Theorems 9 and 16).

2 Preliminaries

IN = {0, 1, 2, ...} is the set of all natural numbers. We set IN+ = IN \ {0}. By
〈·, ·〉 : IN × IN → IN we denote Cantor’s pairing function. We write A # B to
indicate that the sets A and B are incomparable, i.e., A\B 6= ∅ and B\A 6= ∅.

Let (ϕj)j∈IN denote any fixed acceptable programming system of all (and only
all) partial recursive functions over IN and let (Φj)j∈IN be any associated com-
plexity measure (cf. Blum [3]). Let k, x ∈ IN. Then, ϕk is the partial recursive
function computed by program k in the programming system (ϕj)j∈IN. Fur-
thermore, if ϕk(x) is defined (abbr. ϕk(x) ↓), then we also say that ϕk(x)
converges; otherwise, ϕk(x) diverges (abbr. ϕk(x) ↑).

Any recursively enumerable set X is called a learning domain. By ℘(X ) we
denote the power set of X . Let C ⊆ ℘(X ), and let c ∈ C; then we refer to C
and c as to a concept class and a concept, respectively. A concept class C is
said to be inclusion-free iff c 6⊂ c′ for all distinctive concepts c, c′ ∈ C.

In the sequel we deal with the learnability of indexable concept classes with
uniformly decidable membership (cf. Angluin [1]). A class of non-empty con-
cepts C is said to be an indexable class with uniformly decidable membership
provided there are an effective enumeration (cj)j∈IN of all and only the con-
cepts in C and a recursive function f such that, for all j ∈ IN and all x ∈ X ,
the following holds:

f(j, x) =







1, if x ∈ cj,

0, otherwise.



In the following, we refer to indexable classes with uniformly decidable mem-
bership as to indexable classes, for short.

Next, we describe some well-known examples of indexable classes.

First, let Σ denote any fixed finite alphabet of symbols and let Σ∗ be the free
monoid over Σ. As usual, for all a ∈ Σ and all n ∈ IN, we let an+1 = aan, while,
by convention, a0 equals the empty string. Then, we let X = Σ∗ be the learning
domain. We refer to subsets L ⊆ Σ∗ as to languages (instead of concepts).
For instance, the set of all context-sensitive languages, context-free languages,
regular languages, and of all pattern languages Cpat (see also Section 4) form
indexable classes (cf., e.g., Hopcroft and Ullman [10], Angluin [1]).

Second, let Xn = {0, 1}n be the set of all n-bit Boolean vectors. We consider
X =

⋃

n≥1 Xn as learning domain. Then, the set of all concepts expressible
as a monomial, a k-CNF, a k-DNF, and a k-decision list constitute indexable
classes (cf., e.g., Valiant [27], Rivest [23]).

2.1 Gold-style learning from positive data

Let X be the underlying learning domain, let c ⊆ X be a concept, and let t =
(xn)n∈IN be an infinite sequence of elements from c such that {xn n ∈ IN} = c.
Then, t is said to be a positive presentation or, synonymously, a text for c. By
text(c) we denote the set of all texts for c. As in Jain et al. [11], a text t is said
to be fat provided that every element from c appears infinitely often, i.e., for
all x ∈ c, there are infinitely many n ∈ IN with xn = x. By ftext(c) we denote
the set of all fat texts for c. (Note that, by definition, ftext(c) ⊆ text(c).)
Moreover, let t be a text and let y be a number. Then, ty denotes the initial
segment of t of length y + 1 and t+y = {xn n ≤ y}. Additionally, by σ � τ we
denote the concatenation of two finite sequences σ and τ .

As in Gold [9], we define an inductive inference machine (abbr. IIM) to be an
algorithmic device working as follows: The IIM takes as its input larger and
larger initial segments of a positive presentation. After processing an initial
segment, the IIM either outputs a hypothesis, i.e., a number encoding a certain
computer program, or it outputs ‘?,’ a special symbol representing the case the
machine outputs ‘no conjecture’. More formally, an IIM maps finite sequences
of elements from X into elements from IN ∪ {?}.

The numbers output by an IIM are interpreted with respect to a suitably
chosen hypothesis space H. Since we exclusively deal with indexable classes C,
we always take as a hypothesis space an indexable class H = (hj)j∈IN. The
indices are regarded as suitable finite encodings of the concepts described by
the hypotheses. When an IIM outputs a number j, we interpret it to mean that



the machine is hypothesizing hj. Clearly, H must be defined over some learning
domain X which comprises the learning domain over which C is defined, and,
moreover, H must comprise the target concept class C. More formally speaking,
we deal with class comprising learning (cf. Lange and Zeugmann [18]).

Let t be a positive presentation and let y ∈ IN. Then, we use M(ty) to denote
the hypothesis produced by M when fed the initial segment ty. The sequence
(M(ty))y∈IN is said to converge to the number j iff all but finitely many terms
of the sequence (M(ty))y∈IN are equal to j.

Next, we define some models of learning. We start with learning in the limit.

Definition 1 (Gold [9]). Let C be an indexable class, let c be a concept, and
let H = (hj)j∈IN be a hypothesis space. An IIM M LimTxtH–identifies c iff,
for every t ∈ text(c), there exists a j ∈ IN such that c = hj and the sequence
(M(ty))y∈IN converges to j.

