Text Classification

Characteristics of Machine Learning Problems
= Example representation

= Concept representation

Text Classification Algorithms

= k nearest-neighbor algorithm, Rocchio algorithm
= naive Bayes classifier

= Support Vector Machines

= decision tree and rule learning

Occam's Razor and Overfitting Avoidance

Evaluation of classifiers

= evaluation metrics
= cross-validation
= micro- and macro-averaging
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Type of Training Information

Supervised Learning:

= A teacher” provides the value for the target function for all

training examples (labeled examples)
= concept learning, classification, regression

Semi-supervised Learning:

= Only a subset of the training examples are labeled (labeling

examples is expensive!)
Reinforcement Learning:

= A teacher provides feedback about the values of the target

function chosen by the learner
Unsupervised Learning:
= There is no information except the training examples

= clustering, subgroup discovery, association rule discovery
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Example Availability

® Batch Learning
= The learner is provided with a set of training examples

® |[ncremental Learning / On-line Learning
= There is constant stream of training examples

® Active Learning

= The learner may choose an example and ask the teacher for
the relevant training information
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Document Representation

® The vector space models allows to transform a text into a
document-term table

® |In the simplest case

= Rows:
® training documents
= Columns:
® words in the training documents
= More complex representation possible

® Most machine learning and data mining algorithms need
this type of representation

= they can now be applied to, e.g., text classification
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Example Representation

e Attribute-Value data:

= Each example is described with values for a fixed number of
attributes
* Nominal Attributes:
m store an unordered list of symbols (e.g., color)
® Numeric Attributes:
m store a number (e.qg., income)
® Other Types:

m hierarchical attributes
m set-valued attributes

» the data corresponds to a single relation (spreadsheed)
® Multi-Relational data:

= The relevant information is distributed over multiple relations
® e.g., contai ns_word(Page, Wrd), |inked to(Page, Page), ...
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Bag-of-Words vs. Set-of Words

e Set-of-Words: boolean features

each dimension encodes wether the feature appears in
the document or not

®* Bag-of-words: numeric features
each dimension encodes how often the feature occurs
in the document (possibly normalized)

®* \Which one is preferable depends on the task and the
classifier
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Concept Representation

® Most Learners generalize the training examples into an

explicit representation
(called a model, function, hypothesis, concept...)

= mathematical functions (e.g., polynomial of 3" degree)
» |ogical formulas (e.g., propositional IF-THEN rules)

= decision trees

= neural networks

® | azy Learning
= do not compute an explicit model
= generalize ,on demand"” for an example

= e.g., hearest neighbor classification
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A Selection of Learning Techniques

Decision and Regression Trees
Classification Rules
Association Rules

Inductive Logic Programming
Neural Networks

Support Vector Machines
Statistical Modeling

Clustering Techniques
Case-Based Reasoning
Genetic Algorithms
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Induction of Classifiers

The most ,popular® learning problem:
® Task:

= |earn a model that predicts the outcome of a dependent
variable for a given instance

® EXxperience:

= experience is given in the form of a data base of examples

= an example describes a single previous observation

® jnstance: a set of measurements that characterize a situation
® [abel: the outcome that was observed in this siutation

® Performance Measure:

= compare the predicted outcome to the observed outcome

= estimate the probability of predicting the right outcome in a
new situation
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Text Classification: Examples

Text Categorization: Assign labels to each document

e | abels are most often topics such as Yahoo-categories
m e.g., "finance,"” "sports,"” "news::world::asia::business”
e |abels may be genres

= e.g., "editorials" "

mnn

movie-reviews" "news”
e | abels may be opinion
= e.g., like”, “hate”, “neutral”
e |abels may be binary concepts
= e.g., "Interesting-to-me" : "not-interesting-to-me”
= e.g., ‘spam” : “not-spam”
= e.g., ‘contains adult language” :"doesn’t’

After Manning, Stanford CS276A 2004
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Induction of Classifiers

An inductive learning
algorithm searches in a given
family of hypotheses (e.g.,
decision trees, neural
networks) for a member that
optimizes given quality
criteria (e.g., estimated
predictive accuracy or
misclassification costs).

