Knowledge Network Visualization

SS 2007

Avaré Stewart
Dr. Claudia Niederée

Fraunhofer IPSI

Prof. Dr. Techn. Johannes Fiirnkranz

TU Darmstadt, Department of Computer Science

Student Research Project

by

Dimitar Nikolov

31. March 2007

ABSTRACT

The European project VIKEF (Virtual Information and Knowledge Environment Framework, see
www.vikef.net) targets the effective acquisition, organization, processing, sharing, and use of knowledge
implicitly available in scientific and business documents. A major goal of the project is designing and de-
veloping a set of advanced semantic-enabled community services, i.e. services that reuse semi-
automatically extracted semantic information to provide more effective and intelligent services to mem-

bers of communities.

One major VIKEF service class is Semantic Navigation support. It focuses on enabling the seamless
transition between the semantic and the content layer. In doing so, the semantics are exploited for an
improved, task-specific user experience, for fostering a better understanding of the domain and for im-
proving the presentation and content digestion. Semantic Navigation relies on Semantic Resource Net-
works (SRNs) and the definition of SRN Views. The so-called SRNs are knowledge networks consisting
of an RDF representation of domain knowledge together with links to the underlying annotated content.
SRN Views are task-specific and partly enriched subsets of the SRN. To make the SRN Views useful

they have to also be visualized in a flexible, task-specific manner.

For the display of such views a special Visualization Application will be built. It is the task of this student
research project to design and implement a component for this purpose — the VIKEF Visualization Appli-

cation. Its design and the development will be described in the written part of the project.

The Visualization Application offers a user friendly interface that enables the user to browse through and
reshape the displayed graph used for the visualization of an SRN View. The application provides a work-
ing environment in a java applet that offers the user different means for interaction with the View. Among
the features that can be exploited and adapted for interaction with the visualization are: overview; drag &
drop, search, filtering on topics, etc. The Visualization Application uses the targeted standard-based vis-
ual counterpart of the SRN View created by another VIKEF Component — the Semantic Visualization
Factory — as input for the creation and visualization of the graph.

The aforementioned component works in collaboration with a set of components: an SRN View Definition
Editor, an SRN View Factory (Toshev, 2007), a Semantic Visualization Editor and a Semantic Visualiza-
tion Factory (Nikolov, 2007) to enable the next generation of semantic enables community services.

Knowledge Network Visualization)
Dimitar Nikolov I

Table of Contents

STUAENT RESEAICH PIOJECL.... ...ttt bbbt [

INEFOAUCTION ...ttt 1
1.1 Motivation: VIKEF Semantic Enabled COMMUNILY SEIVICEScoueuiiiriiriieiricisineeeeeis e 1
1.2 Problem — VISUBIIZALIONcceiiiriieieiniieiestie sttt 3
1.3 SHUCKUIE OF thiS WOTK ...ttt bbbttt b bbbttt b bt bbbttt e 3

VIKEF KNowledge VIEW VISUBIIZALIONccriiririeeirice ettt sesnes 5
2.1 Background: Supporting Semantic Enabled COMMUNILY SEIVICESc.ccvviieiiieiiiiesieis s e ssssse s enns 5
2.2 View Creation — From Definition t0 VISUALIZALIONccceiviviiiiiri et 5

Visualization APPIICALION DESIGN.....ccieuiiririiriceire ettt bbbt nr b ennes 7
3.1 OVErVIEW Of the DESIGN PIOCESS.cuvieieieiiacirireiets ittt ettt b bbb ettt bbbt 7

81 O =T 1 To] [0 PSSP 7

312 WINOOW DESIGN weuerivtrieetieseieiiiets ettt ses bbb bbbkttt bbb 8
3.2 Specification of the Visualization APPICALION...........c.vveeerieriieeirsce s seeas 8

3.21 Semantic Visualization Editor

3.2.2 JSP Start Page.......cocovveeviiiininnns

3.23 MEIN WINGOW ...ttt ettt b bbbt se bbbt bbb b s bbbt be b et b st s e e bbbt et b nas

324 LADBI DISPIAY ...evviiveiiciis ettt ettt R bbb n et

3.25 SBAICN BOX...uivivitiiicisisteeeee ettt bbb bbb bR A bbbt bbbttt n s

326 Overview Window.........c.coreerrnnnn.

327 LBOBN ..ottt ettt

3.2.8 FOTCE-DIMBCLEM. ... ettt bbb bbb bbbttt

32,0 INOOE DBLA ...ttt 16

3.2.10 TOPIC TIBE c.eutueuieeeteeeeet ettt bttt eb bbb s R bbb e bbbt b bbbt 16

B.2.11 FOICES .ottt s 17

IMPIEMENTALION ISSUESvvivvieciiesieiseseis et st s s es st es e e st s s s b s e 18
4.1 TecChnOlOGIES EMPIOYED.......coiiuiiieiriiieieireeis ettt ettt bbb bbbt 18
4.2 COMPONENE AICNILECILUIEcvevuiecviiceiei ettt bbb bbb a bbbttt s bbb en bbb bbb st b s 18
4.3 DBVEIOPIMENT ...ttt ettt et 8 £ttt 19

T O o] o= A (=S 10710 TR 19

43.1.1 IIIPUL bbb R b bbb
43.1.2 Java Libraries

43.2

4.3.3

434

435

Knowledge Network Visualization
Dimitar Nikolov ii

436 Relationship between the two Display WINAOWSc.ceiririnicneceieisees e 25

T A ' 1o 1 (- TSP 26
438 INTEIACHIVE EIBMENTS ...ttt bbbttt 26
4.4 Integration WIthIN VIKEFR ..ot s s 26
5 Preliminary EVAIUALION...........cocooiericis ettt bbb bbbt s st en bbb 28
5.1 EVAIUBLION DESIGN w.ovvivreieiiieiireieisi ettt sttt bRttt
511 MOTUIAT-* CITERIIA. 111 vvvvrevtier ettt ettt ettt et
5111 Modular Decomposability
5112 Modular COMPOSADINILY.......ccveviiiriieiieeee bbb b
5113 Modular Understandability.............ccoerierinieieses et 29
5114 MOTUIAE CONLINUILY ... vttt 29
5115 MOTUIAT PrOLECHION ...t 29
512 ClaSS-IBVEI DESIGNeuvuieeieieiiieiisee ettt bbbttt bbb 29
5121 GENEIAI PIINCIPIES ...vvvveviee ettt sttt s s as bt 29
51.2.2 ASSIgNING RESPONSIDIIILIES......cvcverceiieiireee e 30
5123
5124
5125
51.2.6
5.2 USEI INVOIVEMENLvviceiieisceeseisctsese ittt bbbt Kl
Bi2.1 SEEUP ittt e Kl
522 RESUIES ...ttt bbbt e e e b bbb bbb e e e AR R bR ARt e R ARt bbbt n e ner et es 32
523 ASSESSING USEr COMMENTS ...cvvuieeierireiricrsiseseeeiessessssseiessssessssessess st sssssss s sssesssssssssasesssnssssssesessnssesassssesssnens 33
6 REIALEA WOTK.. ...ttt bbbt 34
7 CONCIUSION ...ttt bbb bbbt 35
T.1 SUIMIMATY ettt bbbttt b bbb e £ £+ 8 bbb b4 £ 4 £ £ AR E e E e E b £ 4 £ 1S £ £ 26 2R b b e bbb e E et bbb bbb et b bt e 35
7.2 Limitations of this WOrK and FULUIE WOTK ...ttt ssesssnes 35
8 210 10T | =T o 1)/ PP 36
9 Appendix — Technical Description of the Visualization Application FileScccevvevviiceiiicieees e 38
0.1 JSP PAGES....c. itttk R R R R bbbt b bbbttt 38
9.1.1 410 PR 38
0.1.2 VCSP tiiieetieiites ettt ettt et 38
0.2 JAVEA SOUICES.etutiisiistieietetsts bttt bbb bbb e s bbb b b4 £ £ 4£ £ E e E bbb e £ e S £ £ £ A2 h bbb b bbb e E et b bbb e bbbt e 39
L8720 11 1o (o= (ST 39
9.2.1.1 VCMEINJAVA 11 evovviriieiseisisssee sttt s8R 39
9.2.1.2 LAbEISEAICNBOXJAVA .v.vvrvveeerieeirsseieieseesie et sesss st sns st nn s s e 40
9.21.3 ContentPane.java

Knowledge Network Visualization .
Dimitar Nikolov v

9.2.1.4 TOPICSPANELJAVA.ce vttt 41

0.2.2 RENGEIEIS. ...ttt ettt ettt bbbt 42
9.221 LADEIRENABIEIJAVA.cveeeieeret ettt bbb bbbt 42
9.2.2.2 YT LC I oL T 1o (=T =T g U S 42
9.2.2.3 SiZECOIOTEAYERENUEIEL JAVA .. .eevvvvveereiierisee ettt 45

0.2.3 ONET SOUICES ..vuvieveitiereie et ettt bbbttt 47

Knowledge Network Visualization
Dimitar Nikolov v

1 Introduction

VIKEF (Virtual Information and Knowledge Environment Framework, see www.vikef.net) was started
three years ago. During this time the project has evolved from a bright idea through a concrete specifica-
tion, gradual and at times rapid changes in the details of this specification and development of further
elements to reach its current advanced and mostly complete and successful state. Also refer to (VIKEF 1,
2007) and (VIKEF 2, 2007).

P ™

customized
information
extraction

semantic
navigation
services

semantic

content

intelligent
upload

catalogue
services

image annotation semantic information
processing refinement elicitation integration

Figure 1: VIKEF Pipeline Overview

1.1 Motivation: VIKEF Semantic Enabled Community Services

Figure 1 shows an overview of the phases in the VIKEF project: from image information extraction to the
smart community services. A major goal of the project is the design and development of a set of ad-

Knowledge Network Visualization
Dimitar Nikolov 1

vanced semantic-enabled community services i.e., services that reuse semi-automatically extracted se-
mantic information to provide more effective and intelligent services to members of communities.

One major VIKEF service class is Semantic Navigation support services. Semantic Navigation relies on
Semantic Resource Networks (SRNs) and the definition of SRN Views. The so-called SRNs are know-
ledge networks consisting of an RDF representation of domain knowledge together with links to the un-

derlying annotated content.

SRN Views are constructed in a three-stage Knowledge View Definition Process (Figure 2). In this
process, what a View consists of (Knowledge View Definition) — is logically separated from how the view
will look (Knowledge View Creation) and how this view will be rendered to the user (Knowledge View Vi-
sualization). The focus of this work is on the Knowledge View Visualization phase.

The VIKEF Solution

Selection:
Filters &
Queries
Enrichmemt:
Domain —_— View
Rules Definition Creation
Aggregation / SRN /
Task @
mode
| SRN B8
View
/ Specification
. VIKEF
i K led A . -
SRS:”\:;?W SEN :hew —> nc\a/\ai\;vevg Visualization
lsgeln Application
3
Semantic Semantic
Visualization Visualization” VIKEF
Editor Factory Components

Figure 2: VIKEF Knowledge View Definition Process

Knowledge Network Visualization
Dimitar Nikolov 2

1.2 Problem — Visualization

In VIKEF the user should be supported in the use of such Knowledge Views. This should be achieved by
providing a user-friendly tool for their visualization.