Furthermore, M LimTxtH–identifies C iff, for each c ∈ C, M LimTxtH–
identifies c.

Finally, LimTxt denotes the collection of all indexable classes C ′ for which
there are an IIM M ′ and a hypothesis space H′ such that M ′ LimTxtH′–
identifies C ′.

In the above definition, Lim stands for “limit”. Suppose, an IIM identifies
some concept c. That means, after having seen only finitely many data of c
the IIM reaches its (unknown) point of convergence and it computes a correct
and finite description of the target concept c. Hence, some form of learning
must have taken place.

In general, it is not decidable whether or not an IIM M has already converged
on a text t for a target concept c. Adding this requirement to Definition 1
results in finite learning.

Definition 2 (Gold [9]). Let C be an indexable class, let c be a concept, and
let H = (hj)j∈IN be a hypothesis space. An IIM M FinTxtH–identifies c iff,
for every t ∈ text(c), there exist j, m ∈ IN such that c = hj as well as, for all
y ∈ IN, M(ty) = ?, if y < m, and M(ty) = j, if y ≥ m.

Furthermore, M FinTxtH–identifies C iff, for each c ∈ C, M FinTxtH–identifies c.

Finally, FinTxt denotes the collection of all indexable classes C ′ for which there
are an IIM M ′ and a hypothesis space H′ such that M ′ FinTxtH′–identifies C ′.

Now, we define conservative IIMs. Intuitively, conservative IIMs maintain their



actual hypothesis at least as long as they have not received data that “provably
misclassify” it.

Definition 3 (Angluin [2]). Let C be an indexable class, let c be a concept,
and let H = (hj)j∈IN be a hypothesis space. An IIM M ConsvTxtH–identifies c
iff M LimTxtH–identifies c, and, for every t ∈ text(c) and for all y, j ∈ IN,
condition (a) is fulfilled, where

(a) if j = M(ty) and M(ty) 6= M(ty+1), then t+y+1 6⊆ hj.

Furthermore, M ConsvTxtH–identifies C iff, for each c ∈ C, M ConsvTxtH–
identifies c.

Finally, ConsvTxt denotes the collection of all indexable classes C ′ for which
there are an IIM M ′ and a hypothesis space H′ such that M ′ ConsvTxtH′–
identifies C ′.

As it turned out, for proving some of the results below, it is conceptually
simpler to use the characterization of conservative learning equating it with
set-driven inference (cf. Lange and Zeugmann [20]). Set-drivenness has been
introduced by Wexler and Culicover [28] and describes the requirement that
the output of an IIM is only allowed to depend on the range of its input.
More formally, an IIM M is said to be set-driven with respect to C iff, for all
y, y′ ∈ IN and all texts t, t̂ for concepts in C, t+y = t̂+y′ implies M(ty) = M(t̂y′).
By s-LimTxt we denote the collection of all indexable classes C ′ for which there
are a hypothesis space H′ and a set-driven IIM M ′ that LimTxtH′–identifies C ′.

2.2 Formalizing variants of iterative learning from positive data

Looking at the above definitions, we see that an IIM M has always access to
the whole history of the learning process, i.e., in order to compute its actual
guess, M is fed all examples seen so far. In contrast to that, next we define
iterative inductive inference machines. An iterative IIM is only allowed to use
its last guess and the next element in the positive presentation of the target
concept for computing its actual guess.

More formally, let X be the underlying learning domain. Then, an iterative
IIM M is an algorithmic device that maps elements from IN ×X into IN. Let
t = (xn)n∈IN be any text for some concept c ⊆ X , and let k be M ’s initial
hypothesis. Then, we denote by (Mn(k, t))n∈IN the sequence of hypotheses
generated by M when successively fed t, i.e., M0(k, t) = M(k, x0) and, for all
n ∈ IN, Mn+1(k, t) = M(Mn(k, t), xn+1). In the next definition, it is assumed
that M ’s initial hypothesis is a priori fixed in that it equals 0.



Definition 4 (Wiehagen [29]). Let C be an indexable class, let c be a con-
cept, and let H = (hj)j∈IN be a hypothesis space. An iterative IIM M ItTxtH–
identifies c iff, for every t ∈ text(c), there exists a j ∈ IN such that c = hj and
the sequence (Mn(0, t))n∈IN converges to j.

Finally, M ItTxtH–identifies C iff, for each c ∈ C, M ItTxtH–identifies c.

The resulting learning type ItTxt is defined analogously to Definitions 1 to 3.

Subsequently, we use the following convention. Let σ be any finite sequence
of elements over the relevant learning domain. Then, we denote by M∗(k, σ)
the last hypothesis output by M when successively fed σ (as above, k denotes
M ’s initial hypothesis).

In the following definition, we consider a variant of iterative learning, where
an iterative IIM has to learn successfully no matter which initial hypothesis
has been selected.

Definition 5 . Let C be an indexable class, let c be a concept, and let H =
(hj)j∈IN be a hypothesis space. An iterative IIM M It vTxtH–identifies c iff, for
every t ∈ text(c) and every initial hypothesis k ∈ IN, there exists a j ∈ IN such
that c = hj and the sequence (Mn(k, t))n∈IN converges to j.

