

 Beating Kaggle the
easy way

 Studienarbeit

Ying Dong

Wirtschaftsinformatik

I

Ying Dong
Studiengang: Master Wirtschaftsinformatik

Studienarbeit
Thema: " Beating Kaggle the easy way"

Eingereicht: 22. Juli 2015

Betreuer: Dr. Frederik Janssen

Prof. Dr. Johannes Fürnkranz

Fachgebiet Knowledge Engineering Group
Fachbereich Informatik
Technische Universität Darmstadt
Hochschulstraße 10
64289 Darmstadt

I

Contents

 Introduction ... 1 1
 Kaggle .. 1 1.1
 Outline ... 2 1.2

 Theory and method .. 3 2
 Machine learning and data mining .. 3 2.1
 Learning Algorithms .. 5 2.2

 A pipeline for Kaggle competitions ... 8 3
 Data exploration .. 9 3.1
 Data preprocessing ... 10 3.2
 Feature construction .. 12 3.3
 Feature selection .. 13 3.4
 Model validation and selection .. 14 3.5
 Hyperparameter tuning .. 15 3.6

 Kaggle competition 1: Forest Cover Type Prediction .. 17 4
 Problem Description ... 17 4.1
 Dataset ... 17 4.2
 Evaluation metric ... 18 4.3
 Approach and progress .. 19 4.4
 Conclusion ... 27 4.5
 Lessons learned .. 27 4.6

 Kaggle competition 2:Otto Group Product Classification 29 5
 Problem Description ... 29 5.1
 Dataset ... 29 5.2
 Evaluation metric ... 29 5.3
 Approach and progress .. 30 5.4
 Conclusion ... 35 5.5
 Lessons learned .. 36 5.6

 Kaggle competition 3:Bike Sharing Demand .. 37 6
 Problem Description ... 37 6.1
 Dataset ... 37 6.2
 Evaluation metric ... 38 6.3
 Approach and process .. 38 6.4
 Conclusion ... 43 6.5
 Lessons learned .. 44 6.6

 Conclusion ... 45 7

 References .. 46 8

II

List of Figures

Figure 1: Overview of steps of KDD[2] ... 5	

Figure 2: Decision Tree .. 6	

Figure 3: Overview of the pipeline ... 8	

Figure 4: Outlier ... 9	

Figure 5: Hillshade_Noon vs. Hillshade_3pm ... 19	

Figure 6: Hillshade_9am vs. Hill_shade_3pm ... 20	

Figure 7: Histogram of Elevation: different cover types are marked with different colors 20	

Figure 8: Feature importance computed by random forest model .. 21	

Figure 9: Confusion matrix of random forest ... 22	

Figure 10: Confusion matrix of extra trees ... 25	

Figure 11: Leaderboard Scores and Standings for competition forest cover type classification
 .. 27	

Figure 12: Distribution of Product Categories .. 30	

Figure 13: Correlation Matrix of 15 most important features ... 31	

Figure 14: Probability distribution after calibration ... 33	

Figure 15: Score vs. Standing for competition Otto group products 36	

Figure 16: Correlation between features .. 39	

Figure 17: Mean value of count/registered/casual per day of week 39	

Figure 18: Mean value of count/registered/casual per hour .. 40	

Figure 19: Score vs. Standing for competition Bike Sharing Demand Prediction 44	

III

List of Tables

Table 1: Competition categories ... 2	

Table 2: Weather Data as a Dataset Example ... 3	

Table 3: Learning Algorithms ... 5	

Table 4: Discretization example ... 11	

Table 5: Split color feature into binary features ... 13	

Table 6: Description of the features for competition Forest cover type prediction [35] 18	

Table 7: New constructed features ... 23	

Table 8: Validation scores and leaderboard scores ... 24	

Table 9: Ordered One-vs. -All ... 25	

Table 10: Public leaderboard overview of first competition ... 26	

Table 11: Description of features for competition Otto group products classification [37] 29	

Table 12: Private leaderboard overview of second competition ... 35	

Table 13: Features for competition bike sharing demand [42] ... 37	

Table 14: Validation and leaderboard scores .. 41	

Table 15: Validation and leaderboard log-loss errors of different combination of models 42	

Table 16: Public leaderboard overview of third competition .. 43	

1

 Introduction 1

In recent years big data has become a hot topic. The amount of data in the world has been
exploding in all science, engineering and business domains because of the fast development of
computer technologies and data storage capacity [1]. The need for automated data analysis
tools to accurately detect the knowledge contained within the huge volumes of data is urgent.
Data mining was introduced as a corresponding solution [2].

Data mining has attracted lots of people. To improve their research methods, data scientists
need lots of real data. On the other hand, companies need more accurate models to make
predictions. Data prediction competitions are usually the right choice for both researchers and
companies. Kaggle is one of the most popular platforms for predictive modeling and analytics
competitions.

The main idea of the thesis is to achieve the goal of getting result as good as possible with as
little effort as possible in the ranking of a variety of different Kaggle competitions by designing
a pipeline based on the first competition and re-use of the pipeline on other tasks. Preferably,
the 3 selected Kaggle tasks are different. The pipeline is applied on all tasks and it is evaluated
based on where one places on the leaderboard.

 Kaggle 1.1

Kaggle is a platform for predictive modeling and analytics competitions. Companies provide
datasets and descriptions of the problems on Kaggle. Participants can then download the data
and build models to make predictions and then submit their prediction results to Kaggle.

For each competition, Kaggle usually provides a training dataset and a test dataset. All sub-
missions will be evaluated by certain evaluation metrics based on the test dataset. The evalua-
tion results will be shown in a leaderboard to let the participants know their relative progress.
The scores shown on the leaderboard during the competition are known as “public score”,
which is calculated based on a fraction of the test data set, which is uniquely specified for each
competition. The final score, which is called “private score”, will be given based on the com-
plete test dataset after the competition is closed. The final ranking of the competition is cal-
culated according to the private score.

There are many different categories of competition with different incentives and goals. Some
of them [3] are listed in Table 1.

2

Table 1: Competition categories

Category Description

Featured
• public competitions
• with significant prize money
• goal is to solve commercial problems.

Masters
• invitation-only competitions
• with significant commercial value or sensitive data.

Research

• public competitions
• goals are research/ scientific in nature or serve a public good
• with cash prizes or invitations to conferences or publication in

peer-reviewed journals.

Playground
• public competitions
• set up to be fun, quirky and idea-driven
• without any prize.

Getting Started

• public competitions
• without cash prizes
• for machine learning beginner
• always available and have no deadline.

 Outline 1.2

Chapter 2 provides a general overview of data mining and several machine learning algorithms
used throughout this thesis. In Chapter 3 a pipeline to approach data prediction competitions
is presented. In Chapter 4, Chapter 5 and Chapter 6, results and the approach of three compe-
titions on the Kaggle platform are described. Chapter 7 is the conclusion with a summary of the
results.

3

 Theory and method 2

In this chapter, I will briefly introduce the terms “machine learning” and “data mining”, then
some machine learning algorithms will be introduced, which are used throughout this thesis.

 Machine learning and data mining 2.1

Machine learning is a science of devising algorithms to get computers to learn from data au-
tomated without being explicitly programmed [4]. Such algorithms (learning algorithms)
build a model after learning from the data and the model can be used to make predictions or
decisions. The learning phase is also known as the training phase.

Table 2: Weather Data as a Dataset Example

Instances Features/Attributes Target

 Outlook Temperature Humidity Windy Play Time

1 Sunny 24 80 No 70

2 Sunny 23 85 Yes 12

3 Overcast 18 90 No 40

4 Rainy 15 95 Yes 0

5 Rainy 18 90 No 20

6 Overcast 20 87 Yes 50

7 Sunny 21 88 No 45

The data to be learned from is called a “dataset”. Table 2 containing weather data shows an
example dataset. A dataset is composed of a set of instances, each instance is an individual and
independent example [5]. In Table 2 the rows of the table are the instances. Each instance is
characterized by a series of attributes or features. In Table 2 the features are the columns of
the table. A special attribute is the target value, which is the desired output to be predicted or
classified. The two most common types of features are nominal and numeric. Nominal attrib-
utes take on values in a finite set of possibilities and denote no discernible order. For example,
the attribute Outlook in the weather data is nominal and has values Sunny, Overcast and Rainy.
Numeric attributes are valued by either real or integer numbers, which are comparable. An
example of numeric attributes is the attribute Temperature in the weather data example.

When the desired outputs for the example inputs are given, the machine learning task is
known as a supervised learning problem. On the contrary if the corresponding target values of
the example inputs are not given, then the task is an unsupervised learning problem. Only
supervised learning problems are concerned in this thesis.

