### Clustering

- Given:
  - a set of documents
  - no labels (→ unsupervised learning)
- Find:
  - a grouping of the examples into meaningful *clusters*
  - so that we have a high
    - intra-class similarity:
      - similarity between objects in same cluster
    - inter-class dissimilarity:
      - dissimilarity between objects in different clusters

### **Some Applications of Clustering**

- Query disambiguation
  - Eg: Query "Star" retrieves documents about astronomy, plants, animals, movies etc.
  - Solution:
    - Clustering document responses to queries
    - e.g., http://www.vivisimo.com/
- Manual construction of topic hierarchies and taxonomies
  - Solution:
    - Preliminary clustering of large samples of web documents.
- Speeding up similarity search
  - Solution:
    - Restrict the search for documents similar to a query to most representative cluster(s).

### k-means Clustering

- Based on EM (Expectation Maximization) algorithm
- Efficiently find *k* clusters:
  - 1. Randomly select *k* points as cluster centers
  - 2. E-Step: Assign each example to the nearest cluster center
  - 3. **M-Step:** Compute new cluster centers as the average of all points assigned to the cluster
  - 4. Goto 2. unless no improvement

### k-means: Example



• find the best 2 clusters

4



Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (234567)(0189101112131415)



Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: ( 2 3 4 5 6 7 ) ( 0 1 8 9 10 11 12 13 14 15 ) Cluster Centers: (6.0 -0.33334) (-3.6 0.2) Average Distance: 3.6928



Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (234567)(0189101112131415) Cluster Centers: (6.0-0.33334)(-3.60.2) Average Distance: 3.6928

Clustering: (1234567)(089101112131415)



Clustering: (467)(0123589101112131415) Cluster Centers: (7.0-2.0)(-1.615380.46153) Average Distance: 4.35887

Clustering: (234567)(0189101112131415) Cluster Centers: (6.0 -0.33334) (-3.6 0.2) Average Distance: 3.6928 У Clustering: (1234567)(089101112131415) Cluster Centers: (5.57143 0.0) (-4.33334 0.0) 10 2 Average Distance: 3.49115 11 9 1 3 8 12 0 4 0 15 13 5 14 6

х

0







### **Hierarchical Clustering**

- Produces a tree hierarchy of clusters
  - root: all examples
  - *leaves:* single examples
  - interior nodes: subsets of examples
- Two approaches
  - Top-down:
    - start with maximal cluster (all examples)
    - successively split existing clusters
  - Bottom-up:
    - start with minimal clusters (single examples)
    - successively merge existing clusters

### **Bottom-Up Agglomerative Clustering**

- 1. Start with one cluster for each example:  $C = \{C_i\} = \{\{o_i\} | o_i \in O\}$
- 2. compute distance  $d(C_i, C_j)$  between all pairs of Cluster  $C_i, C_j$
- 3. Join clusters  $C_i$  und  $C_j$  with minimum distance into a new cluster  $C_p$ ; make  $C_p$  the parent node of  $C_i$  and  $C_j$ :

 $C_p = \{C_i, C_j\}$  $C = (C \setminus \{C_i, C_j\}) \cup \{C_p\}$ 

- 4. Compute distances between  $C_p$  and other clusteres in C
- 5. If |C| > 1, goto 3.

### Similarity between Clusters

ways of computing a similarity/distance between clusters  $C_1$  and  $C_2$ 

- Single-link:
  - minimum distance between two elements of  $C_1$  and  $C_2$  $d(C_1, C_2) = \min\{ d(x, y) | x \in C_1, y \in C_2 \}$
- Complete-link:
  - maximum distance between two elements of  $C_1$  and  $C_2$  $d(C_1, C_2) = \max\{ d(x, y) | x \in C_1, y \in C_2 \}$
- Average-link:
  - average distance between two elements of  $C_1$  and  $C_2$  $d(C_1, C_2) = \sum \{ d(x, y) | x \in C_1, y \in C_2 \} / |C_1| / |C_2|$

Bottom-up clustering (average-link):





### Learning from Unlabelled Data

- Supervised learning
  - Assign each example to a group (*class*)
  - Given: Training set with class labels
- Unsupervised learning
  - Find groups of examples that "belong together"
  - No class information is given in the training set
- On the Web
  - many tasks are supervised (require labeled examples)
  - there are many unlabeled documents
  - but labeling them is expensive
- $\rightarrow$  semi-supervised learning
  - augment unlabeled data with a (small) set of labeled data

## **Semi-Supervised Learning**

• Goal:

Reduce the amount of labelled data needed by letting classifiers make use of additional unlabelled data

### • Some Techniques:

#### Active Learning:

• Classifier chooses examples that should be labelled

#### Self-Training:

• Classifier labels its own examples

#### Co-Training:

- Two classifier label each others examples
- Multi-View Learning: Special case where the classifiers are identical, but trained on different features sets