Finally, M ItvTxtH–identifies C iff, for each c ∈ C, M It vTxtH–identifies c.

The resulting learning type It vTxt is defined analogously to Definitions 1 to 3.

Finally, we define versions of the models of iterative learning introduced above
in which it is sufficient that an iterative learner is successful on the subset of
all fat texts. More formally:

Definition 6 . Let C be an indexable class, let c be a concept, and let H =
(hj)j∈IN be a hypothesis space. An iterative IIM M ItFTxtH [ItvFTxtH]–iden-
tifies c iff, for every fat text t ∈ ftext(c) [and every initial hypothesis k ∈
IN], there exists a j ∈ IN such that c = hj and the sequence (Mn(0, t))n∈IN

[(Mn(k, t))n∈IN] converges to j.

Finally, M ItFTxtH [ItvFTxtH]–identifies C iff, for each c ∈ C, M ItFTxtH
[ItvFTxtH]–identifies c.

The resulting learning types ItFTxt and It vFTxt are defined analogously to
Definitions 1 to 3.

At the end of this subsection, we define the following notion.

Definition 7 . Let c be a concept, let H = (hj)j∈IN be a hypothesis space, let
M be an iterative IIM, and let k ∈ IN. Then, k is a locking hypothesis of M



for c iff (i) hk = c, (ii), for all x ∈ c, M(k, x) = k, and (iii) there is text t for
c on which M eventually outputs k.

The following simple observation shows the importance of this notion concern-
ing iterative learning.

Observation 1. Let c be a concept, let H = (hj)j∈IN be a hypothesis space,
and let M be an iterative IIM that LimTxtH–identifies c. Then, there is a
k ∈ IN that constitutes a locking hypothesis k of M for c.

Proof. Since M LimTxtH–identifies c, M , in particular, learns c on every fat
text for it. So, let t = (xn)n∈IN be a fat text for c and let (Mn(0, t))n∈IN be
the sequence of hypotheses generated by M when successively fed t. Since
M learns c on t, there are m, k ∈ IN such that hk = c and, for all r ≥ 1,
k = Mm(0, t) = Mm+r(0, t). Now, since M is an iterative IIM, we may conclude
that, for all r ≥ 1, M(k, xm+r) = k. Hence, (i) and (ii) are fulfilled. Since t
constitutes a text for c, we are done. Finally, notice that there are also non-fat
texts for c on which M outputs k, namely on every text t′ with t′m = tm.

3 Iterative learning from positive data

In this section, we compare the learning capabilities of all models of iterative
learning from positive data to one another as well as to finite inference, learning
in the limit, and conservative identification from text.

First, we summarize the previously known results (cf. Lange and Zeugmann [17–
20]).

Proposition 1. FinTxt ⊂ ItTxt ⊂ ConsvTxt = s-LimTxt ⊂ LimTxt .

The following example should help to illustrate the principal weakness of iter-
ative learners. Consider the following indexable class Cex . Let Cex be the collec-
tion of all concepts cj = {a}+\{aj+1}. It is folklore that Cex ∈ ConsvTxt . More-
over, it is also well-known that Cex /∈ ItTxt (cf. Lange and Zeugmann [19]).
To see the latter, suppose the converse, i.e., there are a hypothesis space H
and an iterative IIM M that ItTxtH–identifies Cex . The basic idea is easily
explained. M cannot successfully handle the following situation. Let k be a
locking hypothesis of M for c0. By Observation 1, such a hypothesis must
exist. Moreover, let σ be an initial segment of a text for c0 on which M out-
puts k. Now, after reading σ, M cannot encode any additional information in
its actual hypothesis until the element a /∈ c0 possibly appears in the input
data sequence. Consequently, M can be forced to forget some relevant infor-
mation. If this relevant information will not be repeated, M will fail to learn



some concept cj with cj 6= c0.

In case that it is guaranteed that the relevant information appears infinitely
often in a text, any conservative learner can be simulated by an iterative
IIM that has the same learning power. Note that this gives us, in particular,
Cex ∈ ItFTxt . More formally:

Theorem 2. ConsvTxt ⊆ ItFTxt .

Proof. Let X be the relevant learning domain over which C is defined. Assume
C ∈ ConsvTxt . Applying the characterization of ConsvTxt from Lange and
Zeugmann [18], we know that there are a hypothesis space H = (hj)j∈IN and a
computable function T that assigns a finite telltale set Tj to every hypothesis
hj. More formally, on every input j ∈ IN, T enumerates a finite set Tj and
stops (i.e., all sets Tj are finite and recursively generable). Furthermore, for
all j ∈ IN, Tj meets conditions (1) and (2), where

(1) Tj ⊆ hj.
(2) for all k ∈ IN, Tj ⊆ hk implies hk 6⊂ hj.