Inductive Machine Learning
algorithms induce a
classifier from labeled
training examples. The
classifier generalizes the
training examples, 1.e. it is
able to assign labels to new

cases. - — = — —

Training

Example

|
|
|
| Classiﬁcation».
|
|
|
|
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Induction of Classifiers

® Typical Characteristics

attribute-value representation (single relation)

batch learning from off-line data (data are available from
external sources)

supervised learning (examples are pre-classified)

numerous learning algorithms for practically all concept
representations (decision trees, rules, neural networks, SVMs,
statistical models,...)

often greedy algorithms (fast processing of large datasets)

evaluation by estimating predictive accuracy (on a portion of
the available data)
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Nearest Neighbor Classifier

K-Nearest Neighbor
algorithms classify a new
example by comparing it to all
previously seen examples.
The classifications of the k&

The training examples
are used for
« providing a library of
sample cases
» re-scaling the similarity

most similar previous cases Training function to maximize
are used for predicting the performance
classification of the current v
example. |

New Example

iClassiﬁcation'
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kNN Classifier

® To learn from a training set:
= Store the training set

® To classify a new document :

= Compute similarity of document vector Q with all available
document vectors D (e.g., using cosine similarity)

= Select the k nearest neighbors (hence the name k-NN)

= Combine their classifications to a new prediction (e.g.,
majority, weighted majority,...)

e "l azy" learning or local learning
= because no global model is built

= generalization only happens when it is needed
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Rocchio Classifier

® based on ideas for Rocchio Relevance Feedback

® compute a prototype vector for each class
= average the document vectors for each class

® classify a new document according to distance to prototype
vectors instead of documents

® assumption:

= documents that belong
to the same class
are close to each other
(form one cluster)
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Probabilistic Document Model

A document is a sequence of words (tokens, terms, features...)

* D=(t,,1,,....t)p) Where t =w, €W
= Assume that a document D has been generated by
repeatedly selecting a word w;; at random

The probability that a word occurs in a document is
dependent on the document's class c

= pltfc)#p(1)

Independence Assumption:

The occurrence of a word in a class is independent of its

context
= p(t]t; c)=p(tfc)
Goal of Classification:

= Determine the probability p(c|D) that document D belongs to

class c
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Simple Naive Bayes Classifier for Text
(Mitchell 1997)

e Bayes Theorem: p(C|D)=P<D|(CZ>)l)?(C)
p
® p(D) is only for normalization: p(D)=Z »(Dle) ple)

= can be omitted if we only need a ranking
of the class and not a probability estimate

* Bayes Classifier: c=argmax, p(D|c)pl(c)
= predict class with largest posterior probability

e a document is a sequence of n words P(Dlc)=p(t,.1;,....1]c)

®* Apply Independence Assumption: D]
« p(t|c) is the probability with which the 7 <D|C)=H p(tc)
word 7;=w; occurs in documents of class ¢
®* Nalve Bayes Classifier
= putting things together:

D]

c=argmax, || p(t]e)ple)
i=1
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Estimating Probabilities (1)

e Estimate for prior class probability p(c)
= fraction of documents that are of class c

* Word probabilities can be estimated from data

= p(tj|c) denotes probability that term #,=w, €W occurs at a
certain position in the document

® assumption: probability of occurrence is independent of
position in text

= estimated from fraction of document positions in each
class on which the term occurs

e put all documents of class ¢ into a single (virtual) document
e compute the frequencies of the words in this document
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Estimating Probabilities (2)

e Straight-forward approach:

= estimate probabilities from the frequencies p(/=wlc)= Z -
in the training set w.e

= word w occurs n(D,w) times in documentD », =) (D
® Problem:

= test documents may contain new words

= those will be have estimated probabilities O

= assigned probability O for all classes
¢ Smoothing of probabilities:

= basic idea: assume a prior distribution on
word probabilities 4 no+1

i t—wc
= e.g., Laplace correction L Z (n, +1) Z n, +W|

wew

wew wew
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Full Multinomial Model