4

In the case of the desired output being numeric, the task is called “regression”. The weather
data presented in Table 2 is an example of a regression problem. If the aim of a task is to assign
each input into a finite number of categories or classes, the task is called “classification”. The
function, which is implemented by a classification algorithm and used to assign input data to a
class, is called a classifier. For example, changing the aim of the weather example to be pre-
diction of “go out or not”, would cause the desired output to be either “yes” or “no”, given the
weather data, this task is a binary classification problem. If the number of classes is more than
2, the task is a multi-class classification problem.

Machine learning provides the technical basis of data mining [5]. Data mining uses many
machine learning methods. Data mining is an interdisciplinary subfield of computer science,
aiming at extracting useful information from large datasets [6]. In [2] data mining is described
as a particular step in Knowledge Discovery in Databases(KDD). “KDD” refers to the overall
process of extraction of useful information from raw data, while “data mining” refers to the
process of using specific algorithms to extract patterns from data.

Figure 1 shows an overview of the process of KDD. The KDD process is interactive and iterative,
in [2] 9 basic steps are broadly outlined:

1. The first step of KDD is to identify the goal of the KDD process by developing an under-
standing of the relevant domain and knowledge.

2. The second step is to gather an appropriate dataset from a database or data warehouse,
which is to be used to discover knowledge.

3. Then the selected dataset will be cleaned and preprocessed, including defining and han-
dling missing data, removing noisy data, etc.

4. The preprocessed data will be then transformed to keep only useful features representing
the data based on the goal of the task. In this step, procedures like dimensionality reduc-
tion will be applied.

5. Then an appropriate data mining method with regard to the goals of the KDD process
should be determined: summarization, classification, regression, association or clustering
and so on.

6. In this step the appropriate algorithm(s) and method(s) are chosen, which will be used to
search for patterns in the data.

7. The dataset, algorithms and methods, which are created or selected from preceding steps,
can be then used to search the data patterns.

8. The mined patterns will be interpreted and evaluated to specify which patterns can be
treated as new knowledge.

9. Lastly, the knowledge can be put to further use.

5

Figure 1: Overview of steps of KDD[2]

 Learning Algorithms 2.2

There are many machine learning algorithms, Table 3 shows some of them as examples. This
section will only focus on some brief overviews of the methods actually employed in the Kaggle
challenges in Chapter 4, Chapter 5 and Chapter 6, which are Random Forest [7], Extremely
Randomized Trees [8], Gradient Boosting Trees [9], and Extreme Gradient Boosting [10], to
give a better understanding of how they work. A more detailed description of the machine
learning algorithms can be found for example in [11].

Table 3: Learning Algorithms

Regression Classification

Linear regression Logistic regression

K nearest neighbors Naive Bayes

Neural Networks Neural Networks

Support Vector Machines Decision Trees

Random Forest Random Forest

Gradient Boosting Gradient Boosting

 Random Forest 2.2.1

The Random Forest algorithm is built based on decision tree models. The decision tree models
are obtained by recursively partitioning the data set in various ways into branch-like segments
and fitting a simple prediction model within each segment. The partitioning can be expressed

6

graphically as a decision tree [12]. A decision tree contains one root node, a set of internal (or
split) nodes and leaf nodes [13]. Each internal node is labeled with a feature. The outgoing
edges of that internal node represent possible values satisfying some constraints of that feature.
Each leaf node is labeled with a target class. For example, in Figure 2 is a decision tree for a
classification problem with 3 features: a, b, c, and 3 classes.

Figure 2: Decision Tree

Random forest uses an ensemble method by combining a multitude of decision trees. The main
idea behind ensemble methods is to construct a single model by combining a set of base mod-
els [14]. It has been proven that using ensemble methods can give better results than using a
single model when measured on predictive accuracy. Random forest uses a bagging method,
which averages the predictions of multiple models trained on different samples to reduce the
variance and achieve higher accuracy.

For a classification task, an instance from a dataset is classified according to each single tree,
the trees will vote for their classification and the class having the most votes will be chosen as
the final result. For a regression task, the result is calculated by averaging the predictions.

Each tree in this algorithm is grown in this way[15]:

1. Setting n as the number of instances in the training set, a bootstrap sample of size n is
sampled at random with replacement from the original data. This subset containing n in-
stances will be the training set for growing a tree. The rest of the data that is not included
in the tree construction is utilized as a test set for making an error-estimate, which is
called the “out of bag” error.

2. For some number m smaller than the total number of attributes M, m attributes are se-
lected randomly out of M attributes at each node. According to some objective function,
the optimal split on these selected m attributes is used to do a binary split on that node.

3. There is no pruning when each tree is growing and the trees are grown to the largest ex-
tent possible.

The accuracy of a Random Forest model depends on the strength of each individual tree and
the correlations between any two trees [7]. A strong tree classifier has a lower error rate. In-

a≥1 a<1

b>3 b≤3 c=1

Class2 Class1 Class3 Class2

c=0

7

creasing the strength of each tree increases the forest accuracy, while increasing the correla-
tion decreases the forest accuracy. Using random features selection (feature bagging) when
finding the optimal tree split is a strategy to reduce correlation. The reason for feature bagging
is that if some features have very strong power to predict the target attribute, they will be used
in many trees, which causes the trees to become correlated [16]. Reducing the number of
random selected features m can reduce the correlation but also reduce the strength of the trees.
In between there is a balance for m. This number m and the number of trees are two adjustable
parameters for a Random Forest model.

 Extremely Randomized Trees 2.2.2

Extremely Randomized Trees (Extra Trees) is similar to the Random Forests algorithm in the
sense that it is based on selecting at each node a random subset of m attributes to decide on
the split [8]. But two differences compared to the Random Forest model are that each tree in
the Extra Trees model is grown from the whole dataset (no bootstrap sample) and a discreti-
zation threshold (cut-point) is randomly selected for each of the features to define a split, in-
stead of choosing the best cut-point based on some objective function as in the Random Forests
method. For the Extremely Randomized Trees model the number of randomly selected attrib-
utes and the number of trees are also the most important two adjustable parameters.

 Gradient Boosting 2.2.3

Boosting is another method of creating an ensemble of many weak predictors, which are then
weighted in some way that is usually related to their accuracy. The weighted weak predictors
are added to a final strong one [17].

Gradient Boosting Trees (GBRT) uses boosting techniques to integrate the strength of many
different decision trees to build a stronger one. The model is built in an additive way such that
the parameters of each new added base predictor is optimized by moving in the opposite di-
rection of the gradient to minimize the loss function [9]. The loss function can be arbitrary, for
example square loss, absolute loss, or Huber loss [18].

Extreme Gradient Boosting (Xgboost) [10] is a very fast and effective machine learning model,
which implements algorithms under a gradient-boosting framework, including a generalized
linear model and gradient-boosted regression tree. Xgboost is first introduced by [19], it is
widely used in Kaggle competitions and is utilized in many winning solutions.

8

 A pipeline for Kaggle competitions 3

In this chapter a pipeline for approaching Kaggle competitions is to be presented, the design of
which is on the first competition in Chapter 4 and then reused in the remaining two competi-
tions in Chapter 5 and Chapter 6.

The competitions hosted by Kaggle are different from data mining problems in the real world.
Hamner, Kaggle Co-founder & CTO [20] states that there are three main things that Kaggle has
done for competition participants that professional data scientists need to do:

• Identify the problem and how to address it using machine learning

• Collect the appropriate data

• Clean and transform the data, and split the data into training and test datasets

Figure 3: Overview of the pipeline

Data	
 Exploration

Data	

Preprocessing

Feature	

Engineering

Feature	

Selection

Model	
 Validation	

and	
 Selection

Hyperparameter	

Tuning

Prediction	

9

As described in Section 2.1, a real-world data mining or KDD problem begins with identifying
the problem and the goal of the KDD process, the data used for solving the problem should be
gathered from a database or data warehouse. Competitions in Kaggle have already well de-
fined the final goals of the problems with no need for participants to dive deeply into the rel-
evant domain to understand how their work and output will hit the goal. Kaggle also provides
relevant, cleaned, well-split training and test datasets for competition participants. Different
from the KDD process in Section 2.1, the pipeline introduced in this Chapter begins directly
with data exploration. Figure 3 shows an overview of the pipeline. There are 6 steps before the
final prediction task, like KDD process, the process of this pipeline is also interactive and iter-
ative.

 Data exploration 3.1

With the exception of reading the description of the competition, the first step in starting the
real work is to do exploratory data analysis to summarize the data’s main characteristics. There
is no standard or perfect way to explore the data, it is time-consuming and always depends on
the experience of the participants. Still, there are some methods, which are often a fine choice
to consider when exploring data.