Without loss of generality, we may assume that, for all j, k ∈ IN, hj = hk

implies Tj = Tk.
1

Let F = (Fj)j∈IN denote any repetition free enumeration of all finite subsets of
X , where F0 = ∅. Furthermore, we assume an effective procedure computing,
for every finite set F ⊆ X , its uniquely determined index #(F ) in F . Let f
be any total recursive function such that, for all n ∈ IN, there are infinitely
many j ∈ IN with f(j) = n. To show that C ∈ ItFTxt, we select a hypothesis
space H′ = (h′

j)j∈IN that meets, for all j, k ∈ IN, h′
〈j,k〉 = hf(j).

Note that, by definition of Cantor’s pairing function, 〈0, 0〉 = 0 which is, by
definition, M ’s initial hypothesis.

IIM M : “On input 〈j, k〉 and x do the following:
Set F ′ = Fk ∪{x}. If Tf(j) ⊆ F ′ ⊆ hf(j) then goto (A). Otherwise, goto (B).

(A) Set S =
⋃

z≤j Tf(z) and test whether or not x ∈ S. In case it is, set F ′′ =
F ′. Otherwise, set F ′′ = Fk. Output 〈j, #(F ′′)〉 and goto Stage n + 1.

(B) Output 〈j + 1, #(F ′)〉 and goto Stage n + 1.

By definition and since all telltale sets Tj are finite and recursively generable,
M is indeed an iterative IIM. We claim that M learns as required.

1 The appropriateness of this assumption is based on the following fact: Given
any enumeration (cj)j∈IN of any indexable class C, one can effectively construct an
enumeration (c′j)j∈IN of C and a total recursive function f such that (i) the set

{(j, k) c′j = c′k} is recursive and (ii), for all j ∈ IN, c′j = cf(j) (cf., e.g., Ers̃ov [5]).



So, let c ∈ C, let t = (xn)n∈IN be a fat text for c, and let (〈jn, kn〉)n∈IN be the
sequence of hypotheses generated by M when successively fed t. Furthermore,
let (jn)n∈IN and (kn)n∈IN be the sequence of the projections to the first and
second components of M ’s hypotheses, respectively. Next, we show that M
ItFTxtH′–identifies c. The verification is based on the following claims.

Claim 1. If the sequence (jn)n∈IN converges, say to j, then hf(j) = c.

Suppose to the contrary that hf(j) 6= c. Let y be the least index such that,
for all n ∈ IN, jy+n = j. By M ’s definition, Tf(j) ⊆ Fky+1

. Moreover, Fky+1
⊆

t+y+1 ⊆ c, and therefore Tf(j) ⊆ c. Next, since M converges to j and since t is
a fat text for c, we may conclude that, by M ’s definition, c ⊆ hf(j). However,
by assumption, hf(j) 6= c, and therefore Tf(j) ⊆ c and c ⊂ hf(j), contradicting
Property (2) of the telltale set Tf(j). This proves Claim 1.

Claim 2. If the sequence (jn)n∈IN converges, say to j, then the sequence (kn)n∈IN

converges, too.

Let y ∈ IN be fixed such that, for all n ∈ IN, jy+n = j. By Claim 1, hf(j) = c,
and thus, for all n ∈ IN, Fky+n

⊆ Fky
∪ (

⋃

z≤j Tf(z)). Now, since, by M ’s
definition, the sequence (Fkn

)n∈IN is monotonically increasing (with respect to
set inclusion) and since every telltale set is finite, Claim 2 is shown.

Claim 3. The sequence (jn)n∈IN converges.

Let j ′ be the least number such that hf(j′) = c, and let y ∈ IN be the least
index such that jy = j ′. By Claim 1, such a y must exist, since, by M ’s
definition, jn ≤ jn+1 ≤ jn + 1 for all n ∈ IN. Furthermore, since t is a fat
text for c and since Tf(j′) ⊆ c, there has to be a least m ∈ IN such that
Tf(j′) ⊆ {xr y ≤ r ≤ y + m}. Therefore, by M ’s definition, Tf(j′) ⊆ Fky+m

.

Next, let j be the least index such that j ≥ jy+m and hf(j) = c. We claim that
the sequence (jn)n∈IN converges to j. We distinguish the following cases.

Case 3.1: jy+m = j.

Recall that Tf(j) = Tf(j′). Now, since t is a fat text for c = hf(j) and since,
by M ’s definition, the sequence (Fkn

)n∈IN is monotonically increasing (with
respect to set inclusion), we may conclude that the sequence (jn)n∈IN converges
to j.

Case 3.2: jy+m 6= j.

Note that hf(jy+m) 6= c. First, by M ’s definition, if Tf(jy+m) 6⊆ c then jy+m+1 =
jy+m + 1. Second, let Tf(jy+m) ⊆ c. Then, by Property (2) of the telltale sets
and since t is a fat text for c, there has to be an n ∈ IN such that xy+m+n /∈



hf(jy+m), and thus, by definition of M , jy+m+n 6= jy+m. By simply iterating
this argumentation and since, by M ’s definition, jn ≤ jn+1 ≤ jn + 1 for all
n ∈ IN, one easily sees that there is some n′ ∈ IN with jy+m+n′ = j. Hence, we
are back in Case 3.1, and thus Claim 3 follows.

Combining Claims 1 to 3, one directly sees that M converges. Moreover, by
the properties of H′, M converges to a correct hypothesis for c, and thus we
are done.

