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Abstract: The World-Wide Web provides every internet citizen with access to an 
abundance of information, but it becomes increasingly difficult to identify the 
relevant pieces of information. Research in web mining tries to address this 
problem by applying techniques from data mining and machine learning to 
Web data and documents. This chapter provides a brief overview of web 
mining techniques and research areas, most notably hypertext classification, 
wrapper induction, recommender systems and web usage mining.  
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1. INTRODUCTION 

The advent of the World-Wide Web (WWW) (Berners-Lee, Cailliau, 
Loutonen, Nielsen & Secret, 1994) has overwhelmed home computer users 
with an enormous flood of information. To almost any topic one can think 
of, one can find pieces of information that are made available by other 
internet citizens, ranging from individual users that post an inventory of their 
record collection, to major companies that do business over the Web. 

To be able to cope with the abundance of available information, users of 
the Web need assistance of intelligent software agents (often called softbots) 
for finding, sorting, and filtering the available information (Etzioni, 1996; 
Kozierok & Maes, 1993). Beyond search engines, which are already 
commonly used, research concentrates on the development of agents that are 
general, high-level interfaces to the Web (Etzioni & Weld, 1994; Fürnkranz, 
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Holzbaur & Temel, 2002), programs for filtering and sorting e-mail 
messages (Maes, 1994; Payne & Edwards, 1997) or Usenet netnews articles 
(Lashkari, Metral & Maes, 1994; Sheth & Maes, 1993; Lang, 1995; Mock, 
1996), recommender systems for suggesting Web sites (Armstrong, Freitag, 
Joachims & Mitchell, 1995; Pazzani, Muramatsu & Billsus, 1996; 
Balabanovic,´ & Shoham, 1995) or products (Doorenbos, Etzioni & Weld, 
1997; Burke, Hammond & Young, 1996), automated answering systems 
(Burke, Hammond, Kulyukin, Lytinen, Tomuro & Schoenberg, 1997; 
Scheffer, 2004) and many more. 

Many of these systems are based on machine learning and data mining 
techniques. Just as data mining aims at discovering valuable information that 
is hidden in conventional databases, the emerging field of web mining aims 
at finding and extracting relevant information that is hidden in Web-related 
data, in particular in (hyper-)text documents published on the Web. Like data 
mining, web mining is a multi-disciplinary effort that draws techniques from 
fields like information retrieval, statistics, machine learning, natural 
language processing, and others. 

Web mining is commonly divided into the following three sub-areas:  
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An excellent textbook for the field is (Chakrabarti, 2002), an earlier 
effort (Chang, Healy, McHugh & Wang, 2001). Brief surveys can be found 
in (Chakrabarti, 2000; Kosala & Blockeel, 2000). For surveys of content 
mining, we refer to (Sebastiani, 2002), while a survey of usage mining can 
be found in (Srivastava, Cooley, Deshpande & Tan, 2000). We are not aware 
of a previous survey on structure mining. 

In this chapter, we will organize the material somewhat differently. We 
start with a brief introduction on the Web, in particular on its unique 
properties as a graph (Section 2), and subsequently discuss how these 
properties are exploited for improved retrieval performance in search 
engines (Section 3). After a brief recapitulation of text classification 
(Section 4), we discuss approaches that attempt to use the link structure of 
the Web for improving hypertext classification (Section 5). Subsequently, 
we summarize important research in the areas information extraction and 
wrapper induction (Section 6), and briefly discuss the web mining 
opportunities of the Semantic Web (Section 7). Finally, we present research 
in web usage mining (Section 8) and recommender systems (Section 9). 
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2. GRAPH PROPERTIES OF THE WEB 

While conventional information retrieval focuses primarily on 
information that is provided by the text of Web documents, the Web 
provides additional information through the way in which different 
documents are connected to each other via hyperlinks. The Web may be 
viewed as a (directed) graph with documents as nodes and hyperlinks as 
edges. 