 Outlier detection 3.1.1

A definition of an “outlier” given by [21] is an instance which is significantly different from the
other instances and which therefore arouses suspicions that the instance was created using a
different mechanism. An example of an “outlier” is shown in Figure 4. Despite the meaning of
the axes, the encircled point in the figure does not fit the general trend of the other data points,
so it can be seen as an outlier.

Figure 4: Outlier

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	
 0.5	
 1	
 1.5	
 2	
 2.5	

Outlier

10

A common way to find outliers is to make plots of the concerned feature, as in Figure 4. An-
other way is to review the extreme values (minimum and maximum) and the percentiles of the
data numerically.

 Data visualization 3.1.2

One of the easiest ways to understand the data is using different plotting methods to visualize
the data. Manually checking thousands or even millions of instances is not only
time-consuming, but also cannot give a direct insight into the data. There are various ways to
do data visualization. Some very common and simple ones are for example box plot [22],
scatter plot (Figure 5) and histogram (Figure 7).

 Summary statistics 3.1.3

Summary statistics provide information that gives a quick and simple description of the large
amount of data. Common summary measures include mean, median, minimum value, maxi-
mum value, range, standard deviation, and correlation between attributes if more than one
attribute is measured.

 Data preprocessing 3.2

Data preprocessing is a very critical step in any data mining process, it is more difficult to
discover data patterns during the training step if there is significant noise and unreliability
within the data [23].

The specific data preprocessing may depend on the data that is available and the learning al-
gorithm that will be used to solve the problem. Some major tasks in data preprocessing are
described in this section.

 Data cleaning 3.2.1

Data cleaning primarily deals with filling in missing values and handling outliers to remove the
noise of data.

A time-consuming way [6] to fill in missing values is to do it manually, but this is perhaps not
feasible for a large dataset which has many missing values. Other common ways [6] are to use
the attribute mean or most probable value to fill in missing values, or to use a learning algo-
rithm to predict the missing values, an example of which is used in Section 4.4.3.

11

A simple way to handle outliers is to sort the attribute values and partition them into bins and
then smooth the noisy data by bin mean, bin median, or bin boundaries. It is also possible to
directly group values in clusters and then detect and remove outliers [24].

 Data Transformation 3.2.2

Data transformation converts the data into appropriate form for data mining. Common data
transformation methods can be:

• Normalization

For some attributes it varies much between minimum and maximum values, e.g. 0.1 and 1000.
Normalization scales attribute values to fall within a specified range [23], like [0,1]. This is
particularly useful for some algorithms such as neural networks and k-Nearest Neighborhood.
The two most common normalization methods are:

Let v be the old value for feature A, v’ is the normalized value for feature A, the values will be
transformed to fall in [new_minA, new_maxA].

a) Z-score normalization:

𝑣! =
𝑣 −𝑚𝑒𝑎𝑛!

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛!

b) Min-max normalization:

𝑣! =
𝑣 −𝑚𝑖𝑛!

𝑚𝑎𝑥! −𝑚𝑖𝑛!
𝑛𝑒𝑤_𝑚𝑎𝑥! − 𝑛𝑒𝑤_𝑚𝑖𝑛! − 𝑛𝑒𝑤_𝑚𝑖𝑛!

• Discretization

Discretization transforms a numeric attribute into a discrete one by creating a set of contiguous
intervals (or equivalently a set of split points) that spans the range of the attribute’s values
[25]. The number of value possibilities of the numeric attribute should be significantly reduced
by applying discretization, since large amounts of possible attribute values arouse slowness or
ineffectiveness in model building [23, 26].

As a very simple example in Table 4, the numeric attribute Age is discretized using conceptual
labels (youth, adult, senior) to replace the original values of Age.

Table 4: Discretization example

Name Age 	

	

	

Discretization

Name Age

Tom 12 Tom youth

Amy 25 Amy adult

Mike 60 Mike senior

John 17 John youth

Sophia 33 Sophia adult

Lily 55 Lily senior

12

According to the consideration of class attributes, discretization algorithms can be divided into
unsupervised methods and supervised algorithms. Unsupervised discretization algorithms that
do not take class information into account are very simple. Two common unsupervised dis-
cretization algorithms are equal-width discretization and equal-frequency discretization [23].
Equal-width discretization methods compute the maximum and minimum for the attribute
that is to be discretized and divide the range into k equal-width intervals. Equal-frequency
discretization method partitions the value range into k intervals so that each interval contains
the same number of instances. Supervised discretization algorithms that take class information
into account are more complicated. There are many manners in which to do supervised dis-
cretization. Chi merge [27] is a simple supervised method that uses the chi-square to do dis-
cretization. It sorts the values of the given attribute in ascending order and initially constructs
one interval for each value so that they are separate. It then calculates the chi-square for any
two adjacent intervals and merges those pairs with lowest chi-square values. It stops when all
pairs of adjacent intervals are more than a specified threshold value. More detailed informa-
tion about discretization can be found in [26].

 Feature construction 3.3

In [28] the features used for prediction are described as “easily the most important factor” in
determining the success of a machine learning project. In many cases the given features are not
sufficient to give high prediction accuracy, so it is necessary to construct new features based on
the old ones. This step is always done manually, and based on the understanding of the data
with intuition and creativity.

A very common approach to creating new features is to combine numeric features with various
operators. Given a set of features x1, x2… common new features to generate are like:

• xi+xj

• xixj

• xi
2

• log(xi)

A very simple example is, given the width and length of houses to predict their prices, a possi-
ble new feature can be area, by multiplying the features width and length.

Another way to do feature construction is to decompose or split features to create new features.
One example is in Section 6.4.3, the datetime feature is split into year, month, day of week,
hour. Another example is shown in Table 5, a nominal feature color with values [red, green,
blue] is split into 3 binary features of red, green and blue, 1 means presence of the corre-
sponding color and 0 means the opposite.

13

Table 5: Split color feature into binary features

color red green blue
red 1 0 0
blue 0 0 1
red 1 0 0

green 0 1 0

 Feature selection 3.4

According to [29] the role of feature selection in machine learning is 1) to reduce the dimen-
sionality of data to speed up a learning algorithm, 2) to improve the predictive accuracy of an
algorithm and, 3) to improve the comprehensibility of the results.

A simple way to undertake feature selection is to manually remove irrelevant features based on
expert knowledge such as intuition, but every hypothesis must be tested whether an undesir-
able feature is removed, and feature selection based on intuition always depends on the
number of features, it is hard to proceed if there is a large number of features. Another way is
first to compute a ranking of all features and then choose features relating to it. Three common
methods are described as follows:

• Univariate feature selection

Univariate feature selection methods consider each feature individually. A statistical test is
applied to assign a score to each feature. All features are ranked according to the scores, which
indicate the strength of the relationship of the features with the target attribute. Some com-
mon methods include the Chi squared test, correlation coefficient and information gain [30].

This method is very easy to employ but is sometimes inaccuracy because of consideration of
only univariate dependencies.

• Recursive feature elimination

The idea behind the recursive feature elimination method is to repeatedly build a model and
eliminate the weakest features with every step. Support Vector Machine (SVM) algorithms are
commonly used in this method. SVM can assign weights to features, which are used as a
measure to eliminate features. At first, a SVM model is trained with all features and weights
assigned to each feature. Then the features with the smallest absolute weights are eliminated
from the present set of features [31]. The process continues until all features are exhausted. A
ranking of features is created according to the sequence in which they were eliminated.

Recursive feature elimination method makes up the shortage of univariate method by consid-
ering the dependencies between features. But it is costly and is always dependant on the used
model, i.e., the feature selection might be incorrect when using a different algorithm for fea-
ture selection, compared to the final algorithm for prediction.

14

• Tree-based feature selection

Some treed-based machine learning algorithms like Random Forest or Extremely randomized
Trees can evaluate the relative importance of features. Referencing these feature importance
values features are ranked.

Tree-based feature selection is very easy to use but it is unclear where to cut off to obtain the
best combination of features, which is also a problem for the other methods, but it is quite
unclear with a tree-based method.

Based on these rankings a feature selection approach can be applied. One method is to choose
a learning algorithm, for example Random Forest in Section 4.4.6, and use it to repeatedly
build models with recursively eliminated features based on the ranking. Each model is evalu-
ated and the best subset of features is the one with the highest accuracy.

