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Abstract

Machine learning (ML) and artificial intelligence (AI) are topics with high industrial im-
pact, due to the enormous success in applying deep artifical neural networks (DANNs)
to various pattern recognition tasks. The results of DANNs are so convincing that neural
nets are already getting tested in heavily regulated fields like medicine or finance. How-
ever, these autonomous systems are deployed without evaluating the reasoning behind
the decisions they make. This is due to the fact that despite all the accomplishments
DANNs achieved, their decisions are still mostly a black box. Thus, the aim of this thesis
is to explain the influence of input variables on the decision of a DANN.

This thesis met its aim through an extensive study of relevant literature and the im-
plementation of practical research. The latter was carried out by developing a new
explanation method, called Profiled LICON Analysis (PLAY), and an experiment which
compares the proposed method to two existing explanation methods (Linear Weighting
Scheme for the Contribution of Input Variables (LICON) and Global Sensitivity Analysis
(GSA)). This research has shown the general ability of the PLAY method to accurately
calculate the expected influence values on synthetic and real-world data sets. Further-
more, it was proven that the profiling technique used in the PLAY method led to a
higher sensitivity compared to the LICON method. This thesis complements the existing
scientific knowledge concerning the explanation of DANNs by a categorisation of exist-
ing explanation methods and the development and justification of the PLAY method.

Keywords: Deep Artificial Neural Network, Machine Learning, Artificial Intelligence,
Explanation, Black Box, Interpretation of Input Influences, Linear Weighting Scheme
for the Contribution of Input Variables, Profiled LICON Analysis, Global Sensitivity Ana-
lysis
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1 Introduction

1.1 Background

Machine learning (ML) and artificial intelligence (AI) are topics with a high indus-

trial impact, due to the enormous success in applying deep artificial neural networks

(DANNs) to various pattern-recognition tasks. Some examples of such successful ap-

plications can be found in the fields of speech recognition (Hinton et al., 2012), image

classification (Krizhevsky, Sutskever, and Hinton, 2012), and reinforcement learning in

video games (reaching a level of control similar to humans) (Minh et al., 2015).

The combination of reinforcement learning with DANNs represents another success in

the research of AI. For example, the company OpenAI created a bot (computer program)

for the video game Dota 2 which learned strategies to win the game by playing against

itself (OpenAI, 2017). More recently, Google DeepMind was able to develop a similar AI

program for the game Go. By playing against itself, the AI developed strategies for this

game exceeding those known to human players and, subsequently, defeated the South

Korean grandmaster by 100 to 0 (Sample, 2017).

The results of DANNs are so convincing that neural nets are already being used, in

part, to guide physicians’ diagnoses, support law firms in advising their clients, and

help financial institutions regarding their credit-decision processes (Crawford and Calo,

2016, p. 312). However, these autonomous systems are being deployed without eval-

uating whether they affect the human population and what this effect might be (ibid.,

p. 311). Furthermore, despite all the accomplishments DANNs have achieved, their de-

cisions are still mostly a black box. This means, it is not possible to explain the reasoning

behind a network’s decision. In confronting problems with many input variables and a

complex neural network structure, the current research lacks methods to understand

the influence of individual input variables on the decision of the neural net.

Efforts were made to solve this lack of understanding mainly by trying to derive

decision trees from neural networks and by pruning these trees since it has been a

common belief that small systems are easier to grasp (Montavon, Samek, and Müller,

2018). However, this kind of solution has its drawbacks: complex neural networks tend
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to generate huge decision trees, and their comprehensibility is questionable. Further-

more, some of the current algorithms for extracting decision trees and rule sets have

restrictions. For example, most of the available solutions have focused on discrete

data or have needed a specific conversion of the input data (Setiono, Baesens, and

Mues, 2008). Thus, researchers have come up with other ways to explain a neural

network’s decisions such as the information theoretic approach (Papadokonstanta-

kis, Lygeros, and Jacobsson, 2006), fuzzy curves (Lin and Cunningham, 1995), fuzzy

rules (Benitez, Castro, and Requena, 1997), and the Euclidian distance (Green et al.,

2009). Furthermore, multiple methods have been developed by utilising the connection

weights of a neural network (Gevrey, Dimopoulos, and Lek, 2003; Giam and Olden,

2015; Milne, 1995; Olden, Joy, and Death, 2004), by applying sensitivity-analysis ap-

proaches (Gevrey, Dimopoulos, and Lek, 2003; Giam and Olden, 2015; Lek et al., 1996;

Papadokonstantakis, Lygeros, and Jacobsson, 2006), or by employing the back propaga-

tion algorithm (Baehrens et al., 2010; Kasneci and Gottron, 2016; Simonyan, Vedaldi,

and Zisserman, 2014; Smilkov et al., 2017). Even though a plethora of possible ways

exist to analyse a neural network’s decisions, this field of research is still in its infancy,

and there is not yet agreement on the method to explain a neural network.

1.2 Research Focus

More and more, autonomous systems are being applied in various fields and are sup-

porting people’s daily work. Businesses, companies, and agencies are interested in the

possibilities DANNs could provide. For example, the Defense Advanced Research Pro-

jects Agency (DARPA) has already expressed its interest in finding ‘technology to make

this new generation of AI systems explainable’ (Defence Advanced Research Projects

Agency, 2016, p. 6). However, applying systems such as DANNs without the ability to

understand their decisions can be a delicate issue. The need to understand and to ex-

plain just why a given neural network selected a specific decision might not appear that

urgent or necessary if a neural network recommends, for example, which product to buy

or which movie to watch, but it is a different matter to trust DANNs to make medical

decisions on their own and to drive cars autonomously. Thus, a way to explain neural

network’s decisions is desirable.
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Trust can only be gained if methods and understandable interpretations that explain

which parameters lead to a specific decision are found and agreed upon. As self-driving

cars will probably become popular sometime in the future, it will be necessary to ex-

plain the decisions made by such cars, for example, in the case of an accident (Firth-

Butterfield, 2017). In addition, it would also be valuable to find metrics rating the

explanation methods by their statistical reliability. Only if a reliable explanation is

accessible, will people be able to trust AIs and to still feel in control. This will allow

deep learning to extend its applications in heavily regulated fields such as finances and

medicine.

Thus, more research on the explanation of AI’s decisions is necessary if the impact

of AI systems should continue and extend into these more regulated fields. Therefore,

this thesis studies ways to explain and understand DANNs. The implemented research

concentrates on static DANNs as the prediction process for a given set of input variables

is deterministic in a static DANN. This is helpful since it reduces sources of variance

while comparing two methods. Furthermore, this research focuses on the investigation

of the input variables’ influence on the prediction of a DANN seeing that the influence

of a variable is an accepted way to explain other models such as logistic regression,

and such an influence shows how important the variable is for the output (Kasneci and

Gottron, 2016).

1.3 Overall Research Aim and Indiviual Research Objectives

The ‘black-box nature’ of DANNs is an issue which needs to be resolved. Therefore, the

overall aim of this research is to explain the influence of input variables on the decision

of a DANNk. The following subsidiary objectives have been identified of importance to

achieve this overall aim:

1. To define the term explanation with respect to DANNs.

2. To identify existing explanation methods.

3. To develop a new explanation method for DANNs.

4. To compare the proposed method for existing explanation methods.
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5. To assess the presented methods.

Objective 1 is necessary due to the lack of a commonly accepted definition for the

term ‘explanation’ with resepect to DANNs. Furthermore, the definition is then used to

rate the methods that are identified for Objective 2 regarding their compliance to the

given definition. The resulting ‘definition compliance score (DCS)’ is then used to select

methods for the comparison of Objective 4.

Objective 1 and 2 are accomplished in the form of a literature review in Chapter 2.

Objective 3 (To develop a new explanation method for DANNs) is the main part of this

research and is accomplished by combining the methods identified in order to achieve

Objective 2. For Objective 4, experiments are executed to compare existing methods

against the method that is developed in this thesis. The result of the comparison is

evaluated in Objective 5, and advantages and disadvantages of the proposed method

are examined. Details of the research strategy and the experimental setup data are

included in Chapter 3.

This thesis adds value to current research in three ways. Firstly, the literature review

provides a definition for the term ‘explanation’ and differentiates the terms ‘interpret-

ation’ and ‘understanding’ with respect to DANNs. Furthermore, the literature review

gives an up-to-date summary and critical review of several hitherto known methods

for explaining neural networks. In doing so, it complements previous examinations,

provides a thorough basis for every interested researcher not yet familiar with this

topic, and aids communication and discussion. Thirdly, the thesis proposes and eval-

uates a new method to explain the decisions made by a DANN.

1.4 Short Chapter Outline

Chapter 2, entitled ‘Literature Review’, defines the terms ‘explanation’, ‘interpretation’,

and ‘understanding’ with respect to DANNs. In addition, the literature review gives an

overview of several existing methods used to assess the influence of an input variable

on a network’s output. Altogether, this analysis provides the background for the further

research of this dissertation by highlighting the current development of explanation

methods.
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Chapter 3, ‘Research Methods’, explains the applied research strategy, the general

experimental setup, and the reasons why this strategy and this setup were adopted and

how they are assessed.

Afterwards, Chapter 4, ‘Description of Methods to Explain the Influence of Input Vari-

ables on the Decision of a Deep Artificial Neural Network (DANN)’, describes the newly

developed method and the existing methods that were selected for the comparison.

In Chapter 5, ‘An Experimental Evaluation of the GSA, LICON, and PLAY Explanation

Methods’, the setup of every experiment is detailed. Furthermore, the results of the ex-

periments are presented, and the results of the newly developed method are compared

to the other existing methods.

Chapter 6, ‘Conclusions’, contains an assessment of the new method and its potential

issues. Moreover, possible starting points for further research are identified.
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2 Literature Review

The study of this review of literature focuses on Objective 1 since it is important to spe-

cify a definition for the term ‘explanation’ in the context of DANNs so as to assess and

to compare explanation methods. Furthermore, this literature review addresses Object-

ive 2. In order to do so, this literature review explores current explanation approaches

which have been described within academic research, categorises these approaches and

highlights challenges and possibilities in them. Both Objective 1 and 2 are relevant to

Objective 3.

Overall, studying these areas of literature is meant to provide a meaningful basis for

discussion and analysis of the main issue of this thesis – the explanation of DANNs. This

section should also provide a thorough basis, moreover, for the subsequent research and

should exhibit a comprehensive understanding of the key issues.

2.1 Definition of Explainability

Many of the available research papers agree on the assumption that finding a way to

explain DANNs is a crucial task. However, as much as they have agreed on the endeavour

of illuminating the ‘black box’ of DANNs, they have differed in their conception of just

how the ‘black-box’ should be illuminated. This missing consensus is one reason for the

various available explanation methods. Achieving an overall understanding and finding

a comprehensive explanation for neural networks’ decision processes have not always

been the key target of scholarship. Previously, the main focus was on the reduction of the

complexity of networks through pruning the networks or determining relevant inputs

(Engelbrecht, Cloete, and Zurada, 1995; John, Kohavi, and Pfleger, 1994; Reed, 1993;

Sung, 1998; Zurada, Malinowski, and Cloete, 1994) since a neural network performs

reasonably better with less noisy data (Milne, 1995).

Therefore, John, Kohavi, and Pfleger (1994) have discussed the term ‘relevance’. They

have pointed out that the hitherto existing four definitions for the term ‘relevance’ are

inaccurate, and they have proposed new definitions for ‘relevance’, ‘weak relevance’,

and ‘irrelevance’. This classification seems reasonable for the pruning task because it

allows one to prune irrelevant features. However, it is insufficient when it is used to
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explain a neural network because this classification provides no information on the

difference between features classified into the same relevance group. Still, this classific-

ation could be applied as a part in the definition of ‘explainability’, if ‘explainability’ is

defined based on input relevance.

The earlier scholarly focus on pruning networks has been further nurtured by the

common belief that less complex networks are easier to understand (Montavon, Samek,

and Müller, 2018). This means a precise formulation of ‘explainability’ did not seem

to be necessary as pruned networks would become small enough to be intuitively un-

derstandable. This led to multiple proposed methods such as the ones by Klimasauskas

(1991), Mak and Blanning (1998), and Tchaban, Taylor, and Griffin (1998), which want

to ‘interpret’, ‘understand’, or ‘explain’ DANNs without further specifying these terms.

Olden and Jackson (2002) were more specific in their task of ‘illuminating the “black

box”’ (ibid., p. 1) as they tried to understand precisely the contributions of variables to

the decision in DANNs, which for them meant being able to give an ‘interpretation’ of

the statistical model. They claimed that neural networks are indeed not black boxes any-

more and that the existing methods provide enough insights into the inner workings of

a DANN to successfully interpret their decision process. The amount of research papers

published afterwards, for example Bach et al. (2015), Cao and Qiao (2008), Montano

and Palmer (2003), and Montavon et al. (2017), which have proposed new methods and

ways to interpret neural network decisions, show that this statement can be questioned.

Thus, the black box nature is still not satisfyingly solved even though a substantial

number of methods exist which find reasonable correlations between input and output.

Most of these methods provide only additional metrics whose interpretation is highly

dependent on the modeled problem. In other words, existing methods cannot be applied

to new problems without understanding the motives for interpretation as they may pro-

duce plausible but misleading explanations. Additionally, the motives of interpretation,

and the results of compared methods are diverse and occasionally disagree with each

other (Lipton, 2016).

The plethora of terms used in the context of ‘explainability’ of a DANN and the differ-

ence in achieved results dependent on the motives make it necessary to define the terms

‘interpretation’, ‘understanding’ and ‘explanation’, and, therefore, the term ‘explainab-

16



ility’ in the context of the analysed method (ibid.). Lipton (ibid.) has approached this

problem by evaluating the definition of the term ‘interpretability’. Considering that no

one has yet defined this term in relation to DANNs, he stated that either ‘interpretability

is universally agreed upon, [...] or the term interpretability is ill-defined’ (ibid., p. 1).

In order to resolve the latter, he has given more specific definitions for the term ‘inter-

pretability’ that are based on the desiderata of interpretability research (ibid., p. 2). The

five main desiderata he has discovered are: ‘trust’, ‘causality’, ‘transferability’, ‘informat-

iveness’, and ‘fair and ethical decision-making’. This means interpretability should serve

to either help build trust in a model, to draw causal relations between natural phenom-

ena, to transfer underlying concepts to other domains, to provide additional information

besides the output, or to assess whether made decisions conform to ethical standards

(ibid., pp. 3–4).

However, these five desiderata are partially dependent on each other. In fact, only in-

formativeness can be seen as independent. For example, Lipton has stated that a model

may be trustworthy if it mimics a human, that is to say if it only ‘tends to make mis-

takes in regions of the input space where humans also make mistakes’ (ibid., p. 3). It is

reasonable that models which tend to make mistakes in areas in which a human makes

no mistakes are regarded as not trustworthy. However, for a model to be regarded as

trustworthy, it is not enough that it makes no mistakes. To trust a decision made by

a model, it is necessary to understand the reasoning behind that decision. Therefore,

mimicking human decisions has to be combined with informative content to create real

trust in cases of complex decisions. Besides trust, the desire to find causality is an un-

derstandable aim for many researchers, even though Lipton (ibid., p. 3) has cautioned

that these learned associations do not have to reflect causal relationships. However, if

one can rely on a model’s trustworthiness, it might be reasonable to generate testable

hypotheses out of the model’s decisions. Thus, the basic purpose of interpretability has

to be information extraction. The extracted information could then be put together to

achieve higher aims such as trust, ethical decision-making, transferability, and causality.

Lipton (ibid., pp. 4–6), furthermore, has described the properties of interpretable

models and their different manifestations. He has broadly divided them into the two

main categories of ‘transparency’ and ‘post-hoc interpretability’: with transparency con-
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cerning everything inside the model itself (that is, understanding how the mechanism

of the model works) and with post-hoc interpretability concerning all other information

which is outside of the inner mechanism (ibid., p. 4). Furthermore, he has subdivided

the main categories into three subcategories for transparency – ‘simulatability’, ‘decom-

posability’, and ‘algorithmic transparency’ – and four subcategories for the post-hoc

interpretability – ‘text explanations’, ‘visualisations’, ‘local explanations’, and ‘explana-

tion by example’ (ibid., pp. 4–6).