Interestingly, iterative IIMs cannot outperform conservative learners, even in
case that the iterative IIMs have to learn from fat texts, only. Thus, the
principal weakness of iterative learners (compared to the capabilities of un-
constrained IIMs) cannot be compensated, although each relevant data item
appears infinitely often in the input data sequence. This result points to one
of the peculiarities of learning indexable classes, in particular, and of learning
machines, in general. In Jain et al. [11], it has been shown that, when learning
from fat text is considered, non-computable iterative learners 2 are exactly as
powerful as non-computable unconstrained learners. In order to elaborate the
result mentioned above we heavily exploit the fact that conservative learners
are exactly as powerful as set-driven IIMs (cf. Proposition 1). Thereby, we
adapt an idea from Kinber and Stephan [13] and Lange and Zeugmann [19]
who proposed a general method of how to simulate iterative learners by set-
driven IIMs.

Theorem 3. ItFTxt ⊆ s-LimTxt .

Proof. Let X be the relevant learning domain over which C is defined, and
assume C ∈ ItFTxt . Then, there are an iterative IIM M and a hypothesis space
H = (hj)j∈IN such that M ItFTxtH–identifies C. For proving C ∈ s-LimTxt ,
we construct a suitable hypothesis space H′ = (h′

j)j∈IN as follows. Let F =
(Fj)j∈IN and #(F ) be defined as in the demonstration of Theorem 2 above.
Then, we define h′

2j = hj and h′
2j+1 = Fj for every j ∈ IN.

Subsequently, we use the following shorthands. Let S be any non-empty finite
set S ⊆ X with card(S) = n + 1. We define ref (S) = x0, x1, . . . , xn to be
the repetition free enumeration of all the elements of S in lexicographical
order. Furthermore, if card(S) = 1, we set exh(S) = ref (S). Otherwise, we set
exh(S) = exh(S ′) � ref (S), where S ′ = S \ {x} and x is the lexicographically
last element in S.

The desired set-driven IIM M ′ is defined as follows. Let c ∈ C, let t ∈ text(c),
and let n ∈ IN.

IIM M ′: “On input tn do the following:

2 Note that, in Jain et al. [11], iterative learners are called memory-limited learners.



Determine S = t+n and exh(S). For all x ∈ S, test whether or not it is the
case that M∗(0, exh(S)) = M∗(0, exh(S) � x).
In case it is, determine j = M∗(0, exh(S)), output 2j, and request the next
input. Otherwise, determine z = #(S), output 2z +1, and request the next
input.”

By definition, M ′ is set-driven. For showing that M ′ LimTxtH′–infers c when
fed t, we distinguish the following cases.

Case 1. c is finite.

Then, there exists an n ∈ IN with t+n = c. It suffices to show that c = h′
M ′(c).

If M ′(c) = 2z +1 with z = #(c), we are done, by construction. Otherwise, for
all x ∈ c, we have M∗(0, exh(c)) = M∗(0, exh(c) � x). Let j = M∗(0, exh(c)).
Hence, M converges to j when fed the fat text exh(c) � ref (c) � ref (c) � · · ·
for c. Since M learns c, we are done.

Case 2. c is infinite.

Let tc = (xj)j∈IN be the lexicographically ordered text for c. Thus, texh =
x0�x0, x1�x0, x1, x2�· · · is a fat text for c. Since M ItFTxtH–learns c from texh ,
there are n0, k ∈ IN such that M∗(0, t

exh
n0

) = k and k is a locking hypothesis of
M for c (cf. the verification of Observation 1). Now, let σ = texhn0

. Finally, since
t ∈ text(c), there is an index m0 such that σ+ ⊆ t+m0

. Thus, σ constitutes a
prefix of exh(t+m0

), and hence M ′(t+m) = 2k for all m ≥ m0. Since, by definition,
h′

2k = hk = c, we are done.

Furthermore, taking into consideration that ItTxt ⊂ ConsvTxt (cf. Proposi-
tion 1), we may easily conclude:

Corollary 4.

(a) ItFTxt = ConsvTxt .
(b) ItTxt ⊂ ItFTxt .

Next, we show that intermediate hypotheses have to be used to reflect the
progress made in the learning process. Without this option, iterative learners
fail to exploit the additional information that is provided within fat texts.

In order to achieve the announced result, we start with a theorem that illu-
minates the structural properties of those concept classes that are It vFTxt–
learnable.

Theorem 5. For all indexable classes C: C ∈ It vFTxt iff C is inclusion-free.

Proof. First, suppose that an inclusion-free indexable class C = (cj)j∈IN is
given. Select the hypothesis space H = (h〈j,n〉)j,n∈IN that meets, for all j, n ∈ IN,



h〈j,n〉 = cj. Then, the following iterative IIM M It vFTxtH–identifies C: For all
k ∈ IN and all possible input data x, let M(k, x) = min{j j ≥ k, x ∈ hj}.
To see this, note that, by the properties of H and C, M can never output an
overgeneral hypothesis, i.e., a hypothesis k′ with c ⊂ hk′. Since, by definition,
M never rejects a correct hypothesis, one immediately sees that M converges
to the least k′ ≥ k with ck′ = c, where k is M ’s initial hypothesis.