Several authors have tried to analyze the properties of this graph. The 
most comprehensive study is due to (Broder, Kumar, Maghoul, Raghavan, 
Rajagopalan, Stata et al., 2000). They used data from an AltaVista crawl 
(May 1999) with 203 million URLs and 1466 million links, and stored the 
underlying graph structure in a connectivity server (Bharat, Broder, 
Henzinger, Kumar & Venkatasubramanian, 1998), which implements an 
efficient document indexing technique that allows fast access to both 
outgoing and incoming hyperlinks of a page. The entire graph fitted in 9.5 
GB of storage, and a breadth-first search that reached 100M nodes took only 
about 4 minutes. Their main result is an analysis of the structure of the web 
graph, which, according to them, looks like giant bow tie, with a strongly 
connected core component (SCC) of 56 million pages in the middle, and two 
components with 44 million pages each on the sides, one containing pages 
from which the SCC can be reached (the IN set), and the other containing 
pages that can be reached from the SCC (the OUT set). In addition, there are 
“tubes” that allow to reach the OUT set from the IN set without passing 
through the SCC, and many “tendrils”, that lead out of the IN set or into the 
OUT set without connecting to other components. Finally, there are also 
several smaller components that cannot be reached from any point in this 
structure. Broder et al. (2000) also sketch a diagram of this structure, which 
is somewhat deceptive because the prominent role of the IN, OUT, and SCC 
sets is based on size only, and there are other structures with a similar shape, 
but of somewhat smaller size (e.g., the tubes may contain other strongly 
connected components that differ from the SCC only in size). The main 
result is that there are several disjoint components. In fact, the probability 
that a path between two randomly selected pages exists is only about 0.24. 

Based on the analysis of this structure, Broder et al. (2000) estimated that 
the diameter (i.e., the maximum of the lengths of the shortest paths between 
two nodes) of the SCC is larger than 27, that the diameter of the entire graph 
is larger than 500, and that the average length of such a path is about 16. 
This is, of course only for cases where a path between two pages exists. 
These results correct earlier estimates obtained by Albert, Jeong, and 
Barabási (1999) who estimated the average length at about 19. Their analysis 
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was based on a probabilistic argument using estimates for the in-degrees and 
out-degrees, thereby ignoring the possibility of disjoint components. 

Albert et al. (1999) base their analysis on the observation that the in-
degrees (number of incoming links) and out-degrees (number of outgoing 
links) follow a power law distribution P(d) � d-�. They estimated values of 
γ

in
=2.45 and γ

out
=2.1 for the in-degrees and out-degrees respectively. They 

also note that these power law distributions imply a much higher probability 
of encountering documents with large in- or out-degrees than would be the 
case for random networks or random graphs. The power-law results have 
been confirmed by Broder et al. (2000) who also observed a power law 
distribution for the sizes of strongly connected components in the web graph. 
Faloutsos, Faloutsos & Faloutsos (1999) observed a Zipf distribution P(d) � 
r(d)-� for the out-degree of nodes (r(d) is the rank of the degree in a sorted 
list of out-degree values). Similarly, a model of the behavior of web surfers 
was shown to follow a Zipf distribution (Levene, Borges & Louizou, 2001). 

Finally, another interesting property is the size of the Web. Lawrence and 
Giles (1998) propose to estimate the size of the Web from the overlap that 
different search engines return for identical queries. Their method is based 
on the assumption that the probability that a page is indexed by search 
engine A is independent of the probability that this page is indexed by search 
engine B. In this case, the percentage of pages in the result set of a query for 
search engine B that are also indexed by search engine A could be used as an 
estimate for the over-all percentage of pages indexed by A. Obviously, the 
independence assumption on which this argument is based does not hold in 
practice, so that the estimated percentage is larger than the real percentage 
(and the obtained estimates of the web size are more like lower bounds). 
Lawrence and Giles (1998) used the results of several queries to estimate 
that the largest search engine indexes only about one third of the indexable 
Web (the portion of the Web that is accessible to crawlers, i.e., not hidden 
behind query interfaces). Similar arguments were used by Bharat and Broder 
(1998) to estimate the relative size of search engines. 