Classifying interpretability as either transparency or post-hoc interpretability is a

somewhat rough but reasonable first segmentation. However, while the subdivisions

of transparency follow a logical path from a total view (simulatability) to a detailed

view (algorithmic transparency) (ibid., p. 4), the subcategories of post-hoc interpretab-

ility are a conglomerate of additional information outside the inner mechanism of the

model. Due to this fact, such an aligned path cannot be applied to the post-hoc inter-

pretability subcategories, and another classification may be also appropriate – especially

as the category ‘local explanations’ concerns the focus of an explanation, while the other

categories concern the representation of the explanation. Nevertheless, this classifica-

tion model allows researchers to focus their research and to specify a definition of ‘in-

terpretability’ to validate the developed methods. Furthermore, the research by Lipton

(ibid.) has urged the research community to give precise definitions for ‘explanation’,

‘interpretation’, and ‘understanding’.

A good example for addressing this issue is a paper by Montavon, Samek, and

Müller (2018), in which they evaluated methods for ‘interpreting and understanding

deep neural networks’ (ibid.). They were aware of the lack of a coherent definition

for the terms ‘interpretation’, ‘understanding’, and ‘explanation’, and they relied on the

aforementioned paper by Lipton (2016) so as to define their usage of the term ‘interpret-

ation’. Furthermore, they specified ‘understanding’ in their context and gave a definition

for the term ‘explanation’. The paper by Montavon, Samek, and Müller (2018) has thus

successfully demonstrated how the issue of problem formulation can be tackled.

This thesis follows the example by Montavon, Samek, and Müller (ibid.) and so for-

mulates the problem and the intended goal. Therefore, based on the definitions by

Lipton (2016) and by Montavon, Samek, and Müller (2018), the empirical study per-
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formed in this thesis focuses on methods regarding post-hoc interpretability and uses the

following definitions for the terms ‘understanding’, ‘interpretation’, and ‘explanation’:

Explanation In this thesis, an ‘explanation’ is defined as a collection of concepts which

can be interpreted by humans to understand the explained subject. This means the

thesis defines an explanation of a DANN as one or multiple methods which answer

the following three questions:

1. How is a specific output calculated for a given example?

2. What is the influence of an input on an output for a given example?

3. Why is a specific output the result of a given example?

The first question has already been answered by the calculation formula of a neural

net. However, the calculation formula alone is not suitable as an easily understand-

able explanation. Therefore, the second and third question are more important to

answer. The second question tries to aggregate the calculation formula into a single

influence value for every input, while the third question wants to find a reason for

the respective influence values.

Interpretation An interpretation is defined as the transfer of abstract concepts, that is

to say, the results of explanation methods, into a representation that a human

can make sense of. The representation should either be generally accepted as un-

derstandable (for example, through established charts, height-/heatmaps, and so

forth) or be composed of such representations to allow a knowledge transfer.

Understanding The goal of this thesis is to characterise a model’s black-box behaviour,

and, therefore, the term ‘understanding’ refers to a ‘functional understanding’ of

the model, in contrast to an algorithmic or low-level understanding. For this reason

(if a DANN is understood), it should be possible to comprehend the behavior of

the DANN and to approximate the model’s output for unknown data based on

the interpretation of the results of the explanation methods. Furthermore, there

should be an intuitive comprehension of the output value change when a given

input is manipulated.
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2.2 Existing Explanation Methods

For humans to learn from each other, it is helpful that we are able to describe our de-

cisions and to give reasons for them. Therefore, to further learn from AI and to establish

the technology in critical fields such as medicine or law, it is necessary to equip AI with

the ability to explain itself. A reasonable way of explaining something is visualising its

properties since visualisations are, in general, easier to understand for humans than,

for example, numerical data (Rohrer, 2000). Visualising a neural network is commonly

done by drawing a directed graph in which every node symbolises a node of the neural

net and in which the connections between the graph nodes symbolise the connections

between the neural nodes. Besides this architecture, the connection weights are the

influential attributes of a neural net. Olden and Jackson (2002) proposed the ‘neural

interpretation diagram’, which displays different thicknesses for the connection lines de-

pending on the weights. This means greater connection-weight values result in a thicker

connection line between the nodes. An adaption of this method has used different col-

ors to distinguish positive and negative influences of an input on the predicted output

(Tzeng and Ma, 2005).

The neural interpretation diagram and its adaption by Tzeng and Ma are applicable

methods for small networks. However, for networks with many nodes, connections,

and layers this method is not as suitable since the visualisation becomes too complex

to understand. Nevertheless, the underlying premise of developing methods to explain

decisions made by classifiers has been understood by other researchers as well. Thus,

additional methods were developed to solve this problem by aggregating the data and

by calculating a score value. Hereafter, these methods are introduced and categorised

into ‘connection weight’, ‘sensitivity analysis’ and ‘back-propagation-based’ methods.

Thereby, it is possible to give an overview of the core principal of each category, to

describe their differences, to highlight benefits, and to point out limitations regarding

their ability to explain DANNs.
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2.2.1 Connection Weights

One group of methods is characterised by working only with the connection weights

of a neural network. Early methods in this category were mostly adaptions of Gar-

son’s algorithm, later called ‘product of standardised weights’ (Garson, 1991; Gevrey,

Dimopoulos, and Lek, 2003; Giam and Olden, 2015; Goh, 1995).

Qhi =
|wih ·who|
∑

i∈I
|wih ·who|

(1)

Ri =

∑

h∈H
Qhi

∑

i∈I

∑

h∈H
Qhi

(2)

Figure 1: ‘Product of standardised weights’ Ri for the i-th input variable

The method calculates the relative influence of an input on the output, based on the

standardised product of connection weights (the weight of the connection between the

input unit and hidden unit and the weight of the connection between the hidden unit

and output unit). Milne (1995) proposed a modification of Equation (1) which does not

calculate the absolute value of the product of the connection weights. In doing so, the

calculated connection weights can indicate a positive or a negative influence. Another

adaption of Garson’s algorithm was described by Gevrey, Dimopoulos, and Lek (2003),

who removed the weight of the connection between the hidden and output neuron from

the calculation of Qhi. All three methods are simple in their approach, and Gevrey, Dimo-

poulos, and Lek (ibid.) were able to further simplify the calculation without significant

losses to its meaningfulness compared to Garson’s original algorithm. Nevertheless, as

these methods were developed on three-layer networks and as they assume the same

architecture, they are all limited to such three-layer networks and are, therefore, not

applicable to DANNs. Moreover, apart from the approach by Milne, none of the pro-

posed methods is able to distinguish positive and negative relations between input and

output variables. However, a distinction between positive and negative relations is more
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informative than a ranking of input influence and is, therefore, desired to explain the

inner mechanism of neural networks.

Another method derived from Garson’s algorithm is the ‘product of connection

weights’ (Olden and Jackson, 2002).

Ri =
∑

h∈H

wih ·who (3)

Figure 2: The ‘product of connection-weights’ method by Olden and Jackson (ibid.)

Ibrahim (2013) has introduced a correction factor resulting in the ‘modified connec-

tion weights’, which improved the results even though the improvement is not signific-

ant. Better results were produced with Ibrahim’s ‘most squares’ method.

Ri =

∑

i∈I
(ws

ih −w f
ih)

2

∑

i∈I

∑

h∈H
(ws

ih −w f
ih)

2
(4)

Figure 3: The ‘most squares method’ by Ibrahim (ibid.)

In Equation (4), ws
ih represents the initial connection weight (that is, before training)

between the input and hidden neuron, and w f
ih is the final weight (that is, after training)

of the same connection. While the ‘most squares’ method is only able to generate a

ranking of the inputs’ influence on the output value, the ‘product of connection weights’

method and the ‘modified connection weights’ method are able to indicate a positive

or negative relation between inputs and outputs. However, the ‘product of connection

weights’, the ‘modified connection weights’, and the ‘most squares’ method also assume

a three-layer network architecture and, therefore, are not applicable to DANNs.

Besides the similarities and obvious differences between Garson’s algorithm and the

‘product of connection weights’ method, the academic world is at odds regarding which

of the two methods is the better one. The ‘product of connection weights’ method,

as well as Garson’s algorithm, was used and compared in multiple publications (among

others, Gevrey, Dimopoulos, and Lek, 2003; Ibrahim, 2013; Kemp, Zaradic, and Hansen,
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2007; Montano and Palmer, 2003; Ona and Garrido, 2014; Paliwal and Kumar, 2011;

Pentos, 2016). However, Fischer (2015) has come to the conclusion that a substantial

number of these realised studies regarding input contribution methods had flaws. For

example, the studies were restricted to linear- or semi-linear-related data sets, they used

the linear regression as a reference for real data (which does not have to have a linear

relation), or they differed in their assessment of the results (ibid.). Therefore, Fisher

has re-evaluated the ‘product of standardised weights’ and the ‘product of connection

weights’ method and has concluded that the ‘product of standardised weights’ method is

superior. Giam and Olden (2015) have doubted Fischer’s study and have not been able

to confirm its results. As no theoretical basis exists for either the ‘product of standardised

weights’ or the ‘product of connection weights’ method and as the measured effect is

highly dependent on the bias weight, these scholars have deduced that none of the

methods are ‘entirely faithful approaches to determine variable importance in ANNs’

(ibid.).

One method including not only the connection weights but also the bias weights is the

‘general influence measure (GIM)’ described by Papadokonstantakis, Lygeros, and Jac-

obsson (2006). It is able to give a relation between the input-specific GIM and the GIM

for the bias weights. However, just like the algorithms inspired by Garson’s research, it is

only applicable to three-layer networks and is not able to indicate a positive or negative

relation between input and output values. The same applies to the ‘interquartile range

(IQR)’ method by Paliwal and Kumar (2011). Nevertheless, the IQR method has one

notable approach: it calculates the measure using multiple three-layer networks. This

increases the computational cost but delivers a more stable result.

Connection weight methods used to be a promising approach for calculating the in-

fluence of inputs on the predicted output in times when three-layer networks were

most commonly used. One goal of these methods was to prune inputs, which can be

done by all of the aforementioned methods. However, except for the method of Milne

(1995), connection weight methods are not helpful in supporting the understanding of

a neural network’s decision seeing that they lack the ability to explain the positive or

negative relation between an input and an output. Therefore, methods based solely on
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the connection weights have their justifications but cannot be the only approaches for

explaining a neural network.

2.2.2 Sensitivity Analysis

Besides the methods using connection weights, another popular way of gaining insight

into a neural network is ‘sensitivity analysis’. Sensitivity analysis assigns the uncertainty

in the output to the uncertainty from different inputs (Saltelli et al., 2008). In other

words, sensitivity analysis examines the change of an output in relation to a change of

the input. Since this can be measured in multiple ways, multiple directions in the field

of sensitivity analysis exist.

One-at-a-Time Methods

One way to measure change in the output is to manipulate an input, to fix all other

inputs at a given value, and to compare the generated output to the original one. There-

fore, methods using this approach are named ‘one-at-a-time (OAT)’ sensitivity analyses.

Within this field, three general procedures have emerged: building a profile, perturbing

the input values, and completely removing input nodes. The advantage of OAT methods

is that they can be applied to every model, regardless of its architecture and size; thus,

OAT methods are, in general, applicable to DANNs.

‘Profile methods’ are characterised by dividing the complete input interval of one in-

put into n sub-intervals and by calculating the output for every sub-interval boundary

while the other inputs are fixed at certain values. This means that the profile meth-

ods approximate the function described by the neural network for the examined input.

Therefore, in theory, if the number of sub-intervals approaches infinity, the approxima-

tion error converges to zero. However, a high number of sub-intervals result in a high

complexity, and, therefore, it is a trade-off between accuracy and computational cost.

The approach by Lek et al. (1996) has set the examined input consecutively to twelve

values that are evenly distributed over the complete input interval, while the other in-

put variables are sequentially fixed to the minimum, the first quartile, the median, the

third quartile, and the maximum value. For each of the twelve input variations, the

median of the resulting five outputs is calculated and then plotted; this gives a visual
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indication of the approximated contribution function of the input. Using more than 12

variations for each input value would result in a more exact contribution plot but also

in a higher computational expense. Instead of plotting the measurement results, Kew-

ley, Embrechts, and Breneman (2000) have described three methods to aggregate the

calculated results to a single measure of the approximated function in their ‘one dimen-

sional sensitivity analysis’: ‘range’, ‘gradient’ and ‘variance’ sensitivity. They repeatedly

calculated the measure over multiple neural networks, which stabilised the results in

exchange for increased calculation costs. While the plotted measurements by Lek et al.

(1996) allowed them to examine a positive or negative contribution of an input to the

predicted output value, this property was lost in the measures by Kewley, Embrechts,

and Breneman (2000). Nevertheless, the one-dimensional sensitivity analysis has some

justification because it allows one to specify inputs with a high impact on the predicted

output, even though one could argue that this could also have been done with the

original profile method by Lek et al. (1996).

The ‘perturbation methods’, such as all OAT methods, change the values of one input

node, while they fix the other inputs to their original value. However, instead of dividing

the complete input interval into multiple sub-intervals, the perturbation methods define

various ways to manipulate the values of the examined input node. Their examination

is, therefore, limited to a rather small area around the original value of the examined

input node. However, as the aim of a perturbation method, in general, is to measure the

impact of small changes on the output (because a large output change for a small input

manipulation indicates an extremely sensitive variable), an especially limited applica-

tion interval is not necessarily a disadvantage if the aim is to get insights into a most

specific input-output combination.

Gevrey, Dimopoulos, and Lek (2003) have described the ‘perturb’ method as a change

in the input value from 10% up to 50%, while the other inputs are fixed at their original

value. The produced outputs are noted and compared against the original output (for

example, by calculating the difference in the mean square error (MSE)). These scholars

calculated the difference between the perturbed output and the original output. How-

ever, as they were only interested in ranking the input sensitivity, they took the absolute
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value of the difference. Therefore, it would be possible to examine the direction of the

influence by not taking the absolute value.

Adaptions of the ‘perturbation’ approach are the ‘holdback input randomisation’ by

Kemp, Zaradic, and Hansen (2007); the ‘index of relative importance (IRI)’ by Reddy

et al. (2015); the ‘R2-based sensitivity analysis’ method by Giam and Olden (2015); and

the ‘mean-based sensitivity analysis’ by Pentos (2016). For the ‘holdback input random-

isation’, Kemp, Zaradic, and Hansen (2007) perturbed an input by setting the value of

a single input node to an evenly distributed random variable and by calculating the

output change on groups of perturbed data records. Reddy et al. (2015) used a +2.5%

and a −2.5% change in the input value and calculated the IRI by dividing the difference

of the 2.5% changes through the maximum differences of output pairs. The ‘R2-based

sensitivity analysis’ by Giam and Olden (2015) has calculated the difference between

the R2 measure and the average R2 measure of m randomly permuted data sets. Pentos

(2016) fixed the unexamined inputs to their mean value and calculated the sensitivity

of an input by dividing the network error of the perturbed input through the network

error of the original input. Despite these multiple perturbation approaches, only the IRI

method and an adaption of the ‘perturb’ method have been able to indicate a positive

or negative relation. Moreover, the limitation to an especially local interval around the

input value does not necessarily add value if the goal is to explain a DANN. For the local

interval, however, the advantage lies in the reduced calculation costs, compared to the

profile methods, since a small interval allows a higher density of measurements, given

a fixed measurement count.

As mentioned earlier, apart from changing an input value, another way to understand

one-at-a-time is to remove the input value completely. Methods using this strategy are

the ‘classical stepwise’ or ‘change in MSE’ method by Sung (1998), the ‘improved step-

wise A’ and ‘B’ methods by Gevrey, Dimopoulos, and Lek (2003) and the ‘sequential

zeroing of variables’ method by Papadokonstantakis, Lygeros, and Jacobsson (2006).

All these methods share a basic algorithm: they compare a measure, calculated on the

original input, against the same measure calculated on an input with one input value

removed. The classical stepwise method deletes an input node and re-trains the network

to calculate the change in MSE. As this is computationally expensive, the other methods
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try to reduce the complexity by zeroing (improved stepwise A and sequential zeroing of

variables) the involved connection weight or setting it to its average (improved stepwise

B). However, all these methods are not able to indicate a positive or a negative relation

between input and output. Furthermore, the classical stepwise method re-trains the net-

work; therefore, the applicability of the result to the original network architecture is not

reasonable. Methods removing an input node are thus more useful to prune networks

and to find potentially smaller architectures than to explain a given network.