In the current work the following issues are addressed:

1. Providing an application that can display a View. VIKEF, being a Web based Framework, can
only provide web applications and applets to its users. Therefore such an application can only be
built using an applet.

2. Providing means to the user for interaction with the display. Targeting functionality and us-
er-friendliness, the VIKEF concept requires from each of its components to assist the user as
much as possible and provide him with rich functionality to satisfy his needs. Therefore it is ne-
cessary to not just show the user the View he has created but to also allow him to interact and
play with it after it has been displayed.

3. Providing widgets that assist the user in exploring and studying the data. Being nice and
user-friendly is not enough. The application should be useful. It is important to provide the user
with the information he wants to have in an easy to access and use format.

In order to address these issues and the user-friendly display a special applet will be built. It is the task of
this project work to design and implement a component for this purpose — the VIKEF Visualization Appli-
cation. Its design and development will be described in the written part of the project work.

The Visualization Application offers a user friendly interface that enables the user to easily interact with
and explore the visualization of an SRN View. It provides a working environment in an applet that offers
the user numerous widgets that assist him in his work. Among the features that can be exploited are: an
overview, additional data display, basic search capability, filtering according to appropriate topics, differ-

ent layouts for the display, etc.

1.3 Structure of this Work
This paper describes the VIKEF component that displays the Visualization.

Section 2 describes the process and purpose of the View Creation and Visualization.

Knowledge Network Visualization
Dimitar Nikolov 3

Section 3 describes the Visualization Application. It presents the design decisions taken while creating it
and lists the functionality this component offers its user. It also presents the format the input data is
stored in.

Section 4 describes the implementation process of the Visualization Application: the technologies em-
ployed; a review of the different releases; the architecture of the component and the way the data is
parsed. It also describes the data format used and the specific challenges overcome during the develop-
ment.

Section 5 attempts to evaluate the last (third) release of the software according to two criteria: software
design principles and goals satisfaction and usability.

Section 6 discusses related work.
Section 7 sums up the document and the recommendations for further development.
Section 8 list the materials used while working on this project.

Section 9 (Appendix) describes the technical aspects of the development — a description of the compo-
nent’s files.

Knowledge Network Visualization
Dimitar Nikolov 4

2 VIKEF Knowledge View Visualization

2.1 Background: Supporting Semantic Enabled Community Servic-
es

Various technologies can and should be employed in collaboration to create Knowledge Views. If the
knowledge base is, for example, represented by RDF statements, then SPARQL queries and Jena
(Jen07) rules can be combined to create Knowledge Views. In addition, counting functions encoded in
Java or another programming language might be necessary to realize knowledge aggregation options.
The result of such a View definition can be encapsulated as a Web service, visualized and made availa-
ble. Thus, a variety of different complex technologies have to be mastered for creating knowledge views.
The goal of VIKEF is to find a more user-friendly solution for creating Knowledge Views. Also refer to
(Publications, 2006) for further information on VIKEF.

As mentioned in Section 1.1 the definition and display of Knowledge Views is be a three step process,
consisting of View definition, View Creation and View Visualization. For this process, VIKEF technology
offers convenient tools, called Editors, which ease the creation of Knowledge Views (see Figure 2). This
enables persons other than knowledge experts or IT-experts: such as conference and trade fair organiz-
ers, to tailor the Knowledge Views exactly to the needs of their community members. In VIKEF two such
Editors are provided for this purpose.

2.2 View Creation — From Definition to Visualization

The SRN View Editor (see (Toshev, 2007)) is responsible for defining the logic and structure of the
Knowledge View or SRN View as it is called in VIKEF. It supports the step of Knowledge View definition.

The Semantic Visualization Editor is used to determine the ,look and feel” of how the Knowledge View is
displayed to the user. It is used to define Visual Features for the Knowledge View display such as color
and size of nodes or, the layout of the Knowledge View information as a graph display and as widgets.
For further information concerning the Semantic Visualization Components refer to (Nikolov, 2007).

In the final stage, Knowledge View Visualization, the created format is processed by the VIKEF Visualiza-
tion Application and displayed to the user. The Visualization Application enables the user to interact with

Knowledge Network Visualization
Dimitar Nikolov 5

and study the Knowledge View. This includes searching, browsing, and inspecting detail information. This
Application is the component described in this paper.

Knowledge Network Visualization
Dimitar Nikolov 6

3 Visualization Application Design

3.1 Overview of the Design Process

The work on the Visualization Application began shortly after the other four collaborating components
(SRN View Components and Semantic Visualization Components) were started. The main goal of the
component was defined from the start — build a prefuse (prefuse, 2007) application that is capable of dis-
playing the graph file produced by the Semantic Visualization Factory.

3.1.1 Technology

The component is built using the prefuse visualization toolkit beta. This toolkit is based on the Java pro-
gramming language using applets for the creation of a GUI. To fulfill its task the component was ex-
tended with new functionality a few times, which required employing further technologies. For a discus-
sion on these refer to Section Implementation Issues4.

Knowledge Network Visualization
Dimitar Nikolov 7

3.1.2 Window Design

-
\ / Bradley R. Bebee
\ / Rytsuke'Masuoka
arsia
Mode Type Shape ~
larticle-In-A-Compos ite-Publicationrhombus]
ob Jasper Researcher triangle
Filter Marme Mode Type
Filter Marme Article-In-A-Cormposi
Edge Type Edge
has-authaor Yas [l
\
\ . full-name - Rob Jasper
Evren Sirin
Mike Uschold
Bradley R. Bebee some_prop Bryan Thompson 3 matches search >> [Thompsor 5]

Figure 3: Visualization Application — Display Mode 3, Content Pane Tab

The design of the window was mostly predefined in the requirements. Two graph display windows were
required — a big one to display the graph applying to it the settings defined in the Semantic Visualization
Editor and a small one to display the whole graph without necessary paying attention to these settings.
However, one major change to the way the component was designed was introduced after its first re-
lease — its appearance was supposed to be party configurable by the Semantic Visualization Editor.

3.2 Specification of the Visualization Application

This section describes the Visualization Application in detalil. It reviews each widget and its responsibili-
ties. There are two different tasks that the Application completes:

1. Display the View to the user and allow the user to study the relationships between the different
nodes.

2. Allow easy to use filtering of the graph nodes on topics.

The component is built using a JSplitPane (Java, 2004) consisting of the pane containing the Main Win-
dow and two other widgets and a tabbed pane with three tabs and six widgets, resulting in nine widgets

Knowledge Network Visualization
Dimitar Nikolov 8

altogether. Eight of these widgets contribute to the first task and only one (Topics Tree - Figure 12) to the
second task. Six of the widgets are interactive. The rest are static and are used to display some informa-
tion to the user. Each of these widgets is described in detail in Sections 3.2.3 - 3.2.11.

3.2.1 Semantic Visualization Editor

This part lists the elements of the Semantic Visualization Editor that directly correlate to the Visualization

Application. The settings displayed in the figures in this section are the same as the settings visualized in
the Main Window of Figure 3.

Node Type Selection Cuwrrent Wizard Step

2) Select Nodes to Visualize:

Instructions: Select the node type for which you want to define visual settings. Only the nodes which have been selected below

can be assigned visual settings and made visible to the user in the main window of the visualization component. The wisualization Semantic

component has two display windows. One big window - the main window, and one small window - the overview window. The ngﬁmn
settings you are going to do i this wizard will allow you to configure the way the graph locks i the main window. Tt 12 not the Chwervizn
task of this wizard to modifiy the way the graph looks m the overview window. The overview window will usually (depending on —
the sethings vou make in the last step) display every resource, no matter what you select in this step. It is the goal of the SRN View
overview window to show the complete graph as it has been defined in the SEM View Defintion Editor. Enchancements done :T:;Zc:;ioo:

configured m thiz wizard like node and edge filtering, and wsual features are meant for the main window. —_—
Wisual Profile
Mode Type
Selection
—_—
Wieual Setting
For Node Types
and Edges
| —
Resowrce Assign visual sethngs Topic Hierarchy
Selection

Article-In-A-Composite-Publication v

Dieplay Mode

Selection
Researcher e e

Figure 4: Page 2 — Step 2 — Allows the user to choose nodes to visualize

Knowledge Network Visualization
Dimitar Nikolov 9

Assign Visual Settings for Node Types Current Wizard Step

3) Assign Visual Settings:

Instructions: Assign wsual sethings for the selected nodes. Ifno selections are made the default values shown will be used.

Click the "OE" button to accept the settingz. (IMote: If yvou choose an Tmage, the wnage will be shown after you click ok Also,
the "color" option does not apply to images)
Node Type

Shape Color Size Label

Article-Tn-A-Composite-Publication |rh0mbus v| |El|ue v| |Someaggr A4
Eesearcher |triang|e v| |Q/an v| |fu||—name v|

Cwrent Filters:

Filter Node Type Attribute Filter F,]l ter Shape Color Size Label

Name Type Value

Filter Article-In- A-Composite- _ s Black 5 addresses-area- of-
Name Publication someaggr = . ac interest

4) Specify Node Filters:

Instructions: Filters are applied to the nodes. To create a filter, first select a node then click the "Add a Filter" button to see a
list dhsplaying the avalable attributes for the selected node type. For the selected attribute, select the filter type and enter an
appropriate filter value. Please note that the order, which filters are defined i, matters for overlapping filters as these are applied
i the same order they are defined here and thus the some filters might be overwritten and their settings not wisualized.

Mode Type: Add & Filter

|Anicle—ln—A—CDmposite—PuincatiDn hd |

Semantic
Viualization
Editar
Oiwenrigu

SRHN Wien
Specification
File Selection
™
Visual Profile
“Mode Type
Selection
—_—————
Wisual Setting
ForMode Types
and Edges
e —

Topic Hierarchy
Selection

-

Display Mode
Selection

L

Figure 5: Page 3 — Step 3 — Visual Settings for Nodes and Step 4 a) — Filters

Assign Visual Settings for Nodes® Attributes and Edges Current Wizard Step

5) Select Nodes’ Attributes to Visualize:

Instructions: Select which attributes of a node you want to make wisible i the visualization component when a node 15 clicked
on in the main window. The values of this attributes for the selected node will then be made wisible in the content pane.

Node Type Attribute Show in VC

. . o addresses-area-of-mterest
Article-In-A-Composite-Publication

someaggr
Eesearcher full -name

6) Select Edges to Visualize:

Instructions: Select the edges for which wisual sething can be applied. Only the edges which have been listed below can be
assigned wizual sethings and made waible to the uzer i the wisualization component.