3. WEB SEARCH 

Whereas conventional query interfaces concentrate on indexing 
documents by the words that appear in them (Salton, Wong & Yang, 1975; 
Salton, 1989), the potential of utilizing the information contained in the 
hyperlinks pointing to a page has been recognized early on. Anchor texts 
(texts on hyperlinks in an HTML document) of predecessor pages were 
already indexed by the World-Wide Web Worm, one of the first search 
engines and web crawlers (McBryan, 1994). Spertus (1997) introduced a 
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taxonomy of different types of (hyper-)links that can be found on the Web, 
and discussed how the links can be exploited for various information 
retrieval tasks on the Web. 

However, the main break-through was the realization that the popularity 
and hence the importance of a page is—to some extent—correlated to the 
number of incoming links, and that this information can be advantageously 
used for sorting the query results of a search engine. The in-degree alone, 
however, is a poor measure of importance because many pages are 
frequently pointed to without being connected to the contents of the referring 
page (think, e.g., the numerous “best viewed with...” hyperlinks that point to 
browser home-pages). More sophisticated measures are needed. 

Kleinberg (1999) suggest that are two types of pages that could be 
relevant for a query: authorities are pages that contain useful information 
about the query topic, while hubs contain pointers to good information 
sources. Obviously, both types of pages are typically connected: good hubs 
contain pointers to many good authorities, and good authorities are pointed 
to by many good hubs. Kleinberg (1999) suggest to make practical use of 
this relationship by associating each page x with a hub score H(x) and an 
authority score A(x), which are computed iteratively: 
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where (x,y) denotes that there is a hyperlink from page x to page y. This 
computation is conducted on a so-called focused subgraph of the Web, 
which is obtained by enhancing the search result of a conventional query (or 
a bounded subset of the result) with all predecessor and successor pages (or, 
again, a bounded subset of them). The hub and authority scores are 
initialized uniformly with A

0
(x)=H

0
(x)=1.0  and normalized so that they 

sum up to one before each iteration. It can be proven that this algorithm 
(called HITS) will always converge (Kleinberg, 1999), and practical 
experience shows that it will typically do so within a few iterations (about 5; 
Chakrabarti, Dom, Raghavan, Rajagopalan, Gibson & Kleinberg, 1998b). 
Variants of the HITS algorithm have been used for identifying relevant 
documents for topics in web catalogues (Chakrabarti et al., 1998b; Bharat & 
Henzinger, 1998) and for implementing a “Related Pages” functionality 
(Dean & Henzinger, 1999). 

The main drawback of this algorithm is that the hubs and authority score 
must be computed iteratively from the query result, which does not meet the 
real-time constraints of an on-line search engine. However, the 
implementation of a similar idea in the Google search engine resulted in a 
major break-through in search engine technology (Brin & Page, 1998). The 
key idea is to use the probability that a page is visited by a random surfer on 
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the Web as an important factor for ranking search results. This probability is 
approximated by the so-called page rank, which is again computed 
iteratively: 
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The first term of this sum models the behavior that a surfer gets bored 

and jumps to a randomly selected page of the entire set of N pages (with 
probability (1-l), where l is typically set to 0.85). The second term uniformly 
distributes the current page rank of a page to all its successor pages. Thus, a 
page receives a high page rank if it is linked by many pages, which in turn 
have a high page rank and/or only few successor pages. The main advantage 
of the page rank over the hubs and authority scores is that it can be computed 
off-line, i.e., it can be precomputed for all pages in the index of a search 
engine. Its clever (but secret) integration with other information that is 
typically used by search engines (number of matching query terms, location 
of matches, proximity of matches, etc.) promoted Google from a student 
project to the main player in search engine technology. 