Other mentionable methods using the input data to extract knowledge about a net-

work’s inner structure are those proposed by Cortez and Embrechts (2011). They have

extended the one-dimensional sensitivity analysis by Kewley, Embrechts, and Breneman

(2000), which has resulted in four different variations: the ‘Global Sensitivity Analysis

(GSA)’, the ‘data-based sensitivity analysis’, the ‘Monte-Carlo sensitivity analysis’, and

the ‘cluster-based sensitivity analysis’ (Cortez and Embrechts, 2011; Cortez and Em-

brechts, 2013). It is reasonable to call the GSA method a ‘many-at-a-time’ method

because it is able to calculate the influence of an arbitrary number of input node

combinations on the predicted output. The other three methods differ to the aforemen-

tioned OAT methods because they use whole sets of data instead of single input vectors

to calculate the results. For the data-based sensitivity analysis, the data set is manually

picked; for the Monte-Carlo sensitivity analysis, the data set is generated over a uniform

distribution. Additionally, for the cluster-based sensitivity analysis, the input interval is

divided into evenly distributed chunks, and all input examples are clustered accord-

ing to the created chunks. Cortez and Embrechts (2011) claimed to have opened the

black-box with the GSA method and have proposed visualisation techniques. However,

the question as to whether the described techniques really ‘explain’ a neural network

remains unchanged since these two authors give no definition for the term ‘explain’ nor

do they convey what exactly is meant by ‘opening the black-box’ (ibid., p. 1) .

Montano and Palmer (2003) have described another method, the ‘numeric sensitivity

analysis (NSA) index’, which only works with the data used to train the neural network.

It is possible to calculate the standard deviation for the NSA index which can then be

interpreted as the behaviour of the function. Thus, a greater standard deviation value

indicates a more chaotic or more random function. However, the connection to the
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model has been lost, and, therefore, it is not possible to gain insights into the model.

As the NSA index examines the underlying function represented by the data, it could

be argued that it is, nevertheless, possible to explain a neural network with the NSA

index if the error of the network is reasonably low. This can be argued since a low error

indicates a good function approximation and, therefore, a negligible difference between

the approximated function of the network and the function represented by the data.

In summary, it can be noted that OAT methods, at least most of them, have overcome

the absolute value problem and are able to indicate a positive or negative relationship

between input and output values, which is an important ability for explaining a neural

network. Furthermore, OAT methods are not derived from the structure of the model

and only use the model as a black box; this makes these methods applicable to nearly

every model, especially DANNs. They, therefore, could be seen as superior to the con-

nection weight methods, despite the fact that their algorithms are not based on the

structure of the model. As long as sensitivity methods incorporate the model in some

way, the examined results can be related to the model.

Gradient-Based Methods

Another way to measure sensitivity is the usage of the gradients or the partial deriv-

atives. The principle behind gradient-based methods is the usage of the gradient as a

contribution measure, even though it is only applicable in a local interval around the

examined input value. As these methods work with the gradient, it could be expected

that they are always able to indicate a positive or negative relationship between input

and output value. However, this is not the case since the sign of the gradient is lost

in the more complex calculations. Out of the ‘partial derivatives (PaD)’ method, the

‘partial derivatives 2 (PaD2)’ method, the ‘input sensitivity’ method and the ‘first and

second order sensitivity analysis’ mentioned by Gevrey, Dimopoulos, and Lek (2003),

Green et al. (2009), and Yeh and Cheng (2010) respectively, only the PaD method, and

the ‘first- and second-order sensitivity analysis’ are able to indicate a positive or negat-

ive relation. However, the other methods have notable approaches. The PaD2 method is

able to calculate the partial derivative for a combination of two input nodes, while the

input sensitivity method works with neural network ensembles instead of with a single
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neural network. Furthermore, the first- and second-order sensitivity analysis examines

the linear and the quadratic effect of a three-layer network, which has not previously

been done.

In a nutshell, gradient-based sensitivity analysis methods suffer from the same prob-

lems as connection-weight methods: most of them are only applicable to three-layer

networks and lack the ability to indicate a positive or negative relation. Therefore,

they are not useful for explaining DANNs, in general. They do not improve on the

connection-weight methods in these aspects. Sung (1998) has tried to overcome the

one-hidden layer limitation through the ‘two-layer sensitivity analysis’. This method ap-

plies to artificial neural networks containing one input layer, two hidden layers and one

output layer. However, only the back-propagation methods were able to extend gradi-

ents to an arbitrary number of layers and to make the gradient-based approach useable

for DANNs.

2.2.3 Back-Propagation-Based Methods

Back-propagation-based methods are characterised by the back-propagation algorithm,

which is used to aggregate measures calculated for a single node to a net wide meas-

urement. As the back-propagation principle is applied to all back-propagation methods,

these methods only differ in the applied measure. These measures have been categorised

by Kindermans et al. (2017a) into three categories: function-, signal- and attribution-

based methods.

Function

Function- or gradient-based back-propagation methods calculate a local measure

based on the activation function of a node, which is then aggregated. This results in

a global measurement of an input’s influence based on the local influence in every

node. Even though this kind of methods are applicable to DANNs, they share the disad-

vantage of the previously mentioned gradient-based methods: they are only reliable in

a local interval around the examined input values. Therefore, they provide reasonable

measurements to explain specific prediction examples, but it is hard to generalise the

calculated influences to a general explanation of the assessed neural network.
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With regard to a local measure, Baehrens et al. (2010) have developed the local-

explanation vectors, which are defined as the probability gradients of a predicted class,

while Simonyan, Vedaldi, and Zisserman (2014) have simply used the activation func-

tion’s partial derivative for their so-called ‘saliency map’. Kasneci and Gottron (2016)

have gone further and approximated the activation function through a linear function

in their ‘Linear Weighting Scheme for the Contribution of Input Variables (LICON)’

method. Sundararajan, Taly, and Yan (2017) have proposed an additional measure:

‘integrated gradients’, which are the integral of the partial derivative of the activation

function. Despite this variety of local measures, Smilkov et al. (2017) noticed that a

lot of existing gradient-based methods were noisy and lacked visual clarity. Thus, they

introduced the ‘SmoothGrad’ method to sharpen gradient-based sensitivity maps. The

idea behind this method was to calculate the gradient-based sensitivity for multiple

Gaussian-distributed input values around the examined input value and then to use

their average as the input sensitivity value. Even though the ‘SmoothGrad’ sensitivity

resulted in a signed value, Smilkov et al. (ibid.) chose to take the absolute value as

the sensitivity measure because this value produces a clearer pictures for the ‘ImageNet’

data set. In doing so, their implementation lost the ability to indicate positive or negative

relations, while, in general, the ‘SmoothGrad’ algorithm is capable of such a distinction.

As mentioned earlier, function- or gradient-based back-propagation methods are an

advancement compared to the early gradient-based methods for three-layer networks.

Their possible application for DANNs makes them an interesting option, but only if

specific data examples are to be examined since they are only reliable in a local interval

around the examined point. However, in combination with other methods such as profile

methods, it might be possible to solve the local reliability issue and even to expand the

usage of the gradient-based back-propagation methods.

Signal

Another form of ‘back-propagation sensitivity analysis’, inspired by the ‘saliency map’,

is based on the outgoing signal. Signal-based methods were originally developed for

convolutional neural networks (CNNs) but their application to other types of neural

networks is possible, even though the usefulness of the extracted information on input
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data other than images has to be examined. The main principal of signal-base methods

is to send the outcome of a prediction (that is, the signal) backwards through the neural

network. For CNNs, this can be understood as reconstructing an approximation of the

image (the inputs) from the predicted class (the output).

Zeiler and Fergus (2014) have proposed the ‘DeConvNet’ method, Springenberg et al.

(2015) havedescribed the ‘guided BackProp’ method, and Kindermans et al. (2017a)

have developed the ‘PatternNet’ method. In order to handle the max-pooling layer in

a CNN, the ‘DeConvNet’ method records the switches during a forward pass before

running the backward pass, while the ‘guided BackProp’ method assumes that no max-

pooling layer is used. However, Kindermans et al. (ibid.) have shown that the direction

of the filter used to remove the distractor does not coincide with the signal direction.

They criticised the popular ‘DeConvNet’ and the ‘Guided BackProp’ methods because

they rely on this false assumption. To solve the issue, Kindermans et al. (ibid.) have

described new estimators for the signal which they used in the ‘PatternNet’ method.

Even though signal-based back-propagation methods originated in working with

CNNs, the basic principal (that is, to examine which input pattern causes a given activa-

tion) could play a useful part in an explanation algorithm. Nevertheless, the principal of

signal-based methods would only explain one part of the decision process; it would not

explain the contribution of an individual component of the signal to the output (ibid.).

Attribution

Attribution methods have investigated the contribution of an input to the output.

Bach et al. (2015) called this the ‘relevance’ of an input and proposed the first method

to be categorised as an attribution method: the ‘layer-wise relevance propagation (LRP)’

method. The LRP method assumes that the prediction function f (x) can be decomposed

into several sub-functions or layers of computation. Thus, the general idea is to calculate

the relevance score for the different computational layers and to define the input’s rel-

evance as a composition of the individual sub-relevance scores. Multilayer networks can

be decomposed by using the back-propagation algorithm or by using the Taylor-based

decomposition described by Bach et al. (ibid.).
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Montavon et al. (2017) have extended the work on Taylor-based decompositions and

have developed the ‘deep Taylor decomposition (DTD)’ method, which is a more soph-

isticated version of the Taylor-type decompositions used in the LRP method. They have

also claimed that their method has a more theoretical background than the LRP method.

Nevertheless, compared to the LRP method, the implementation by Montavon et al.

(ibid.) lacks the ability to indicate positive or negative relations between input and

output data. Additionally, it can be difficult to find a root point to develop the Taylor-

based decomposition, even though this issue applies to both methods. A solution to

the root-point problem has been given by the ‘PatternAttribution’ method proposed by

Kindermans et al. (2017a), which improves the LRP method and can be seen as a root-

point estimator for the DTD method, although their method as well lacks the ability to

indicate positive or negative relations.

With the attribution, signal, and function methods, the back-propagation sensitivity

analysis provides a toolbox for assessing neural networks. Depending on the goal of the

investigation, each category has its justification. For a complete explanation of a DANN,

it is, therefore, reasonable to expect an examination that uses either one method of

each category or that combines them into a single method. Nevertheless, by specialising

in DANNs and working with the back-propagation approach, researchers were able to

successfully apply different local methods to the complete network. It was possible for

them to go beyond the limitations of a three-layer network. Therefore, back-propagation

sensitivity analysis is definitively an improvement on the aforementioned connection-

weight and gradient-based sensitivity methods for three-layer networks. Additionally,

the back-propagation methods combine the network’s properties, that is, its architecture

and weights, with the data. This makes back-propagation sensitivity analysis one of the

most promising approaches for explaining DANNs.

2.3 Emerging Issues and the Need for Empirical Research

A substantial number of methods have been developed to gain insights into the classific-

ation decisions of neural networks. The problem could be considered to be solved, and

the agreed-upon methods could be used to understand neural networks; however, these

assumptions are not accurate. Even though one of the earliest studies began 27 years
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ago with Garson’s research on the interpretation of connection weights (Garson, 1991),

the problem has still not been satisfactorily solved. As the research community still has

not agreed on definitions for interpretability, explainability, and understandability, it is

difficult to find one true method which can open the neural-net black-box.

To find methods comparable to the method proposed in this thesis, a custom score

called the definition compliance score (DCS), is calculated. The DCS evaluates the com-

pliance of a method to the given definitions in Chapter 2.1. It is then calculated for

every method and for each of the three definitions (explanation, interpretation, and

understanding). The DCS ranges from 0 to 9, with 0 indicating no compliance with the

definition and 9 indicating full compliance.

For the definition of explanation, every method is examined through the following

questions:

Q1: How is a specific output calculated for a given example?

Q2: What is the influence of an input on an output for a given example?

Q3: Why is a specific output the result of a given example?

The DCS is then calculated by adding up the score points for each question. Score points

are assigned by using the following scheme:

3 Points: The question is completely answered by the method.

2 Points: The method gives an extended approach to answer the question.

1 Points: The method gives a basic approach to answer the question.

0 Points: The question is not answered by the method.

For the definition of interpretation, the following rating scheme is applied:

7–9 Points: The method provides an enhanced interpretation approach (for example,

by means of colour coding).

4–6 Points: The method gives a simple interpretation approach (for example, by means

of a line chart).

1–3 Points: The method only provides calculation results.
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The rating scheme for the definition of interpretation does not contain a 0 point rating

because even a simple numerical result has a low level of interpretability. Therefore,

every method provides some kind of interpretability. For the definition of understanding,

it is evaluated if the method enables someone to predict a model’s output for unknown

data and for manipulated data. Thus, the following rating scheme is applied:

7–9 Points: The method enables the prediction of an output value for unknown input

data and of the change in magnitude and direction for manipulated input data.

4–6 Points: The method enables the prediction of the change in magnitude and direc-

tion for manipulated input data.

1–3 Points: The method enables the prediction of the change in either magnitude or

direction for manipulated input data.

0 Points: The method does not enable any prediction ability.

The resulting scores for the definition of explanation are displayed in Table 1, and the

scores for the definitions of interpretation and understanding are displayed in Table 2.

Besides the different DCSs regarding definitions of explanation, interpretation, and

understanding, the methods often deviate from each other significantly in their results,

are unstable, or are even flawed (Kindermans et al., 2017b). However, it is important

not to simply make existing methods more stable. Samek, Wiegand, and Müller (2017)

have described why explainability is important in human interactions: on a social level,

an explanation for a person’s decision or intention helps to build trust; on an educational

level, it allows one to build up knowledge, for example, by understanding a teacher’s

reasoning (ibid.). Even though the social level of interactions between humans and AI

is neglectable, the explainability of AI is still important for educational contexts and

jurisdiction. Explainability can be used to verify, improve, or learn from the AI system

and to make sure the system is compliant to legalisation (ibid.). Therefore, it is neces-

sary to define the goals for AI explainability research well – that is, what and how it

should be explained as well as to find stable methods which fulfill these requirements.