Edge
Width

Edge Type Make Visible Edge Color

Article-In-A&-Composite-Publication has-author

Researcher Tes @ Mo O
Eesearcher some_prop Researcher Tes ® Mo O

T

Semantic
Visualization
Editor
Oiwenvigw

SRH Wiem
Specification
File Selection
—————
Vizual Profile
~MNode Type
Selection
—_—
Wieual Setting
For Node Types
and Edges

Topic Hierarchy
Selection

=

Diplay Mode
Selection

L

Figure 6: Page 4 — Step 5 — Node Data widget of the Visualization Application authoring and Step 6 — Visual Settings

for edges

Knowledge Network Visualization
Dimitar Nikolov

10

Topic Hierarchy Selection Current Wizard Step

7) Select a Topic Hierarchy:

Instructions: Use the drop-down menu to select a topic lierarchy from the lst below.

| Semantic_Web_Research_Area v| Viﬁ;;r;iicon
Editor
Owenviguy
8) Select the Display MMode: —
Instructions: Tou can choose from three different representations of the graph in the main window and itz corresposponding SSRN"_V';{“
Crverview in the small window. Fie Sslection
Mode Description)
Wisual Profile
Main Window: Display a filtered graph optimired for viewing filtered graph. ";::Ji‘;"ne
Cverview Window: Shows the entire graph with no filtering appled. e
-~
1 ViEual Setting
Mote: If some of the possible nodes were not chosen to be visualized i Step 2, this will resultin a F°;:ﬂ°gedT::5
different loolang graph in the overview window, than the graph shown in the main window, as it will i
be optimized to showing a graph with more nodes than the main window graph)
Main Window: Display a filtered graph optimized for viewing a full graph. ToPg',cd::;ir:,:Chy
Cverview Window: Shows the entire graph with no filtering appled. .
2
{(Mote: This mode might be usefil for when the graphs in both windows should always have a Disspe'fe“d";‘;de
sitrilar shape, with some nodes and edges possibly missing in the main window.)

I —
Main Window: Display a filtered graph optimized for wiewing filtered graph.
Overview Window: Shows an exact copy of mam window.

(Mote: This mode might be usefil for exploring the details of a very larger graph, while the graph, as
a whole should remain wisible at all times).

Figure 7: Page 5 — Step 7 — Topic Tree authoring and Step 8 — Display Mode selection

3.2.2 JSP Start Page

Instructions: Select a graph file and click "Show" to display the Graph. Please note that this might take a few minutes.

| http://136.201.104.11:8080/filemanager-files/test_90vikefuser_SRN__srmDBLP_Semantic¥eb-Subject_v6d_red_ Version__ M

Figure 8: JSP Start Page

The Visualization Application is started using a JSP Page. The purpose of this page is to allow the user
to choose a file for visualization and pass the necessary data to the applet. It shows a simple form listing

the displayable files available. Refer to Section 4.3.1 for a discussion on the data passed by the JSP
Page to the applet.

Knowledge Network Visualization
Dimitar Nikolov 11

3.2.3 Main Window

Figure 3 shows the Main Window. This window is interactive and has one purpose — display the View as

it has been set up by the Semantic Visualization Editor. This Editor currently defines the following ele-

ments that affect the way the graph in this picture looks (see Figure 4, Figure 5, Figure 6 and Figure 9):

Shape

thormbus A

rectangle

circle

thombus |
triangle

hexagon
Imagefaticle_01.JPG
Imagefaticle_02.JPG
Imagefaticle_03.JPG
Imagefaticle_04.JPG
Imagefevent_01.JFG
Imagefpersan_01.JFG
Image/proceedings. JFG
Imagefopic. JFG
Imagefwo_persons. JFG

Color

Elue
Black

Cyan
Dark_Grany
Giray
Green
Light_Gray
bagenta
Orange
Fink

Fed

L

“ellow

soOMmeaggr

addresses-area-of-interest

E1

qEC

L il o

Figure 9: Visual Settings Selection

Researchers and Articles).

Number of different types of nodes (in the shown graph there are two types of nodes displayed —

Shapes for the display of the nodes (in the shown graph only triangle and rhombus are used).

Please note that the application of filters on some nodes will cause them to look different from

other nodes of the same type. It is also possible to use one of the predefined images listed in

Figure 9. In this case the color option is not applicable.

Colors of the nodes (in the shown graph only blue and cyan). Not applicable for images.

Sizes of the nodes. This attribute is relative regarding the displayed graph due to the fact that the

Window supports zooming. However, the ratio between the different sizes is kept.

Labels of the nodes. The labels available to the user to choose from are View specific and nor-

mally differ from one node type to the other. The list of labels shown to the user to choose from is

the same as the list of attributes this node has.

Knowledge Network Visualization

Dimitar Nikolov

12

6. Number of different types of edges (in the shown graph there are two edge types available and
both are displayed: has-author in gray and some_prop in green).

7. Colors of the edges.
8. Sizes of the edges. This attribute is relative like the sizes of the nodes.

Adding to or changing the Visual Features will require changing the Component. Refer to Section 5.1.2.4
for a discussion on this.

The Main Window offers some nice functionality for interaction with the graph:
1. Pointing the mouse over a node highlights it and its neighbors.

2. Clicking on a node moves it to the center of the screen and repositions the nodes connected to it
around it in a way that makes them easy to observe.

3. The graph can be freely moved around by dragging the mouse.
4. Nodes can be freely dragged around with the mouse.

5. The graph can be zoomed in and out by dragging the mouse with the right mouse button or by
rolling the mouse wheel.

The Main Window has two optimization modes for displaying of the graph:

1. Optimization for showing the filtered graph (applied if Display Mode 1 or 3 is selected in step
eight of the Editor — Figure 7)

2. Optimization for showing the full graph (applied if Display Mode 2 is selected).

The difference between the two modes can be seen only if some nodes have been chosen not to be dis-
played in step two (Figure 4). The more nodes are chosen not to be displayed, the greater the difference
between the two different graphs will be. The notes shown in Figure 7 describe in what sense the differ-
ence between the graphs in the two Windows will be observed.

3.2.4 Label Display

The Label Display is the small text box in the bottom left corner of the screen. It is static and its purpose
is to display the label of the element the mouse is currently pointing at. If this element is a node the wid-
get displays its label. If it is an edge — the label of the source node, the edge type and the label of the

Knowledge Network Visualization
Dimitar Nikolov 13

target node are displayed. Figure 10 shows an example of the mouse pointing at a node and Figure 3 -
an edge.

4
|| ©Content |Topic Tree | Forces

Mode Type Shape [t
Article-In-A-Camposite-Publicationrhombus El
Researcher triangle [

1 ; Filter Marne Mode Type Al
Bemardf Gy \ a Filter Mame Article-In-A-Composite-Publicationsc
Edge Type Edge E
#uanbo Guo has-authar es G
ome_prop ‘fes L=t
< | >
Force-Directed

full-name - Sean Luke

“annis Labrou
Faul# Pinheiro da Si

ana S. Nau search »> | 5]

Figure 10: Visualization Application — Display Mode 2

3.2.5 Search Box

The Search Box is interactive and allows searching for nodes having the string written in the Search Box
as a label. Figure 3 shows a highlighted node.

3.2.6 Overview Window

This widget is interactive and is situated on the top of the Content tab. The goal of the Overview Window
initially was to show the complete View as a graph without any filtering or Visual Settings applied. This
was changed for the second release of the Visualization Application allowing the user to choose what he
wants to see in the Overview Window. This is accomplished in step eight of the Semantic Visualization
Editor (see Figure 7). Currently the Overview Window has two modes:

1. Display the same graph as the Main Window and thus allow the user to zoom in on a small part
of the graph, while still being able to see the big picture (as in Figure 3). This operation mode of
the Overview Window is only available if option 3 for the Display Mode is selected. Changes

Knowledge Network Visualization
Dimitar Nikolov 14

made to the graph in the Main Window (e.g. element dragged around) translate to the graph in
the Overview Window and vice versa.

2. Display the entire graph with no filtering applied (Eigure 10). In this case the graphs in the two
Windows are normally quite different. Changes in one of the Windows do not translate to the
other. Also see Section 4.3.6.

3.2.7 Legend

|||||

anrasses-araa-of et

Eg

Fitar Namme Article-In-A-Composie-Publcstoninmasgy = 5 Imagearticia_D1 PG
ler

........

Figure 11: Legend

The Legend is static and is situated in the middle of the Content tab. In the first release this widget was
not present. However, it turned out to be quite easy to forget what settings have been applied to each
node, filter and edge. To remember the Visual Settings applied, the user had to start the Semantic Visua-
lization Editor again just to review the Visual Settings applied. This widget was added in the second re-
lease to list the Visual Settings that have been applied to the graph shown in a table similar to the table
the user has used to define them.

3.2.8 Force-Directed

This widget is interactive — a button — and is situated in the middle of the Content tab. There are two
modes available for graph display:

1. Static — based on a Radial Tree Layout and applied to the graph every time a node is clicked.
Figure 10 shows a graph that has been applied this layout to (it has been applied to the hig-
hlighted in gray node “Sean Luke” situated in the center of the graph).

2. Dynamic - based on a Force Directed Layout — can be run and stopped by using the button. The
Overview Window in Figure 3 shows the complete graph after it has been applied this layout to.
The application of this layout is slow and uses up the computer resources. When it is turned on
the Application runs slower and usually (due to the fact that the graphs are usually huge) never
reaches a stable state — which means that the nodes of the graph keep jittering forever. The best
way to use it is to turn it on for a short time every time it is needed to reposition the node accord-
ing to this layout and then turn it off while working with the graph.

Knowledge Network Visualization
Dimitar Nikolov 15

3.2.9 Node Data

This widget is situated at the bottom of the Content tab. Its task is to display additional information about
the node that has last been clicked on in the Main Window. This widget is configurable in step five of the
Semantic Visualization Editor (Figure 6).

3.2.10 Topic Tree

4 7
J| Contert | Topic Tree | Forces

_4 Semantic_Web_Research_area

----- || Technology_Transfer

----- || Technologies_State-Cf-Art

+-_ | Inference_Engine_Topics

S -] Knowledge-based_Applications

----- || Matural_Language_Processing

----- | 3ecurity_Trusk_Privacy

-----] Owverview_and_Research_Directions

----- || Enowledge_Source

+-] Web_Services

----- |] Storage_and_Infrastructure

----- || Problem_Salving_Methodologies

----- | Topic_Maps

=4 Semantic_annotation
----- | 3emantic_annotation_Languages
o || emantic_annotation_Methods

----- |] Ubiquitous_Carnputing

----- || Semantic_Integration_and_Interoperability

----- || Software_Agents

----- |1 Artificial_Inteligance

----- || Peer-to-Peer-and_Grid

+-] Onkology_Topics

----- || Knowledge_Discovery

+ -] Languages_and_Formalisms

Figure 12: Topic Tree Tab

This widget is situated in its own tab. It is interactive and its task is to allow the user to easily filter the
nodes on the topics they have been given. The topic hierarchy used can be selected in step seven of the
Semantic Visualization Editor (see Figure 7). Clicking on a topic in the tree shown hides all nodes that
have a topic attribute defined (see Figure 13), but this topic is different from the selected and all its sub-
topics. The nodes that do not have a topic attribute defined are not affected (see Figure 16).