4. TEXT CLASSIFICATION 

Text classification is the task of sorting documents into a given set of 
categories. One of the most common web mining tasks is the automated 
induction of such text classifiers from a set of training documents for which 
the category is known. A detailed overview of this field can be found in 
(Sebastiani, 2002), as well as in the corresponding Chapter of this book. The 
main problem, in comparison to conventional classification tasks, is the 
additional degree of freedom that results from the need to extract a suitable 
feature set for the classification task. Typically, each word is considered as a 
separate feature with either a Boolean value indicating whether the word 
occurs or does not occur in the document (set-of-words representation) or a 
numeric value that indicates the frequency (bag-of-words representation). A 
comparison of these two basic models can be found in (McCallum & Nigam, 
1998). Advanced approaches use different weights for terms (Salton & 
Buckley, 1988), more elaborate feature sets like n-grams (Mladeni� & 
Grobelnik, 1998; Fürnkranz, 1998) or linguistic features (Lewis, 1992; 
Fürnkranz, Mitchell & Riloff, 1998; Scott & Matwin, 1999), linear 
combinations of features (Deerwester, Dumais, Landauer, Furnas & 
Harshman, 1990) or rely on automated feature selection techniques (Yang & 
Pedersen, 1997; Mladeni�, 1998a). 
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There are numerous application areas for this type of learning task 
(Mladeni�, 1999). For example, the generation of web catalogues such as 
http://www.dmoz.org/ is basically a classification task that assigns 
documents to labels in a structured hierarchy of classes. Typically, this task 
is performed manually by a large user community or employees of 
companies that specialize in such efforts, like Yahoo!. Automating this 
assignment is a rewarding task for text categorization and text classification 
(Mladeni�, 1998b). 

Similarly, the sorting of one’s personal E-mail messages into a flat or 
structured hierarchy of mail folders is a text categorization task that is 
mostly performed manually, sometimes supported with manually defined 
classification rules. Again, there have been numerous attempts in 
augmenting this procedure with automatically induced content-based 
classification rules (Cohen, 1996; Payne & Edwards, 1997; Crawford, Kay 
& McCreath, 2002). Recently, a related task has received increased 
attention, namely automated filtering of spam mail. Training classifiers for 
recognizing spam mail is a particularly challenging problem for machine 
learning, involving skewed example distributions, misclassification costs, 
concept drift, undefined feature sets, and more (Fawcett, 2003). Most 
algorithms, such as the built-in spam filter of the Mozilla open source 
browser (Graham, 2003), rely on Bayesian learning for tackling this 
problem. A comparison of different learning algorithms for this problem can 
be found in (Androutsopoulos, Paliouras & Michelakis, 2004). 

5. HYPERTEXT CLASSIFICATION 

Not surprisingly, recent research has also looked at the potential of 
hyperlinks as additional information source for hypertext categorization 
tasks. Many authors addressed this problem in one way or another by 
merging (parts of) the text of the predecessor pages with the text of the page 
to classify, or by keeping a separate feature set for the predecessor pages. 
For example, Chakrabarti, Dom, and Indyk (1998a) evaluate two variants: 
(1) appending the text of the neighboring (predecessor and successor) pages 
to the text of the target page, and (2) using two different sets of features, one 
for the target page and one for a concatenation of the neighboring pages. The 
results were negative: in two domains both approaches performed worse 
than the conventional technique that uses only features of the target 
document. Chakrabarti et al. (1998a) concluded that the text from the 
neighbors is too unreliable to help classification. Consequently, a different 
technique was proposed that included predictions for the class labels of the 
neighboring pages into the model. Unless the labels for the neighbors are 
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known a priori, the implementation of this approach requires an iterative 
technique for assigning the labels, because changing the class of a page may 
potentially change the class assignments for all neighboring pages as well. 
The authors implemented a relaxation labeling technique, and showed that it 
improves performance over the standard text-based approach that ignores the 
hyperlink structure. The utility of class predictions for neighboring pages 
was confirmed by the results of Oh, Myaeng, and Lee (2000) and Yang, 
Slattery, and Ghani (2002). 