Two basic shortcomings of the simple Naive Bayes:

® |[f we consider the document as a ,bag of words”®, many
sequences correspond to the same bag of words

= Dpetter estimate: | D
Dj|c)= wic
Ay({n(D’W)WED vg}p el
n _ n! 21 1terates over vocabulary

P T B TR R PR R A : %
NP TS R k iterates over document positions

i=‘1h..‘.|hD|
® we assumed that all documents have the same length

= a better model will also include the document length /= |D|
conditional on the class

| D]
{n<D’W)w€D

= p(/=|D||c)may be hard to estimate

p(Dlc)=p(I=|D]|c)

[T p(wle)

weD
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Binary Model

® a document is represented as a set of words

® model does not take into account document length or word
frequencies

e aka Multi-variate Bernoulli Model

® in this case p(w|c) indicates the probability that a document
In class ¢ will mention term w at least once.

e estimated by fraction of documents in each class in which the
term occurs

® the probability of seeing document D in class cis

® the product of probabilities for all words occurring in the
document

® times the product of the counter-probabilities of the words that
do not occur in the document

p(DIe)= ] pitlo) ] - pelen= | 24 - piele)

1D AW.0D np 1= p(t|c) ow

to account fortd D

21 © J. Furnkranz



Numerics of Naive Bayes Models

® Multiply together a large number of small probabilities,
= Result: extremely small probabilities as answers.
= Solution: store all numbers as logarithms

| D| | D|
¢ = argmax,plc Hp (z.]c) = arg max |log(p —I—Zlog
= to get back to the probabmtles \——-\ﬁ——'
[
D C
piel Z e 1+ZC N

® Class which comes out at the top wins by a huge margin

= Sanitizing scores using likelihood ratio LR
¢ Also called the logit function

= 4
_ILR(D), LR(D):p(c_ 1| D)
I+ e p(C=-1|D)
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Rainbow (McCallum)

® advanced implementation of a Naive Bayes text classifier
with numerous options

= http://www.cs.umass.edu/~mccallum/bow/rainbow/
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http://www.cs.umass.edu/~mccallum/bow/rainbow/

Performance analysis

® Multinomial naive Bayes classifier generally outperforms
the binary variant

= put the binary model is better with smaller vocabulary sizes

e K-NN may outperform Nalve Bayes
= Naive Bayes is faster and more compact
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Graphs taken from Andrew McCallum and Kamal Nigam:A Comparison of Event Models for
Naive Bayes Text Classification. AAAI-98 Workshop on "Learning for Text Categorization".

http://www.cs.umass.edu/~mccallum/papers/multinomial-aaai98w.ps
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Figure 1: A comparison of event models for different
vocabulary sizes on the Yahoo data set. Note that the
multi-variate Bernoulli performs best with a small vo-
cabulary and that the multinomial performs best with
a larger vocabulary., The multinomial achieves higher

aceuracy overall.
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Figure 2: A comparison of event models for different
vocabulary sizes on the Industry Sector data set. Note
the same trends as seen in the previous figure.
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A comparison of event models for different vo-

sizes on the Newsgroups data set. Here, both

data sets perform best at the full vocabulary, but mmalti-
nomial achieves higher accuracy.
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A comparison of event models for different

vocabularv sizes on the WebKE data set. Here the two
event models achieve nearly equivalent accuracies, but
the multi-variate Bernonlli achieves this with a smaller
vocabulary.
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NB: Decision boundaries

® Bayesian classier partitions the multidimensional term
space into regions

= Within each region, the probability of one class is higher than
others

= On the boundaries, the probability of two or more classes are
exactly equal

e 2-class NB has a linear decision boundary

= easy to see in the logarithmic representation of the
multinomial version

| D
{n(D’W)weD}

o,z Weight vector: weight of w is log(p(wc))
d document vector consisting of term frequencies n(D,w)

— Z n(D,w)log p(w|c)=b+d-o,,

weD

log(p(D]|c))=log
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Fitting a linear decision boundary

® Probabilistic approach

= fixes the policy that ¢ ,;(w) (W-th component of the linear

discriminant) depends only on the statistics of term w in the
COrpus.

