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Abstract

Multi-label image classification is the task of assigning a set of one or more labels to a given image. For this task we built
a multi-label classifier by using so called transfer learning: we used a pre-trained deep neural network called VGG16 to
extract a set of features to subsequently train a FastXML classifier with these features.

1 Introduction

The goal was to train a classifier on the OpenImages dataset in a tree-based and supervised way.
For this, we first extracted the features from the images with a pre-strained neural network, then we trained a classifier

with these features and the corresponding labels. For an overview of the setup, see Figure 1.
After training, to predict a label for a new image, one has to extract the features from the image the same way with

the neural network and then run the FastXML classifier on these features. The classifier then predicts the probabilities of
each label for that image.

Figure 1: Classifier setup. The numbers in brackets are the dimensions of the inputs to the next step. The images are
resized to fit 224x224 pixels and have 3 channels (RGB). The features are the outputs of the fc6 (4096 features),
fc7 (4096 features) and fc8 (1000 features) layers of the VGG16 network [1] - for a detailed explanation of the
VGG16 network and the layers, see Chapter 3.1.3. Those are the three layers before the softmax layer at the
end of the network. We trained a separate FastXML classifier for each of these layers. The number of predicted
labels is 7882.

In the next chapter, Chapter 2 (Dataset), we explore the OpenImages dataset and explain its different subsets. In
Chapter 3 (Methodology) we then present our setup. We also introduce the algorithms and the implementations used
to build the classifier. In Chapter 4 (Results and Learnings) we collect the results from training the classifier and discuss
possible interpretations for these results. Finally we summarize our approach and key take-aways from this work in
Chapter 5 (Conclusions). Possible further work is also discussed in that chapter.

2 Dataset

Google recently released the OpenImages image dataset [2]. Each of the images in this dataset has a list of one or more
labels attached - the annotations. The dataset consists of approximately 9 million images and more than 7000 different



labels. With this big number of distinct labels the task of training a classifier on this dataset falls under the large-scale
multi-label classification task [3].

2.1 Annotations

All annotations have been added by machines. Each annotation has a confidence/probability attached. Google did not
disclose how they obtained these annotations.

On a small subset of images, humans either confirmed or rejected the annotations given by the machine. A non-
neglectable amount of approximately 31% of annotations got rejected by humans which indicates the noisiness of the
machine annotations.

Notice that while the manual confirmation/rejection of the machine annotations reduces the number of false positives
(ie. labels that got assigned by the machine, but aren’t suitable), the number of false negatives (ie. the missing labels) is
not reduced by this approach.

We used this subset of human-moderated images, consisting of more than 150.000 images, to train and test our
classifier.

There is a problem of skewed labels [4] in the dataset, meaning that the number of images that have a certain label
is not the same for every label. More than half of the labels have less than 100 image instances. Circa 15% of the labels
have less than 10 images assigned. Compare that with the number of 25% of all annotations that are assigned to only
the top 50 labels (ie. the labels with the most images attached).

The average number of images per label is 237. The average number of annotations per image is 10. See Figure 2 for
a graph of images per label.

The normal approach to obtain the dataset is to download the images individually from the URLs given in the Open-
Images [2] repository. Instead we downloaded the complete dataset from a torrent mentioned in an issue on the dataset
GitHub repository [5]. The images in this torrent have been scaled down to 420 pixel on the small side to reduce the file
size.

Set # Images Size

train 9.011.220 18.3 TB

validation 167.057 309.9 GB

Table 1: Dataset size. The OpenImages dataset itself is split into two sets: train and validation. We used a subset of the
validation set.

Set # Annotations

human/validation 1.741.385

machine/validation 2.060.221

machine/train 79.196.416

Table 2: Annotations in the dataset. Over 1.7 million annotations were reviewed by humans. 31% of these annotations
were rejected by humans. For training we only used human/validation set.
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Figure 2: Images per number of annotations. The x-axis shows the number of annotations per image and the y-axis the
percentage of images with that number of annotations. On average an image has 10.4 annotations.

3 Methodology

3.1 Setup

3.1.1 Dataset splitting

At first we used a fixed split into training and test set. The test set consisted of less than 5% of all training examples. This
split was done randomly and is only for an overview.