A different line of research concentrates on explicitly encoding the 
relational structure of the Web in first-order logic. For example, a binary 
predicate link_to(page1,page2) can be used to represent the fact that 
there is a hyperlink on page1 that points to page2. In order to be able to 
deal with such a representation, one has to go beyond traditional attribute-
value learning algorithms and resort to inductive logic programming, aka 
relational data mining (Džeroski & Lavra�, 2001). Craven, Slattery & Nigam 
(1998) use a variant of Foil (Quinlan, 1990) to learn classification rules that 
can incorporate features from neighboring pages. The algorithm uses a 
deterministic version of relational path-finding (Richards & Mooney, 1992), 
which overcomes Foil’s restriction to determinate literals (Quinlan, 1991), to 
construct chains of link_to/2 predicates that allow the learner to access 
the words on a page via a predicate of the type has_word(page,word). 
For example, the conjunction link_to(P1,P), has_word(P1,word) 
means “there exists a predecessor page P1 that contains the word word. 
Slattery and Mitchell (2000) improve the basic Foil-like learning algorithm 
by integrating it with ideas originating from the HITS algorithm for 
computing hub and authority scores of pages, while Craven and Slattery 
(2001) combine it favorably with a Naive Bayes classifier. 

At its core, using features of pages that are linked via a link_to/2 
predicate is quite similar to the approach evaluated in (Chakrabarti et al., 
1998a) where words of neighboring documents are added as a separate 
feature set: in both cases, the learner has access to all the features in the 
neighboring documents. The main difference lies in the fact that in the 
relational representation, the learner may control the depth of the chains of 
link_to/2 predicates, i.e., it may incorporate features from pages that are 
several clicks apart. From a practical point of view, the main difference lies 
in the characteristics of the used learning algorithms: while inductive logic 
programming typically relies on rule learning algorithms which classify 
pages with “hard” classification rules that predict a class by looking only at a 
few selected features, Chakrabarti et al. (1998a) used learning algorithms 
that always take all available features into account (such as a Naive Bayes 
classifier). Yang et al. (2002) discuss both approaches and relate them to a 
taxonomy of five possible regularities that may be present in the 
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neighborhood of a target page. They also experimentally compare these 
approaches under different conditions. 

However, the above-mentioned approaches still suffer from several short-
comings, most notably that only portions of the predecessor pages are 
relevant, and that not all predecessor pages are equally relevant. A solution 
attempt is provided by the use of hyperlink ensembles for classification of 
hypertext pages (Fürnkranz, 2002). The idea is quite simple: instead of 
training a classifier that classifies pages based on the words that appear in 
their text, a classifier is trained that classifies hyperlinks according to the 
class of the pages they point to, based on the words that occur in their 
neighborhood of the link (in the simplest case the anchor text of the link). 
Consequently, each page will be assigned multiple predictions for its class 
membership, one for each incoming hyperlink. These individual predictions 
are then combined to a final prediction by some voting procedure. Thus, the 
technique is a member of the family of ensemble learning methods 
(Dietterich, 2000). In a preliminary empirical evaluation in the Web→KB 
domain (where the task is to recognize typical entities in Computer Science 
departments, such as faculty, student, course, and project pages, cf. 
Section 7), hyperlink ensembles outperformed a conventional full-text 
classifier in a study that employed a variety of voting schemes for combining 
the individual classifiers and a variety of feature extraction techniques for 
representing the information around an incoming hyperlink (e.g., the anchor 
text on a hyperlink, the text in the sentence that contains the hyperlink, or the 
text of an entire paragraph). The overall classifier improved the full-text 
classifier from about 70% accuracy to about 85% accuracy in this domain. It 
remains to be seen whether this generalizes to other domains. 