Knowledge Network Visualization
Dimitar Nikolov 16

znode id="19"=
<data key="name":=Article-In-A-Composite-Publication</datax=
zdata key="8ize">=2</dataz>
<data key="visible">Yes</data>
<data key="Shape">rhombus</datax
zdata key="Color"=Blue</data>
<data key="label"=0</data:>
=data key="someaggr'=0</data>
<data key="addresses-area-of-interest"=http:/ /trinity.dit.unitn.it /vikef/swc# Semantic_Web_Services</data-
<data key="uri"=http:/ /www.ipsi.fraunhofer.de /~stewart /vikef /rn# conf/semweb/DenkerKFP503</data>
zdata key="textdata"-addresses-area-of-interest - Semantic_Web_Services;someaqggr - 0;</data>
</nodes

Figure 13: Node having a topic (addresses-area-of-interest)

3.2.11 Forces

: Content | Topic Tree | Forces
MBodyFarce
GravitationalCo... J -1.0
Distance J -1.0
BarnesHUtTheta J 0.599
DragForce
DragCoefficient J 0.009
SpringForce
SpringCoefficient J 9,99E-
DefaultSpringl. .. J 200.0

Figure 14: Forces Tab

This widget is situated in its own tab. It is interactive and its task is to customize the way the graph looks
when Force-Directed Layout is started. The settings applied in this widget can only be seen when this
layout is turned on. The sliders will not be described in detail, however their purpose is to customize dif-
ferent aspects of the nodes’ and edges’ interaction among themselves. It is only worth noting that the
most important slider is the last one — Default Spring Length — affecting the length of the edges.

Knowledge Network Visualization
Dimitar Nikolov v

4 Implementation Issues

This part discusses the software design (code design) of the Visualization Application. It describes the
technologies that were learned and used for the implementation of the component. It also describes the
more important problems encountered and solved during coding and studying the used technologies.

4.1 Technologies Employed

This part extends Section 3.1.1 and lists the technologies that were technically required to complete the
project.

The component draws input from a GraphML (GraphML Team, 2004) File and Ontology. The use of On-
tology (Connolly, et al., 2004), (Ontology, 2007) requires Jena (JenQ7).

The JSP (JSP06) Start Page of the component directly uses two other VIKEF Components: File Manager
Client and Ontology Manager Client. The File Manager Client is needed for accessing the GraphML input
file. Within VIKEF data files are stored on a central server, and the File Manager Client is used exclusive-
ly for accessing these files. For managing data in form of Ontology and SRN the Ontology Manager
Client is used. In the Visualization Application Ontology is accessed in order to create the Topic Tree

(see Figure 11).
4.2 Component Architecture

Best effort is made to create the Software Architecture of the Semantic Visualization Components follow-
ing the principles of Software Engineering.

| developed the Visualization Application and this document during its development. An effort was made
to produce and release a usable component for three different review deadlines, changing and extending
the functionality as required for each release. A description of each release follows.

1. Basic Functionality — Read in and display a GraphML file produced by the Semantic Visualization
Factory. Show the full graph with no filtering in the Overview Window.

2. Extend the component adding the following elements: Label Display, Search Box, Legend, Radi-
al Tree Layout, Topic Tree and Forces. Fix a few bugs.

Knowledge Network Visualization
Dimitar Nikolov 18

3. Refactor the component extensively. Add the Node Data widget. This is the current release of the
component. It contains over 2000 LoC.

4. For possible future release ideas, please refer to the Section 7.2.

The next part describes the development, difficulties overcome and problems solved, the structure of the
code, and the way the data is processed in the Visualization Application. For a technical description of
each class see Appendix.

4.3 Development

This section describes the experience of working with prefuse. The overall impression of using this
graphical package for Java is very good and work with it proved pleasant and effective. The only weak-
ness found is discussed in Section 9.2.2.2.

4.3.1 Applet restrictions

The component is built around a prefuse applet. Using java applets comes with the security restrictions to
applets. Two problems introduced by the applet technology had to be solved in order to complete the
project. These were passing the input files to the applet and making the java libraries available to the
applet.

4.3.1.1 Input

Two files need to be input to the applet in order for it to process them and display the graph. The first one
is a GraphML file generated by the Semantic Visualization Factory and the second one is an .owl — on-
tology - file needed to extract the topic tree from. Due to the applet security restrictions it was impossible
to access the File Manager Client directly from the applet to allow the user to choose an input graph file.
Similarly it was impossible to access the Ontology Manager Client to extract a topic tree.

To solve this problem two JSP Pages were created. The user could now select an input file in a HTML
(HTML, 2007) form. Upon submission the graph file is copied and stored locally, the Ontology Manager
Client contacted and the ontology extracted and stored locally as a file. Finally the applet is started and
the filenames of the two files are passed to it as parameters.

4.3.1.2 Java Libraries

The ontology has to be accessed in order to extract the topic tree. This is fastest implemented by storing
a copy of the ontology locally as a file and passing the name of this file as a parameter to the applet so
that the topic tree can be extracted from within the applet and used directly. However, this requires copy-

Knowledge Network Visualization
Dimitar Nikolov 19

ing jena.jar and many other jars required by jena.jar to the directory containing the JSP pages, which is
the only place where they can be accessed by the applet. However, this results in clumsy directory struc-
ture.

Another approach would have been extracting the topic tree from within the JSP page, storing it as an
XML file and passing the name of this file to the applet. The applet could then use simple XML
processing to extract the topic tree without the need for additional libraries.

The second approach is now considered slightly better, however it was not taken at the time the compo-
nent was developed due to inexperience with using complex applets requiring input files and numerous
jars. Nevertheless, the currently implemented solution would always be the preferred solution if the appli-
cation did not have the applet restrictions, as it requires processing the data only once and the second
here suggested approach processes the same information three times (1. Read the Ontology; 2. Store it
as XML; 3. Read the XML). Whether the tradeoff between the additional overhead of this second ap-
proach and the possible jar problems with the implemented solution is really in favor of the second ap-
proach cannot be proven as unforeseen problems might appear.

4.3.2 Extending prefuse

The project requirements exceeded the standard capabilities of the default renderers. In order to draw
the nodes with shapes or icons and labels a new renderer for the nodes had to be developed. Drawing
differently sized and colored edges is not possible using the default renderers either. A considerable ef-
fort in the implementation phase was needed to implement these features that resulted in over 850 LoC
(almost half the code length of the whole component) in three classes. See the Appendix for a detailed
description of each of these classes.

Knowledge Network Visualization
Dimitar Nikolov 20

4.3.3 Legend

Knowledge Network Visualization
Dimitar Nikolov

21

=graphml zmins="httg: e aphml graphdrawing orgfxmins"=
=key aftr name="TopicHierarchy" sttr type="String" for="node" id="TopicHierarchy" =
=key attr name="Ontologyerzionld" attr type="5String" for="node" id="0ntology"/ et sionld"f=
=key attr name="DizplayType" attr type="int" for="node" id="DisplayType"i=
=key attr name="nodeCount" attr type="irt" for="noda" id="node Court" =
=key attr name="nodevisCourt" attr type="int" for="node" id="node"isCourt"!=
=key attr name="0 nodeVisMame" attr type="String" for="node" id="0 node*/ishame"/=
=key attr name="1 nodeVisMame" attr type="String" for="node" id="1 node*ishame"/=
=key attr name="2 nodeYisMame" attr type="String" for="node" id="2 node*ishame"/=
=key attr name="0 node.nodeType" attr type="String" for="node" id="0node.node Type"=
=key attr.name="0.node 0. visYalue" attr type="String" for="node" id="0 node.0 visY alue"l=
=key aftr name="0.node.1 visWalue" sttr type="String" for="node" id="0 node.1 vizYalus"r=-
=key aftr name="0.node 2 visWalue" sttr type="String" for="node" id="0 node.2 viz* alue"r=
=key aftr name="0.node lakel" str type="String" for="node" id="0node label"r=
=key aftr.name="1 .node.nodeType" attr type="String" for="node" id="1 node.nodeType"/=
=key aftr name="1 node 0.visWalue" sttr type="String" for="node" id="1 node.0 viz* alus"r=
=key aftt name="1 node .1 visWalue" sttr type="String" for="node" id="1 node.1 viz' alus"r=
=key aftr name="1 node 2 visWalug" sttr type="String" for="node" id="1 node.2 viz" alus"r=
=key attr name="1 node label" attr type="5tring" for="node" id="1 node label"f=
=key attr name="specialCazeCourt" attr type="int" for="node" id="specialzaseCount"=
=key attr name="0 zpecialCase fiterMame" attr type="String" for="node" id="0_ specialCase fiterMame"t=
=key attr name="0 zpecialCase nodeType" attr type="String" for="node" id="0_ specialCase nodeType"l=
=key attr name="0 zpecialCase attribute” attr type="5tring" for="node" id="0 specialCaze attribute"f=
=key attr name="0.zpecialCase fiter Type" attr type="String" for="node" id="0 specialCase fiterType"i=
=key attr name="0.specialCase fitervalue" attr type="String" for=" id="0.zpecialCaze fiter'value"’=
=key attr.name="0 specialCaze.0 visWalue" attr type="String" for="node" id="0.specialCase .0 viz¥alue"=
=key aftr.name="0specialCase. 1 visWalue" attr type="String" for="node" id="0.specialCase.1 visWalue"i=
=key aftr name="0specialCase.2 vizValue" attr type="String" for="node" id="0.specialCase 2 vizWalue"i=
=key aftr name="0specialCaze lakel" attr type="String" for="node" id="0 specialCasze label'i=
=key aftr name="edgeCourt" attr type="int" for="node" id="edyeCount"’=
=key aftr name="edgevisCourt" attr type="int" for="node" id="edge"isCount"=
=key aftr.name="0.edgeVisMame" attr tvpe="String" for="node" id="0 edge¥izsMame"/=
=key aftr name="1 edgeVisMame" attr tvpe="String" for="node" id="1 edge'isMame"/=
=key attr name="2 edgeVisName" attr type="5String" for="node" id="2 edgeisMame"/=
=key attr name="0 edge edgeType" attr type="String" for="node" id="0.edge edgeType"l=
=key attr name="0 edge 0 visWalue" attr type="String" for="node" id="0 edge. 0 visWalug"/=
=key attr name="0 edge 1 vis'alue" attr type="String" for="node" id="0 edge .1 vis\alue"/=
=key attr name="0 edge 2 vis'alue" attr type="String" for="node" id="0 edge 2 vis\'alue"/=
=key attr name="1 edge edgeType" attr type="String" for="node" id="1 edge edgeType"l=
=key attr name="1 edge 0 vis“alue" attr type="String" for="node" id="1 edge.0.visValue"/>
=key attr name="1 edge .1 vis“alue" attr type="String" for="node" id="1 edge.1 visWalue"/>