To summarise, more research in this specific area is necessary in order to establish AI as

an accepted technology in our everyday life.
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Method Q1 Q2 Q3 DCS
Neural Interpretation Diagram 1 1 1 3
Adaption of Neural Interpretation Diagram 2 2 2 6
Product of Standardised Weights (and adaptions) 0 1 1 2
Product of Connection Weights (and modification) 0 2 2 4
Most Squares 0 1 0 1
General Influence Measure 0 2 2 4
Interquartile Range 0 1 0 1
Profile 2 3 2 7
One Dimensional 0 2 2 4
Perturbation methods 0 2 1 3
Input removing methods 0 2 1 3
GSA 2 3 3 8
Data-Based, Monte-Carlo and Cluster-Based 2 3 3 8
Partial Derivatives 0 2 2 4
Partial Derivatives 2 0 1 1 2
Input Sensitivity 0 1 1 2
First and Second Order 1 2 2 5
Two-Layer 0 1 1 2
Local Explanation Vectors 0 2 2 4
Saliency Map 0 3 1 4
LICON 1 3 2 5
Integrated gradients 0 3 1 4
SmoothGrad 0 3 1 4
DeConvNet 0 2 2 4
Guided BackProp 0 3 1 4
PatternNet 0 3 2 5
Layer-Wise Relevance Propagation 0 3 2 5
Deep Taylor Decomposition 0 3 2 5
PatternAttribution 0 3 2 5

Table 1: DCS of all methods for the defintion of explanation. Custom illustration based
on Bach et al. (2015), Baehrens et al. (2010), Cortez and Embrechts (2011),
Cortez and Embrechts (2013), Garson (1991), Gevrey, Dimopoulos, and Lek
(2003), Giam and Olden (2015), Green et al. (2009), Ibrahim (2013), Kasneci
and Gottron (2016), Kemp, Zaradic, and Hansen (2007), Kewley, Embrechts,
and Breneman (2000), Kindermans et al. (2017a), Lek et al. (1996), Milne
(1995), Montano and Palmer (2003), Montavon et al. (2017), Olden and Jackson
(2002), Olden, Joy, and Death (2004), Paliwal and Kumar (2011), Papadokon-
stantakis, Lygeros, and Jacobsson (2006), Pentos (2016), Reddy et al. (2015),
Simonyan, Vedaldi, and Zisserman (2014), Smilkov et al. (2017), Springenberg
et al. (2015), Sundararajan, Taly, and Yan (2017), Sung (1998), Tzeng and Ma
(2005), Yeh and Cheng (2010), and Zeiler and Fergus (2014).
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Method Interpretation Understanding
Neural Interpretation Diagram 8 1
Adaption of Neural Interpretation Diagram 9 2
Product of Standardised Weights (and adaptions) 1 3
Product of Connection Weights (and modification) 2 5
Most Squares 1 0
General Influence Measure 2 3
Interquartile Range 1 0
Profile 6 8
One Dimensional 3 3
Perturbation methods 3 5
Input removing methods 3 3
GSA 7 8
Data-, Monte-Carlo- and Cluster-Based 7 8
Partial Derivatives 2 5
Partial Derivatives 2 1 3
Input Sensitivity 1 3
First and Second Order 2 5
Two-Layer 1 3
Local Explanation Vectors 5 3
Saliency Map 7 4
LICON 4 6
Integrated gradients 7 5
SmoothGrad 7 5
DeConvNet 8 5
Guided BackProp 7 5
PatternNet 7 5
Layer-Wise Relevance Propagation 7 5
Deep Taylor Decomposition 7 5
PatternAttribution 7 5

Table 2: DCS of all methods for the defintion of interpretation and understanding. Cus-
tom illustration based on Bach et al. (2015), Baehrens et al. (2010), Cortez and
Embrechts (2011), Cortez and Embrechts (2013), Garson (1991), Gevrey, Dimo-
poulos, and Lek (2003), Giam and Olden (2015), Green et al. (2009), Ibrahim
(2013), Kasneci and Gottron (2016), Kemp, Zaradic, and Hansen (2007), Kew-
ley, Embrechts, and Breneman (2000), Kindermans et al. (2017a), Lek et al.
(1996), Milne (1995), Montano and Palmer (2003), Montavon et al. (2017),
Olden and Jackson (2002), Olden, Joy, and Death (2004), Paliwal and Kumar
(2011), Papadokonstantakis, Lygeros, and Jacobsson (2006), Pentos (2016),
Reddy et al. (2015), Simonyan, Vedaldi, and Zisserman (2014), Smilkov et al.
(2017), Springenberg et al. (2015), Sundararajan, Taly, and Yan (2017), Sung
(1998), Tzeng and Ma (2005), Yeh and Cheng (2010), and Zeiler and Fergus
(2014).
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3 Research Methods

Despite the multiple approaches to explain DANNs, especially extremely large and com-

plex networks still remain a black box for us. This thesis wants to extend the existing

research and proposes a new way to illuminate the DANN black box. Therefore, this re-

search has a number of interrelated minor objectives set within the context of explaining

DANNs. Objective 1 and 2 have been addressed in the previous chapter by reviewing rel-

evant literature. Even though the review was able to provide useful information about

existing explanation methods and about the researchers’ opinions regarding the defini-

tion of explanation, the review revealed a disagreement in the research community. It is

not commonly agreed upon as to how ‘explanation’ is defined. Furthermore, there is as

yet no generally accepted explanation method for DANNs. Even worse, Kindermans et

al. (2017b) have shown that some existing methods are unreliable. In order to address

this problem, a valuable aspect of this research work relates to Objectives 3, 4, and 5,

for which a new explanation method is developed based on existing methods and in

compliance with the definitions for explanation, interpretation, and understanding (see

in Chapter 2.1).

This thesis aims to justify the proposed method by using experimental research. The

newly developed method and two comparative methods are tested with three data sets

to determine the method which explains DANNs in the optimal manner (with regards

to definitions for explanation, interpretation, and understanding).

3.1 Research Strategy

The overall research strategy that is used to verify the proposed method is experimental

research. Experimental research has been defined by Biggam (2015) as an attempt ‘to

test an hypothesis (i.e. a theory) through some type of experiment’. Scientists use this

approach to examine and to test competing hypotheses. The currently prevailing hy-

pothesis is called the null hypothesis, or H0, and is the subject of the test. Competing

against the null hypothesis is the alternative hypothesis, or H1. If the experiment imple-

mented by the researcher provides evidence that the null hypothesis has to be rejected,

then the alternative hypothesis replaces it as the prevailing theory. Using this approach,
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scientists are able to exclude erroneous theories and to accept new theories, until they

are proven invalid. As this research aims to explain the influence of input variables on

the decision of a DANN by developing a new method, it is necessary for this research to

justify the newly developed method. Therefore, this thesis implements an experiment

to test the following hypotheses:

H1: The explanation of a DANN given by the proposed method is at least as good and

as distinctive as the explanation given by the existing methods.

H0: The explanation of a DANN given by the proposed method is as good and as dis-

tinctive as the explanation given by the existing methods.

Hereby, H0 is assumed as the prevailing theory because as long as the proposed method

is not tested, it is not possible to tell if the method’s result can help to explain a DANN

better than the existing methods. Furthermore, as the proposed method has not yet

undergone scientific validation nor proven its value through studies, like the existing

methods have done, the explanation produced by the proposed method is assumed to

be not reliable and, therefore, worse compared to the existing methods. Thus, the altern-

ative hypothesis H1 is a way to justify the proposed method. If the experiment produces

evidence that leads to a rejection of the null hypotheses, the alternative hypotheses H1

has to replace H0 as the prevailing theory. However, this also means that the explanation

of the proposed method is at least as good as the explanation of the existing methods

and that it has proven itself.

To gain the necessary data, an experiment was implemented. For the experiment, two

existing methods were selected, besides the proposed method. All three methods were

used to explain decisions made by a DANN for three different data sets. The experiment

was described in further detail in the next section. By assessing and by comparing the

resulting data, this research can reject either the null or the alternative hypothesis and,

thus, can justify or discard the proposed method.

3.2 General Experimental Setup

As mentioned in Chapter 3.1, the aim of the executed experiments is to justify the newly

proposed method by rejecting the null hypothesis.
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H0: The explanation of a DANN given by the proposed method is not at least as good

and as distinctive as the explanation given by the existing methods.

Therefore, three experiments were performed to compare the newly developed method

with the selected two existing methods. In every experiment, a DANN was trained on a

selected data set. Afterwards, each method was used to calculate the input influences

for every single input example. Subsequently, the calculated input influences of every

method were analysed and compared against each other.

For the experiments, the following three data sets were selected.

• Artificial data

• Real-world data

• Benchmarking data

The artificial data set was generated with given correlations between the input features

and the output classes. This was used to assess how far the calculated input influences

reproduce the ‘real’ correlations. To cover the domain of real-world data, the German

credit data set by Hofmann (cited in Dua and Karra Taniskidou, 2017) was selected.

The data set was choosen because it mimics the data of a heavily regulated field which

requires reliable explanation methods to be able to apply DANN in the credit decision

process. It consists of 20 input features and one binary output, classifying customers into

the categories ‘good credit risk’ (1) and ‘bad credit risk’ (2). The input features contain

categorical data such as personal status and sex as well as numerical data such as credit

duration in months and age in years. Furthermore, this data set can be used by simpler

and easier models such as logistic regression. Therefore, it is possible to compare the

results of the explanation methods to already accepted explanations.

Lastly, the MNIST database of handwritten digits was selected as the benchmark data

set (Y. LeCun and Burges, 1998). It is a commonly accepted and applied data set in

the research field of DANNs (Keysers, 2007; Mizukami et al., 2010; Simard, Steinkraus,

and Platt, 2003). The classification task is easily solvable for humans, and, thus, the

calculated influences can be assessed for being plausible by visual inspection.

In every experiment, the evaluated methods worked with preprocessed data. Thus, es-

pecially discrete input variables were ‘split’ into multiple input values, creating an input
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neuron for each possible manifestation of the discrete variable. Additionally, an input

neuron was created for an unknown manifestation of the discrete input variable. Fur-

thermore, this thesis limited the experiments to binary classifiers and, thus, to DANNs

containing a softmax layer with two neurons as the output layer. However, there was

no limitation in the application of the methods since each multi-class problem can be

solved by multiple binary classifiers working in a one-versus-all manner.

3.3 Data Analysis

To assess the examined methods, it is necessary to analyse the produced ‘input-

influence-data’. As the experiments only used binary classifiers, the calculated influence

values are interpreted as supporting the target class if the influence value is positive,

and they are interpreted as rejecting the target class if the influence value is negative.

A variable’s influence may be positive and negative at the same time; this indicates a

support of the target class (for some values of the input variable) as well as a rejection

of the target class (for other values of the input variable). Therefore, the manifestations

of the influence values of a pre-processed, discrete input variable can be aggregated by

adding all positive values of the manifestations as the variable’s positive influence and

by adding all negative values of the manifestations as the variable’s negative influence.

The analysis of the calculated influences focused on two major examinations. First

off, it was assessed whether the proposed method is valid. Secondly, it was evaluated

if influences calculated with the new method are more accurate than the two existing

methods. To test if the proposed method is valid, it was examined whether the new

method resulted in influence values that are similar to influences produced by the com-

monly accepted models. For the artificial data set and the German credit data set the

logistic regression model was used as a benchmark. Regarding the MNIST database

of handwritten digits, it was evaluated whether the new method provided influences

which reflect the human intuition for classifying the digits. For the second examination,

evaluating whether the new method produced superior influence values, the calculated

influences of the three methods for all data sets were compared. As the real correla-

tion values were known for the artificial data set, it was possible to see which method

produced influences closer to the existing impact of the input variables. The same pro-
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cess was applied to the German credit data set, for which the correlation coefficients of

the logistic regression model were seen as the real correlation values. For the MNIST

data set, the comparison was again done by visual inspection to find the method which

produces the most reasonable influences.

Additionally, the selectivity of each method was compared. This means that for every

method a data set was created containing the calculated influences and the original

class label. Afterwards, a logistic regression model was trained for which metrics were

calculated to evaluate whether the newly proposed method is more selective than the

existing methods.

The following metrics were used, where applicable, to evaluate the methods:

Precision: The precision is a percentage metric which describes how many of the

samples classified as the target class (truePositive + falsePositive) were correctly

classified as the target class (truePositive). Thus, precision is defined as Precision=
truePositive

(truePositive+falsePositive) (Sokolova, Japkowicz, and Szpakowicz, 2006).

Recall: The recall is a percentage metric which describes how many of the expec-

ted target class samples (truePositive + falseNegatives) were correctly retrieved

(truePositive). Thus, recall is defined as Recall= truePositive
(truePositive+falseNegatives) (ibid.).

F-Measure: The f-measure is a harmonic mean of precision and recall. In this thesis, the

F1 score is used, which is defined as F1 = 2 · Precision·Recall
Precision+Recall (ibid.).

Accuracy: The accuracy measure is a percentage metric which defines how well a bin-

ary classifier correctly identifies the classes. This means how many samples of all

samples (truePositive + falsePositive + trueNegatives + falseNegatives) are correctly

classified (truePositive + falsePositive). Thus, accuracy is defined as Accuracy =
(truePositive+trueNegatives)

(truePositive+falsePositive+trueNegatives+falseNegatives) (ibid.).

AUC: The area under the ROC curve (AUC) measure is used as a heuristic to assess the

performance of classification models. An area under the ROC curve (AUC) value of

1.0 indicates perfect classification accuracy, and an AUC value of 0.5 describes the

accuracy of a random classification. Furthermore, the AUC measure indicates the
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selectivity of a classification model. The nearer the AUC value is to 1.0, the more

selective the model is (Schulte-Mattler, Daun, and Manns, 2004).

GINI: The GINI coefficient (GINI) is used to describe how close a classification model

is to the abilities of a clairvoyant. A GINI coefficient (GINI) value of 1.0 indicates

perfect clairvoyant abilities, while a GINI value of 0.0 describes a model equal to

a random process. In the applied statistics, usual GINI values for single key figures

are between 0.2 and 0.4. More complex models using multiple features are able to

reach GINI values between 0.6 and 0.7. Like the AUC the GINI is used as a measure

for the selectivity of a model (ibid.).

Besides the analysis of the produced influence values, it was evaluated whether the

proposed method is at least as good as the comparing methods regarding their DCS.

In order to do so, the compliance of the newly developed method to the definitions

of explanation, interpretation, and understanding (see Chapter 2.1) was assessed and

motivated. Based on the described analysis, this thesis was able to reject either the null

hypothesis – and thus justify the proposed method – or the alternative hypothesis – and

thus discard the proposed method.

3.4 Limitations and Potential Issues

Every research strategy has its advantages and disadvantages. For experimental re-

search, one issue is sample size (Biggam, 2015). Without a large enough sample size,

it is not possible to make statistically significant generalisations. However, for a single

test concerning one of the selected data sets, this issue is covered by the data sets them-

selves since they contain at least 1,000 records. Therefore, the influences calculated for

all records were statistically justified.

Another concern Biggam (ibid.) has mentioned regarding the sample selection is that

the sample data must be selected in a way which allows generalisation. For this thesis,

this concern was taken into consideration by covering multiple domains during the

selection of the data sets for the experiments. However, as only three data sets were

selected, a generalisation might not have be statistically significant and might only have
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applied to the three domains. Therefore, further experiments in other domains might

be necessary to fully solve this limitation.

The performed experiment was prepared thoroughly and conducted with the aim

to obtain valid and reliable data. However, experimental research only becomes trust-

worthy by repetition. Therefore, this thesis intends to provide a base for validation

and further research by giving a detailed description of the used data sets, the applied

preprocessing techniques, the architecture of the used DANNs, and the tested methods.
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4 Description of Methods to Explain the Influence of Input Variables on the

Decision of a Deep Artificial Neural Network (DANN)

As shown in the literature review in Chapter 2.2, multiple methods have been proposed

to determine the influence an input has on the output calculated by a DANN. Popular

approaches include sensitivity analysis and the back-propagation-based methods.

The method proposed by this thesis is compared against the LICON method by Kasneci

and Gottron (2016) and the GSA by Cortez and Embrechts (2011). The former belongs

to the group of back-propagation-based methods and uses gradients to calculate the

influence of an input on the output; the latter is a profiled sensitivity analysis. This thesis

has developed a new method, based on the LICON method. The proposed method has

been called Profiled LICON Analysis (PLAY) and enhances LICON through the profiling

features of the GSA method.

Subsequently, the methods applied in this experimental research are detailed. For a

better understanding of the PLAY method, the description of the methods starts with the

LICON and GSA method. Furthermore, symbols used in the description or in the given

algorithms are explained in Table 15 of Appendix A, ‘Overview and Use of Notation’.

4.1 Linear Weighting Scheme for the Contribution of Input Variables (LICON)

Kasneci and Gottron (2016) developed the LICON method ‘inspired by the variable

weighting scheme in the log-linear combination of variables in logistic-regression’. Their

method has shown that the function represented by a DANN can be successfully approx-

imated in a local neighbourhood of the input values using LICON. The method approx-

imates the local behaviour of a neuron. This local behaviour is then aggregated for all

neurons to a DANN-wide influence behaviour. For the explanation of neuron local beha-

viour, Kasneci and Gottron (ibid.) used gradients (which are easy to calculate) since the

usual design of neural networks (using back propagation as a training method) involve

derivable activation functions.

The LICON algorithm implemented in this thesis, as one can see in Algorithm 1, cal-

culates the weighted gradients of the local linear approximations β (l)i j for every neuron

z(l)i in every layer, and it aggregates them to the network-wide influence values α(#L)
ik
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for the i-th input value x (0)i on the k-th output value. The algorithm starts by initialising

the influences for the input variables. To do so, it calculates Kroenecker’s delta, which

can be seen as an identity matrix of the size #I ×#I . Thus, the method assumes that

every input variable has an influence of 1 on itself and an influence of 0 on any other

variable.

Algorithm 1 LICON algorithm as implemented for this thesis.

function LICON(M , x (0))

α
(0)
ik ←

¨

1 if k = i
0 if k!= i

∀i, k = 1, ..., #I

for (l = 1 . . . #L) do
~β (l)← CalculateGradients(x (l−1), wl , b(l))

for (k = 1 . . . #N l) do
for (i = 1 . . . #N0) do

sum← 0
for ( j = 1 . . . #N l−1) do

sum← sum+ β (l)k j ∗α
(l−1)
i j

end for
α
(l)
ik ← sum

end for
end for

end for
return α(#L)

end function

In the next step, the algorithm iterates over every layer to calculate the aggregated

influences for every input value on the output of the examined layer. To calculate the

aggregated influence of the i-th input value, the algorithm sums up the product of all

‘incoming’ influence values of the previous layer (α(l−1)
i j ) with their associated weighted

gradients (β (l)k j ). As one can see in Algorithm 2, a weighted gradient β (l)i j is calculated

by multiplying the weight w(l)ji with the derivative of the activation function of neuron

z(l)i evaluated for the sum of weighted inputs feeding into neuron z(l)i .