= Therefore it cannot pick from the entire set of possible linear
discriminants

® Discriminative approach

= try to find a weight vector a so that the discrimination between
the two classes is optimal

= statistical approaches:
® perceptrons (neural networks with a single layer)
® |ogistic regression

= most common approach in text categorization
— support vector machines
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Support vector machines: Basic |dea

® Decision Boundary «-d+56=0

= Hyperplane that is close to many training data points has a
greater chance of misclassifying test instances

= A hyperplane which passes through a “no-man's land”, has
lower chances of misclassifications

® Finding an optimal boundary
= Goal: Find an ¢ ¢,, which maximizes the distance of any
training point from the hyperplane
= the closest points to the decision boundary are called

e they will be put on the planes «-d g, +b=*1
= their distance 1/||«|| to the hyperplane (the margin) should
be maximized |

1
. Minimize —aa (=—=|la|P
= thus: 5 ( 2|| 17) _[+1 ife=r

subject to c.(0.d+t+b)210i=1,...n =1 ife=-
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lllustration of the
SVM Optimization Problem
A

' support
odtb=-1 xd,+b=0 ) VGIC)FOI”S
xd +b=1
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SVMs: non separable classes

® Classes in the training data not always separable.

e Introduce fudge variables ¢,
Minimi la a+C)\ ¢
inimize ~8 Z l.
subject to c.(0.d+b)21-¢. 0i=1,..,n.
and ¢.20 Ji=1,........ n
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Dual Representation and Kernel Trick

® The optimization problem can be formulated in a different
way (the so-called dual representation)

dot product of
Maximize z A - %ZJ VA e (dod) document vectors
subject to z cA. =0
and 1; . <C Ji=1,........ n

® regular SVMs can only find a linear decision boundary

® Non-linearity can be achieved by replacing the dot-
product <d,d> with a function k(d,d))

= kis also called a kernel
= note relation to nearest neighbor algorithms!
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Performance

e Comparison with other classifiers

= Amongst most accurate classifier for text

= Better accuracy than naive Bayes and decision tree
classifier,

e Different Kernels

s Linear SVMs suffice for most text classification tasks

= standard text classification tasks have classes almost
separable using a hyperplane in feature space

® becaue of high dimensionality of the feature space
e Computational Efficiency
= requires to solve a quadratic optimization problem.
e \Working set: refine a few A at a time holding the others fixed.
= overall quadratic run-time
® can be reduced by clever selection of the working set
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Rule-based Classifiers

® A classifier basically is a function that computes the output
(the class) from the input (the attribute values)

® Rule learning tries to represent this function in the form
of (a set of) IF-THEN rules

IF (att. = val ) AND(attj = vanJ) THEN cl ass,

e Coverage

= Arule is said to cover an example if the example satisfies
the conditions of the rule.

® Correctness

= completeness: Each example should be covered by (at
least) one rule

= consistency. For each example, the predicted class should
be identical to the true class.
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Separate-and-Conquer Strategy

® | earn rules for each class separately
= use the biggest class as the default class

® To learn rules for one class:

= Add rules to a theory until all examples of a class are
covered (completeness)

= remove the covered examples

® To learn a single rule:

= Add conditions to the rule that
® Cover as many examples p from the class as possible
® Exclude as many examples nfrom other classes as possible

® E.g., maximize —£ or better the Laplace estimate _ptl)
(p+n) (p+n+2)
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Set-valued Features

® Use binary conditions of the form 7. €D

e Efficient representation of binary conditions by listing all

words that occur
(vector-based representation also lists those that do not occur)

® Several, separate set-valued features are possible (thus
it is an extension of the vector-space model)

= this allows conditions of the form, e.g., ¢,Etitle(D)
e Useful for tasks with

= more than one text-based features
= combining regular features with text-based features
= e.g. seminar announcements, classifying e-mails
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Occam's Razor

Entities should not be multiplied beyond necessity.
William of Ockham (1285 - 1349)

® Machine Learning Interpretation:

= Among theories of (approximately) equal quality on the
training data, simpler theories have a better chance to be
more accurate on the test data

= |tis desirable to find a trade-off between accuracy and
complexity of a model

¢ (Debatable) Probabilistic Justification:

= There are more complex theories than simple theories.