Next, we show that ItvFTxt-identifiable classes must be inclusion-free. To see
this assume, for a moment, that there is an indexable class C ∈ It vFTxt that
is not inclusion-free. Hence, there are an iterative IIM M and a hypothesis
space H such that M ItvFTxtH–identifies C. Let c, c′ ∈ C with c′ ⊂ c. By
Observation 1, there is some locking hypothesis k of M for c. Now, let t′ be
any fat text for c′. Since c′ ⊂ c and since k is locking hypothesis of M for c,
M∗(k, t′n) = k for all n ∈ IN, and therefore M fails to learn c′ on t′, if the
initial hypothesis equals k.

Theorem 6. ItTxt # ItvFTxt .

Proof. Consider the class of all finite concepts Cfin over the given learning
domain X . Clearly, Cfin ∈ ItTxt , but Cfin is not inclusion-free, and therefore,
by Theorem 5, Cfin /∈ ItvFTxt . On the other hand, recall the definition of the
indexable class Cex . That is, Cex is the collection of all concepts cj = {a}+ \
{aj+1}. Clearly, Cex is inclusion-free, and thus, by Theorem 5, Cex ∈ ItvFTxt .
Since Cex /∈ ItTxt (cf. the discussion at the beginning of Section 3), we are
done.

Furthermore, since, by definition, It vTxt ⊆ ItvFTxt and ItvTxt ⊆ ItTxt , we
directly obtain:

Corollary 7.

(a) ItvTxt ⊂ ItvFTxt .
(b) ItvTxt ⊂ ItTxt .

Our next result puts the weakness of the learning type It vTxt into the right
perspective.

Theorem 8. FinTxt \ ItvTxt 6= ∅.

Proof. Let C be the indexable class that contains exactly all c ⊆ {a}∗ with
card(c) = 2. Obviously, C ∈ FinTxt . On the other hand, even the simple
subclass C ′ that contains the concepts {a, a2}, {a, a3}, and {a2, a3} does not
belong to ItvTxt . To see this, suppose that there are an iterative IIM M
and a hypothesis space H such that M It vTxtH–identifies C ′. Let k be some
locking hypothesis of M for {a2, a3}. By Observation 1, such k must exist.
Thus, M , when starting with the initial hypothesis k, outputs exactly the



same sequence of hypotheses when fed the text t = a2, a, a, . . . for {a, a2} and
the text t′ = a3, a, a, . . . for {a, a3}. Thus, M must fail to learn at least one of
both concepts, a contradiction.

However, ItvTxt may outperform FinTxt, as well.

Theorem 9. FinTxt # ItvTxt .

Proof. By Theorem 8, it remains to show that It vTxt\FinTxt 6= ∅. A separating
class C will be defined as follows.

We let X = {a, b}+ be the learning domain. Let j ∈ IN. If ϕj(j) ↑, we set
c2j = c2j+1 = {ajb}. If ϕj(j) ↓, there is a y ∈ IN with y = Φj(j) and we set
c2j = {ajb, ajby+100} and c2j+1 = {ajb, ajby+200}. Finally, let C be the collection
of all concepts c2j and c2j+1.

Clearly, C constitutes an indexable class. Moreover, the following IIM M ob-
viously ItvTxtH–identifies C, where H = (hj)j∈IN with hj = cj for all j ∈ IN.
For all k ∈ IN and all x ∈ X , M(k, x) = k, if x ∈ ck, and M(k, x) = min{j |
x ∈ hj}, otherwise.

Next, we verify that C /∈ FinTxt . Suppose to the contrary that there are a
hypothesis space H and an IIM M that FinTxtH–identifies C. Based on M ,
we define a decision procedure P that solves the halting problem.

Procedure P : “On input j ∈ IN proceed as follows:
Set z = 0 and execute instruction (A).
(A) Test whether or not (i) Φj(j) ≤ z or (ii) M on input tz = ajb, . . . , ajb

︸ ︷︷ ︸

(z+1)−times

,

outputs a hypothesis k ∈ IN.
If (i) happens, output ‘ϕj(j) ↓.’ If (ii) happens, output ‘ϕj(j) ↑.’ Otherwise,
i.e., neither (i) nor (ii) happens, set z = z +1 and execute instruction (A).”

It remains to show that P decides the halting problem. Let j ∈ IN. We distin-
guish the following cases.

Case 1. ϕj(j) ↑.

Then, t = ajb, ajb, . . . constitutes a text for c2j . Since, by assumption, M
learns c2j on t, (ii) eventually happens, and thus P outputs ‘ϕj(j) ↑.’

Case 2. ϕj(j) ↓.

Hence, there is a y ∈ IN such that y = Φj(j), and therefore P must terminate.
Now, suppose that P outputs ‘ϕj(j) ↑.’ Hence, (ii) happened. Because of
ajb ∈ c2j ∩ c2j+1, one can easily construct a text for c2j and a text for c2j+1 on
which M converges to the same final hypothesis. Since c2j 6= c2j+1, this would



contradict our assumption that M learns both concepts. Hence, (ii) cannot
happen, and thus P ’s output must be correct.