 Model validation and selection 3.5

In this step, one or more effective models will be selected from a set of candidate models by
validation using the given data. One prediction task can fall into two categories: regression or
classification. As stated in Section 2.3, for each type of prediction task there are various can-
didate algorithms to choose from. To find out the most appropriate algorithms we have to do
much validation to evaluate all candidates. According to the validation results it is able to
choose the best-performing ones

 Validation 3.5.1

As stated in Section 1.1 two datasets are given for a Kaggle competition, one is the training set
and the other is the test set, which does not contain the target feature. To evaluate the per-
formance of a model there are two possibilities.

• One way is to use the training set to do local validation.

A simple method for performing local validation is to split the training dataset into two parts: a
training subset and a validation subset. This method is called the “holdout method”. The
training part is used for training each algorithm and the validation part is used for estimating
the accuracy of the algorithm. This method is simple to apply and takes a relatively short time.
However, this method may give rise to a problem in that the subset used for training or vali-
dating may not be representative of the dataset as a whole [5], especially for a small amount of
data, which can, in turn, give rise to inaccurate evaluations of the model.

An alternative is k-fold cross validation (CV) that can improve the holdout method. In k-fold
cross validation the original training dataset is randomly split into k approximately equal-sized
subsets. Then the holdout method will be repeated k times, and in each turn one of k subsets is
used for validation, and the remaining k-1 subsets are used for training. The final validation
result is the average of the k results. The commonly used value for k is 10.

15

• The other is the public leaderboard hosted by Kaggle.

The public leaderboard provides a score for each submission, which is calculated using an
evaluation metric given by Kaggle. But the score is sometimes calculated only based on a frac-
tion of the test dataset, the fraction varies from competitions. So it is unreliable to totally trust
the public leaderboard, it is better to take both local validation and the public leaderboard into
account when choosing a model.

 Hyperparameter tuning 3.6

A traditional method of performing hyperparameter tuning is grid search, which is simply an
exhaustive searching over manually specified parameter values for a model. Grid search will
evaluate a model for each combination of parameter values specified in a grid. Sometimes a
small grid is ran initially, in which the minimum and maximum and a set of values that fall
between the parameters are specified. The goal of running this small grid is to find the ranges
that the optimum values of the parameters lie in. Then a more accurate grid is expanded based
on the ranges.

For example, to tune the hyperparameters of a Random Forest model, two parameters need to
be tuned: number of trees and number of randomly selected features used to look for the best
split. The two parameters are denoted as n_estimators and max_features. Initially, a rough grid
can be designed as follows:

n_estimators: {50, 200, 400, 600, 800, 1000}

max_features: {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}

where the float number specified to max_features means a percentage of features considered to
look for split.

Suppose the optimum values of the two parameters are {600,0.5}, and then a more accurate
grid can be expanded as follows:

n_estimators:{500, 550, 600, 650, 700}

max_features:{0.4, 0.5, 0.6 }

Grid search is very simple to set up but since grid search is exhaustive, it is therefore poten-
tially expensive for a high-dimensional space. A random search that simply samples parameter
settings from a random distribution for a fixed number of iterations can be an alternative [32].
A model will be evaluated for each combination of parameters chosen. For example, for hy-
perparameter tuning for a Random Forest model using a random search, a search space can be
set as follows:

n_estimators: [50, 1000]

max_features: [0.1, 1.0]

Pairs of values will be chosen randomly from this space for 60 iterations.

16

Random search is significantly cheaper than grid search but it is also possible that random
search cannot find the optimum found by grid search.

Both methods must be guided by some performance metric, typically measured by CV on the
given training set.

17

 Kaggle competition 1: Forest Cover Type Prediction 4

This has been chosen as the opening competition because it has a relatively low difficulty
(Kaggle category: Playground) and suitable data amount given to approach the competition.

In this chapter I will at first describe the main goal of the challenge and the dataset given by
the challenge host. Then I will describe the steps I took to solve this problem in chronological
order. Finally, a conclusion will be drawn and lessons I learned from this competition will be
given.

 Problem Description 4.1

The Forest Cover Type Prediction [33] competition is a typical supervised multi-class classifi-
cation problem. In this competition the participants are asked to predict the forest cover type
using cartographic features. Each instance is sampled on 30 x 30 m squares of the Roosevelt
National Forest in northern Colorado. The forests in these areas have seen few human-caused
disturbances, therefore existing forest cover types are not a result of forest management prac-
tices but ecological processes.

 Dataset 4.2

The dataset is a public dataset and is provided by Jock A. Blackard and Colorado State Uni-
versity and hosted by UCI machine learning repository [34]. Two datasets are provided to do
the prediction task: a training set and a test set. The training set consists of 15,120 instances,
containing both cartographic features and the forest cover type. The test set consists of
565,892 instances, containing only cartographic features. There are 54 cartographic features
and one target feature that is to be predicted, all of them are listed in Table 6.

18

Table 6: Description of the features for competition Forest cover type prediction [35]

Feature Type Description

Elevation numerical Elevation in meters

Aspect numerical Azimuth from true north

Slope numerical Slope in degrees

Horizon-
tal_Distance_To_Hydrology

numerical Horz Dist to nearest surface water features

Vertical_Distance_To_Hydrology numerical Vert Dist to nearest surface water features

Horizon-
tal_Distance_To_Roadways

numerical Horz Dist to nearest roadway

Horizon-
tal_Distance_To_Fire_Points

numerical Horz Dist to nearest wildfire ignition points

Hillshade_9am numerical
Hillshade index at 9am, summer solstice
0 to 255 index

Hillshade_Noon numerical Hillshade index at noon, summer solstice
0 to 255 index

Hillshade_3pm numerical
Hillshade index at 3pm, summer solstice
0 to 255 index

Wilderness_Area nominal
Wilderness area designation
4 binary columns, 0 = absence or 1 =
presence

Soil_Type nominal
Soil Type designation
40 binary columns, 0 = absence or 1 =
presence

Cover_Type nominal
Forest Cover Type designation
7 types, integers 1 to 7

 Evaluation metric 4.3

Submissions are evaluated on a simple multi-class classification accuracy, which is defined as
the number of correctly classified instances divided by the total number of instances:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

Every participant has 5 chances to submit an entry per day. The leaderboard is calculated
based on all of the test data.

19

 Approach and progress 4.4

The content in this subsection is written chronologically to give a better understanding of the
decisions I received while trying to solve this problem. This method of describing is also used
in the other competitions.

 Explore the data 4.4.1

The data contains no dates and no strings and no null values. For the soil type and wilderness
type it is necessary to inspect if some instances are allocated into more than one class, or not
allocated at all. I summarized the binary columns respectively and all values equal 1, this
states that there are no errors. For the numeric attributes we have to check if the zeros contain
any missing values.

Figure 5: Hillshade_Noon vs. Hillshade_3pm

20

Figure 6: Hillshade_9am vs. Hill_shade_3pm

Feature Hillshade_3pm contains many zeros. If there was shade at 9 AM and noon, it is logical
to expect little shade at 3 PM, but 0 does not sit right. Figure 5 and Figure 6 show that many
points of Hillshade_3pm are zeros while in the same instances the shade is not zero at noon
and 9 AM. It is possible to speculate the zeros of hill shade at 3 PM are very possibly missing
values.

Figure 7: Histogram of Elevation: different cover types are marked with different colors

21

Figure 8: Feature importance computed by random forest model

To have a better understanding of the features' predictive power, I computed the feature im-
portance of the attributes without Willderness_area and Soil_Type showed in Figure 8, which
indicates Elevation has the strongest predictive power. Figure 7 shows that Elevation alone can
effectively separate cover types 4, 5 and 7.

 Get started 4.4.2

To quickly get started on the competition, first I have run a Random Forest model with 100
trees on the original data and submitted it to Kaggle. This model got a score of 0.75099 on the
leaderboard with a ranking of 813, which is in the approximate middle of the leaderboard.

Using this Random Forest model with 100 trees and 30% of the train data as test data and the
rest as training data I got a confusion metrics and it is visualized in Figure 9. The confusion
matrix shows that class 1 and class 2 are the most frequently misclassified and this is also the
key problem of this competition.

22

Figure 9: Confusion matrix of random forest

 Filling in missing values 4.4.3

Since the forest cover type is not needed when filling in missing values of Hillshade_3pm we
can utilize both the train and test data to train a model. With a 10-fold cross validation score of
0.999 as a convincing argument, I applied a Random Forest regressor to fill in the missing
values for feature Hillshade_3pm.

After handling the missing values I used the new dataset to get a prediction with the Random
Forest classifier. This submission got a score of 0.75301 on the leaderboard. This strategy gives
a little improvement of about 0.003 on the last submission.

 Combination of binary columns 4.4.4

The 4 binary columns of Wilderness_Area and 40 binary columns of Soil_Type can be respec-
tively combined by summarizing as 2 nominal attributes.