Thus, LICON calculates the influence of an input variable for the first layer and feeds

it through every layer so as to get the overall influence of an input variable on a specific

output value. In the evaluation of the resulting data, only the influence values for the

target class output were used. This was possible because this thesis is limited to binary
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Algorithm 2 Algorithm to calculate the gradients for the LICON method.

function CALCULATEGRADIENTS(x (l−1), wl , b(l))
for (i = 1 . . .#N l) do

for ( j = 1 . . .#N (l−1)) do

v al ←
∑#N (l−1)

k=1 (w(l)ji · x
(l−1)
j ) + bl

i

βi j ← wl
ji · f

(l)′
i (v al)

end for
end for

return β
end function

classifiers which were using a softmax layer with two neurons as the output layer, and,

hence, the influence values of the non-target class are just the negated influence values

of the target class and vice versa. Furthermore, all influence values of discrete input

variables were aggregated by adding all positive influences into one influence value of

the discrete input variable supporting the target class, and all negative influence values

were added into one influence value rejecting the target class.

4.2 Global Sensitivity Analysis (GSA)

Cortez and Embrechts (2011) have developed the GSA method as a generalisation of the

work done by Kewley, Embrechts, and Breneman (2000) and by Embrechts, Ozdemir,

and Kewley (2003). The GSA method is a sensitivity analysis using profiled inputs to

measure the influence of an input variable or a combination of input variables. That

means that the method generates input samples based on a base-input vector. Then, the

evaluated DANN is used to predict the output values for each of the generated input

samples. Afterwards, the algorithm aggregates the predictions by using a sensitivity

measure to calculate the influence for the examined input variable(s).

The algorithm implemented in this thesis differs slightly from the algorithm described

by Cortez and Embrechts (2011) in two respects. Firstly, this thesis used a given input

example as the base-input vector instead of an input vector consisting of the mean

or median values for every input variable. This was conducted because the definition

of explanation, given in Chapter 2.1, asks (among other things) for the influence of an

input on an output for a given example. Furthermore, LICON is already able to calculate
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the influence values for a given input example; therefore, in terms of comparability, it

is useful to adjust the GSA method in this regard. Secondly, in parallel to the LICON

method, the calculated influence value for the non-target class was interpreted as a

negative influence for the input variable on the target class. This decision was made

because the thesis is limited to binary classifiers. Hence, a rejection of the target class is

equal to a support of the non-target class and vice versa.

Algorithm 3 GSA algorithm as implemented for this thesis.

function GSA(M , F, p, x (0b )

X ← C reatePro f iled Inputs(F, p, x (0b )
for (a ∈ F) do

for (h= 1 . . . #X ) do
~y (h)← Predic t(M , X [h])

end for

ga0←
∑#X

h=2|y
(h)
0 − y (h−1)

0 |/(#X − 1)
ga1←
∑#X

h=2|y
(h)
1 − y (h−1)

1 |/(#X − 1)
end for

return g
end function

So, as one can see in Algorithm 3, the core concept of the GSA algorithm is to pre-

dict the output vector for multiple inputs and to aggregate them by using a sensitivity

measure. Cortez and Embrechts (ibid.) have described three different possible sensit-

ivity measures: range, gradient, and variance. For this thesis, the gradient metric was

used because of its similarity to the LICON approach, which is based on gradients, as

well.

The profiling of inputs plays a large part in the GSA method. Cortez and Embrechts

(ibid.) came up with a way to create profiles for combined inputs. Their approach was

implemented in this thesis, as one can see in Algorithm 4. At first, profiles were created

separately for each input variable. For discrete features, this was done by creating a

list containing every possible option for the examined input variable a. Continuous

features were then profiled by using a regular sequence. This means that the created

list of possible values contained the minimum and maximum value of the input variable
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Algorithm 4 Algorithm used to profile a single input variable or a combination of input variables.

function CREATEPROFILEDINPUTS(F, p, x (0)b )
for (a ∈ F) do

if (a is a discrete feature) then
for (i = 1 . . . (#opt(a))) do

Sa[i]← opt i(a)
end for

else
k← max(a)−min(a)

(p−1)
Sa[1]← min(a)
for (i = 2 . . . (p− 1)) do

Sa[i]← k · Sa[i − 1]
end for
Sa[p]← max(a)

end if
end for

t ← 1
for (a ∈ F) do

t ← t ·#Sa
end for
e← 1
for (a ∈ F) do

m← t/(e ·#Sa)
Ra← Repeat(Sa, e, m)
e← e ·#Sa

end for

for (i = 1 . . . t) do
x (0)← []
for (a /∈ F) do

x (0)a ← x (0)ba
end for
for (a ∈ F) do

x (0)a ← Ra[i]
end for
X [∗]← x (0) . Add the input vector x (0) to the list of profiled inputs X

end for

return X
end function
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a as well as p − 2 equally distributed elements between the minimum and maximum

value, sorted in an ascending order.

Algorithm 5 Algorithm used to repeat a partial input when combining multiple features in the
profiling process.

function REPEAT(Sa, e, m)
r ← []
for (i = 1 . . . m) do

for ( j = 1 . . .#Sa) do
for (k = 1 . . . e) do

r[∗]← {Sa[ j]} . Add the value Sa[ j] to the list r
end for

end for
end for

return r
end function

Afterwards, these separate profiles were repeated for the total number of combina-

tions, as one can see in Algorithm 5. This ensured that each possible combination of

input values existed. For this, the Repeat method repeated m times the list of profiled

values for an input variable a, while repeating e times each element of a. By calculating

m and e dynamically, based on the already repeated input profiles, it was guaranteed

that every possible combination of values for combined input variables was produced.

To give an example, let the profiled inputs for input variable a1 be {1,2}, and let

the profiled inputs for input variable a2 be {3, 4}. Then, the total size of possible com-

binations is t = 4, the repetition of each element in the first step is e = 1, and the

repetition of the whole profile is m = 4/(e ·#Sa1
) = 2. Therefore, the repeated list for

a1 is {1, 2,1, 2}. In the next step e = e ·#Sa1
= 2 and m = 4/(e ·#Sa2

) = 1. Therefore,

the repeated list for a2 is {3,3, 4,4}.

Finally, the input vectors are composed of the repeated profile lists. This was done by

using the values of the repeated profiles for the profiled input variables a ∈ F and the

values of the base vector x (0)b for non-profiled input variables a /∈ F . The input vectors

thus produced were added to the list of profiled input vectors X . For every input vector

x (0 in X , the predicted output was calculated and used in the sensitivity measure, which

is the influence of an input variable a on the target class.
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4.3 Profiled LICON Analysis (PLAY)

The newly proposed method ‘Profiled LICON Analysis (PLAY)’ is a combination of the

two aforementioned methods, LICON and GSA. In fact, it can be seen as an enhance-

ment of the LICON method through the input-profiling mechanism of the GSA method.

Another way to interpret the PLAY method is as a LICON-based sensitivity measure for

the GSA method.

Algorithm 6 PLAY algorithm as implemented for this thesis.

function PLAY(M , F, p, x (0))
X ← C reatePro f iled Inputs(F, p, x (0))
for (h= 1 . . . #X ) do

A[h]← LICON(M , X [h])
end for
for i = 1 . . . #I do

mi0← ¯A[∗, i, 0]
vi0←
∑#X

h=0(A[h, i, 0]−mi0)2/#X
end for

return {m, v }
end function

As one can see in Algorithm 6, the PLAY method starts just like the GSA method

by creating profiled inputs for the combination of evaluated input variables F and is

based on the base-input vector x (0), which is the examined input vector. Afterwards,

the LICON approach is applied to every input X [h] generated in the profiling process.

The subsequently produced LICON influences are stored in the matrix A#I×#X×#Y . By

using the stored influences, the mean mi0 and the variance vi0 of the influence of an

input value on the target class (~y (h)0 ) are calculated. Mean and variance are processed

‘column-wise’, which means that they are calculated for a given input value x0
i over all

LICON influences in A.

Like the LICON approach, only the influence values for the target class output are

used in the evaluation of the resulting data because only binary classifiers are used.

Furthermore, like the LICON method, all influence values of discrete input variables

are aggregated by adding positive influences and negative influences separately for the

positive or negative influence of a discrete input variable on the target class.
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5 An Experimental Evaluation of the GSA, LICON, and PLAY Explanation

Methods

The literature review presented in chapter 2 defined of the terms explanation, inter-

pretation and understanding Furthermore, it provided an overview of existing methods

that claim to explain the influence of input variables on the decision of a DANN. In the

previous chapter ‘Description of Methods to Explain the Influence of Input Variables on

the Decision of a Deep Artificial Neural Network (DANN)’ three explanation methods

were described in detail. In this section these three methods are evaluated and their

results are compared.

To do so, three DANNs were trained using a 10-fold cross validation on three different

data sets: an artificial data set, the German credit data set and the MNIST database

of handwritten digits. Subsequently, each method was applied to the trained network

for chosen inputs of the training data set. For the GSA and PLAY methods (as they are

profiled methods) six profile points, equally distributed over the complete input interval,

were used to calculate the influence values for each of the variables. In this way, every

variable was profiled independently while the other variables were fixed to their value

in the base input vector. The resulting influences were then assessed to identify the

methods which calculate the influences most accurately.

For the artificial data set, influences were produced for each record of the training

data set. The mean and variance were then calculated for every input variable over all

the influence records. As the artificial data set provides a given correlation between the

input variables and the output, it was easy to determine the method which calculated

the influences the most accurately. The the same process was applied for the German

credit data set. However, instead of a predefined correlation between the variables, the

calculated influences were compared to the correlation coefficients of a linear regression

applied on the German credit data set. This was done because the German credit data

set can be solved by linear regression, which is a commonly used and accepted method

in practice (Ploeg, 2010). Therefore, the influences by the linear regression were con-

sidered as ‘truth’ for this real-world data set. As with the approach of the artificial data

set, the method with results complying most closely to the correlation coefficients of the
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linear regression was accepted as calculating the best influences. Next, for the MNIST

data set chosen input samples were used to calculate the influence values for each

method. The resulting influences were displayed as images for visual inspection, as per-

formed by Kasneci and Gottron (2016). In the resulting images positive or supporting

influences were coloured in blue, while negative or rejecting influences were displayed

in red. This procedure enabled analysis of how well the influences calculated by the

explanation methods reflect human intuition.

In a final step, each method was used to create an ‘influence data set’. This was done

by applying every method to each record of the training data sets. The resulting in-

fluences for every record of the training data sets then built the influence data set for

each method and each data set. Thus, the used influence data set consisted of two vari-

ables (positive influence and negative influence) for each variable in the original data

set. Furthermore, the influence data set contained the mean value and the variance for

every individual input feeding into the associated neural network. It should be men-

tioned that multiple mean and variance variables existed for one input variable of the

original data set. This occurred due to the fact that discrete input variables are one-hot

encoded, and therefore the mean and variance values were calculated for each mani-

festation of the discrete input variable. These influence data sets were then utilised to

train a logistic regression, using a 10-fold cross validation, with the aim to determine

the most selective method. To assess the selectivity, the GINI and AUC measures for the

individual logistic regression models were then compared.

The training of the DANNs and the logistic regression model and the calculation of the

analysed measures were performed in a proprietary software tool created by a medium-

sized German company, which does not wish to be named. Calculation of the correlation

coefficients in the logistic regression was carried out using the ‘Weka 3 Data Mining Soft-

ware’ (Frank, Hall, and Witten, 2016). Every other evaluation, for example the calcula-

tion of influences using the described methods, was conducted using self-implemented

code.
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5.1 Artificial Data Set

5.1.1 Data Set

The theoretical ability of the examined methods to calculate influences according to

existing correlations is first evaluated. To this end, an artificial data set with predefined

correlations between the dependent class variable and the input variables was used to

calculate the input influences. The data set consisted of one binary class variable y and

five input variables x0.8, x0.6, x0.4, x0.2 and x0.0. Each of the five input variables xp was

defined to be correlated to y by p, as shown in Figure 4.
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Figure 4: Predefined correlation between xp and y and the calculated correlation coef-
ficients using a logistic regression for the artificial data set.

With these predefined correlations, a data set of 1,000 records was generated by

utilising algorithm 7 to randomly produce the input variables and the dependent class

variable for each record. As the records were randomly generated, the minor deviation

occuring in the calculated correlation coefficients was expected and is considered reas-

onable. Nevertheless, it must be guaranteed that the correlation of the generated data is

sufficiently similar to the predefined correlation to be useful. To ensure the predefined

correlations in the randomly generated data set, a logistic regression was applied and

the correlation coefficients were calculated. As seen in Figure 4, the need for similarity

between of the resulting correlation coefficients and the predefined correlation values

is satisfied.
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Algorithm 7 Algorithm to generate an artificial data set with predefined correlations.

function GENERATEARTIFICIALDATASETRECORD

ζ← 0
for p ∈ {0.8,0.6, 0.4,0.2, 0.0} do

xp← Nex tRandomGaussian()
ζ← ζ+ p · xp

end for
prob← 1/(1+ e−ζ)
y ← Bernoull iDist r ibutionSample(prob)
return {y, x0.8, x0.6, x0.4, x0.2, x0.0}

end function

As seen in algorithm 7, the input variables are sampled over a standard normal dis-

tribution with a mean of 0 and a variance of 1 (indicated by the method call NextRan-

domGaussian()) and the dependent class variable y is drawn from a Bernoulli distribu-

tion (indicated by the method call BernoulliDistributionSample(prob)). The probability

prob, applied to the Bernoulli distribution, is the result of the inverse logit function

evaluated in ζ. ζ is calculated as the sum of all input variables xp weighted with their

associated predefined correlation value p. Therefore, the values of the input variables

are set mostly between −3 and 3, while the class variable y is a discrete variable with

values 1 and 0, of which 1 marks the target class.

5.1.2 Neural Network Architecture

A neural network was created for the evaluation of the methods with the artificial data

set. The architecture of the network contained one input layer, one hidden layer and one

output layer. In the hidden layer, five neurons were applied using the logistic function as

the activation function. The output layer was built from two neurons using the softmax

function for activation.

After 40 iterations on the full artificial data set the training was stopped because the

model did not improve further. This is shown in appendix F, ‘Model Adjustments for

the DANN Models Trained on the Artificial and German Credit Data Sets’. The resulting

Receiver Operating Characteristic (ROC) curves can be seen in appendix B, ‘ROC Curves

for the Artificial Data Set’.
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Measure Target class Non target class Weighted mean
AUC 0.7428524749286821 0.7428524749286821 0.7428524749286821
GINI 0.48570494985736407 0.48570494985736407 0.48570494985736407

Table 3: Measured results for the 10-fold cross validation training of the DANN model
used on the artificial data set.

Measure Target class Non target class
Precision 0.7441860465116279 0.7368421052631579
Recall 0.6808510638297872 0.7924528301886793
F-Measure 0.711111111111111 0.7636363636363637
Accuracy 0.74 0.74
AUC 0.8161380971497395 0.8161380971497392
GINI 0.632276194299479 0.6322761942994783

Table 4: Measured results for the selected DANN model and a decision threshold of 0.5
used on the artificial data set.

Table 3 shows the AUC and GINI values achieved following the 10-fold cross valida-

tion training. The resulting weighted mean AUC value of ∼ 0.743 and the GINI value

of ∼ 0.486 indicate that the used network architecture is capable of successfully pre-

dicting classes based on the artificial data set. Furthermore, the AUC value over all

model instances of the 10-fold cross validation (∼ 0.743) is similar to the AUC value of

the logistic regression model (∼ 0.749), which was used to guarantee the correlations

between the input variables and the output variable. Additionally, the GINI value of

∼ 0.486 confirms an expected degree of selectivity (Schulte-Mattler, Daun, and Manns,

2004).