6. INFORMATION EXTRACTION AND WRAPPER 
INDUCTION 

Information extraction is concerned with the extraction of certain 
information items from unstructured text. For example, you might want to 
extract the title, show times, and prices from web pages of movie theaters 
near you. While web search can be used to find the relevant pages, 
information extraction is needed to identify these particular items on each 
page. An excellent survey of the field can be found in (Eikvil, 1999). 
Premier events in this field include the Message Understanding Conferences 
(MUC), and numerous workshops devoted to special aspects of this topic 
(Califf, 1999; Pazienza, 2003).  

Information extraction has a long history. There are numerous algorithms 
that work with unstructured textual documents, mostly employing natural 
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language processing. A typical system is AutoSlog (Riloff, 1996b), which 
was developed as a method for automatically constructing domain-specific 
extraction patterns from an annotated training corpus. As input, AutoSlog 
requires a set of noun phrases that constitute the information that should be 
extracted from the training documents. AutoSlog then uses syntactic 
heuristics to create linguistic patterns that can extract the desired information 
from the training documents (and from unseen documents). The extracted 
patterns typically represent subject–verb or verb–direct-object relationships 
(e.g., <subject> teaches or teaches <direct-object>) as well as prepositional 
phrase attachments (e.g., teaches at <noun-phrase> or teacher at <noun-
phrase>). An extension, AutoSlog-TS (Riloff, 1996a) removes the need for 
an annotated training corpus by generating extraction patterns for all noun 
phrases in the training corpus whose syntactic role matches one of the 
syntactic heuristics. 

Other systems that work with unstructured text are based on inductive 
rule learning algorithms that can make use of a multitude of features, 
including linguistic tags, HTML tags, font size, etc., and learn a set of 
extraction rules that specify which combination of features indicates an 
appearance of the target information. WHISK (Soderland, 1999) and SRV 
(Freitag, 1998) employ a top-down, general-to-specific search for finding a 
rule that covers a subset of the target patterns, whereas RAPIER (Califf, 
2003) employs a bottom-up search that successively generalizes a pair of 
target patterns. 

While the above-mentioned systems typically work on unstructured or 
semi-structured text, a new direction focused on the extraction of items from 
structured HTML-pages. Such wrappers identify their content primarily via 
a sequence of HTML tags (or an XPath in a DOM-tree). Kushmerick (2000) 
first studied the problem of inducing such wrappers from a set of training 
examples where the information to extract is marked. He studies a variety of 
types of wrapper algorithms with different expressiveness. The simplest 
class, LR wrappers, assume a highly regular source page that allows to map 
its content into a database table by learning delimiters for each attribute. LR 
wrappers were able to wrap 53% of the pages in an experimental study, more 
expressive classes were able to wrap up to 70%. Moreover, it was shown that 
all studied wrapper classes are PAC-learnable. Grieser, Jantke, Lange & 
Thomas (2000) extend this work with a study of theoretical properties and 
learnability results for island wrappers, a generalization of the wrapper types 
studied by Kushmerick (2000). SoftMealy (Hsu & Dung, 1998) addresses 
several of the short-comings of the framework of Kushmerick (2000), most 
notably the restriction to single sequences of features, by learning a finite-
state transducer that allows to encode all occurring sequences of features. 
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Lerman, Minton, and Knoblock (2003) discuss learning approaches for 
supporting the maintenance of existing wrappers. 

The field has also seen numerous commercial efforts, such as the Lixto 
project (Gottlob, Koch, Baumgartner, Herzog & Flesca, 2004) or IBM’s 
Andes project (Myllymaki, 2001). The most notable application of 
information extraction techniques are comparison shopping agents 
(Doorenbos et al., 1997). 

7. THE SEMANTIC WEB 

The Semantic Web is a term coined by Tim Berner-Lee for the vision of 
making the information on the Web machine-processable (Berners-Lee, 
Hendler & Lassila, 2001). The basic idea is to enrich web pages with 
machine-processable knowledge that is represented in the form of ontologies 
(Fensel, 2001). Ontologies define certain types of objects and the relations 
between them. As ontologies are readily accessible (like other web 
documents), a computer program can use them to draw inferences about the 
information provided on web pages. 