After applying this procedure to the train and test dataset I tried again to submit a new entry,
this scored 0.75084 on the leaderboard, which is not an improvement, the opposite, even. I
used the original binary columns instead of the combined features in the following approaches.

23

 Construction of new features 4.4.5

The data has 5 features in meters, I have done some calculation and combination based on
these attributes. Distance features can be divided into two types: vertical and horizontal. For
all vertical distance features I combined them pair-wise with plus and minus operators, and the
same for all horizontal distance features. Using horizontal distance and vertical distance to
hydrology I calculated the Euclidean distance to hydrology. All new features are listed in Table
7.

Adding the constructed new features to the dataset I got a score of 0.78359. This score is about
0.03 higher than the highest score mentioned above, which is a big improvement and allowed
me to jump to 316th place on the leaderboard.

Table 7: New constructed features

New Features Formulation

Ele_minus_VDtHyd Elevation −Vertical_Distance_To_Hydrology

Ele_plus_VDtHyd Elevation +Vertical_Distance_To_Hydrology

Distance_to_Hydrolody Horizontal_Distance_To_Hydrology**2+
Vertical_Distance_To_Hydrology**2)**0.5

Hydro_plus_Fire Horizontal_Distance_To_Hydrology+
Horizontal_Distance_To_Fire_Points

Hydro_minus_Fire
Horizontal_Distance_To_Hydrology −�

Horizontal_Distance_To_Fire_Points

Hydro_plus_Road Horizontal_Distance_To_Hydrology+
Horizontal_Distance_To_Roadways

Hydro_minus_Road
Horizontal_Distance_To_Hydrology −

Horizontal_Distance_To_Roadways

Fire_plus_Road Horizontal_Distance_To_Fire_Points+
Horizontal_Distance_To_Roadways

Fire_minus_Road
Horizontal_Distance_To_Fire_Points −�

Horizontal_Distance_To_Roadways

 Feature selection 4.4.6

I used a tree-based feature selection method with a Random Forest model. 63 Random Forest
models were built with recursively-removed features beginning from the most unimportant,
based on the feature importance ranking calculated by a Random forest model. The trend of
scores becomes relatively flat from about 26 features onwards. I then tried to predict respec-
tively with 26, 43 and 60 features, the other two had the highest validation scores. Table 8
shows the 10-fold cross-validation scores based on the training data and scores on the lead-

24

erboard of Kaggle. Feature selection provided very little improvement by eliminating the 3
least important features. But I still excluded these three features in the following steps.

Table 8: Validation scores and leaderboard scores

Number of features Cross validation Leaderboard
26 0.79702 0.76790
43 0.80529 0.78113
60 0.80708 0.78370

Total (63) 0.80714 0.78359

 Model selection 4.4.7

Random Forest performed very well, but it is still worthwhile to try other algorithms. By vali-
dating other models with the default parameters, I selected the two best-performing models:
Random Forest with 10-fold CV score 0.77612 and Extra Trees with 10-fold CV score 0.79120.
To have a better understanding of the performance of Extra Tress I tried this model with 100
trees like Random Forest, this gave a leaderboard score of 0.80767, which took my ranking up
to 133.

 Further feature selection 4.4.8

As another feature selection approach I tried to exclude one of all features except soil type and
wilderness type with each step of the evaluation. Setting the score of total features as a
benchmark, the scores higher than this will degrade prediction performance. Since the
cross-validation in every turn was random, the ranking was always different. I tried 4 loops
and decided to reduce two features—slope and Vertical_Distance_to_Hydrology, which ap-
peared below the benchmark all four times. Using an Extra Trees model and reducing these
two features resulted in a score of 0.80986 on the leaderboard.

 Parameter tuning 4.4.9

For a refinement of the performance of the models, Random Forest and Extra Trees, which are
selected in the model selection phase, I used grid search to seek the best parameters. For these
two algorithms two parameters are tuned, which are the number of trees and the number of
randomly selected features to seek split.

The submissions by applying the tuned Random Forest got a score of 0.78871 on the leader
board. The Extra Trees model with optimum parameters scored 0.81256 on the leaderboard.

25

 Ordered One-vs.-All 4.4.10

As stated in Section 4.4.2, the key problem of this competition is to reduce the high rate of
misclassification of cover types 1 and 2. Figure 10 shows a confusion matrix that is produced
by an Extra Trees model. It shows that type 1 and type 2 are still hard to separate and some
type 1s are also misclassified as type 5 and 7; some type 2s are misclassified as type 4, 5 or 6.
Because of the high prediction accuracy of types 7, 6, 5, 4, I used an ordered One-vs.-All ap-
proach for classes 7, 6, 5, 4 to prevent inaccurate prediction for types 1 and 2. The classifica-
tion process is demonstrated in Table 9.

Figure 10: Confusion matrix of extra trees

Table 9: Ordered One-vs. -All

Cover
type

Training set Test set
Classified in-

stances
7 x7 vs. (x1+x2+x3+x4+x5+x6) y y7

6 x6 vs. (x5+x4+x3+x2+x1) y − y7 y6

5 x5 vs. (x4+x3+x2+x1) y − y7 − y6 y5

4 x4 vs. (x3+x2+x1) y − y7 − y6 − y5 y4

3, 2, 1 x3+x2+x1 y − y7 − y6 − y5 −	
 y4 y3, y2, y1

26

Let xi be the subset of the training data, which is labeled with cover type i, and yj be the subset
of test data y, which is predicted to be cover type j.

For example, to predict type 7, complete training dataset is used in the training phase, but the
instances of cover type 7 are labeled as positives and all other instances are labeled as nega-
tives to prevent other types (especially type 1) from being misclassified as type 7. After pre-
diction, the test instances classified as cover type 7 are labeled “7” and are removed from the
test set. The classification process for cover type 6 is the same as that of 7, but the training
instances of cover type 7 are removed from the training set. Repeat the same approaches for
cover types 5 and 4 and we get the classified instances y7, y6, y5 and y4. Types 1, 2, 3 are clas-
sified using the general multi-class classification method.

The Extra Trees algorithm, with parameters selected from the previous step, was used in each
step to get a submission, and it scored 0.82269 on the leaderboard.

 Final result 4.4.11

Up to now the competition is closed, my final submission scored 0.82269 and ranked 29th out
of 1694 teams, which is quite a satisfactory result. An overview of the leaderboard is shown in
Table 10. The row in bold is my score.

Table 10: Public leaderboard overview of first competition

Ranking Team Name Score

1 antgleb 1.00000

2 Ashish Singh 0.99999

3 ucbw207_2_forest 0.99751

… … …

27 Michiel 0.82408

28 DATS36G 0.82281

29 Ying Dong 0.82269

30 hderksen 0.81963

31 Jack Dempsey 0.81950

… … …

1692 soumyajyoti 0.00003

1693 Ethan Rosenthal 0.00000

1694 Hiokei Chan 0.00000

27

 Conclusion 4.5

The goal of this challenge is to predict forest cover type based on cartographical data. Different
data processing strategies and classification models are used to make predictions. The new
feature construction approach gave the most significant improvement and the Extra Trees
model was chosen as the final model. The ordered One-vs.-All strategy with Extra Trees model
obtained the best result. To have a clear insight of the total process of this competition, I
plotted 9 representative scores and corresponding standings in Figure 11.

Figure 11: Leaderboard Scores and Standings for competition forest cover type classification

 Lessons learned 4.6

1. It is very important to get started with a model as soon as possible.

28

2. Feature engineering can greatly improve prediction accuracy.

3. Another lesson I can take away from this competition is that cross validation helps sig-
nificantly in the model selection and parameter tuning phase.

4. This is my first Kaggle competition and deciding how to approach it I felt overwhelmed.
After an experimental trial, a pipeline was designed from this competition. This pipeline
serves as a good guideline and should be used for upcoming competitions.

29

 Kaggle competition 2:Otto Group Product Classification 5

This competition [36] has a higher-level difficulty (Kaggle category: Featured) than the first
one. I wanted to check if the pipeline stemming from the first one is also applicative for harder
competitions, so this competition was chosen. Also, it has a proper amount of data that a per-
sonal computer can manage.

At first I will describe the main goal of this competition, the dataset given by the competition
host and evaluation metric. Then I will describe in chronological order the various approaches
I have taken to solve this problem. Lastly, a conclusion and lessons learned from this competi-
tion will be given.

 Problem Description 5.1

The Otto Group is a large e-commerce company. They posed this competition to ask research-
ers to classify products into one from nine categories, aiming at achieving better product
analysis by improving the ability to accurately classify similar products.