It is quite obvious that FinTxt cannot contain any indexable concept class C
that contains two distinctive concept c, c′ with c ⊂ c′. Hence, we may conclude:

Corollary 10. FinTxt ⊂ ItvFTxt .

Figure 1 displays the achieved separations and coincidences of the considered
learning types. Each learning type is represented as a vertex in a directed
graph. A directed edge (or path) from vertex A to vertex B indicates that A
is a proper subset of B, and no edge (or path) between these vertices imply
that A and B are incomparable.

LimTxt
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Fig. 1. The relations of iterative learning from positive data

4 Iterative learning from positive and negative data

Next, we study iterative learning from positive and negative data. Thus, we
have to introduce some more notations and definitions.

Let X be the underlying learning domain, let c ⊆ X be a concept, and let
i = ((xn, bn))n∈IN be any sequence of elements of X×{+,−} such that {xn n ∈
IN} = X , {xn n ∈ IN, bn = +} = c and {xn n ∈ IN, bn = −} = X \
c = c. Then, we refer to i as an informant. By info(c) we denote the set
of all informants for c and by finfo(c) the set of all fat informants for c,
i.e., informants having the property that, for all x ∈ X , there are infinitely
many n ∈ IN with xn = x (cf. Jain et al. [11]). (Note that, by definition,
finfo(c) ⊆ info(c).) We use iy to denote the initial segment of i of length y+1,
and define i+y = {xn n ≤ y, bn = +} and i−y = {xn n ≤ y, bn = −}.

Furthermore, let c ⊆ X , and let (x, b) ∈ X × {+,−}. Then, c is said to be
consistent with (x, b), which we denote by cons(c, (x, b)), provided that x ∈ c,
if b = +, and x /∈ c, otherwise.



The learning models LimInf and FinInf are defined analogously as their text
counterparts by replacing text by informant. Finally, we extend the definitions
of all variants of iterative learning in the same way, and denote the resulting
learning types by ItInf , ItvInf , ItFInf , and ItvFInf , respectively.

As in the previous section, we first summarize the known results (cf. Lange
and Zeugmann [17]).

Proposition 2. FinInf ⊂ ItInf ⊂ LimInf .

In contrast to the text case, iterative learning from fat positive and negative
data is at least as powerful as learning in the limit from informant. This add-
on in learning power can also be observed, if iterative learners have to be
successful no matter which initial hypothesis has been selected.

Theorem 11. For all indexable classes C: C ∈ It vFInf .

Proof. Let C = (cj)j∈IN be an indexable concept class. Select the hypothesis
space H = (h〈j,n〉)j,n∈IN that meets, for all j, n ∈ IN, h〈j,n〉 = cj. The required
iterative IIM M is defined as follows. For all k ∈ IN and all input data (x, b) ∈
X × {+,−}, M(k, (x, b)) = min{j j ≥ k, cons(hj, (x, b))}.

Since M implements the identification by enumeration principle (cf. Gold [9]),
one directly sees that M , when fed any fat informant for some c ∈ C, converges
to the least j ≥ k that meets hj = c, where k is M ’s initial hypothesis. Hence,
M ItvFInf –identifies C.

Finally, since, by definition, ItvFInf ⊆ ItFInf and since every indexable con-
cept class belongs to LimInf (cf. Gold [9]), we can conclude:

Corollary 12. ItvFInf = ItFInf = LimInf .

The picture changes drastically, if iterative learning from arbitrary informants
is considered. However, in contrast to the text case, It vInf contains relatively
rich concept classes.

Observation 13. Cfin ∈ ItvInf .

Proof. As in the proof of Theorem 2, let F = (Fj)j∈IN denote any repetition
free enumeration of all finite subsets of the learning domain X and assume
any effective procedure computing, for every finite set F ⊆ X , its uniquely
determined index #(F ) in F . We choose F as hypothesis space and define the
needed iterative learner M as follows. Let k ∈ IN and (x, b) be given. Then,
we let M(k, (x, b)) = #(Fk ∪ {x}), if b = +, and M(k, (x, b)) = #(Fk \ {x}),
if b = −.

We next verify that M learns as required. So, let c ∈ C, let i be an informant



for c, and let k be M ’s initial hypothesis. Now, let S = (Fk \ c) ∪ (c \ Fk).
Clearly, S is finite. Now, by definition, if M receives an element from S, it
performs a mind change. Moreover, every of M ’s mind changes reduces the
cardinality of S, and therefore M converges to a correct hypothesis for c.

If the target concept class contains finite and infinite concepts, it might be
inevitable to select the initial hypothesis appropriately. To see this, let Cs

be the indexable class that contains the concept c = {a}+ and all singleton
concepts cj = {aj+1} over the learning domain X = {a}+.

Observation 14. Cs /∈ ItvInf .