- The Learner decides which examples the teacher should label
  - 1. Train a classifier on the labelled training set
  - 2. Let the learner predict for each examlpe in the unlabelled set
  - 3. Choose the *n* examples where it has the *least* confidence in its predictions (is most uncertain about the classification)
  - 4. Let the teacher label these examples
  - 5. Goto 1. unless no improvement
- Properties:
  - Needs classifiers with (good) confidence estimates in its predictions
  - Reduces work-load for teacher
  - may oversample certain classes

### **Results Uncertainty Sampling**

- data: AP newswire articles
- results show that uncertainty sampling (999 examples) is more efficient than random selection (10,000 examples)

| 25         | : 2<br>: | 3 + 996 uncertainty  |         |                |         | 3 + 9997 random |         |              |         |
|------------|----------|----------------------|---------|----------------|---------|-----------------|---------|--------------|---------|
| 202.04     | Reject   | C4.5 ( <i>LR</i> =5) |         | prob. $(LR=1)$ |         | C4.5 (LR=1)     |         | prob. (LR=1) |         |
| Category   | All      | Average              | SD      | Average        | SD      | Average         | SD      | Average      | SD      |
| tickertalk | 0.077    | 0.077                | (0.000) | 0.078          | (0.001) | 0.078           | (0.003) | 0.109        | (0.044) |
| boxoffice  | 0.081    | 0.047                | (0.002) | 0.048          | (0.008) | 0.061           | (0.018) | 0.077        | (0.021) |
| bonds      | 0.115    | 0.064                | (0.002) | 0.069          | (0.006) | 0.076           | (0.020) | 0.145        | (0.069) |
| nielsens   | 0.167    | 0.094                | (0.011) | 0.062          | (0.005) | 0.107           | (0.006) | 0.100        | (0.026) |
| burma      | 0.179    | 0.090                | (0.008) | 0.098          | (0.006) | 0.115           | (0.040) | 0.193        | (0.046) |
| dukakis    | 0.206    | 0.197                | (0.014) | 0.208          | (0.020) | 0.210           | (0.039) | 0.235        | (0.036) |
| ireland    | 0.225    | 0.188                | (0.005) | 0.189          | (0.011) | 0.220           | (0.024) | 0.228        | (0.016) |
| quayle     | 0.256    | 0.161                | (0.009) | 0.222          | (0.012) | 0.143           | (0.010) | 0.263        | (0.035) |
| budget     | 0.379    | 0.336                | (0.010) | 0.361          | (0.009) | 0.350           | (0.014) | 0.392        | (0.016) |
| hostages   | 0.439    | 0.415                | (0.024) | 0.360          | (0.016) | 0.466           | (0.039) | 0.431        | (0.018) |

Table 2: Average and standard deviation of percentage error of various classifiers. *Reject all* is a classifier that deems all instances non-members of the category. Two types of training set were used: an uncertainty sample of size 999 and a random sample of size 10,000. Two types of classifier are built from each training set: a decision rule classifier trained using C4.5, and the probabilistic classifier described in the text. When C4.5 was used on the uncertainty sample, a loss ratio of 5 was used; for the random sample a loss ratio of 1 was used (original C4.5). Figures are averages over 20 runs for classifiers built from random samples using the probabilistic method, and over 10 runs for the other three combinations.



- Using EM (Expectation Maximization) algorithm
  - 1. Train an initial classifier on the labeled documents
  - 2. E-Step: Assign class labels to the unlabeled documents
  - 3. **M-Step:** Train a classifier from all examples
  - 4. Goto 2. unless no significant changes
- Properties:
  - Works well for classifiers that use all of the features (e.g., naïve Bayes)
    - Unlabelled data help to estimate the word probabilities
  - Does not work well for classifiers that use only a few features (e.g., decision trees, rule learners
    - Subsequent iterations only reinforce the use of the same features as in the concept constructed in step 1.

### Self-Training: Performance

# unlabelled documents improve performance

# the more unlabelled documents the better





- Using two classifier to label each other's data
  - 1. Train Classifiers 1 and 2 on labelled data
  - 2. Let Classifier *i* pick the n examples where it has the highest confidence in its predictions
  - 3. Add the examples labelled by classifier 2 to the training set of classifier 1 and vice versa
  - 4. Goto 2. as long as there is some improvement
- Properties:
  - Works well if the two classifiers
    - provide (good) confidence estimates in their own predictions
    - are diverse (tend to be correct on different regions of the example space)
  - Could be generalized to more than 2 classifiers

### **Multi-View Learning**

- To obtain diverse and independent classifiers for cotraining, use two different feature sets (two views)
  - $T_D$  = bag of words in document D
  - $T_A$  = bag of anchor texts from HREF tags that target D
  - alternatively, two random feature subsets could be used
- Co-training with multiple views reduces the error of each individual view (classifier)
- Further reduction can be obtained by combining the predictions of the two classifiers
  - e.g., pick a class c by maximizing  $p(c/T_D) p(c/T_A)$ (assumes independence of dA and dB)
- Multi-View Learning is still a hot research topic

### **Results Multi-View Learning**