One of the research challenges in that area is to annotate the information 
that is currently available on the Web with semantic tags. Typically, 
techniques from text classification, hyper-text classification and information 
extraction are used for that purpose. A landmark application in this area was 
the Web→KB project at Carnegie-Mellon University (Craven, DiPasquo, 
Freitag, McCallum, Mitchell, Nigam & Slattery, 2000). Its goal was to 
assign web pages or parts of web pages to entities in an ontology. A simple 
test ontology modeled knowledge about computer science departments: there 
are entities like students (graduate and undergraduate), faculty members 
(professors, researchers, lecturers, post-docs, ...), courses, projects, etc., and 
relations between these entities, such as “courses are taught by one lecturer 
and attended by several students” or “every graduate student is advised by a 
professor”. Many applications could be imagined for such an ontology. For 
example, it could enhance the capabilities of search engines by enabling 
them to answer queries like “Who teaches course X at university Y? ” or 
“How many students are in department Z? ”, or serve as a backbone for web 
catalogues (Staab & Maedche, 2001). A description of the first prototype 
system can be found in (Craven et al., 2000).  

Semantic Web Mining emerged as research field that focuses on the 
interactions of web mining and the Semantic Web (Berendt, Hotho & 
Stumme, 2002). On the one hand, web mining can support the learning of 
ontologies in various ways (Maedche & Staab, 2001; Maedche, Pekar & 
Staab, 2003; Doan, Madhavan, Dhamankar, Domingos & Halevy, 2003). On 
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the other hand, background knowledge in the form of ontologies may be 
used for supporting web mining tasks. Several workshops have been devoted 
to these topics (Staab, Maedche, Nédellec & Wiemer-Hastings, 2000; 
Maedche, Nédellec, Staab & Hovy, 2001; Stumme, Hotho & Berendt, 2001; 
2002). 

8. WEB USAGE MINING 

Most of the previous approaches are concerned with the analysis of the 
contents of web documents (content mining) or the graph structure of the 
web (structure mining). Additional information can be inferred from data 
sources that capture the interaction of users with a web site, e.g., from 
server-side web logs or from client-side applets that observe a single user’s 
browsing patterns. Such information may, e.g., provide important clues for 
restructuring web sites (Perkowitz & Etzioni, 2000; Berendt, 2002), 
personalizing web services (Mobasher, Cooley & Srivastava, 2000; 
Mobasher, Dai, Luo & Nakagawa, 2002; Pierrakos, Paliouras, 
Papatheodorou & Spyropoulos, 2003), optimizing search engines (Joachims, 
2002), recognizing web spiders (Tan & Kumar, 2002) and many more. An 
excellent overview and taxonomy of this research area can be found in 
(Srivastava et al., 2000). 

As an example, let us consider systems that make user-specific browsing 
recommendations (Armstrong et al., 1995; Pazzani et al., 1996; 
Balabanovic,´ & Shoham, 1995). For example, the WebWatcher system 
(Armstrong et al., 1995) predicts which links on the currently viewed page 
are most interesting to the user’s search goal, which has to be specified in 
advance, and recommends the user to follow these links. However, these 
early systems rely on user intervention by specification of a search goal 
(Armstrong et al., 1995) or explicit feedback about interesting or not 
interesting pages (Pazzani et al., 1996). More advanced systems try to infer 
this information from web logs, thereby removing the need for user 
feedback. For example, Personal WebWatcher (Mladeni�, 1996) is an 
early attempt that replaces WebWatcher’s requirement for an explicitly 
specified search goal with a user model that has been inferred by a text 
classification system trained on pages that the user has been observed to visit 
(positive examples) or not to visit (negative examples). These pages have 
been obtained by a client-side applet that logs the user’s browsing behavior. 