Proof. Suppose to the contrary that there are an iterative learner M and a
hypothesis space H = (hj)j∈IN such that M ItvInf H–identifies Cs . Since M ,
in particular, learns c, there has to be some locking hypothesis k of M for
c, and thus, for all j ∈ IN, M(k, (aj, +)) = k. (Note that, in the informant
case, the analogue of Observation 1 holds, too.) Next, consider the sequence
of hypotheses (Mn(k, i))n∈IN generated by M when successively processing
the lexicographically ordered informant i = (a, +), (a2,−), (a3,−), . . . of the
concept c0. Since M has to infer c0, there have to be j, z ∈ IN such that hj = c0,
Mz(k, i) = j, and M(j, (am,−)) = j for all m ≥ z. Since k is locking hypothesis
of M for c, z is greater than 0. Now, fix any m ≥ z + 1, set ı̂ = (am, +) �
(a2,−), . . . , (am−1,−) � (am+1,−) � (a,−) � (am+2,−), (am+3,−), . . . and ı̃ =
(am+1, +)�(a2,−), . . . , (am−1,−)�(am,−)�(a,−)�(am+2,−), (am+3,−), . . . By
definition, ı̂ ∈ info(cm−1) and ı̃ ∈ info(cm). By the properties of k and by the
choice of ı̂ and ı̃, one immediately sees that, for all n ∈ IN, Mn(k, ı̂) = Mn(k, ı̃),
and thus M fails to infer at least one of both concepts, a contradiction.

The proof idea presented above can easily be adapted to show that Cpat
3 , the

well-known claas of all pattern languages, does not belong to It vInf . Pattern
languages, as introduced in Angluin [1], are of particular interest, since pattern
language learning algorithms have found interesting applications in different
areas including molecular biology (cf., e.g., Shinohara and Arikawa [24]).

Corollary 15. Cpat /∈ ItvInf .

Furthermore, it is well-known that Cpat ∈ FinInf as well as Cfin /∈ FinInf
(cf., e.g., Zeugmann and Lange [30]). Hence, we may conclude:

3 Let Σ be a non-empty finite alphabet of symbols and let X be an infinite set of
variables such that Σ∩X = ∅. Then, every non-empty word in (Σ∪X)∗ constitutes
a pattern. The language L(p) defined by a pattern p is the set of all strings that can
be obtained by replacing all variables in p by non-empty strings from Σ∗. Thereby,
each occurrence of a variable has to be replaced by the same string. Now, Cpat is
the set of all languages L for which there is a pattern p such that L = L(p). Note
that Cpat contains all singleton languages as well as Σ+.



Theorem 16. FinInf # ItvInf .

Since FinInf ⊂ ItInf (cf. Proposition 2) and It vInf ⊆ ItInf , we obtain the
missing part in the picture for the informant case.

Corollary 17. ItvInf ⊂ ItInf .

Figure 2 summarizes the established relations of the considered learning types
for the informant case. The semantics is analogous to that of Figure 1.

LimInf = ItFInf = It vFInf
6

ItInf
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FinInf ItvInf

Fig. 2. The relations of iterative learning from positive and negative data

5 Conclusions

Gold’s [9] model of concept learning in the limit relies on the assumption that,
at every learning stage, the learner has access to all input data about a target
concept seen so far. Since each practical learning system has to deal with space
limitations, it is unrealistic to assume that an algorithmic learner processes
samples of growing size. Models of incremental learning refine Gold’s [9] model
in that they considerably restrict the accessibility of the input data. Incremen-
tal learning has formally been studied by several authors including Wiehagen
[29], Jantke and Beick [12], Fulk et al. [6], Kinber and Stephan [13], Lange and
Zeugmann [19], Case et al. [4], and Jain et al. [11]. Their studies rigorously
proved that, in general, limitations in the accessibility of the input data result
in a remarkable loss of learning power.

In order to model learning scenarios that are typical for several approaches to
case-based reasoning (cf., e.g., Kolodner [14]), we studied two new models of
incremental learning – called iterative learning from fat information sequences
and iterative learning with arbitrary initial hypotheses. The theoretical results
obtained allow for the following interpretation.

Limitations in the accessibility of the input data are not that relevant, if it is
a priori known that an iterative learner will receive every relevant data item
infinitely often. When learning from positive data is concerned, this a priori
knowledge enables iterative learners to become exactly as powerful as conserv-
ative IIMs which themselves are less powerful than unconstrained learners. In



case that positive and negative data are available, now the learning capabilities
of iterative learners and unconstrained IIMs coincide.

Moreover, the strength of iterative learners heavily depend on their ability
to encode additional information in their intermediate hypotheses. Iterative
learner that do not have this option are extremely weak. Even finite learners,
which are themselves very restrictive, may outperform iterative learners that
are supposed to learn no matter which initial hypothesis is actually chosen.
This results is valid in case that positive data or positive and negative data
are available. However, in the latter case, the situation changes completely if
learning from fat information sequences is considered. If it is a priori known
that an iterative learner will receive every positive and every negative example
infinitely often, there is no need to encode any additional information in its
intermediate hypotheses.

Recently, the problem of how iterative learners are able to cope with noise in
the input data sequence has systematically been investigated (cf. Lange and
Grieser [16]). It turned out that an indexable class can be iteratively identified
from noisy text 4 if and only if it is inclusion-free. Comparing this equivalence
with Theorem 5, one arives at the following insight: On the one hand, iterative
learners which can successfully handle noise in the input data sequence do not
need to encode any additional information in their intermediate hypotheses.
On the other hand, if an iterative learner performs well no matter which initial
hypothesis is actually chosen, it can successfully handle noise in the input data.
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