Knowledge Network Visualization
Dimitar Nikolov

22

=key attr name="1 edge .2 visValue" attr type="String" for="node" id="1 edge 2 vis\alue"/>
=key attr name="name" attr type="5tring" for="node" id="name">
=key attr name="uri" attr type="String" for="node" id="uri"/=
=key attr name="addresses-area-of-interest" attr type="5String" for="node" id="addresses-area-of-interest"f=
=key attr name="someaggr" attr bype="5tring" for="node" id="someaggt"’=
=key attr name="full-name" attr type="String" for="node" id="full-name"i=
=key attr name="textdata" sttr type="5tring" for="node" id="textdata"’»
=key attr name="vizikle" sttr tvpe="String" for="node" id="vizikle"i=
=key attr name="Shape" attr tvpe="String" for="node" id="Shape"i=
=key attr name="Color" sttt type="String" for="node" id="Colot" =
=key attr name="%Size" attr type="String" for="node" id="Size"’=
=key attr name="label" sttr type="String" for="node" id="lakel"/=
=key attr name="vizibleEdge" attr type="String" for="edge" id="vizibleEdge"i=
=key attr name="EdgeSize" attr type="String" for="edge" id="EdgeSize"/=
=key attr name="EdgeCalor" attr type="String" for="edge" id="EdgeCalot"r=
=key attr name="label" sttr type="String" for="edye" id="lakel"/=
=graph edgedefaut="directad" i="G"=

=nade id="0"=

=data key="TopicHierarchy"=http: Arinity ot unitn tsvikefiswcSemantic _Web_Research_Area=idsta=

=data key="Ontology ersionld"=vikefuser Bt My psi fraunhofer ded OMTO_ scienceOntologyy3.00_ Yersion_Mon Jan

22 1200001 2 GhT 2007 =jdatas=

=data key="DisplayType"=1</data=
=data key="nodeCount"=2<ata=
=data key="node¥izCount"=3=/data=
=data key="0nodeVisMame"=-Shape=/data=
=data key="1 nodeVisMame"=Color=idsta-
=data key="2 nodeVisMame"=Size=/data=
=data key="0node nodeType"=~Aricle-In-A-Composite-Publication=/data=
=data key="0node 0.visvalue"=rhombus=idata=
=data keyy="0node 1 visvaue"=Blue=/data=
=data keyy="0node 2 visWalue"=2=/data=
=data keyy="0node label"=someaggr =idata=
=data kery="1 node nodeType"=Rezearcher=/data=
=data key="1 node 0 viz'slue"=triangle=/data=
=data key="1 node 1 viz'alue"=Cyan=idata=
=data key="1 node 2 viz'alue"=4=/dsta=
=data kery="1 node label"=full-name=/data=
=data key="zpecialCazeCount"=1 =/dsta=
=data key="0.zpecialCasze fiterMame"=Fiter MName=/data=
=data key="0 zpecialCase nodeType"= Article-In-A-Composite-Publication=/data=
=data key="0.specialCaze attribute"=someaggr=idata=
=data key="0zpecialCase fiker Type"-=<ilata=
=data key="0zpecialCase fitervalue"=5<=/data=
=data key="0zpecialCase 0 visValle"=Imagesarticle_01 . JPG=idata=
=data key="0zpecialCase 1 visValue"=Black=/data=
=data key="0zpecialCase 2 visWValue"=5=/data=
=data key="0zpecialCase label"=addres ses-area-of-interest=rdata=
=data key="0.edgeVisMame"=Edye=/data=
=data key="1 edgevisMame"=EdgeColor=idsta=
=data key="2.edgeVisMame"=EdyeSize=rdata=
=data key="edgeCount"=2=/data=
=dlata key="edgevisCount"-3=idata=
=data key="0edge edgeType"=has-author=/data=
=data key="0.edge 0 vizValug"="es=idata=
=data key="0.edge 1 vizValug"=Gray=/data=
=data key="0.edge 2 vizValug"=2= data=
=data key="1 edge edgeType"=some_prop=fdata=
=data key="1 edge 0 vizValug"="es=idata=
=data key="1 edge 1 vizValug"=Green=/data=
=data key="1 edge 2 vizValug"=3= data=
=dats key="name"=Researcher=/dsta=
=data key="Size"=4=/data=
=data key="vizible"=Yes=/data=
=data key="Shape"=triangle=dsta=
=data key="Color"=Cyan=/data=
=dats key="label"=Sean Luke<idata=
=data key="full-name"=Sean Luke=/data=
=dhata key="uri"=http: feenewy ipsi fraunhofer def~stewartvikefrn#Sean_Luke=/data=
=dlata key="textdata"=full-name - Sean Luke, =idata=
=/node=

Knowledge Network Visualization
Dimitar Nikolov

23

Figure 15: GraphML Visualization Application Authoring Extract

Figure 15 shows an extract of a sample GraphML file generated by the Semantic Visualization Factory
that can be displayed by the Visualization Application. This extract contains the full widget authoring data.
All elements from “NodeCount” to “m.edge.n.visValue” are only responsible for authoring the legend. The
pattern used for these elements should be profoundly studied before any attempts are made to change or
extend it (it is strongly advised against such changes as these will require technical changes in both the
Semantic Visualization Factory and the Visualization Application). It proved unhandy fitting this data as
legal elements in the GraphML schema. The main reason, why this element proved unhandy to author, is
that the data that is going to be put in it is unknown at compile time and only available at runtime.

A different (probably better) approach might have been following a similar pattern as the pattern used for
authoring the Node Data widget (see below). It is advised that this part is rewritten using this approach in
a future release.

4.3.4 Node Data

This is another widget that should be authored using data not available at compile time. It was added in
the third release of the component. The approach taken for authoring the legend proved unhandy and it
would have been even less applicable for this widget as the number of elements that need to be included
for each type of node could differ greatly. Therefore a new approach was developed - storing the whole
data as a string and using an escape character (;) to separate the different elements from each other
(see “textdata” in Figure 15 and Figure 16). This approach proved fast and easy to use.

Knowledge Network Visualization
Dimitar Nikolov 24

4.3.5 Creating the Graph

=node id="1214"=

=data key="name"=Researcher=/data=

=data key="Size"=4=rfdata=

=data key="vizible"=Yez=idata=

=data key="Shape"=triangle=/data-

=data key="Color"=Cyan=<idata=

=data key="lakel"=Matthew Quinlan=sdatas=

=data key="full-name"=Matthew Cuinlan=Jdata=

=data key="uri"=http: ferweey ipsi fraunhofer ded~stevwartvikefrngvatthesy_GCuinlan=/data=

=data key="textdata"=full-name - Matthew Cuinlan; <idata=
=inode:s
=node id="1215"=

=data key="name"=Researcher=/data=

=data key="Size"=4=ldata=

=data key="vizible"="esidata=

=data key="Shape"=triangle=/data=

=data key="Color"=Cyan=idata=

=data key="label"=\Wang , L.=fdata=

=data key="full-name"=ang , L =idata=

=data key="uri"=http Poewewy unitn g Aransformationys 1 #LE1 1352651 20569407 207 316147 T860545= data=

=data key="textdata"=full-name - Wang , L =/data=
=inodes=
=edge zource="0" target="937"=

=data key="EdgeSize"=3=/data=

=data key="EdgeColar"=Green=idata=

=data key="visibleEdge"=Yez=idata=

=data key="label"=Sean Luke some_prop Jeff Heflin=/data=
=ladge=
=edge zource="0"target="972"=

=data key="EdgeSize"=3=idata=

=data key="EdgeColor"=Green=idata=

=data key="vizibleEdge"="ez=idata=

=data key="lakel"==ean Luke some_prop James A. Hendler=rdata=
=ledge=
=edge zource="2" target="1180"=

=data key="EdgeSize"=3=/data=

=data key="EdgeColar"=Green=idata=

=data key="visibleEdge"=Yez=idata=

=data key="label"-Pazcal Auilans zome_prop Bernard Yatart=idata=
=ladge=

Figure 16: GraphML Node and Edge Display Extract

Figure 16 shows the GraphML representation of a few sample node and edge elements. Parsing and
displaying graph elements stored in this format proved easy and straight forward using the prefuse inter-
nal GraphML parser.

4.3.6 Relationship between the two Display Windows

The relationship between the two Display Windows in the different Display Modes is not consistent. While
changes to the graph (applied by the user - e.g. dragging) in one of the Windows translate to the other in
Display Mode 3, this is not the case in the other two Display Modes. This difference might introduce

Knowledge Network Visualization
Dimitar Nikolov 25

some confusion, however it is implementation dependant how the two Windows are interconnected.
While it is possible to make the two Windows independent in Display Mode 3, making the two Windows
dependant in the other Display Modes is next to impossible. The reason for this is that the displayed
graphs in these cases are required to be different and thus are implemented using different visualizations
(in prefuse terms), which makes them independent. Display Mode 3, on the contrary, features two dis-
plays of the same visualization.

4.3.7 Topic Tree

Extracting the data for the Topic Tree from the ontology and displaying it in the Topic Tree tab proved
technically unhandy. The reason for this is the inability of Jena to make a transitive check whether a class
is a subclass of another class. A recursive method had to be used to make up for the lack of this functio-
nality. Apart from this and the fact that it relies on many additional jars (which makes it unhandy for using
in applets), Jena was found to be a powerful and easy to use tool. Refer to the Appendix for further tech-
nical information.

4.3.8 Interactive Elements

All of the widgets except for the Legend are either interactive or change during execution (Label Display
and Node Data) to reflect the user’s interaction with the Main Window. Ideas for the implementation of
these elements were drawn from the prefuse demos coming with the prefuse package. Somewhat new
and not featured in any of the prefuse demos is only the implementation of the Topic Tree.

4.4 Integration within VIKEF

Figure 17 draws the relationships and collaborations of the different components in VIKEF's Semantic
Navigation Support.

Knowledge Network Visualization
Dimitar Nikolov 26

Semantic Navigation Support Architecture

Infusion
Application Virtual Object SRMN View SRN WYiew +
Visualizer Visualizer izati
Customization
@ _‘/;, Parameter
Personalization SCemantlc '”:“mm{ _JWirtyal Smart Service SRN View Factory
Component eliglefelnl Content Workbench
Yirtual Content Object gy
Object Semantic isdl
User Factory Stite Wisualization Editor T | T Customization
Profile
Info Semantic Community Service SRM View
Infusion Engine Editor L Creation
lUser Context - 4 \ #
Profile Manager infusion Infusion Pattern
pattern 4 Editor e _
Persanalization Infusion o SSRNfVIetW
Engine Fattern SRMN Wiew Editar L Gk
Repository - Repositary
Rule Editor
A RN Py
7] \ I
7 1] L S
Align LAS Types of I
Diocument Information Extracted
{Annotated Entities
Ontology Inference
POPtant Wlanager Manager
objects) J g
Annotation Workbench & Semantic Workbench & VIKEF
Annotation Components Knowledge Infrastructure
S— A=~
é‘? WIKEF (IST S07173) =

Tnformation Society 2
e hunalogic: s

Figure 17: Semantic Navigation Support Architecture

Knowledge Network Visualization
Dimitar Nikolov

27

5 Preliminary Evaluation

This part has two goals: first to evaluate the software design of the project from the author’s own point of
view and second to sum up the experience different people had using the software.