For the experiment, the model with the highest AUC, GINI, accuracy and f-measure

was selected. As presented in Table 4, the selected model achieved a precision of

∼ 0.744, a recall of ∼ 0.681, an f-measure of ∼ 0.711, an accuracy of ∼ 0.74 and an

AUC value of ∼ 0.816 for the target class, and reached similar values for the non-target

class. For comparison, the logistic regression model, which was used to guarantee the

correlations between the input variables and the output variable, achieved a precision

of ∼ 0.69, a recall of ∼ 0.653, an f-measure of ∼ 0.671, an accuracy of ∼ 0.686 and

an AUC value of ∼ 0.749 for the target class. The neural network model is therefore

superior to the used logistic regression model. Additionally, the achieved GINI value of

∼ 0.632 is comparable to accepted GINI values in the rating industry (ibid.). Hence, it
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has been shown that the trained DANN model is eligible for use with the artificial data

set.

5.1.3 Experimental Results

Comparison of mean influence values and variance

The experiment using the artificial data set was performed with the aim to verify the

theoretical ability of the three methods to calculate the influence of an input variable

on the output variable. As the artificial data set was constructed with predefined correl-

ations between the input variables and the output variable, an explanation method was

considered to accurately calculate the influences if the predefined correlation values

were returned.
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Figure 5: Mean influences and associated variances calculated by the LICON method for
the complete artificial data set.

LICON: As seen in Figure 5, the LICON method detailed by Kasneci and Gottron

(2016) delivers a good approximation and correctly identifies the order of the influ-

ences. Furthermore, the LICON method has a low variance for the inputs with a given

correlation. For the input variable X0.8 the variance is 0, and for the variables x0.6, x0.4

and x0.2 the variance is near 0.15. However, the influence of the non-correlated input

variable x0.0 is calculated incorrectly and has a high variance of 10.676. This high vari-

ance implies that it was not possible for LICON to accurately identify the non-correlated

variable. The randomness occuring in the artificial data set might be a possible explan-
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ation for this fact, as even the logistic regression calculated a correlation coefficient of

0.19 (as seen in Figure 4) for the uncorrelated variable x0.0.
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Figure 6: Mean influences and associated variances calculated by the GSA method for
the complete artificial data set.

GSA: Like the LICON method, the GSA method identified the same order between the

input variables. If only the positive influences had been taken into account, the method

performed done well (as the calculated positive influences are x0.8 = 1.0, x0.6 = 0.749,

x0.4 = 0.659, x0.2 = 0.343 and x0.0 = 0.058). However, the method also produced

negative influences. Thus, the influence values differ considerably from those calculated

by the LICON method and from the expected values, as seen in Figure 6. Only the x0.8

input variable exhibits a positive influence on the output variable. For the x0.6 variable

no influence is testified, while for all other variables a negative influence is calculated.

This poor performance of the GSA method is further confirmed by the relatively high

variance values (around 30). Thus, the GSA method was not able to calculate the correct

influence values for the artificial data set. However, this may only be an issue with this

specific data set; therefore, the results of the other two data sets have to be examined.

PLAY: Finally, Figure 7 shows that the PLAY method calculated influences for the

artificial data set more accurately than the GSA method, but less so than the LICON

method. The PLAY method produced the same mistake as the LICON method concerning

the influence of the uncorrelated variable x0. This is understandable because the PLAY

method is based on LICON. The PLAY method was able to return the correct order of
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Figure 7: Mean influences and associated variances calculated by the PLAY method for
the complete artificial data set.

influence values (x0.8 = 0.908, x0.6 = 0.903, x0.4 = 0.685, x0.2 = 0.479 and x0.0 = −1).

However, it overestimated the influence of the input variables x0.6, x0.4 and x0.2. Due to

the relatively high variances (around 25) the accuracy of the calculated influence values

could thus be questioned.

Evaluation of method selectivity

To compare the selectivity of the chosen methods, the AUC and GINI metrics of a

logistic regression model (trained by using a 10-fold cross validation on the ‘influence

data set’ for each method) were evaluated.

The resulting ROC curves and model adjustment curves can be seen in appendix J,

‘ROC Curves for the Logistic Regression Models on the Influence Data Sets’, and ap-

pendix K, ‘Model Adjustments for the Logistic Regression Models on the Influence Data

Sets’. For the LICON method it took 1,000 training iterations were required on the in-

fluence data set to reach the state where the model did not improve further. In contrast,

the logistic model trained on the influence data set created by the PLAY method only

required 300 iterations to reach that state, while the logistic model for the GSA method

achieved the ‘final’ state after 100 iterations. As a fast model adjustment indicates a data

set with a parameterisation for the model that is easy to find, the GSA method could be
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seen as superior to the PLAY method, which in turn can be considered superior to the

LICON method.

Measure Target class Non target class Weighted mean
AUC 0.6808472835932691 0.6808472835932693 0.6808472835932691
GINI 0.3616945671865381 0.3616945671865383 0.36169456718653814

Table 5: Measure results for the logistic regression model trained on the influence data
set generated by the LICON method for the artificial data set.

Table 5 presents the AUC and GINI results for the logistic regression model trained

on the influence data set generated by the LICON method. It indicates that the LICON

method achieves a good AUC value of ∼ 0.68 and an acceptable GINI value of ∼ 0.36.

Therefore, it has an acceptable selectivity.

Measure Target class Non target class Weighted mean
AUC 0.7467813777829202 0.7467813777829202 0.7467813777829202
GINI 0.4935627555658405 0.4935627555658405 0.4935627555658405

Table 6: Measure results for the logistic regression model trained on the influence data
set generated by the GSA method for the artificial data set.

The AUC and GINI values of the GSA method, shown in Table 6, are substantially

better than those calculated by the LICON method. Hence, as the logistic regression

model based on the influence data set generated by the GSA method is more selective

than that produced by the LICON method, this indicates that the GSA method is more

selective than the LICON method.

Measure Target class Non target class Weighted mean
AUC 0.7369441274456914 0.7369441274456915 0.7369441274456914
GINI 0.47928825489138294 0.47928825489138294 0.47928825489138294

Table 7: Measure results for the logistic regression model trained on the influence data
set generated by the PLAY method for the artificial data set.

For the PLAY method, the resulting AUC and GINI values of the logistic regression

model trained on the influence data set can be seen in Table 7. Notably, the AUC value

of∼ 0.737 and the GINI value of∼ 0.479 are very close to the values of the GSA method,

and, therefore, are undoubtedly better than the values of the LICON method. This in-

dicates that the PLAY method is more selective than the LICON method for the artificial
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data set. Hence, the combination of LICON with the profile approach of the GSA method

seems, at least, useful for selectivity concerning the artificial data set.

5.1.4 Assessment of the Explanation Methods Regarding Artificial Data

For the artificial data set, only the LICON method is able to calculate influence values

near to the true correlation between the input variables and the output variables. Al-

though the LICON approach is effective at determining the ‘true’ influences, it achieves

below-average values regarding the selectivity measures for complex models (Schulte-

Mattler, Daun, and Manns, 2004).

The GSA method, on the other hand, attains acceptable values for selectivity meas-

ures but completely fails to extract the correct influence values. One reason for this

inability to calculate the correct influences might be the gradient sensitivity measure

used in the GSA method, which works on the network’s output. This might also explain

the optimal selectivity values of the three methods. The DANN model, for which the

influence values were calculated, achieved an AUC value of ∼ 0.743 and a GINI value

of ∼ 0.486. Therefore, as the GSA method is largely based on the predicted outputs of

the neural network, it might be reasonable to believe that the good selectivity values of

the GSA method are partly due to the good values of the examined DANN model.

The PLAY method combines the ability to (nearly) identify the correct influence values

of the LICON method with the desirable selectivity of the GSA method. Therefore, the

PLAY method seems to be an enhancement of the LICON method or, in other words, a

good sensitivity measure for the GSA method. In summary, it can be stated that although

the PLAY method would benefit from some further tweaking, it has proven to be valid

and comparable to existing methods, at least for the artificial data set. Thus, for the

artificial data set the null hypothesis can be rejected.
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5.2 German Credit Data Set

5.2.1 Data Set

The second step in the evaluation of the methods was the test on ‘real-world’ data.

The German credit data set produced by Hofmann (cited in Dua and Karra Taniskidou,

2017) was chosen because it imitates the data used in the financial world; this is a field

that demands reliable explanation methods for DANNs in order to utilise them in the

future. The data set consisted of 20 input variables and one binary output variable. The

input variables included continuous and discrete variables which cover features like the

‘credit duration’ and the ‘amount’, the ‘credit history’, the ‘purpose’ and the ‘age’, for

example. All of the features were used to classify a consumer as a ‘good’ or a ‘bad’

consumer concerning the credit risk.

For application as a training data set in the experiment, all numerical variables of the

German credit data set were transformed to an interval between 0 and 1. Furthermore,

the discrete variables were one-hot encoded into binary vectors. To evaluate the influ-

ence values calculated by the examined methods, the correlation coefficients of a logistic

regression model were taken as a benchmark. This was done because the logistic regres-

sion model is an accepted and implemented statistical model in the financial industry

(Ploeg, 2010).

The logistic regression model was trained using a 10-fold cross validation implemen-

ted by ‘Weka 3 Data Mining Software’ (Frank, Hall, and Witten, 2016). As the logistic

regression was applied to the German credit data set, it retrieved the correlation coef-

ficients seen in Figure 8. It is reasonable that the ‘duration’, ‘credit history’ and ‘credit

amount’ are presented as the three major variables that negatively affect the rating of a

consumer, as all three features clearly increase the risk of a credit-granting institution.

These three variables are followed by three variables with a notable but minor negative

effect: ‘instalment commitment’, ‘personal status’ and ‘existing credits’. This is also intu-

itively comprehensible: a higher instalment commitment reduces the disposable income

of the debtor, and a higher chance of a cancelled payment results as the debtor has

less liquid money for unforeseen events. This risk is intensified by other existing credits
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Figure 8: Logistic regression correlation coefficients for the German credit data set.

and the personal status of a debtor (single, married or divorced). The positive correla-

tion coefficient values of the variables ‘purpose’, ‘saving status’, ‘age’, ‘job’ and ‘foreign

worker’ intuitively make sense for the variables ‘saving status’, ‘age’ and ‘job’. However,

the variable ‘purpose’ could be expected to be either a positive or a negative influence,

depending on the purpose of the credit. This is the case if the correlation coefficients of

the individual manifestations are examined. The result for the variable ‘foreign worker’

is understandable when it is considered that the calculated correlation coefficient is as-

sociated with the manifestation of ‘no foreign worker’. Therefore, it is reasonable that

the logistic regression rates not being a foreign worker as a positive influence.

5.2.2 Neural Network Architecture

For the evaluation of the methods using the German credit data set, a neural network

was created. The architecture of the network contains one input layer with 74 inputs,

two hidden layers and one output layer. In the first hidden layer, 33 neurons were ap-

plied which used the logistic function as the activation function. For the second hidden

layer, 23 neurons were implemented which used a rectifier as the activation function.
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The output layer was from out of two neurons which used the softmax function for

activation.

After 310 iterations on the full German credit data set the training was stopped be-

cause the model did not improve further, as seen in appendix F, ‘Model Adjustments for

the DANN Models Trained on the Artificial and German Credit Data Sets’. The resulting

ROC curves can be seen in appendix C, ‘ROC Curves for the German Credit Data Set’.

Measure Target class Non target class Weighted mean
AUC 0.7348991582200977 0.7348191443730302 0.7348917400461129
GINI 0.4697983164401953 0.4696382887460607 0.4697834800922256

Table 8: Measured results for the 10-fold cross validation training of the DANN used on
the German credit data set.

Measure Target class Non target class
Precision 0.8769230769230769 0.6
Recall 0.8028169014084507 0.7241379310344828
F-Measure 0.8382352941176471 0.65625
Accuracy 0.78 0.78
AUC 0.805245264691598 0.8052452646915979
GINI 0.6104905293831959 0.6104905293831957

Table 9: Measured results for the selected DANN and a decision threshold of 0.5 model
used on the German credit data set.

Table 8 indicates the achieved AUC and GINI values following the 10-fold cross valid-

ation training. The resulting weighted mean AUC value of ∼ 0.734 and the GINI value

of ∼ 0.469 imply that the used network architecture is capable of successfully predict-

ing classes based on the artificial data set. Furthermore, the AUC value over all model

instances of the 10-fold cross validation (∼ 0.734) is similar to that of the logistic re-

gression model (∼ 0.785), whose correlation coefficients are assigned as the expected

influence values. Additionally, the GINI value of ∼ 0.469 corroborates an expected de-

gree of selectivity (Schulte-Mattler, Daun, and Manns, 2004).

The model with the highest AUC, GINI, accuracy and f-measure was selected for the

experiment. As seen in Table 9, the selected model achieved a precision of ∼ 0.877, a

recall of ∼ 0.803, an f-measure of ∼ 0.838, an accuracy of ∼ 0.78 and an AUC value of

∼ 0.805 for the target class, while producing slightly less desirable values for the non-

target class. For comparison, the logistic regression model used to calculate the expected

63



correlations between the input variables and the output variable achieved a precision

of ∼ 0.798, a recall of ∼ 0.864, an f-measure of ∼ 0.83, an accuracy of ∼ 0.752 and an

AUC value of ∼ 0.785 for the target class. The neural network model is therefore equal

to or slightly better than the logistic regression model. Additionally, the achieved GINI

value of ∼ 0.61 is comparable to accepted GINI values in the rating industry (ibid.).

Therefore, it has been demonstrated that the trained DANN model is eligible for use

with the German credit data set.

5.2.3 Experimental Results

Comparison of mean influence values and variance

The experiment using the German credit data set was performed with the aim to verify

the ability of the three selected methods to calculate the influences of an input variable

on the output variable for ‘real-world data’. The correlation coefficients calculated by

the linear regression model are used as the expected influence values because the linear

regression model is an accepted tool in the domain of the data (the financial domain).

Therefore, a method was considered to work accurately if it returns the correlation

values of the linear regression model.

LICON: As seen in Figure 9, the LICON method produced by Kasneci and Gottron

(2016) correctly identified the variables ‘duration’, ‘credit amount’, ‘instalment com-

mitment’, ‘personal status’ and ‘existing credits’ as negative influences. Furthermore,

it correctly identified the variables ‘saving status’, ‘job’ and ‘foreign worker’ as posit-

ive influences. However, the LICON method rated the variables ‘credit history’, ‘other

payment plans’ and ‘own telephone’ as a positive influence, while the linear regression

model designated them as a negative influence. In contrast, the variable ‘age’ was as-

signed a minor negative influence while the linear regression model showed otherwise.

Additionally, the variable ‘purpose’, which has a strong positive influence in the logistic

regression model, was given an influence close to zero.

However, the differences between the results of the LICON method and the logistic re-

gression seem reasonable. For example, the variable ‘credit history’ did not only contain

unpaid or delayed credit rates but also credits that were paid on time. Hence, it makes

sense that a consumer who does pay their credit rates on time is considered a low
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Figure 9: Mean influences as calculated by the LICON method for the complete German
credit data set.
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Figure 10: Variance of the influences as calculated by the LICON method for the com-
plete German credit data set.
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risk and therefore a good consumer. Furthermore, if a customer has payment plans at

other banks, it seems reasonable to expect a basic trust in the reliability of the customer

because other banks trust the customer. The near zero influence value of the variable

‘purpose’ mimics the intuitive expectation of this influence for this variable. Intuitively,

the direction and magnitude of the influence for the variable ‘purpose’ would be ex-

pected to depend heavily on the value of the variable. For example, a large credit for a

house should be considered a high-risk credit transaction, while a small consumer credit

could be viewed as a low-risk credit transaction. Thus, the variable ‘purpose’ would be

expected to receive positive and negative influence values. The aggregation of the pos-

itive and negative influence values should, therefore, result in an influence value near

to zero. However, this assumption only holds true if the German credit data set is not

biased in any direction regarding the variable ‘purpose’. In fact, the assumed positive

and negative influences were the case. The variable ‘purpose’ produced a positive mean

influence value of 1 and a negative mean influence value of -1. This reflects a strong

individual influence, such as the correlation coefficients of the logistic regression, paired

with the expected dependency of the influence direction (positive or negative).

Finally, the relatively high variance values (as seen in Figure 10), especially for the

variable ‘checking status’, indicate deviations in the magnitude of the influence values

for the individual samples.