Thus a simple theory is less likely to explain the observed
phenomena by chance.
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Overfitting

¢ Overfitting
= Given
® a fairly general model class (e.g., rules)

® enough degrees of freedom (e.g., no length restriction)
= you can always find a model that explains the data

® Such concepts do not generalize well!
¢ Particularly bad for noisy data

= Data often contain errors due to
® inconsistent classification
® measurement errors
® missing values
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Overfitting Avoidance

Choose a simpler model class
= restrict number of conditions in a rule

= demand minimum coverage for a rule

Pruning

= simplify a theory after it has been learned
Reduced Error Pruning

Reserve part of the data for validation
Learn a rule set

Simplify rule set by deleting rules and conditions as long
as this does not decrease accuracy on the validation set

Incremental REP
= Do this after each individual rule is learned
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RIPPER (Cohen, 1995)

Efficient algorithm for learning classification rules

= covering algorithm (aka separate-and-conquer)
= incremental pruning of rules (I-REP)
= set-valued features support text mining
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The Compress Algorithm

e Simple, elegant algorithm capturing a Minimum-
Description Length Idea:
1. Put all documents of one class into a separate directory
2. conpr ess/ zi p each directory into file <cl ass |1 >. zi p
m To classify a new document:
1. Tentatively assign the document to each class (by adding it
to the respective directories)
2. compress/zip each directory into file <cl ass 1 > new. zi p
3. assign document to the class for which the distance
measure | <cl ass_i>. zi p|-| <cl ass_i > new. zi p| IS
minimal
m Benedetto et al. (Phys. Rev. Letters 2002) report results for
m |anguage recognition (100% accuracy for 10 EC languages)
m authorship determination (93.3% for 11 Italian authors)
m document clustering (similarity tree of European languages)
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Evaluation of Learned Models

¢ Validation through experts

= a domain experts evaluates the plausibility of a learned model
+ subjective, time-intensive, costly
- but often the only option (e.g., clustering)
® Validation on data
= evaluate the accuracy of the model on a separate dataset
drawn from the same distribution as the training data

- labeled data are scarce, could be better used for training

+ fast and simple, off-line, no domain knowledge needed, methods
for re-using training data exist (e.g., cross-validation)

® On-line Validation

= test the learned model in a fielded application

+ gives the best estimate for the overall utility
- bad models may be costly
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Out-of-Sample Testing

® Performance cannot be measured on training data
= overfitting!

® Reserve a portion of the available data for testing

®* Problem:

= waste of data
= |abelling may be expensive
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Cross-Validation

¢ split dataset into n (usually 10) partitions

¢ for every partition p

= use other n-1 partitions for learning and partition p for
testing

® average the results

[ ] Training
== Test
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Evaluation

® |[n Machine Learning:
Accuracy = percentage of correctly classified examples

® Confusion Matrix:

Classified | Classified
as + as -
|S + a C atc
|S- o d b+d
atb c+d n

_(a+d)

accuracy —

44
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recall =

precision =

a

(a+c)

a

(a+Db)
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Evaluation for Multi-Class Problems

¢ for multi-class problems, the confusion matrix has many

more entries: classified as

true class

® accuracy is defined analogously to the two-class case:
Ny 4TNg pgtNhe cTHy

accuracy —
n
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Recall and Precision for
Multi-Class Problems

For multi-class text classification tasks, recall and
precision can be defined for each category separately

Recall of Class X:

= How many documents of class X have been recognized
as class X?