More recently, it was tried to infer this information from server-side web 
logs (Mobasher et al., 2000). The information contained in a web log 
includes the IP-address of the client, the page that has been retrieved, the 
time at which the request was initiated, the page from which the link 
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originated, the browsing agent used, etc. However, unless additional 
information is used (e.g., session cookies), there is no way to reliably 
determine the browsing path that a user takes. Problems include missing 
page requests because of client-side caches or merged sessions because of 
multiple users operating from the same IP-addresses. Special techniques 
have to be used to infer the browsing paths (so-called click streams) of 
individual users (Cooley, Mobasher & Srivastava, 1999). These click-
streams can then be mined using clustering and association rule finding 
techniques, and the resulting models be used for making page 
recommendations. The WUM Web Utilization Miner (Spiliopoulou, 1999) is 
a publicly available, prototypical system that allows to mine web logs using 
advanced association rule discovery algorithms. 

9. COLLABORATIVE FILTERING 

Collaborative filtering (Goldberg, Nichols, Oki & Terry, 1992) may be 
considered a special case of usage mining, which relies on previous 
recommendations by other users in order to predict which among a set of 
items are most interesting for the current user. Such systems are also known 
as recommender systems (Resnick & Varian, 1997). Naturally, recommender 
systems have many applications, most notably in E-commerce (Schafer, 
Konstan & Riedl, 2000), but also in science (e.g., assigning papers to 
reviewers; Basu, Hirsh, Cohen & Nevill-Manning, 2001). 

Recommender systems typically store a data table that records for each 
user/item pair whether the user made a recommendation for the item or not 
and possibly also the strength of this recommendation. Such 
recommendations can either be made explicitly by giving some sort of 
feedback (e.g., by assigning a rating to a movie) or implicitly (e.g., by 
buying a video of the movie). The elegant idea of collaborative filtering 
systems is that recommendations can be based on user similarity, and that 
user similarity can in turn be defined by the similarity of their 
recommendations. Alternatively, recommender systems can also be based on 
item similarities, which are defined via the recommendations of the users 
that recommended the items in question (Sarwar, Karypis, Konstan & Riedl, 
2001). 

Early recommender systems followed an memory-based approach, which 
means that they directly computed this similarity for each new query. For 
example, the GroupLens system (Konstan, Miller, Maltz, Herlocker, 
Gordon & Riedl, 1997) required readers of Usenet news articles to rate an 
article on a scale with five values. From that, similarities between users are 
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cached by computing a correlation coefficient over their votes for individual 
items. 

In a landmark paper, Breese, Heckerman, and Kadie (1998) compare 
memory-based approaches to model-based approaches, which use the stored 
data for inducing an explicit model for the recommendations of the users. 
The results show that a Bayesian network outperforms alternative 
approaches, in particular memory-based approaches. Other types of models 
that have been studied include clustering (Ungar and Foster, 1998), latent 
semantic models (Hofmann & Puzicha, 1999) and association rules (Lin, 
Alvarez & Ruiz, 2002). 

An active research area is to combine integrate collaborative filtering 
with content-based approaches to recommender systems, i.e., approaches 
that make predictions based on background knowledge of characteristics of 
users and/or items. An interesting approach is followed by Cohen and Fan 
(2000), where the use of artificial users are proposed. These users are models 
of user groups or item groups that can be learned by content-based analysis 
techniques. For example, an artificial user could represent a certain musical 
genre and comment positively on all representatives of that genre. Melville, 
Mooney, and Nagarajan (2002) propose a similar approach by suggesting the 
use of content-based predictions for replacing missing recommendations. 
Popescul, Ungar, Pennock, and Lawrence (2001) extend the approach taken 
by (Hofmann & Puzicha, 1999), which associates users and items with a 
hidden layer of emerging concepts, by merging word occurrence information 
into the latent models. 

10. CONCLUSION 

Web mining is a very active research area. A survey like this can only 
scratch on the surface. We tried to include references to the most important 
works in this areas, but we necessarily had to be selective. Nevertheless, we 
hope to have provided the reader with a good starting point for her own 
explorations into this rapidly expanding and exciting research area. 
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