GSA: As seen in Figure 11, the GSA method performed substantially more poorly

compared to the LICON method. It also performed more poorly for the German credit

data set compared to its performance on the artificial data set. Only the variables ‘check-

ing status’ and ‘foreign worker’ are correctly identified to have a positive influence on

the output. Meanwhile, the variables ‘duration’, ‘credit history’, ‘credit amount’, ‘instal-

ment commitment’, ‘personal status’ and ‘existing credits’ are identified as a negative

influence. However, the reliability of this result can be doubted, as all variables with the

exception of ‘checking status’ and ‘foreign worker’ were rated as a negative influence.

Even those variables which would be expected to have a positive influence, like ‘savings

status’ or ‘job’, were rated as negative. Additionally, the high variance values of between

100 and 200 further strengthen distrust concerning the GSA method as an explanation

method for a DANN. This means that the sensitivity measure based on the network’s
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Figure 11: Mean influences as calculated by the GSA method for the complete German
credit data set.
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Figure 12: Variance of the influences as calculated by the GSA method for the complete
German credit data set.
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output (as used here for the implemented GSA method) does not appear to be reliable

for the German credit data set.

PLAY: Finally, the influences for the variables ‘checking status’, ‘duration’, ‘credit his-

tory’, ‘credit amount’, ‘instalment commitment’, ‘housing’, ‘existing credits’, ‘job’ and

‘foreign worker’ calculated with the PLAY method are similar to the correlation coeffi-

cients of the logistic regression. That is to say, they indicate the same direction (positive

or negative) while they differ in the magnitude of the influence value. However, the

relatively high variance values indicate that the influence magnitudes of the individual

samples are scattered over a large range.
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Figure 13: Mean influences as calculated by the PLAY method for the complete German
credit data set.

Nonetheless, the PLAY method provides reasonable influence values. For variables

with similar values to the influence values calculated by the LICON method, the same

reasons mentioned in the above paragraph concerning the results of the LICON method

apply here. However, the variables ‘other parties’, ‘property magnitude’ and ‘num de-

pendents’, whose influence values differ from the values calculated by the LICON

method and the correlation coefficients of the logistic regression model, remain intu-

68



ch
ec

kin
g sta

tu
s

du
ra

tio
n

cre
dit

his
to

ry

pu
rp

os
e

cre
dit

am
ou

nt

sa
vin

gs
sta

tu
s

em
plo

ym
en

t

in
sta

llm
en

t co
mmitm

en
t

pe
rso

na
l s

tat
us

ot
he

r pa
rti

es

re
sid

en
ce

sin
ce

pr
op

er
ty

mag
ni

tu
de ag

e

ot
he

r pa
ym

en
t pla

ns

ho
us

in
g

ex
ist

in
g cre

dit
s

job

nu
m

de
pe

nd
en

ts

ow
n tel

ep
ho

ne

fo
re

ign
wor

ke
r

0

50

100

150

200

250
in

flu
en

ce

Figure 14: Variance of the influences as calculated by the PLAY method for the complete
German credit data set.

itively correct. If two people apply for a credit instead of one, the risk for the bank is

lowered. Furthermore, the risk is lowered if a customer can provide a property with an

equivalent value as a safety or if they can rely on others being liable for payment of the

credit.

Finally, it is interesting to consider that the influence value for the variable ‘purpose’

produced by the PLAY method differs from the influence value produced by the LICON

method. This is despite the fact that the PLAY method is based on the LICON method.

This difference, as well as the higher variances of the influence values calculated by

the PLAY method, could indicate that the PLAY method is able to truly capture the

relation between the input variables. One piece of evidence for this ability is the fact

that the PLAY method produces different influence values for the same profile point of

an input variable when the remaining variables have different values. If no connection

was present between the input variables then the calculated influence would always be

the same for a profile point, regardless of the value of the other input variables.
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Evaluation of method selectivity

To compare the selectivity of the studied methods for the German credit data set, the

AUC and GINI metrics of a logistic regression model (trained by using a 10-fold cross

validation on the influence data set for each method) were evaluated.

The resulting ROC curves and model adjustment curves can be seen in appendix J,

‘ROC Curves for the Logistic Regression Models on the Influence Data Sets’, and ap-

pendix K, ‘Model Adjustments for the Logistic Regression Models on the Influence Data

Sets’. For all three logistic regression models the training was stopped after 100 itera-

tions on the generated influence data set, as each model reached a state in which it did

not improve further. Therefore, all three methods seem to have produced influence data

sets which allowed a fast adjustment. This is in contrast to the artificial data set, where

the adjustment speed differed significantly.

Measure Target class Non target class Weighted mean
AUC 0.7342442661850359 0.7342442661850359 0.7342442661850359
GINI 0.4684885323700717 0.46848853237007165 0.46848853237007165

Table 10: Measured results for the logistic regression model trained on the influence
data set generated by the LICON method for the German credit data set.

Table 10 presents the AUC and GINI results for the logistic regression model trained

on the influence data set generated by the LICON method. The LICON method achieved

a good AUC value of ∼ 0.734 and a GINI value of ∼ 0.468, both similar to the neural

network for which the influences were calculated. Thus, the LICON method achieved a

good selectivity overall.

Measure Target class Non target class Weighted mean
AUC 0.9363181499716162 0.9363181499716163 0.9363181499716162
GINI 0.8726362999432324 0.8726362999432328 0.8726362999432324

Table 11: Measured results for the logistic regression model trained on the influence
data set generated by the GSA method for the German credit data set.

The AUC and GINI values (∼ 0.936 and ∼ 0.872) of the GSA method, displayed

in Table 11, are extraordinarily good and exceed the values calculated by the LICON

method. Thus, the logistic regression model based on the influence data set generated

by the GSA method is significantly more selective than that based on the influence
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data set produced by the LICON method. This indicates that the GSA method is more

selective than the LICON method.

Measure Target class Non target class Weighted mean
AUC 0.8219526626535223 0.8219526626535224 0.8219526626535224
GINI 0.6439053253070447 0.6439053253070447 0.6439053253070447

Table 12: Measured results for the logistic regression model trained on the influence
data set generated by the PLAY method for the German credit data set.

For the PLAY method, the resulting AUC and GINI values of the logistic regression

model trained on the influence data set are compiled in Table 12. The AUC value

(∼ 0.822) and particularly the GINI value (∼ 0.644) are better than the values cal-

culated by the LICON method. Although, the PLAY method was not able to achieve

excellent values for the AUC or GINI measures like the GSA method, a GINI value of

∼ 0.644 is usually achieved by commercially implemented rating systems or special

solution models (Schulte-Mattler, Daun, and Manns, 2004). This proves that the PLAY

method is undoubtedly more selective than the LICON method for the artificial data set.

Hence, the combination of LICON with the profile approach of the GSA method seems

(in relation to the German credit data set) at least useful in terms of selectivity.

5.2.4 Assessment of the Explanation Methods Regarding Real-World Data

For the German credit data set, the LICON and PLAY methods were able to calculate in-

fluence values with reasonable differences to the correlation coefficients of the logistic

regression. Notably, the PLAY method achieved far better values for the selectivity meas-

ure than the LICON approach. Furthermore, in the case of calculated influences of the

PLAY method which differ from the results of the LICON method, these differences are

understandable. One could even argue that LICON or the logistic regression calculate

the influences regarding the concerned variables incorrectly. However, this is only as-

sessed based on intuitive understanding of the variables’ influence in the credit decision

process. For a justified proof, the results have to be assessed by a credit risk expert.

In contrast, the GSA method achieved extraordinary values for selectivity measures

but completely failed to extract the correct or even reasonable influence values. A reason

for this inability to calculate the correct influences could be the gradient sensitivity
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measure that is used to calculate influences. Similar to the issue in the artificial data

set, the calculation of the influences based on the network’s output seems unsuccessful

for the German credit data set. Furthermore, this dependence on the network’s output

may also explain the best selectivity values of the three methods. The influence data

set produced by the GSA method consisted of influences that were mainly based on the

network’s output. Therefore, one could argue that this influence data set consisted of

nothing other than the network’s outputs. So, the logistic regression, which was applied

on the influence data set, attempted to classify the target class based on the outputs

predicted by the DANN. The high AUC and GINI values of the GSA method could then

be at least partly explained by the already high values achieved by the DANN. For all

that, as the calculated influences of the GSA are far from the expected influence values

the method seems to be generally inapplicable for the explanation of a DANN with the

German credit data set.

The PLAY method, on the other hand, combines the ability to identify correct and

reasonable influence values of the LICON method with the good selectivity of the GSA

method. Therefore, as for the artificial data set, the PLAY method seems to be an en-

hancement of the LICON method or a good sensitivity measure for the GSA method for

this data set. Thus, for the German credit data set the null hypothesis can be rejected.
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5.3 MNIST Handwritten Digits

5.3.1 Data Set

In addition to the above mentioned artificial data set and the German credit data set,

which tested the methods’ theoretical and ‘real-world’ ability to calculate the correct

influences, the methods were also evaluated on a benchmarking data set. This data

set is the MNIST database of handwritten images, which has been used in multiple

research papers to verify the accuracy of DANNs (Keysers, 2007; Mizukami et al., 2010;

Simard, Steinkraus, and Platt, 2003). Classifying handwritten digits is a task that can be

easily solved by a human, as a human can intuitively understand which pixel affects the

classification of an image for a particular digit. Therefore, it is assumed to be equally

easy for a human to assess the calculated influences of an explanation method, if the

influences are presented as an image (Kasneci and Gottron, 2016).

The images of the digits in the MNIST data set have a size of 28 by 28 pixels. Figure 15

provides an example of the various possible types of handwritten digits, and illustrates

how the data set contains slightly rotated, thinner or thicker and skewed digits. Addi-

tionally, some digits are written in different ways (for example digits 4, 7 and 9). They

might be open or closed at the top (digit 4), ccontain a horizontal dash in the middle

(digit 7) or be written with a straight line or a slight curve at the end.

The MNIST data set consists of two parts: a training set which contains 60,000 la-

belled images, and a test set which contains only 10,000 labelled images. For this thesis

the test set with 10,000 records of handwritten digits was used, as the number of records

was sufficient for the experiment. For the training of the digit-specific binary classifiers,

10 copies of the data set were created in which the values of the class variable were

mapped to either the value ‘TargetClass’ or the value ‘NonTargetClass’, depending on

the target class of the binary classifier. Furthermore, the values of the input variables

were transformed to a value between 0 and 1.
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Digit 0 Digit 1 Digit 2

Digit 3 Digit 4 Digit 5

Digit 6 Digit 7 Digit 8

Digit 9

Figure 15: Examples of the entries in the MNIST database of handwritten images.

5.3.2 Neural Network Architecture

For evaluation of the methods with the MNIST data set, a neural network was created

for every digit. The architecture of the networks was composed of one input layer with

784 (28×28) inputs, three hidden layers and one output layer. In the first hidden layer

33 neurons were applied, in the second hidden layer 13 neurons were implemented, and

the third layer was built with two neurons. For every hidden layer the logistic function

was used as the activation function. In the output layer two neurons, which use the

softmax function as the activation function, were used.

After 20 iterations on the associated MNIST data set, the training of each digit-specific

DANN was stopped because the model did not improve further, as shwon in appendix

G, ‘Model Adjustment for the DANN Models Trained on the MNIST Database of Hand-

written Digits’. The resulting ROC curves of the 10-fold cross validation can be seen

in appendix D, ‘ROC Curves of the 10-fold Cross Validation for the MNIST Database of

Handwritten Digits’. Additionally, the ROC curves of the selected model can be viewed in

appendix E, ‘ROC Curves of the Selected Models for the MNIST Database of Handwritten

Digits’.
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Measure Target class Non target class Weighted mean
AUC 0.9943361476071346 0.9943361476071342 0.9943361476071342
GINI 0.9886722952142692 0.9886722952142684 0.9886722952142685

Table 13: Measured results for the 10-fold cross validation training of the DANN model
used on the MNIST data set with the digit 3 as the target class.

Measure Target class Non target class
Precision 0.9553571428571429 0.9898648648648649
Recall 0.9224137931034483 0.994343891402715
F-Measure 0.9385964912280702 0.9920993227990971
Accuracy 0.986 0.986
AUC 0.9984006865345607 0.9984006865345609
GINI 0.9968013730691214 0.9968013730691219

Table 14: Measured results for the selected DANN model and a decision threshold of 0.5
used on the MNIST data set with the digit 3 as the target class.

Table 13 presents an example of the achieved AUC and GINI values following the

10-fold cross validation training for the network trained with the digit 3 as the target

class. A full overview of the results for all 10 MNIST networks is detailed in appendix H,

‘Measured results for the 10-fold cross validation training of the MNIST DANN models’.

The resulting weighted mean AUC value of ∼ 0.994 and GINI value of ∼ 0.989 show

that the used network architecture is capable of successfully predicting classes based

on the MNIST data set. Additionally, the GINI value of ∼ 0.989 confirms a significantly

high degree of selectivity (Schulte-Mattler, Daun, and Manns, 2004).

For the experiment, the model with the highest AUC, GINI, accuracy and f-measure

values was selected. A full overview of the results for all of the selected MNIST networks

can be seen in appendix I, ‘Measured results for the 10-fold cross validation training of

the MNIST DANN models’. As seen examplarily in Table 14, the model selected for the

networks that were trained with the digit 3 as the target class achieved a precision

of ∼ 0.955, a recall of ∼ 0.922, an f-measure of ∼ 0.939, an accuracy of ∼ 0.986 and

an AUC value of ∼ 0.998 for the target class, while achieving slightly better values for

the non-target class. Additionally, the achieved GINI value of ∼ 0.996 indicates a high

selectivity for the selected model (ibid.). Thus, the trained DANN models are eligible

for use with the associated MNIST data sets.
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5.3.3 Experimental Results

The experiment performed with the MNIST data set was different to those performed

with the artificial and the German credit data sets, due to the fact that the MNIST

data set contains 10,000 records and 784 input variables per record. The calculation of

the influence values for all 784 inputs of a single record with the LICON method took

around 150 milliseconds. Since the PLAY method calculates the LICON influences for

six profile points for each variable, the calculation for a single record took around 11

minutes and 45 seconds. Thus, calculation of the influences for all 10,000 records of all

10 digits would take 10, 000× 10× 11.76 min = 1, 176,000 min, which implies a time

lapse of around 2.24 years. The examined data set was therefore reduced to 100 records

per digit-specific data set. To obtain a well-balanced data set for the evaluation, the first

50 records of the target class and the first 50 records of the non-target class were taken.

The selected records were then shuffled to prevent any bias or semi-optimal solution for

the selectivity test.

Comparison of influence values for individual examples

For each of the 100 records of the digit-specific MNIST data sets, the influence val-

ues were calculated using all three methods. Figures 16 to 25 display and compare the

influences of the examples given in Figure 15 for all three methods. Additionally, ap-

pendix L, ‘Mean and Variance Images for the MNIST Data Sets’ presents the mean and

the variance over all influence values calculated for a digit-specific MNIST data set. The

pixels colored in blue indicate a positive influence, while the pixels coloured in red sym-

bolise a negative influence. The intensity of the colour refers to the magnitude of the

influence.

LICON: The results calculated by the LICON method are intuitively understandable.

For the digit zero, it is comprehensible that black pixels in the centre of the image

(where the zero has its hallmark) would negatively influence the classification of the

image as a zero. Meanwhile, the blue pixels indicating positive influence form a circle-

like shape around the centre. The behaviour whereby pixels in the shape of the target

76



class support the class and pixels outside the shape reject it can be observed in the

influence images of all digits.

Besides the direction of the influences (positive or negative), their magnitude also

seems reasonable. For example, the influence images of the digits 2, 5 and 6 show

strong negative influences in an area that would create a different shape or digit if the

pixels were black. In the image of the digit 2, the middle area on the left-hand side is

rated as a strongly negative influence. This is reasonable, as this area is usually painted

black for digits like 3 or 8. For the digit 5 and 6 the top right-hand area is indicated to

have a strong negative influence, because a 5 become a 9 and a 6 become an 8 if the

top right-hand pixels were black.

GSA: Notably, the influences calculated by the GSA method are negative for almost all

digits. The GSA method indicates a negative influence for nearly every pixel, regardless

of the target class. This is a substantial difference to the influences calculated by the

LICON method. Most of the influence images of the GSA method fail to exhibit any of

the expected digit shapes, with the exception of images for the digit 3. In these images a

silhouette of the figure 3 can be identified. However, it is not possible to find an obvious

explanation for these calculated influences.