Precision of Class X:
= How many of our predictions for class X were correct?
Predictions for Class X

can be summarized in classified | elassified

a 2x2 table

= 7 B:

X=A4,X=\B,C,D)|
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Micro- and Macro-Averaging

® To obtain a single overall estimate for recall and precision

= we have to combine the estimates for the individual classes
® Two strategies:
= Micro-Averaging:
® add up the 2x2 contingency tables for each class
® compute recall and precision from the summary table
= Macro-Averaging:
® compute recall and precision for each contingency table
® average the recall and precision estimates

® Basic difference:

= Micro-Averaging prefers large classes
® they dominate the sums
= Macro-Averaging gives equal weight to each class
® r/p on smaller classes counts as much as on larger classes
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True

Macro-Averaging

Predicted Predicted Predicted

Cl| €t C2| €2 C3| &3

Cl |15 5|20 C2 |20 10| 30 C3 |45 5 | 80

True
True

€t 10| 70| 80 €2 | 12| 58| 70 €3 | 5 |45| 350

32 50 | 50

25 | 15

20 45

prec(c])=£=0.600 prec(c2)====0.625 prec(c3)=5—=0.900

25 \ 32 / /

prec(cl)+ prec(c2)+ prec(c3)
3

=0.708

avg. prec—

recl(c])=1—5=0.750 recl(02)=&=0.667 recl(c3)=4—5=0.900

recl(cl)+ recl3( c2)+recl (c3) —0772
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Predicted

Cl| &4
9|Cl1 |15 5 |20
~|€1 | 10| 70 | 80

25 | 75 | 100

\

80

avg. prec=——=0.748

107

avg.recl = 80 _ 0.800

100

Micro-Averaging

Predicted
C2| &2
® c2 |20 10 | 30
~le2 | 12 | 58 | 70
32 | 68 | 100

True

Predicted
&5 | ==
C3 |45 5 | 50
€3 | 5 |45]| 50
50 | 50 | 100

o

2
Prejicted
C | €
o C 80 | 20 | 100
= | € | 27 | 173|200
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Micro-Averged estimates
are in this case higher
because the performance
on the largest class (C3)

was best
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Benchmark Datasets

Publicly available Benchmark Datasets facilitate standardized
evaluation and comparisons to previous work

® Reuters-21578
* 10700 labeled documents
* 10% documents with multiple class labels

e OHSUMED
* 348566 abstracts from medical journals

e 20 newsgroups
* 18800 labeled USENET postings
* 20 leaf classes, 5 root level classes
* more recent 19 newsgroups
e WebKB
* 8300 documents in 7 academic categories.

® |[ndustry sectors
* 10000 home pages of companies from 105 industry sectors
* Shallow hierarchies of sector names
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Sample Results

e Comparison of Linear SVM, Decision Tree, (Binary) Naive
Bayes, and a version of nearest neighbor

0,8 - ﬁ
c
.9 0!6 |
g Linear SVM
) |
o 0.4 —— Decision Tree

0,2 - Naive Bayes

Find Similar
0 | | | |
0 0,2 0,4 0,6 0,8 1
Recall

Graph taken from S. Dumais, LOC talk, 1999.
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Accuracy s

20

10

A MaiveBayves ' '
OMaxEnt WebKE 20MG DiviozRec

CILSYM Data set

Comparison of accuracy across three classifiers: Naive Bayes, Maximum Entropy and Linear
SVM, using three data sets: 20 newsgroups, the Recreation sub-tree of the Open Directory, and
University Web pages from WebKB.
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Sample Results

® Results of five Text Classification Methods on the
REUTERS-21578 benchmark

Table 1: Performance summary of classifiers

method miR miP miF1l maF1 error

SVM 8120  .9137 8099 5251 00365
KNN 8339 .8R07  .8567 .5242 .00385
LLSF 8507 .848&89 8498 5008 00414
NNet 7842 8785 K287  .3765 00447
NB 7688  .8245 7956 3886  .00544

miP = micro-avg prec.;
malF1l = macro-avg F1.

miR = micro-avg recall;
miF1l = micro-avg F1;

Source:Yang & Liu, SIGIR 1999
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