To obtain more reliable results, we next used stratified k-fold cross-validation [6] (k = 3). For this we implemented
the algorithm in Python [7].

3.1.2 Transfer learning

To extract features from images we use the wide known technique of transfer learning [8, 9]: a pre-trained network gets
an image with the individual pixels as input and the outputs of some layer of this network are taken as the features.
These features are subsequently used to train a classifier, in our case the FastXML tree classifier [10]. Transfer learning
reduces the training time and computational cost of training a classifier since it does not need to be trained from scratch
- instead the new classifier relies on the capability of the pre-trained neural network to extract meaningful features from
the images.

In the next two subsections we explain the setup and components of the setup more closely. For an overview of the
setup, see Figure 1. In Chapter 3 we introduce the implementations we used for these components.

3.1.3 Feature extraction (VGG16)

The pre-trained neural network we used was VGG16 by Simonyan et al [1] that won the first and second place on the
ImageNet ILSVRC-2014 competition [11] in classification and localization. VGG16 was trained on a dataset of 60.000
images with 1.000 labels. For an overview of the VGG16 architecture see Figure 3.

We used the output of the last three fully connected layers (named fc6, fc7, fc8) to extract our features from.
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Figure 3: Neural network VGG16. The output of the last three fully-connected layers (fc6, fc7, fc8) are taken to train new
classifiers. The weights and the model definition were downloaded from the website of the VGG16 authors.

3.1.4 Training the classifier (FastXML)

After we extracted the features with the VGG16 net, we trained a FastXML [10] tree classifier in a supervised way by
feeding it the outputs from the pre-tained network together with the corresponding labels. An overview of the FastXML
algorithm can be found in the next Chapter 3.2.1.

3.2 Algorithms

3.2.1 FastXML

FastXML [10] is a tree-based supervised machine learning algorithm. It is especially suitable for massive multi-label
classification. The following two paragraphs introduce the principles of the FastXML algorithm.

Training
At training time a root node is created and all labels are assigned to it. Then a node partitioning algorithm is executed

to partition the labels on this node. This algorithm splits the labels on the root node into two or more sets. Two or
more child nodes are created and the labels are assigned to them according to the node partitioning algorithm. This is
done recursively for each child node until all leaf nodes contain only a fixed number of labels - this number of labels per
leaf is a hyperparameter that can be given to the FastXML algorithm at training time. The number of labels the node
partitioning algorithm has to split decreases with increasing depth of the tree. The process of splitting can be parallelized
because it only depends on the set of labels assigned to a given node and the datapoints corresponding to these labels.

The node partitioning algorithm is crucial for the FastXML algorithm since it is responsible for finding sets of similar
labels and putting them in the same child node. See the original paper [10] for a more detailed explanation.

A given number of FastXML trees are trained in parallel and used in an ensemble to increase the prediction performance
of the classifier. This process is also parallizable since there are no dependencies between the trees in the ensemble.

Prediction
During prediction a datapoint is fed to the root node and passes down the tree until it reaches the leaf nodes. Proba-

bilities are calculated on every node for all the child nodes and their corresponding labels. If the probability of a given
datapoint falls below a given threshold on a node, all child nodes of that node can be ignored because the labels on this
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part of the tree are not relevant for this datapoint and the probability won’t increase further down that subtree. This
pruning technique of ignoring irrelevant parts of the tree greatly reduces the prediction time and computation effort. The
calculation of the probabilities in the subtrees can also be parallelized since they don’t depend on each other.

3.3 Technical Implementations

Following is a small summary of the used implementations. The VGG16 and FastXML implementations can also be found
in the GitHub repository of this report [7].

3.3.1 VGG16

For the VGG16 we tried a number of different implementations. Some of them had minor to major flaws and it quickly
became apparent that cross-checking the results of an implementation with the reference implementation was crucial.
The reference implementation [1] in the caffe machine learning framework [12] by the authors turned out to be quite
slow in prediction and therefore feature extraction time compared to an implementation in the TensorFlow framework
[13].