5.1 Evaluation Design

This part attempts to evaluate the software (code) design of the project in accordance to the software
design principles. It considers the five modular properties, some class-level design principles and some
package-level design principles.

5.1.1 Modular-* Criteria
According to these criteria the component has no well formed weaknesses.
5.1.1.1 Modular Decomposability

The big picture of the project is divided into five parts: SRN View Editor and Factory and Semantic Visua-
lization Editor and Factory and Visualization Application. According to the plan and in practice work can
continue on each of these components independently of the state of the others. The lack of strict formats
for communication among them spoils this to some extent as it is often the case that features have to be
considered in the big picture to ensure operability.

Within the Visualization Application the system can be modularly decomposed into many parts: main ap-
plication, a part for each widget (here only the Main Window, the Overview Window and the Topics Tree
depend somewhat on each other as they use a common Visualization element), a node renderer and an
edge renderer. The work on these modules can continue independently of each other and they were de-
veloped and tested independently of each other.

5.1.1.2 Modular Composability

Modular Composability has been given thought to while developing the component. The node and edge
renderers can be considered stand alone modules that can be reused in other prefuse applications. The
other elements are all different Panels and as such limited situations can be found where they can be

Knowledge Network Visualization
Dimitar Nikolov 28

reused. They are mostly (as described in Section 4.3.8) elements whose features and implementations
were to a hig extent reused from prefuse demos.

5.1.1.3 Modular Understandability

Support for Modular Decomposability and Composability also resulted in good Modular Understandabili-
ty. Modular reasoning is decently supported.

5.1.1.4 Modular Continuity

Modular Continuity was not considered to a large extent in the first releases. However in the last release,
a targeted attempt was made to fully incorporate Modular Continuity through refactoring and the creation
of the Cs class. The suggestion given in Section 4.3.3 will further improve the design in this direction.
Provided this change is implemented, the only classes that will still show some weaknesses, having this
criterion in mind, would be the renderers. Extending the functionality of the Cs class could help “improve”
these classes too, but abstracting structures like the shapes and colors away, from the only spots that
they are used at, just in order to possibly slightly increase Modular Continuity, is considered too much
overhead and a too big decrease in Modular Understandability to do.

5.1.1.5 Modular Protection

Support for Modular Protection is good. The application has been developed supporting this criterion on
purpose. Small changes and extensions (even in the graph input file specification) will most probably re-
main restricted within one module. A contribution to the good mark this component gets on this criterion
is made by the standardization of the input graph file targeted during the development of the Semantic
Visualization Factory.

5.1.2 Class-level Design

The design of the classes in the last release has improved significantly after they were thoroughly refac-
tored. A lot of time and effort was spent on improving this part of the project prior to the third release.

5.1.2.1 General Principles

5.1.2.1.1 Information hiding

Information hiding is not at the level it should be at. The refactoring work did not focus on this aspect. A
lot of the elements are declared using package visibility although they should not be accessible from out-
side the classes they are declared in. Further refactoring should be done to improve this issue.

5.1.2.1.2 Coupling and cohesion

Knowledge Network Visualization
Dimitar Nikolov 29

Coupling and cohesion are paid attention to while developing the Visualization Application. All classes
have low to moderate coupling and moderate to high cohesion. ContentPane is the only class where co-
hesion might be seen as a problem, however high method cohesion is still maintained. Further refactor-
ing might extract each widget in its own class, rather than handling the widgets in different classes de-
pending on their positioning in the application window.

5.1.2.2 Assigning Responsibilities

Responsibilities are not assigned to the best extent throughout the Application according to general prac-
tices. The Applet class acts as a Facade Controller and an Expert on the creation of the displays depend-
ing on the Display Mode and the graph. This is a generally accepted “bad” practice. The reason this ap-
proach was taken was that in my opinion creating a class without any responsibilities is even worse prac-
tice as it introduces needless classes used just for passing data to other classes. Logic is not separated
from display in the design of the classes. A major reason for this is that only little and simple business
logic processing is required in an application built for visualization purposes that aims to display data to
the user, but not to process and output anything.

The classes act as Expects on the creation of any widgets created by them. They also act as Controllers
on the interactive widgets created by them managing listeners and coordinating possible changes to the
graph.

There are no Creator responsibilities within the component as no objects are created after the initializa-
tion.

5.1.2.3 SRP

SRP has been considered, however not always followed during the development of the system. A system
fully supporting SRP introduces a greater number of smaller classes, a lot of relationships between them
and slows down the production of software.

5.1.2.4 OCP

The Visualization Application is open for the addition of new widgets and their authoring. This can be
achieved with only the overhead needed to create those widgets. However, closure against new Visual
Features is not fully supported and might require changes in the renderer classes. Further improving this
criterion in this direction is not possible without making blind assumptions or great overhead.

Knowledge Network Visualization
Dimitar Nikolov 30

5125 LSP

The refactoring work done prior to the third release targeted and achieved LSP compatibility for the new
renderer classes used in the component.

LSP can be fully supported if some further refactoring is done to create constructors in the other classes
with the same signatures as the constructors of the classes they extend. However, this is useless as the
super classes of these classes are framework classes designed to be extended before they are used.

5.1.2.6 Other Principles
DIP and ISP are not considered as mostly not applicable.

The only package design principle that has been considered is CCP for the renderers package. Changes
to the current package design cannot be motivated by any of the package design principles. Such
changes might become applicable only if considerable refactoring is done on class design level and new
classes are introduced and the current classes changed or completely removed.

5.2 User Involvement

General users were involved in assessing the Visualization Application. This assessment phase took
place prior to the release of this document.

The goal of assessing the Visualization Application was to get user feedback on its ability to support the
user in exploring and using a visualization for better studying of the data contained in the domain.
Through the assessment the following points were obtained:

1. Anoverall impression from end-users engaged in using a set of predefined visualizations.
2. Feedback about how the prototype could be extended.

3. Feedback on the usability of the component in supporting the users in completing a set of prede-
fined tasks.

5.2.1 Set-Up

The assessment was structured in four phases. During the preparation phase, the purpose of the applica-
tion and the predefined tasks were presented to the users. A set of instructions on how to use the Visua-
lization Application and a small practical tutorial using a small predefined graph were given to them in
order to introduce them to the application. In the second phase, the users were guided in completing a
predefined set of tasks with gradually increasing difficulty and decreasing assistance. In the third phase,

Knowledge Network Visualization
Dimitar Nikolov 31

the users were asked to complete a questionnaire. During this time they received less guidance and were
free to refer back to the tool whenever they needed while completing the questionnaire. In the final
phase, the users were given the opportunity to openly discuss aspects of the tool.

5.2.2 Results

In general, the application interface was seen as simple, easy to learn, practical and quite useful for the
purpose for which it was designed. Most users found that it was easy and natural to get the system to do
what they wanted from the very beginning, yet others stated it requires a considerable amount of time to
get used to the unnatural controls.

Most users were quick and required little or no help to become confident with moving separate nodes or
connected graphs around. Few still found it confusing at the end of the session.

Most users found the relationships are visualized in an obvious and very easy to use way; still there were
exceptions who could not figure out the basic meaning of an edge between two nodes.

The only widget that was found confusing by all users was the legend; most users easily oversaw the
scrollbar and after they were told that it existed few found it heavy moving and slow; the structure and
labels were seen as inconsistent. While some were able to interpret and become confident with using it
without assistance, some required some help and explanation and few said they were not sure if they will
be able to get used to using the legend in its current format.

We were able to receive end-user feedback on how the prototype could be extended. Comments in-
cluded the following:

Extend the tools functionality to allow users to define other structures, such as pie
charts, as output.

+ Add more layouts. E.qg. grid.

+ Improve the search functionality. Make the nodes found by the search box easier to see.
E.g. make the found nodes bigger; mark the found nodes with a circle or an arrow.
Mark the found elements in the Overview Window as well.

+ Offer the user to choose a color, which the different highlighted nodes should appear in,
and change the color of not just the label, but also the node itself when highlighting
it.

Knowledge Network Visualization
Dimitar Nikolov 32

Improve the Legend: Better separation of column title and column value. Add column
borders. Make the scroll bar more apparent. Hide the Filters Row from the legend if
no filters defined. Rename some column titles.

Make it possible to apply the Radial Tree Layout to the same node twice in a row.

Add the functionality to choose, where to reposition a node to after clicking on it, instead
of repositioning it in the center of the window.

Improve the layout of the JSP Page to match the layout of the Semantic Visualization
Editor and make the file selection box smaller so that it fits in the browser window.

5.2.3 Assessing User Comments

In assessing the user comments, some items are easy and others more difficult to include. Some items
are also outside the scope of this tool or are not appropriate for this context. The expected difficulty hav-
ing the project design in mind is also listed:

Extending the functionality to support Pie Charts — moderately difficult to support in the
Editor, very difficult to support in the Visualization Application.

Extending the functionality to support more layouts — easy to implement as long as using
predefined prefuse layouts.

Make the nodes found by the search box easier to see — easy to implement.
Give the user the ability to choose highlight colors — easy to implement.

Improve the legend — moderately difficult — the way the legend data is transmitted in the
GraphML file should be changed too.

Make it possible to apply the Radial Tree Layout to the same node twice in a row — easy
to implement.

Choose where to reposition a node to after clicking on it, instead of repositioning it in the
center of the window — difficult to implement.

Improve the JSP page — easy to implement.

Knowledge Network Visualization
Dimitar Nikolov 33

6 Related Work

This project is related to every project built around GraphML and prefuse. The prefuse visualization gal-
lery (prefuse, 2007) provides an overview of such projects. There are numerous projects there and in the
prefuse demos that are closely related to the current application and have been used to gather ideas for
the realization. Vizster is a good example of a project using a similar graph to display similar relationships
between different instances. The only new aspect implemented in the VIKEF Visualization Application is
the filtering according to a topic hierarchy and the fact that it uses Jena for the extraction of this hierarchy
from the ontology. The task to develop this component was not to develop something new seen as a
separate component but to complete the process started by the other components in the VIKEF pipeline
(see Figure 2). In this sense little related work is known. Refer to (Nikolov, 2007) for further information.

Knowledge Network Visualization
Dimitar Nikolov 34

7 Conclusion

The Components developed within the Semantic Navigation Services of VIKEF provide a useful and easy
to use tool for the enrichment, aggregation and visualization of enormous datasets — an invaluable aid to
members of communities working with this information.

7.1 Summary

This paper describes one of these components: the Visualization Application. It takes a GraphML file
produced by the Semantic Visualization Factory and displays it.

The design, implementation issues, problems (both solved and unsolved) with the component, concerns
and ideas for future further development were presented in this document. The Appendix at the end de-
livers technical details on the software.

A preliminary evaluation section is also included in this paper discussing the software design according to
the software engineering principles and the usability and level of satisfaction of the component.

7.2 Limitations of this Work and Future Work

This part summarizes the ideas given throughout the document on further possibilities for development
and improvement.