 Dataset 5.2

This competition provides a training dataset including 61,878 instances used for training
models, and a test set containing 144,368 instances to be classified. Each instance represents a
single product. 93 obfuscated features are provided for both datasets, which represent counts
of different events.

The randomly selected products are to be classified into nine categories. Each target category
corresponds to one of the most important product categories (like fashion, electronics, etc.).

All features are listed in Table 11.

Table 11: Description of features for competition Otto group products classification [37]

Feature Type description
id numeric anonymous id unique to a product

feat_1, feat_2, ...,
feat_93

numeric various features of a product

target nominal the class of a product

 Evaluation metric 5.3

The evaluation metric uses the multi-class logarithmic loss (logloss). This evaluation metric is
being used to penalize heavily in case a wrong prediction comes up. Each product has been
defined with one true category. For each product, we are asked to submit a set of predicted
probabilities (one for every category). The formula of logloss is as follows:

30

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −1 ∗
1
𝑁

!

!!!

𝑦!"log (𝑝!")
!

!!!

Where N represents the total number of products in the test set, M is the number of categories,
log is the natural logarithm, yij equals 1 if product i is in category j and 0 otherwise, and pij is
the predicted probability that product i belongs to category j. pij lies in [0,1], to prevent infinity
(log(0)) the submitted predicted probabilities are substituted with:

max (min 𝑝, 1 − 10!!" , 10!!")

The logloss is always greater than 0. The lower value a logloss has, the better the prediction is.

For this competition the leaderboard is evaluated on approximately 70% of the test data and
the final results will be based on the other 30%, so the final standings may be different from
the initial leaderboard ranking.

 Approach and progress 5.4

 Data exploration 5.4.1

The features are completely obfuscated; the meaning behind the 93 features and what the 9
categories are remains unknown. We only know the features are integer counts and contain
many zeros. Figure 12 shows how the 9 product categories are distributed.

Figure 12: Distribution of Product Categories

31

There are many features, in Figure 13 I plotted the correlation matrix only for the 15 most
important features selected by Random Forest to see if they are closely correlated. We can see
most of them do not have high correlation, only feat_14 and feat_25’s correlation is higher
than 0.5.

The data seems tidy and clean and there is no necessity to preprocess the data.

Figure 13: Correlation Matrix of 15 most important features

 Beat the benchmark 5.4.2

The competition administrators have provided a benchmark using a Random Forest model
with 10 trees, which resulted in a score of 1.50241 on the leaderboard. To get started on the
competition and to have more insights into the subsequent procedure, I decided to run and
submit the benchmark code, but setting the Random Forest model with 100 trees. This sub-
mission got a score of 0.58653, which has beat 40% of all competitors.

32

 Feature construction 5.4.3

Since all features have been obfuscated, it is impossible to construct new features by learning
from their meanings. I added only three new features: mean value, standard deviation, and
count of non-zero values of every instance with the exception of id and target attributes. The
standard deviation is calculated as:

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
(𝑥! −𝑚𝑒𝑎𝑛!)!!

!!!
𝑁

!

But the new features proved ineffective. With the new features I got a score of 0.59432 on the
leaderboard.

 Feature selection 5.4.4

At first I tried a recursive feature elimination method with a linear Support Vector Classifica-
tion [38] model to do feature selection, but there was no significant evidence to discard a
given feature.

Then as in the forest cover type competition I tried to run local validation recursively with
top-n (n from 20 to 93) features based on the feature importance computed by Random Forest,
the final result did not show an obvious improvement compared to the result of applying all
features. Even so, I submitted one prediction with 90 features, which saw a slight advantage,
and this submission achieved a score of 0.58840. Even after feature selection the score was
lower than the prediction directly on raw data, so I used the raw dataset in the following steps.

 Model selection 5.4.5

Two models are selected in this step: Random Forest and GBRT. Random forest got a score of
0.58653 on the leaderboard and GBRT scored 0.59601.

 Parameter tuning for random forest 5.4.6

I ran a grid search to find the optimum parameters for Random Forest and GBRT. The param-
eters tuned are same as in Section 4.4.9. The tuned Random Forest achieved a score of
0.53472. The hyperparameters tuned for GBRT were number of trees and the learning rate.
The tuned GBRT model scored 0.50902.

33

 Probability Calibration for random forest 5.4.7

Random Forest averages a number of decision tree classifiers on various sub-samples of the
dataset, according to [39] the high variance in the underlying based trees will bias probability
estimation away from the values which should be near 0 or 1, model like Random Forest can
have difficulty making predictions close to 0 and 1. That results in a greater logloss error be-
cause of increased -1*log(pij) in the logloss formula which is introduced in Section 5.3.

Figure 14: Probability distribution after calibration

Getting inspiration from the Kaggle competition forums, I used probability calibration methods
to improve Random Forest. Probability calibration is a post-processing technique that can im-
prove the probability estimation or the error distribution of an existing model. It performs a
cross validation on the training instances and test instances. An average of predicted probabil-
ities for each fold is then calculated for the final result to reduce variance. It has been tested by
[39] that the calibration technique works for the Random Forest model once the calibration
sets are large enough. The calibrated Random Forest model scored 0.48998 on the leader-
board. Figure 14 shows the change in distribution of the probability predictions after calibra-
tion. The percentage of predicted probabilities near 0 or 1 increased, which tends to decrease
logloss error.

34

 Using Xgboost 5.4.8

Referencing some advice in the Kaggle forum I tried Xgboost—Extreme Gradient Boosting. It is
a very efficient Gradient Boosting package, which is widely used in Kaggle competitions. The
default Xgboost scored 0.47409 on the leaderboard.

 Tuning Xgboost 5.4.9

Xgboost has more parameters to be tuned, and the exhaustive grid searching required is ex-
pensive and very time-consuming. Detailed information regarding the parameters can be
found in [40]. I ran a randomized search that sampled parameter settings 70 times to yield a
superior model. This approach resulted in a score of 0.43237.

 Mean stacking 5.4.10

From the 70 random searches of good parameters I encountered 7 outputs that hit a validation
score between 0.43 and 0.44. I used a very simple ensemble method to get the average output
produced by 7 Xgboost models with different parameter settings. The idea behind it is that the
errors are also “averaged” when getting the mean. This little trick scored 0.42932 on the
leaderboard.

 Final result 5.4.11

The public leaderboard was calculated on approximately 70% of the submissions before the
end of the competition and the final results would be based on all test datasets. So the final
standings may be different after validation.

According to the rules of the competition, every participant was permitted 2 submissions and
the best one would be my final leaderboard score. Since the public leaderboard appeared to be
based on a large enough set (70% of test set), I selected the 2 submissions with the best public
leaderboard scores. When the competition was concluded, my final private score was 0.43002,
this is the score of the mean stacking of 7 Xgboost models described in section 5.4.9. Compared
to the public score 0.42932, although the private score went down, the final ranking saw slight
improvement, from 354th to 347th, out of 3,514 teams. A brief overview of the leaderboard is
shown in Table 12.

35

Table 12: Private leaderboard overview of second competition

Ranking Team Name
Private
Score

1 Gilberto Titericz & Stanislav Semenov 0.38243

2 ¯_(ツ)_/¯ 0.38656

3 i dont know 0.38667

… … …

345 SagaU 0.42978

346 y 0.42997

347 Ying Dong 0.43002

348 TeamNeuland 0.43007

349 lvchen1989 0.43007

… … …

3512 jcis 33.49091

3513 stan 33.82664

3514 Pierre-Loic Doulcet 34.53878

 Conclusion 5.5

In this competition I started with a Random Forest model and got a promising result. Feature
engineering and selection did not contribute to the prediction, so I just used raw data in the
later processes. The Random Forest and GBRT model saw a large improvement after tuning
the parameters. The Random Forest model surpassed 0.5 on the public leaderboard, which was
very encouraging. The Xgboost attempt greatly helped. The default Xgboost had already
achieved a better score than the calibrated Random Forest. After using a random search of the
parameters for Xgboost, and averaging the 7 best outputs, I reached the top 10% on the lead-
erboard. Figure 15 shows how the different approaches performed throughout the entire pro-
cess.

36

Figure 15: Score vs. Standing for competition Otto group products

 Lessons learned 5.6

1. As more and more new and efficient machine learning models like Xgboost appear, we
should always stay hungry for knowledge.

2. Some steps of the pipeline are not effective for the competition, but we cannot know
whether they are useful without trying them.

37

 Kaggle competition 3:Bike Sharing Demand 6

This competition [41] was chosen because it is a regression problem, which makes it different
from the other two. The goal is to check if the pipeline is applicable to the Kaggle competition,
which solves a regression problem.