For this project we used a TensorFlow implementation from GitHub [14]. We had to modify the implementation to
extract the features and have bigger batches of images processed at once. The fork with these changes can be found on
GitHub [14]. We cross-checked the results of this implementation with the reference implementation.

We uploaded an easy to use reference implementation of VGG16 in the caffe framework here [15] - this implementation
uses the original pre-trained weights and model file from the authors [1]. It is also possible to extract the features with
these implementations, but note that it might be slower than the Tensorflow implementation.

3.3.2 FastXML

For FastXML we tried out two different implementations: one from the authors FastXML (implemented in C++) and
another one from GitHub Referer/fastxml (implemented in a mix of Python and C++).

We decided to use the C++ implementation [16] from the authors of FastXML because with the other implementation
we would have had to cross-check whether the results are consistent with the reference implementation. One major
caveat of using the C++ version is that it’s more difficult to debug. Retrieving information about the model created by
this implementation is more difficult, too. The documentation of the implementation and comments in the code were
quite sparse. The code and implementation can be downloaded from [16].

An overview of the hyperparameters the C++ implementation of FastXML can be found in Table 3.

Parameter Description

num_tree Number of trees to be grown

bias Feature bias value, extra feature value to be appended

log_loss_coeff SVM weight co-efficient

lbl_per_leaf Number of label-probability pairs to retain in a leaf

max_leaf Maximum allowed instances in a leaf node.

Larger nodes are attempted to be split, and on failure converted to leaves

Table 3: Hyperparameters of the C++ FastXML Implementation. Directly taken from https://manikvarma.github.io/
code/FastXML/download.html

3.3.3 Custom scripts

To handle the raw dataset we wrote scripts to pre-process the data. The scripts can be found on GitHub [7].
Because the implementations of the neural net and FastXML have different input formats we wrote scripts to convert

from the format of the neural net to that of the FastXML implementation. We also wrote a script to convert the extracted
features from the neural net format so it can be used with the MULAN [17] multi-label learning library.

4 Results and Discussion

4.1 Results

Following are the results on the trained FastXML classifier. In Table 4 you can see the metrics on the performance of the
classifier with a set of parameters tested.
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Table 5 shows the results of training the FastXML classifiers on the output of the different VGG16 layers (fc6, fc7, fc8).
For these results we used 3-fold stratified cross-validation.

Metrics
The metric we used to evaluate the performance of the classifier was Precision@k [18] (where k is a number, in our

case k=5): for a given datapoint only the top-k predicted labels (= the k labels with the highest predicted probability)
are compared with the correct labels. This ratio of correct top-k labels gets averaged over all datapoints.

We also evaluated the Hamming Loss but due to the great number of labels and the way the Hamming Loss is calculated
[19], this metric does not have a great significance for our task.

We also wanted to calculate other metrics, like the F1 micro/macro score or coverage, but the computation with such
a big number of labels was quite time expensive when using off-the-shelf implementations like sklearn.

Findings
The results in Table 4 suggest that two parameters have a great impact on the performance of the classifier, namely the

number of trees trained in the ensemble and the number of labels per leaf.
The number of trained trees in the ensemble is especially important and training a bigger number of trees is a key

component of the FastXML algorithm because a singular tree is only a relatively weak classifier and has to be used in
ensembles to obtain a good performance [10]. The training time increases with the number of trees and decreases with
the number of trees that are trained in parallel.

The results in Table 5 suggest that training the classifier with the features from different VGG16 layers makes a
difference. It has to be noted that the fc6 and fc7 layer have 4096 neurons/outputs each and the fc8 layer has only 1000
neurons/outputs. We though that using the fc6 or fc7 layers would outperform the fc8 layer, because the number of
features and therefore the available data is higher in the fc6/7 layers. But the Precision@5 metric of the fc8 features is
not significantly lower than the fc7 score and even higher than the fc6 score.

One explanation that the fc8 feature performance is nearly as good as the one from fc7 is that the task, on which the
VGG16 network has been trained on, is similar to our classification task. Meaning that the features from fc8 are not too
specific for our classification task. For more information on transfer learning and interpretations on the performance of
different extraction layers, please see [9].