1. The Legend should be redesigned. See Section 4.3.3.
2. The classes should be further refactored. See Sections 5.1.2.1 and 5.1.2.6.

3. Extensions based on user comments. See Section 5.2.3.

Knowledge Network Visualization
Dimitar Nikolov 35

8 Bibliography

[Toshev, 2007] Design & Implementation of framework for constructing / tailoring task specific
views on knowledge bases [Report]/ auth. Toshev Yasen.- Darmstadt: TU Darmstadt, 2007.
forthcoming

[Quin, 2006] Extensible Markup Language [Online] / auth. Quin Liam // World Wide Web Consortium. -
W3C, 09 11, 2006. - 11 2006. - http://www.w3.0rg/XML/.

[HTML, 2007] HTML Tutorial [Online] // W3Schools Online Web Tutorials. - W3 Schools, 2007. - 10
2006. - http://www.w3schools.com/html/.

[Java, 2004] Java 2 Platform SE 5.0 [Online] / Java Technology. - Sun Microsystems, 2004. - 11 2006. -
http://java.sun.com/j2se/1.5.0/docs/apil.

[Jen07] Jena Semantic Web Framework [Online].- SourceForge.- 01 2007.-
http://jena.sourceforge.net/.

[JSPO6] JSP Tutorial [Online]. - 10 2006. - http://www.jsptut.com/.

[Nikolov, 2007] Support for User-friendly Customization of Knowledge Network Visualization
[Report] / auth. Nikolov Dimitar. - Darmstadt : TU Darmstadt, 2007. forthcoming

[Ontology, 2007] Ontology (computer science) [Online]// Wikipedia, the free encyclopedia. -
Wikimedia, 04 02, 2007. - 01 2007. - http://en.wikipedia.org/wiki/Ontology (computer_science).

[prefuse, 2007] prefuse | interactive information visualization toolkit [Online]. - SourceForge, 02 11,
2007. - 01 2007. - http://prefuse.org/.

[GraphML Team, 2004] The GraphML File Format [Online] / auth. Team the GraphML. - 09 29, 2004. -
01 2007. - http://graphml.graphdrawing.org/.

[VIKEF 1, 2007] VIKEF Knowledge Supply Chain [Online] // VIKEF. - Information Society Technologies,
2007. - 03 2007. - http://www.vikef.net/downloads/presentations/SemanticInfusion.pps.

Knowledge Network Visualization
Dimitar Nikolov 36

[VIKEF 2, 2007] VIKEF Knowledge Supply Chain [Online] // VIKEF. - Information Society Technologies,
2007. - 03 2007. - http://www.vikef.net/downloads/presentations/KnowledgeView.pps.

[Le Hegaret, et al., 2006] W3C Document Object Model [Online] / auth. Le Hegaret Philippe, Whitmer
Ray and Wood Lauren// World Wide Web Consortium.- W3C, 06 12, 2006.- 12 2006. -
http:/fwww.w3.0rg/DOM/.

[Connolly, et al., 2004] W3C Web Ontology (WebOnt) Working Group (OWL) (Closed) [Online] / auth.
Connolly Dan, Hendler Jim and Schreiber Guus // World Wide Web Consortium. - W3C, 06 15, 2004. - 01
2007. - http://www.w3.0rg/2001/sw/WebOnt/.

Knowledge Network Visualization
Dimitar Nikolov 37

9 Appendix — Technical Description of the Vi-
sualization Application Files

9.1 JSP Pages

) WebRoot
2] index. jsp
] ¥C.jsp

Figure 18: JSP Pages

The Visualization Application is started by calling index.jsp.
9.1.1 Index.jsp

Figure 8 shows the simple form drawn by this file. It creates a connection to the File Manager Client and
alphabetically lists the graph files that can be displayed by the component. The form is then submitted to
VC.jsp.

9.1.2 VC.jsp

This page contains the applet, however, it also does some important file processing needed to compen-
sate for the applet restrictions (see Section 4.3.1.1). It copies the two input files for the applet — the
GraphML graph file selected by the user in index.jsp from the File Manager Client and the .owl ontology
file referenced by this graph file from the Ontology Manager Client — from the VIKEF storage space (see
Figure 17) to the local tomcat directory (specified in Cs.java) on the server, where the Visualization Appli-
cation is running. This is the only directory containing input files that the applet can access. After the files
are copied, the applet is started and the filenames of the two temporary files are passed to it as argu-
ments.

Knowledge Network Visualization
Dimitar Nikolov 38

9.2 Java Sources

= YC
= app
[l ContentPane.java
] LabelSearchBox java
] TopicsPanel java
] vCapplet.java
£l vCMain.java
=) renderers
£l LabelRenderer java
[£] shapelLabelRenderer java
] SizeColorEdgeRrenderer.java
£l CP.jawa
£ Csjava

Figure 19: Java Sources

9.2.1 Widgets

The vCapplet class is the applet derivative class that is used to start the Visualization Application. It
calls the constructors of the other classes initializing the Panels with the widgets and is responsible for
initializing the proper pair of displays depending on the Display Mode. For Display Mode 3 it is responsi-
ble for creating a Visualization, initializing the renderers and then passing this Visualization to the con-
structors of VCMain and ContentPane for the creation of the two displays. For Display Modes 1 and 2 it
passes the necessary data to the two constructors. This allows them to create two different Visualizations
for the two displays.

9.2.1.1 VCMain.java

This class is used to display the Main Display Window. It has two constructors called by VCApplet
depending on the Display Mode. The method prepareVvis () is invoked by the constructors and im-
plements the prefuse logic for the initialization of a Display — Actions — drawing of the graph elements,
different colors and highlights — Layouts, Panel size, Listeners, etc. It should be noted that in the case of
Display Mode 3 what this method does also applies to the Overview Window.

This file also contains a small class — TreeRootAction — reused from a prefuse demo for repositioning the
nodes in accordance with the Radial Tree Layout after a node has been clicked on.

Knowledge Network Visualization
Dimitar Nikolov 39

9.2.1.2 LabelSearchBox.java

SRR

This is & small class that extends Box adding to it the widgets that are used in the VC.
These widgets include showing the lakel of the slement the mouse is currently pointing at and
Simple search for searching a node according to its label.

The search and lakel are implemented by reusing code from prefuse demos.

@author The Jimmytaker

Ok K Ok ¥ ¥

®
public class Lakel3earchBox extends Box |

Figure 20: Class initializing the widgets Label Display and Search Box

This class has two methods initializing each of the two widgets.
9.2.1.3 ContentPane.java

This class represents the Content Pane. It contains the Overview Window, the Legend, the Force-
Directed Layout button and the Node Data widgets. It has two constructors invoked by VvCApplet de-
pending on the Display Mode in use.

For Display Mode 3 the Visualization already initialized and set up by VCApplet and VCMain is
used for the Display of the Overview Window. In this case refer to vCMain for the Actions started and
operating. For Display Modes 1 and 2 the method prepareVis () initializes the Actions and
Layouts to be used and is only invoked in these two modes.

The method prepareDisp () is invoked by the constructors and sets up the Listeners associated
with the Display of the Overview Window.

~%*% Prepares the widged that displays the Legend. This method does not use Cs for hardcoded Strings.
* The reason is that the strings used in this method are used only here and were defined for usage here.
* Ahstracting over them would cause more complication. One should better leawve this Strings untouched
#*# hoth here and in the Factory. */

vold preparelegend() {

Figure 21: Method preparing the Legend widget

The method prepareLegend () does serious logic processing to extract the data for the creation of
the Legend from the format it is stored in. The complexity of this method can be decreased significantly if
the approach described in Section 4.3.3 is followed.

This file also includes a small class — ColumnTitle — used in the creation of the Legend. This class
will most probably be dropped if the approach of creating the legend is changed as described above.

The method addButton () adds the Force-Directed Layout button to the Content Pane and sets up
its functionality.

Knowledge Network Visualization
Dimitar Nikolov 40

The method prepareNodeData () adds the last widget displaying the Node Data to the Content
Pane.

9.2.1.4 TopicsPanel.java

~%*% This class represents the topics panel in the JTabbedPane.

* This panel extracts the Topics hierarchy with name the name selected by the user in the 3VEEditor from
the ontology and represents it as a directory structure.

Clicking on an element in this structure causes all nodes (and their corresponding edges) that have a
topic property defined to disappear from the graph. Mo changes are applied to nodes that do not have
the topic property defined.

@author The Jimmytaker

LI B

*
public class TopicsPanel extends JPanel {

Figure 22: Class creating the Topics Tree

This class is responsible for the creation and the functionality of the Topic Tree Tab. This class attempts
to extend the functionality Jena offers by extending a relationship between two elements (in this case the
“subclass” relationship) to a transitive relationship. This is achieved through a recursive method that is
used to extract the necessary data from the ontology and keeping a record of this data in the map shown

in Figure 23.

~*%¥this maps each topic name to a list of its subtopics. This is needed to allow for all the nodes
#* that have a toplc that i1s a subelement of the selected element to remain visible., *7
LinkedHashMap<Etring, Arraylist> toplcs = new LinkedHashMap<String, ArravList>():

Figure 23: Topics map

%% The valueChanged method of the listener is invoked when a new element in the tree is selected.
* @author The Jimmytaker

*
®
class TElistener implements Treelelectionlistensr |

publie wvoild wvalueChanged (TresSelectionEvent argl) |

Figure 24: Tree Selection Listener

This file also contains the small class TSListener. Every time a new node in the Topics Tree is selected,
all items are set visible and then in a while loop over all node items it is checked whether these items
should remain visible. An item should remain visible if it has no topic attribute defined (seeFigure 16:
GraphML Node and Edge Display ExtractFigure 16) or if its topic (See addresses-area-of-interest in Fig-

ure 13) is the same as or a sub-element of the selected topic in the Topics Tree. The map shown above
contains a quick reference of the nodes that should be visible for each topic (see also Figure 25). When a
node is found that should not be visible, its visibility field and the visibility fields of all adjacent edge items
are set to “false”.

Knowledge Network Visualization
Dimitar Nikolov 41

~#% this checks whether the current node is the same as the selected node
* or its subelement *-
boolean isElementOf (String nodet, String selectedt) |
if (topics.getiselectedt).contains(nodet)) {
return true:;

return false:

Figure 25: Check visible

9.2.2 Renderers

New renderers were needed for both the nodes — to support shapes/images with labels — and the edges
— to support different colors and sizes. Both these were built around the sources of the already existing
prefuse renderers, however the changes/extensions are not just superficial.

9.2.2.1 LabelRenderer.java

%% The only change this class introduces to the original
#* prefuse LabelRenderer is that the mazimal length

of a node lahel is 20 chars.

The reason for the existence of this class is that

it is the renderer used in ContentPane

@author The Jimmytaker

L

®/
public class LabelRenderer extends prefuse.render.lLabelRenderer |

public LabelRenderer (3tring lahel) {
super(lahall;

%% To keep the labels readable and the graph looking good, limit labels to 20 chars. This method
* iz invoked in getRawZhape. =/
protected String getTexzt(Visualltem item) |
String s = null;
1f [item.canGet3tring(m_labelName) | {
s = item.getString (m_labellame):
¥

I maximal labkel length - 20
if (s.length() > 200 {
s = s.substring (0, 207;
¥

return s;

Figure 26: LabelRenderer

See the comments in the code of the file.