In this chapter the main goal of the competition and the dataset given by the challenge host are
firstly described. Then I will describe chronologically what I have done to solve this problem.
Lastly, a conclusion and lessons learned from this competition will be given.

 Problem Description 6.1

Bike sharing systems are a mean of renting bicycles that let people rent a bike from one loca-
tion and return it to a different place, automated via a network of kiosk locations throughout a
city. In this competition, participants are asked to use data available prior to the rental period
to forecast bike rental demand in the Capital Bike share program in Washington, D.C.. Differ-
ent from the other two competitions in Chapter 4 and Chapter 6 this is a typical regression
problem.

 Dataset 6.2

Table 13: Features for competition bike sharing demand [42]

Feature Type Description
datetime datetime hourly date + timestamp
season nominal 1 = spring, 2 = summer, 3 = fall, 4 = winter
holiday nominal whether the day is considered a holiday

workingday nominal whether the day is neither a weekend nor
holiday

weather nominal 1: Clear, Few clouds, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist

+ Few clouds, Mist
3: Light Snow, Light Rain + Thunderstorm +

Scattered clouds, Light Rain + Scattered
clouds

4: Heavy Rain + Ice Pallets + Thunderstorm
+ Mist, Snow + Fog

temp numeric temperature in Celsius
atemp numeric "feels like" temperature in Celsius

humidity numeric relative humidity
windspeed numeric wind speed

casual numeric number of non registered user rentals initiated
registered numeric number of registered user rentals initiated

count numeric number of total rentals

38

The data provided spans the two years from January 1, 2011 to December 31, 2012. The
training set contains the first 19 days of each month and consists of 10,866 instances, while the
test set data contains the remaining days in each month and consists of 6,493 instances. The
final goal is to predict the total count of bike rentals during each hour covered by the test set.
The numbers of casual and registered users are only provided in the training set. The features
and description are listed in Table 13.

 Evaluation metric 6.3

The submissions are evaluated by the Root Mean Squared Logarithmic Error (RMSLE). The
formula of RMSLE is as follow:

1
𝑛

(log 𝑝! + 1 − log (𝑎! + 1))!
!

!!!

Where n is the number of instances in the test set, 𝑝! is the predicted number of total rentals,
𝑎! is the actual number of total rentals, log(x) is the natural logarithm of x.

The RMSLE is higher when the discrepancies between predicted and actual values are larger.
Compared to Root Mean Squared Error (RMSE), RMSLE does not heavily penalize huge dis-
crepancies between the predicted and actual values when both values are huge. In this cases
only the percentage differences matter since log(pi+1) – log(ai+1) can be rewritten to be
log((pi+1)/(ai+1)).

 Approach and process 6.4

 Data exploration 6.4.1

The dataset is mixed with categorical and numerical features. First I wanted to check the cor-
relations between features. Figure 16 shows some highly correlated attributes: temp & attempt,
registered & count.

The feature Datetime in the dataset is playing the role of index, but contains significant in-
formation like year, month, day of the week, and hour. I anticipate these will serve as im-
portant features for characterizing the bike demand at any given moment.

Figure 17 shows the mean values of total count of rentals, number of registered users and
number of casual users grouped by day of the week. As visualized in Figure 17, for registered
users, the demand for bikes is higher on weekdays compared to the weekend. On the other
hand, for the casual users, Figure 17 shows there is more demand on the weekend compared
to weekdays.

39

Figure 16: Correlation between features

Figure 17: Mean value of count/registered/casual per day of week

40

I plot the mean values of the total rental count, number of registered users, and number of
casual users per hour in Figure 18.

Demand for bikes by registered users tends to peak between 7am and 9am and between 5pm
and 7pm, whereas casual users tend to rent bikes more often in the afternoon. As mentioned
above, the total count of rentals is highly correlated with the number of registered users.

Figure 18: Mean value of count/registered/casual per hour

 Get started 6.4.2

As I have proceeded in the other two competitions, I first tried a Random Forest regression
model with 100 trees to get started on the competition. Directly predicting the count gave a
RMSLE of 1.36508 on the leaderboard. This submission landed around 2,800th place. This
beats about 25% of all participants.

 Feature extraction from datetime 6.4.3

As mentioned in Section 6.4.1, we can extract several useful attributes from datetime. The new
features are: year, month, day of week, hour. These new features have strong predictive power
and improved the leaderboard score to 0.47144, the standing was also raised about 1,500
places.

41

 Feature construction 6.4.4

Because of a lack of domain knowledge I only created two new features, which are the abso-
lute value of difference between temperature and “feels like” temperature, and which tem-
perature is higher. With these two new features and Random Forest model, I achieved a score
of 0.47709 on the leaderboard, but the local 10-fold cross-validation error was only 0.32878.

Since the train and test datasets are separated according to date in the month, to decrease the
validation deviation and referencing advice on the competition forum I tried to split the
training set by dates and use the two consecutive date as test set in every turn of validation,
like (10,11), (11,12), ... (18, 19), and the rest as training data, which is closer to the real sta-
tion. This new validation approach only slightly decreased the deviation of the local validation
score, from 0.32878 to 0.33629 for the last approach.

 Predict logarithm of count 6.4.5

As written in section 6.3, the evaluation metric is RMSLE, our actual aim should be the natural
logarithm of bike demand at different times, demand count plus one, in order to avoid infini-
ties where demand is null. Predicting the log(count+1) gave a score of 0.43880 on the lead-
erboard, which was a big improvement. This entry reached about 680th place.

 Feature selection 6.4.6

Referencing the feature importance rankings calculated by Random Forest, I ran many times of
10-fold cross-validations with from the most important one feature to all features. I dropped a
new created feature, which indicates which temperature is higher. I also dropped month due to
its high correlation with season. After eliminating these two features a new submission scored
0.39776.

 Model selection and parameter tuning 6.4.7

I chose 3 optimum models from several popular models by doing local validations based on
their performance at default settings. Using grid search to iteratively tune the parameters, I got
big improvements on the leaderboard. The validation RMSLE errors and leaderboard RMSLE
errors of every individual model are shown in Table 14.

Table 14: Validation and leaderboard scores

Model Validation Leaderboard
GradientBoostingRegressor 0.29426 0.37466

RandomForestRegressor 0.31537 0.39193
ExtraTreesRegressor 0.31441 0.38601

42

 Ensemble 6.4.8

Based on the three outputs from the previous step I have produced an ensemble by weighted
averaging. Here I used a weighted sum of all individual outputs. If each individual output is 𝑦!
and we have n outputs, then the overall result 𝑦 can be defined as:

𝑦(𝑥;𝛽) = 𝛽!𝑦!

!

!!!

(𝑥)

where 𝛽 is a set of weights.

To find the best ensemble weights I used 10% of the training set as test set and used the
“minimize” method provided by SciPy, which seeks minimization of scalar function of one or
more attributes, more information can be found in [43]. The weighted ensemble scored
0.37175 on the leaderboard.

 Separate models for registered and casual users 6.4.9

Table 15: Validation and leaderboard log-loss errors of different combination of models

Model ([registered]&[count]) Validation Leaderboard

GBRT & GBRT 0.30230 0.36899

Extra trees & Extra trees 0.31715 0.38196

Random forest & Random forest 0.32037 0.38195

GBRT & extra trees 0.30239 0.36959

GBRT & Random forest 0.30256 0.36832

Extra trees & GBRT 0.31316 0.37745

Extra trees & Random forest 0.31670 0.38005

Random forest & GBRT 0.32001 0.38272

Random forest &Extra trees 0.32101 0.38352

Average of top 4 0.36674

Average of 9 0.37097

Reviewing the data, the two types of riders are not treated separately: casual and registered
riders. The data exploration already shows that each group’s behavior differs, and we might be
able to improve our performance by modeling each separately.

I repeated the hyperparameter tuning steps and resubmitted the results. The standing in-
creased in the competition by a significant percentage. By submitting an average of the top 4
best predictions I got a score of 0.36674. All validation and leaderboard scores of model com-
binations are listed in Table 15.

43

 Final result 6.4.10

As of the time of writing, the competition is closed but remains in the validation phase. With a
leaderboard score of 0.36674, my submission ranked 36th out of 3,252 teams, while the first
place submission scored 0.21545. An overview of the leaderboard is shown in Table 16.