On thing to note is that the FastXML training time was approximately the same for the fc6/7 layers and the fc8 layer
despite the lower number of features in the fc8 layers and therefore lower size per datapoint.
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Precision@5

num_tree max_leaf lbl_per_leaf Test Train

1 1 1 0.108 0.201

1 5 1 0.123 0.196

5 5 1 0.349 0.471

5 5 5 0.646 0.891

5 10 1 0.394 0.519

10 5 1 0.438 0.604

10 5 10 0.699 0.902

10 5 20 0.701 0.904

10 5 30 0.701 0.904

10 5 40 0.701 0.904

10 5 50 0.701 0.904

10 10 10 0.696 0.882

10 10 30 0.698 0.889

10 20 10 0.693 0.855

10 20 30 0.694 0.862

10 30 30 0.690 0.844

10 40 30 0.685 0.831

10 50 30 0.683 0.821

50 50 10 0.698 0.827

Table 4: The bias and log_loss_coeff were both fixed to 1.0 (default). For an overview of the hyperparameters, see Table
3. Because the training/test split was done randomly and the test set consisted of less than 5% of all data points,
these metrics are just for orientation.

Precision@5

Hold Out

VGG16 Layer Set 2 1 0 Avg

6
test 0.6634 0.6612 0.6612 0.6620

train 0.9959 0.9957 0.9957 0.9958

7
test 0.6848 0.6823 0.6823 0.6832

train 0.9956 0.9954 0.9954 0.9955

8
test 0.6806 0.6798 0.6798 0.6801

train 0.9947 0.9946 0.9946 0.9946

Table 5: Results of the trained FastXML classifier. Precision@5 (higher is better). 3-fold stratified cross-validation was used.
The number in the Hold-Out column is the set in the 3 sets that was used as the test set (index from 0). FastXML
parameters: start_tree = 0, num_tree = 5, bias = 1.0, log_loss_coeff = 1.0, max_leaf = 5, lbl_per_leaf = 20. Best on
test/train set in bold.
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5 Conclusions

5.1 Summary

We trained a multilabel classifier on the OpenImages dataset consisting of annotated images. To reduce the number of
input parameters and also reduce the training time, we used a pre-trained network called VGG16 to extract so called
features from different layers of the network. VGG16 was also trained on images but on a different image dataset.

We wanted to evaluate whether the performance of the new classifier depends on the layer from which the features
have been extracted. Interestingly the last fully connected layer (fc8) before the softmax layer in the VGG16 network
performed nearly as well or even slightly better than the previous two layers. One way to interpret this is, that the dataset
the VGG16 network was trained on dataset is very similar to the OpenImages dataset.

Another key take-away is the importance of training an ensemble of FastXML trees instead of a single one. Because
of the ability to massively parallelize the training/prediction of the separate trees, FastXML ensures that the computa-
tion/prediction time does not increase too much when training multiple trees.

5.2 Further Work

The OpenImages dataset is special in the way the annotations have been partially validated by humans and because of
the sheer number of images in this dataset. These two properties could be further explored by using a neural network
and training it on the noisy images and annotations of the training set. Afterwards one could fine-tune the network
with the validation set. While this approach is not new, normally the pre-training is done in a unsupervised way (eg. by
stacking restricted boltzmann machines) and not with noisy annotations.

Another further work would be to train other classifiers and compare their prediction performance.
Also, a more detailed analysis of all hyperparameters for the FastXML classifier would be interesting.
Another approach would be to explore the kind of noisiness of the machine annotations. For example by training a

classifier and checking whether the classifier predicts the same labels that the humans rejected. This would maybe also
question the quality of the manual validation by the humans or whether certain labels are more difficult to predict with
machine learning. When we explored the dataset and inspected the labels that the humans rejected the most, we also
found some instances of mis-rejected annotations. For example one of the most mis-predicted labels was “bloom”. Some
of the images where the “bloom” label has been rejected by the humans, clearly had flower blossoms in them. Also some
of the labels seemed to be either too specific (eg. "fairchild republic a-10 thunderbolt ii", "mikoyanaurevich mig-15" or
"caller id") or too abstract (eg. "beauty", "relief" or "love").
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