9.2.2.2 ShapelLabelRenderer.java

SR
* This class i1s built around prefuse's LabelRenderer and ZhapeRenderer.
*# In the current application i1t is needed to mark each node with its label and a visual element.
* which might be a shape or an image. What 1s used is determined in the graphml input file.
@author The Jimmytaker
*

®,/
public ¢lass ShapelabelRenderer extends LabelRenderer |

Figure 27: New Node Renderer

Knowledge Network Visualization
Dimitar Nikolov 42

In the implementation of this class the needed functionality is achieved by overriding the two main me-
thods for the creation of node elements and adding new methods to support the new features.

SER

* If the display pair in this graph (as defined in the 3VEEditor) should include

invisible nodes, when a Visualltem is discovered that should not be displaved,

its start wvisibility attribute is set to false, so that the place of the node is kept in the shape
af the graph but it is not displayed. This is achieve by the VisibilityFilter applied.

Otherwise, if the invisible elements should be dropped, null is returned.

Further changes include:

- this method no longer handles images, since some kind of shape is expected to he
always present.

- the hoxes are now simpler. They are always the same (no RoundRectangleZD).

@see prefuse.render.ibstractihapeRenderer#getRawihape (prefuse.visual .Visualltem)

LI I I I]

*®.
protected Shape getRawShape (Visualltem item) |

1f (m_displayType != 1 && lisVisihle(item)) {
return null;
¥

sralse
this is the case 1 - invisible elements for the elements that should be filtered out
1f [lisVisibkle(item)) {
item.set3tartVisible(false);
toelse |
item.set3tartVisible (true;
¥

m_text = getText(item):
int siwe = getRizeitam’:

~%#The new look of the nodes 1s achieved mainly by overriding this method.
* Changes:
* - pno fill - the nodes are always white and include a graphic and text
- the recognition of the type of shape or image happens here
— not only images but also shapes get drawn here
* [@zes prefuse.render.Renderer#render(java.awt.Graphics2D, prefuse.visual.Visualltem)
*®
public void render(Graphics2D g, Visualltem item) {
Rectangularfhape shape = (RectangularShape)getShape(item):
1f [shape == null) return:

ssereate the proper shape or an image. Not all of the cases can happen, as some of these
~~shapes are left out of the SVEEditor
int stype = getShap(item):
switch (stype) |
case Constants .. SHAPE MOME :
~sthis 1s an 1lmage

img = getImage(item):
break:
case Constants.SHAPE _RECTAMGLE:
souged
sshape = sr.rectangle(x., v, width, width):
break:

case Constants . SHAPE _ELLIFZE:
ssuged - represents a cilrcle.
sshape = sr.ellipse(x, v, width, width):

#7111 the shape with the proper color

if (stype |= Constants.SHAPE _NOWE) {
item.setFillColor(getColor(item) . .getRGE())
Graphicslib.paint(yg. i1tem., schape. getStroke(item), REWDER_TYPE_FILL):

soadd an image - code reused from super method
1 else {

Figure 28: Interesting code abstracts from the two main drawing overridden methods

Knowledge Network Visualization
Dimitar Nikolov 43

sosnew methods

%% Pagsed a Visualltem as a parameter, this method attempts to read its shape field and return
*# the integer code of the found basic shape as defined in prefuse.Constants.
*®
int getShap(Visualltem item) {
String s = null;
1f [item.canBGet3tring (m_shapeName] | {
5 = ltem.getString (m_shapelame):
if (s.tolowerCase().equals("rectangle")) {
return Constants.SHAPE RECTAMGLE:
1 else if (s.tolowerCase().equals("circle")) {
return Constants SHAPE FIT.TRSE:

~%% Passed a Visualltem as a parameter, this method attempts to read its size field and return

#* the number found there. This number has been defined as a wisual setting in the SVEEditor.
*

int getSize(Visualltem item) {
if [(item.canGetString (m_sizeMame)) {

return Integer.parselntiitem.getString (m_sizelame)):
|

%% Passed a Visualltem as a parameter, this method attempts to read its color fiesld and return
* the corresponding Color to the string found there.

* This color has been defined as a visual setting in the SVEEditor.
*
Color getColor(Visualltem item) {
if [(item.canGetString(m colorlName)) {
String o = ltem.get3tring (m_colorbame);
if (c.tolowerCase().egquals("black")) {
return Color.black:

1 else if (c.tolowerCase().egquals("hlue")) {
raeturn Color. hluoe:

%% Passed a Visualltem as a parameter, this method attempts to read its visibility field and return
*# g boolean walue of whether this node should he displaved. Nodes can be chosen not to be
*# displaved in the main window in the SVEEditor.
*®.7
hoolean isVisible(Visualltem item)
1f (item.canGet3tring(m_visHame)) {
return ltem.get3tring (m_wvisHame) .eguals (Cs.pos);
i

Figure 29: New methods

ssoverriden methods

~#%#The only change in this method is from private to protected.
* and therefore cannot he reusedl
®/

protected String computeTextlDimensions (Wisualltem item, String text.
double size) |

It is originally declared private.

~%#% The only change here is that the images used are given with relative path.
The used images are coming with the VO and stored in the images folder.

The super method expects full path.

*®
protected String getImagelocation(Visualltem item)

return item.canGetString (m_imageMName)
PN 4+ item.getString (m_imageMame)
null:;

%% The only change is from private to protected. Super method could not he reused!| =~
protected final wvold drawltring(GraphicsZD g, FontMetrics fm, String tezt.

boolean uselnt, double x, double v, double w)
I

Figure 30: Overridden methods

Knowledge Network Visualization
Dimitar Nikolov 44

The signature of a couple of methods has been changed from private to protected, as these are declared
as private in the prefuse jar and therefore cannot be accessed by extending classes. This is the only fea-
ture of prefuse that was found to be implemented badly and should be changed in a future prefuse re-
lease.

Getter and Setter methods for the GraphML fields are also included to make the new class more portable
and easy to reuse.

sselements of the graphml file used thoughout this class. Mote that shape and image are the same
sselement in this application as it is either or, what is going to be used, but still it is

ssa good ildea to be able to make difference between them, as they are used in a different way
protected String m shapellame = "Shape':

protected String m colorilame = "Color';

protected String m_sizeMName = "Zize";
protected String m_imageName = "Shape':
protected String m_visName = "visible':

int m_displayTyvpe:

Figure 31: GraphML elements used throughout the class

9.2.2.3 SizeColorEdgeRenderer.java

SEE

* In the current application the different tvpes of edges need to have different colors and sizes.
This is achieved in this extension of EdgeRenderer

@author The Jimmytaker

*
®/
public class SizeColorEdgeRenderer extends EdgeRenderer |

Figure 32: SizeColorEdgeRenderer

In the implementation of this class the needed functionality is achieved by overriding the two main me-
thods for the creation of node elements and adding new methods to support the new features. However,
the needed changes are much fewer and much more superficial than in ShapeLabelRenderer.

Knowledge Network Visualization
Dimitar Nikolov 45

ssoverriden methods
%% Mot all edges should be wisihkle at all times. Eeturn null unless the edge ZHOULD be wisible #-
protectad Shape getRawlhape (Visualltem item) |
if (isVisible(item)) {
return super.getRawlhape (1tem)

i
return null;
¥
S
Do nothing 1f the edge should not be wvisualized in the main display window.
#* Otherwise invoke the super method for rendering an edge but changing the input
* co that the =dge is drawn in the desired wav.
#* The stroke and fill color for the edge are set to the wvalus found in the graphml input file
* and the getlineWidth method is overriden to return the appropriate value from the graphml file
* prior to inwvokation of the super method.
*/

publiec vold render(GraphicszD g, Visualltem item)
1f {isVisible(item)) {
s<read the graphml file
int color = getColor(item].getRGB();
item.set3trokeColor (color);
item.setFillColor(color);
<« render the edge line
super.render(g, ltem);
< render the edge arrow head, if appropriate
1f [m_curdArrow |= null |
g.setPaint (Colorlib.getColor (item.getFillColor())):
g.fill (m_curdrrow)

SEE

* This method is used in EdgeRenderer.getRaw3hape, which is invoked from within its overriding method
* in this class. It delivers the size for the current edge chosen by the user in SVEEditor

* @param item the Visualltem for which to determine the line width

*# @return the desired line width, in pizels

*®
protected double getlineWidth (Visualltem item) {
int s;
if [item.canGet3tring(m_sizelName) && item.get3tring(m_sizeName) |= null) {

s = Integer.parselnt(item.get3tring(m_sizeblame)):
return item.getSize()*s;
T oelse |

return item.getSize():
|

Figure 33: Overridden methods

ssnew methods

T
* This method gets the decodes the string representation of the desired color (as defined in the
* graphml file) to a Color object.
£y

protected Color getColor(Visualltem item) |

if (item.canGetitring(m_colorMame)) |
3tring c = ltem.get3tring(m_colorHame);
if (c.tolowerCase().egquals("black")) {
return Color.black:
VP else 1f (c.tolowerCase().egquals("blue")) {
return Cnlor.hline:

Knowledge Network Visualization
Dimitar Nikolov 46

~%#% This method determines whether an edge should be visuslized in the main display window.
* The criteria include both:
* 1. The edge has not heen explicitly chosen not to be displayved in the SVEEditor
* 2. Both the source and target nodes of this edge should be displaved.
* .
boolean isVisible(Visualltem item) {
Edgeltem edge = (Edgeltem)item:
Visualltem iteml edge . getSourceltem()
Visualltem item2 edge . getTargetItem() ;
if [item.canGetString (m_edgeVisilame) && iteml.canGetString(m_nodeVisName)
&& 1tem?.canGet3tring (m_nodeVisName)) {
return item.get3tring (m_sdgeVisName).equals(Cs.pos) && iteml.getString (m_nodeVisName).eguals(Cs.pos)
Gf 1teml.getitring (m_nodeVisMName) .equals(Cs.pos);

Figure 34: New methods

Getter and Setter methods for the GraphML fields are also included to make the new class more portable
and easy to reuse.

S+ elements of the graphml file used thoughout this class.

protected String m sizeName = "Edgelize";
protected String m nodeVisName = "wisible':
protected String m_edgeVisName = "wvisibleEdge";
protected String m_colorName = "EdgeColor";

int displavType:

Figure 35: GraphML elements used throughout the class

9.2.3 Other Sources

/**

* This class contains all the strings used throughout
* the VC and assigns const names to them

*® @author The Jimmytaker

*

=

public class Cs {

SR

This is a =mall class to help in debugging.

Tts sole purpose is to provide sasy to turn on
#* and off console printing

#* @author The Jimmytaker

*

®

public elass CP |

Figure 36: Other Sources

Knowledge Network Visualization
Dimitar Nikolov 47