Table 16: Public leaderboard overview of third competition

Ranking Team Name Score

1 Team Oliver 0.21545

2 Alliance 0.24976

3 A_Power 0.28820

… … …

34 mo 0.36607

35 Flyfish 0.36610

36 Ying Dong 0.36674

37 BoilerUp 0.36683

38 Endian Ogino 0.36683

… … …

3250 acai 4.76189

3251 JeffHansley 4.76189

3252 Muhammad Tahir 4.76189

 Conclusion 6.5

In this competition I started with a bad score but saw a large improvement after extracting
information from datetime feature. Predicting the logarithm of count obtained a much better
score. Elimination of the some features helped greatly. After model selection and parameter
tuning I reached the top 100 on the leaderboard. Separately building models for registered and
casual users was a good choice. Choosing the best parameters for different model combina-
tions required many cross validations and was very time consuming. The final and best sub-
mission was the output average of 4 best-combined models. Figure 19 shows how the ap-
proaches performed throughout the entire process.

44

Figure 19: Score vs. Standing for competition Bike Sharing Demand Prediction

 Lessons learned 6.6

1. It is important to correctly identify what needs to be predicted.

2. Do not choose only one model based on its performance at the default settings, it may
give much better results after parameter tuning.

45

 Conclusion 7

This thesis first presented a pipeline used for approaching a data prediction competition in
Chapter 3. This pipeline is composed of data exploration, data pre-processing, feature engi-
neering and selection, model validation and selection, and parameter tuning. Some common
and simple methods are outlined for every step in this pipeline.

Chapter 4, Chapter 5 and Chapter 6 describe three competitions on Kaggle. The first one is the
Forest Cover Type classification competition. In this competition participants are asked to
classify forests into 7 classes using cartographic features. In this competition my final submis-
sion ranked 29th out of 1,694 teams. The second competition hosted by Otto Group, asked us
to classify their products into nine categories using 93 obfuscated features. In this competition
I ranked 347th out of 3,514 teams. The last competition described in Chapter 6 is the Bike
Sharing Demand competition. In this competition we were asked to predict the count of bike
rentals, given date, time, and weather data. My solution ranked 36th out of 3,252 teams on the
leaderboard.

The results of the three competitions are all encouraging. Using the pipeline given in Chapter 3
can provide promising results in a predictive competition, but it requires much more effort and
a more complicated solution to win a competition.

46

 References 8

[1] X. D. Wu, X. Q. Zhu, G. Q. Wu, and W. Ding, "Data Mining with Big Data," Ieee
Transactions on Knowledge and Data Engineering, vol. 26, pp. 97-107, Jan 2014.

[2] U. a. P.-S. Fayyad, Gregory and Smyth, Padhraic, "From Data Mining to Knowledge
Discovery in Databases," AI magazine, vol. 17, pp. 37-54, 1996.

[3] . Kaggle Member FAQ. Available: http://www.kaggle.com/wiki/KaggleMemberFAQ
[4] P. Simon, Too Big to Ignore: The Business Case for Big Data: John Wiley & Sons, 2013.
[5] I. H. a. F. Witten, Eibe Data Mining: Practical machine learning tools and techniques:

Morgan Kaufmann 2005.
[6] J. K. Han, Micheline, Data mining: concepts and techniques: Morgan Kaufmann, 2001.
[7] L. Breiman, "Random Forest," Machine learning, vol. 45, pp. 5-32, 2001.
[8] P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Machine Learning,

vol. 63, pp. 3-42, 2006.
[9] J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals

of statistics pp. 1189–1232, 2012.
[10] C. a. T. Tianqi, He. XGBoost: eXtreme Gradient Boosting. Available:

github.com/dmlc/xgboost
[11] C. M. Bishop, Pattern recognition and machine learning: Springer, 2006.
[12] W. Y. Loh, "Classification and regression trees," Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 1, pp. 14-23, 2011.
[13] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, pp. 81-106, 1986.
[14] J. a. H. Friedman, Trevor and Tibshirani, Robert, The elements of statistical learning vol.

1: Springer series in statistics Springer, Berlin, 2001.
[15] L. a. C. Breiman, Adele Random Forests. Available:

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
[16] J. Strickland, Predictive Analytics using R: Lulu.com, 2015.
[17] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms: CRC Press, 2012.
[18] A. a. K. Natekin, Alois, "Gradient boosting machines, a tutorial," Frontiers in

neurorobotics, vol. 7, 2013.
[19] C. Tianqi, "Introduction to Boosted Trees," 2014.
[20] B. Hamner. How different is data in Kaggle competitions from real data? Available:

http://www.quora.com/How-different-is-data-in-Kaggle-competitions-from-real-data/
answer/Ben-Hamner

[21] D. M. Hawkins, Identification of outliers: Springer, 1980.
[22] K. Potter, Hagen, H., Kerren, A., & Dannenmann, P. , "Methods for Presenting

Statistical Information: The Box Plot," Visualization of Large and Unstructured Data Sets,
vol. 4, pp. 97-106, 2006.

[23] S. a. K. Kotsiantis, D and Pintelas, PE, "Data preprocessing for supervised leaning,"
International Journal of Computer Science, vol. 1, pp. 111-117, 2006.

[24] Z. Markov. (2015). Data preprocessing. Available:
http://www.cs.ccsu.edu/~markov/ccsu_courses/DataMining-3.html

[25] J. L. a. G. Lustgarten, Vanathi and Grover, Himanshu and Visweswaran, Shyam,
"Improving classification performance with discretization on biomedical datasets,"
AMIA Annual Symposium Proceedings, vol. 2008, pp. 445--449, 2008.

[26] W. P. Krzysztof J. Cios, Roman W. Swiniarski, Lukasz Andrzej Kurgan, Data Mining: A
Knowledge Discovery Approach Springer, 2007.

[27] R. Kerber, "Chimerge: Discretization of numeric attributes " presented at the
Proceedings of the tenth national conference on Artificial intelligence, 1992.

http://www.kaggle.com/wiki/KaggleMemberFAQ
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.quora.com/How-different-is-data-in-Kaggle-competitions-from-real-data/answer/Ben-Hamner
http://www.quora.com/How-different-is-data-in-Kaggle-competitions-from-real-data/answer/Ben-Hamner
http://www.cs.ccsu.edu/~markov/ccsu_courses/DataMining-3.html

47

[28] P. Domingos, "A Few Useful Things to Know about Machine Learning," Communications
of the ACM, vol. 55, pp. 78-87, 2012.

[29] H. a. M. Liu, Hiroshi, Feature selection for knowledge discovery and data mining Springer
Science & Business Media, 1998.

[30] J. Brownlee. (2014). An Introduction to Feature Selection. Available:
machinelearningmastery.com/an-introduction-to-feature-selection/

[31] . Feature ranking with recursive feature elimination. Available:
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html -
sklearn.feature_selection.RFE

[32] J. a. B. Bergstra, Yoshua, "Random Search for Hyper-Parameter Optimization," The
Journal of Machine Learning Research, vol. 13, pp. 281-305, 2012.

[33] . Forest Cover Type Prediction. Available:
http://www.kaggle.com/c/forest-cover-type-prediction

[34] K. L. Bache, M. . UCI Machine Learning Repository [Online].
[35] . Data Fields for Forest Cover Type Prediction. Available:

https://http://www.kaggle.com/c/forest-cover-type-prediction/data
[36] . Otto Group Product Classification Challenge. Available:

https://http://www.kaggle.com/c/otto-group-product-classification-challenge
[37] . Data fields for Otto Group Product Classification Challenge. Available:

https://http://www.kaggle.com/c/otto-group-product-classification-challenge/data
[38] C. a. V. Cortes, Vladimir, "Support-vector networks " Machine learning, vol. 20, pp.

273-297, 1995.
[39] A. a. C. Niculescu-Mizil, Rich, "Predicting good probabilities with supervised learning,"

presented at the Proceedings of the 22nd international conference on Machine learning,
2005.

[40] . XGBoost Parameters. Available:
http://github.com/dmlc/xgboost/blob/master/doc/parameter.md

[41] . Bike Sharing Demand. Available:
https://http://www.kaggle.com/c/bike-sharing-demand

[42] . Data Fields for Bike Sharing Demand. Available:
https://http://www.kaggle.com/c/bike-sharing-demand/data

[43] . scipy.optimize.minimize. Available:
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.minimize.
html

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
http://www.kaggle.com/c/forest-cover-type-prediction
http://www.kaggle.com/c/forest-cover-type-prediction/data
http://www.kaggle.com/c/otto-group-product-classification-challenge
http://www.kaggle.com/c/otto-group-product-classification-challenge/data
http://github.com/dmlc/xgboost/blob/master/doc/parameter.md
http://www.kaggle.com/c/bike-sharing-demand
http://www.kaggle.com/c/bike-sharing-demand/data
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.minimize.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.minimize.html

	OLE_LINK8
	OLE_LINK7
	OLE_LINK6
	OLE_LINK5