PLAY: The influences calculated with the PLAY method are similar to those calcu-

lated with LICON. A notable difference is, however, a greater distinction between the

individual positive and negative influence areas. The blue and red pixels in the im-

ages created by the LICON method often join together, with only a few white pixels in

between. In comparison, pixels in the images produced by the PLAY method are more

concentrated and thus provide a clearer picture of the significant influence areas.

Despite these good results for the PLAY method, it should be mentioned that the

influence images for the digit 7 are somewhat weak in their ability to explain the input

influences. Most of the influence values in these four examples have a small magnitude

and therefore seem to have no effect on the predicted output. For the digit 7, a few

records produced influence values with a greater magnitude. A possible reason is that

the binary classifier for the digit 7 is specialised in finding records which are in fact not

7. This seems reasonable, since the influence images produced for the digit 7 data set

show stronger influences for non-target class records.
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LICON PLAY GSA

Figure 16: Calculated influences for examples of the digit 0.

LICON PLAY GSA

Figure 17: Calculated influences for examples of the digit 1.

LICON PLAY GSA

Figure 18: Calculated influences for examples of the digit 2.

LICON PLAY GSA

Figure 19: Calculated influences for examples of the digit 3.
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LICON PLAY GSA

Figure 20: Calculated influences for examples of the digit 4.

LICON PLAY GSA

Figure 21: Calculated influences for examples of the digit 5.

LICON PLAY GSA

Figure 22: Calculated influences for examples of the digit 6.

LICON PLAY GSA

Figure 23: Calculated influences for examples of the digit 7.
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LICON PLAY GSA

Figure 24: Calculated influences for examples of the digit 8.

LICON PLAY GSA

Figure 25: Calculated influences for examples of the digit 9.

Evaluation of methods selectivity

Similar to the selectivity tests performed with the influence data sets that were calcu-

lated from the artificial and the German credit data sets, a selectivity test was performed

for the influence data sets produced from the digit-specific MNIST data sets. However,

the results were unsatisfactory because the digit-specific MNIST data sets contained only

100 records each. A logistic regression model trained on only 100 data samples with a

degree of freedom of 3,137 (1,568 positive and negative influences + 1,569 mean and

variance values of the various input manifestations) is able to ‘remember’ the class val-

ues for every record. Thus, all of the performed logistic regressions achieved AUC and

GINI values of ∼ 1. As a consequence it was not possible to draw any useful or reliable

conclusions from this part of the experiment. The only mentionable observation is that

the logistic regression model, trained on the influence data sets constructed with the

GSA method, performed slightly worse (around 0.01) than the models trained on the

data sets produced by the LICON or the PLAY methods. However, the usefulness of this

observation is questionable.
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5.3.4 Assessment of the Explanation Methods Regarding Benchmarking Data

Even though it was not possible to perform selectivity tests for the MNIST data set due

to time constraints, it is still plausible to assess the methods based on their produced in-

fluence values. The LICON method produced reasonable influence values for the MNIST

data set. This is in compliance with the results of the artificial and the German credit

data sets. Therefore, the LICON method once again proved to be a reliable explanation

method.

In comparison, the GSA method (at least as implemented in this thesis) again failed to

produce reasonable influences. The PLAY method, however, retained the capabilities of

the LICON method and produced reasonable influence values. Furthermore, it improved

LICON by separating or concentrating the individual influence values, resulting in a

clearer view of the separate positive and negative influence areas if displayed as an

image.

In summary, the prevalent hypothesis – that the PLAY method is less good and se-

lective as the compared existing methods – can be partly rejected. It was possible to

demonstrate that the PLAY method produces influence values for the MNIST data set

that are comparable to or better than existing methods. However, as the selectivity was

not tested for the MNIST data set, a statement concerning selectivity cannot be made.
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6 Conclusions

The overall aim of this research was to explain the influence of input variables on the

decision of a deep artificial neural network. The specific research objectives were:

1. To define the term explanation with respect to DANNs.

2. To identify existing explanation methods.

3. To develop a new explanation method for DANNs.

4. To compare the proposed method for existing explanation methods.

5. To assess the presented methods.

This chapter revisits the research objectives above, summarises the findings of this re-

search work and offers the resulting conclusions.

6.1 Research Objectives: Summary of Findings and Conclusions

To accomplish the first objective, chapter 2.1 addressed the definition of explainability

with regards to DANNs. The literature review examined the various uses and definitions

for terms like ‘explainability’, ‘explanation’, ‘interpretation’, ‘relevance’ and ‘understand-

ing’ in the context of DANNs. Since a plethora of definitions and different uses for these

terms exist in connection with research that addresses explanation methods for a neural

network’s decisions, a lack of a commonly agreed on and consistently used definition

was identified. This led to the conclusion that a research work concerned with the ‘ex-

planation’ of DANNs has to clarify its aim and therefore the term itself. As a result,

this thesis provided its own definition for the terms ‘explanation’, ‘interpretation’ and

‘understanding’ for the context of this research.

The second objective was addressed in the second part of the literature review in

chapter 2.2. The conducted literature review explored the existing approaches to ex-

plain a neural network’s decision described within the academic research, categorised

these approaches and highlighted challenges and possibilites. It was revealed that a

large number of explanation methods exist, which were classified into groups of ‘con-

nection weight’, ‘sensitivity analysis’ and ‘back propagation based’ methods. Analysing
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these groups of explanation methods yielded that the ‘connection weight’ methods were

mainly developed for small networks containing a maximum number of three layers and

had issues concerning their reliability. Thus, they are not applicable for the explanation

of a DANN’s decision. In contrast, the ‘sensitivity analysis’ and ‘back propagation based’

methods were found to be popular, applicable to DANNs and promising concerning their

results. The work conducted for the second objective also included an assessment of the

existing explanation methods regarding their compliance to the definitions of the terms

‘explanation’, ‘interpretation’ and ‘understanding’, given as a result of objective 1. This

resulted in a comprehensible overview of the methods’ explanation abilities.

To achieve the third objective, two existing explanation methods (GSA and LICON)

from the popular method groups ‘sensitivity analysis’ and ‘back propagation based meth-

ods’ were selected. By combining the core features of the two existing methods, the new

explanation method PLAY was developed. PLAY uses profiled input vectors (a feature

of GSA) and a back propagation based gradient calculation (a feature of LICON) to

determine the influence of an input variable on the output of a DANN.

To address objective 4 and 5, the three methods were tested on three different data

sets. For the experiments, an artificial data set, a ‘real-world’ data set and a benchmark-

ing data set were used. The artificial data set was generated with given correlations

between the input variables and the dependent output variable in order to ensure the

theoretical ability of the methods to identify the expected input influences. The ‘real-

world’ data set was used in order to test if the influence values produced by the methods

are similar to accepted statistical models. Finally, the benchmarking data set was used

to test the methods’ abilities on a widely used data set.

The comparison of the methods showed that the LICON method always achieved a

good result for the influences, if compared to the expected values. In contrast, the GSA

method produced poor influence results, though it always achieved a higher selectivity

than the LICON method. The PLAY method, however, was able to combine the positive

attributes of both methods. It achieved comparable (if not even better) influence res-

ults than LICON while achieving a higher selectivity. Furthermore, because of the PLAY

method’s construction and the additional information it returns, it takes over the good

DCS values of the GSA method. Therefore, this research has shown that the new de-
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veloped method PLAY is justified and the null hypothesis stated in chapter 3.1 has to be

rejected. Thus the alternative hypothesis has to become the prevalent hypothesis.

6.2 Contribution to Knowledge

Questioning the contribution of this thesis to the scientific research knowledge, two

aspects can be brought up: The overview of explanation methods ranked by the DCS

and the uniquely proposed explanation method.

A literature review itself is not worth mentioning in this context because other re-

searchers already used this technique to give an overview of the scientific knowledge.

However, to the best knowledge of the author, so far no researcher used a score to

rate the compliance of existing explanation methods to given definitions for the terms

‘explanation’, ‘interpretation’ and ‘understanding’.

The proposed method PLAY is another contribution to the scientific research know-

ledge, even though other researchers proposed explanation methods before and used a

similar experimental setup to justify their method. However, to the best knowledge of

the author, no researcher before combined a profiling sensitivity analysis method with

a back propagation based method. Therefore, this research offers a new approach to

explain the decision of DANNs.

6.3 Limitations of the PLAY Method and Possible Future Research

Even though the PLAY method presented itself with overall good results in this research,

a few points for possible improvement have to be mentioned. First of all, some of the

evaluated results showed that the PLAY method is imprecise in certain cases. For ex-

ample, it overestimated some of the calculated influences for the artificial data set.

Therefore, further research is necessary to find potential flaws that were not detected

by this research.

Another limitation of the PLAY method is its computational cost. The time taken

to calculate the influence for a very complex DANN with lots of inputs shoots up by

every additional evaluated profile point. Therefore, the PLAY method is currently only

reasonable if applied as an in-depth examination of a classification example. For a time

efficient overview of the influences for a complete data set, this research revealed that
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up to date the LICON method should be preferably used. However, further research

could result in an optimisation of the PLAY method’s runtime and thus make the method

suitable for an extended application.

Finally, this research was not able to test the influences calculated with the PLAY

method for a combination of inputs and it was not it possible to test further data sets

due to time constraints. Thus, the investigation of this questions may be a starting point

for possible further research.

85



Appendices

A Overview and Use of Notation

Symbol Explanation

M Trained DANN model.

#I Number of inputs.

#L Number of layers in the DANN.

#N l Number of nodes in the layer l.

z(l)i The i-th Neuron in layer l.

x0 Transformed input vector feeding into the first layer of the net-

work.

x0
i i-th value of the transformed input vector, i.e. the i-th part of an

input variable (e.g. discrete input variables consist of an input

value for each possible state of the variable).

x l Output vector calculated in layer l.

x l
i Output value calculated for the i neuron in layer l.

wl Weight matrix for layer l.

wl
ji Weight connecting neuron i in layer l and neuron j in layer l−1.

If two neurons i and j are not connected their weight is defined

as 0.

bl Bias weights for layer l.

bl
i Bias weight for neuron i in layer l.

f (l)′i Derivative of the activation function for the i-th neuron in layer

l.

α
(l)
ik Approximated local behavior (influence) for input parameter x (0)i

in the linear approximation at the k-th neuron in layer l. In par-

ticular, α(#L)
ik provides the influence for input parameter x (0)i on

the k-th component of the output vector of the overall network.

β (l) Weighted gradients for layer l.
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β
(l)
i j Weighted gradient of the local linear approximation for neuron

z(l)i of the l-th layer and the j-th input value feeding into the

neuron z(l)i .

X List of input vectors x0.

#X Number of elements in X .

X [h] h-th Element of the list of input vectors X .

X [∗] Tail of the list. Used to add elements to the list of input vectors.

x (0)b Transformed input vector used as a base for the profiling proced-

ure.

F Set of input variables/features to profile.

p Number of profiles to generate for a single input variable.

Predic t(M , X [i]) Prediction function of the model M . Predicting the output vector

for the input vector X [i].

~y (h) Output vector predicted by the model M for the input vector

X [h].

~y (h)k The k-th element of the output vector predicted by the model

M for the input vector X [h]. In particular, ~y (h)0 symbolises the

output for the target class and ~y (h)1 smybolises the output for the

non target class in case of a binary classifier for the input vector

X [h].

ga0 The gradient sensitivity measure for the input variable/feature

a concerning the target class. Thus, the positive influence of the

input variable on the target class.

ga1 The gradient sensitivity measure calculated for the input vari-

able/feature a concerning the non target class. Thus, the negative

influence of the input variable on the target class.

g List of all gradient sensitivity measure calculated for each ana-

lysed input variable/feature in F .

#opt(a) Number of possible options for the discrete input variable/feature

a.
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opt i(a) The i-th option for the discrete input variable/feature a.

max(a) Maximum possible value for the continuous input vari-

able/feature a.

min(a) Minimum possible value for the continuous input vari-

able/feature a.

Sa Sequence i.e. list of profiled values for input value/feature a.

Sa[i] The i-th element of the list of profiled values for the input

value/feature a.

t Total number of input vectors created by the profiling process.

e Number of times each entry of the profiled values list Sa has to

be repeated in the Repeat function for a complete combination

of all profiled input variables/features.

m Number of times each sequence/list of profiled values has to be

repeated as a whole in the Repeat function for a complete com-

bination of all profiled input variables/features.

Ra List of repeated sequences/profiled input values for the input

variable/feature a.

Ra[i] The i-th entry of the list of repeated sequences/profiled input

values for the input variable/feature a.

x (0)ba Part of the base vector for input variable/feature a.

#Y Number of outputs of the DANN. As the thesis is limited to a

binary classifier, the number of outputs of the DANN is always 2.

A Matrix of calculated influences (α(#L)) for all profiled input vec-

tors using the LICON method.

A[h, i, k] The calculated influence (α(#L)
ik ) of input value i on the output

value k for the h-th input vector X [h] using the LICON method.

Ā[∗, i, 0] The mean of the calculated influences for the i-th input value of

the input vector on the target class over all profiled input vectors.

mik The mean of the calculated influences of the i-th input value on

the k-th output value.
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vik The variance of the calculated influences of the i-th input value

on the k-th output value.

p The defined correlation of input variable xp with the dependent

class variable y .

xp An input variable with a correlation of p to the dependent class

variable y .

Overview and use of notation.
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B ROC Curves for the Artificial Data Set

Target class Non target class

ROC curves of every model of the 10-fold cross validation for the artificial data set.

Target class Non target class

ROC curves of the selected DANN model for the artificial data set.
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C ROC Curves for the German Credit Data Set

Target class Non target class

ROC curves of every model of the 10-fold cross validation for the German credit data set.

Target class Non target class

ROC curves of the selected DANN model for the German credit data set.
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D ROC Curves of the 10-fold Cross Validation for the MNIST Database of

Handwritten Digits

Target class Non target class

Target class 0

Target class Non target class

Target class 1

Target class Non target class

Target class 2
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Target class Non target class

Target class 3

Target class Non target class

Target class 4

Target class Non target class

Target class 5

Target class Non target class

Target class 6
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Target class Non target class

Target class 7

Target class Non target class

Target class 8

Target class Non target class

Target class 9

ROC curves of every model of the 10-fold cross validation for the MNIST data set.
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E ROC Curves of the Selected Models for the MNIST Database of Handwritten

Digits

Target class Non target class

Target class 0

Target class Non target class

Target class 1

Target class Non target class

Target class 2
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Target class Non target class

Target class 3

Target class Non target class

Target class 4

Target class Non target class

Target class 5

Target class Non target class

Target class 6
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Target class Non target class

Target class 7

Target class Non target class

Target class 8

Target class Non target class

Target class 9

ROC curves of the selected DANN model for the MNIST data set.
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F Model Adjustments for the DANN Models Trained on the Artificial and

German Credit Data Sets

Model adjustment for the artificial data set.

Model adjustment for the German credit data set.
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G Model Adjustment for the DANN Models Trained on the MNIST Database of

Handwritten Digits

Target class 0 Target class 1

Target class 2 Target class 3

Target class 4 Target class 5

Target class 6 Target class 7
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Target class 8 Target class 9

Model adjustment for the MNIST data set.
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H Measured results for the 10-fold cross validation training of the MNIST DANN

models

Measure Target class Non target class Weighted mean

AUC 0.9980936089984965 0.9980936089984964 0.9980936089984964

GINI 0.9961872179969928 0.9961872179969927 0.9961872179969928

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 0 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.998796342373518 0.9987963423735178 0.9987963423735179

GINI 0.9975926847470358 0.9975926847470356 0.9975926847470356

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 1 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.9921260185979422 0.9921260185979427 0.9921260185979426

GINI 0.9842520371958846 0.9842520371958852 0.9842520371958852

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 2 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.9943361476071346 0.9943361476071342 0.9943361476071342

GINI 0.9886722952142692 0.9886722952142684 0.9886722952142685

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 3 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.996345550869439 0.99634555086944 0.99634555086944

GINI 0.9926911017378878 0.9926911017378882 0.9926911017378882

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 4 as the target class.
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Measure Target class Non target class Weighted mean

AUC 0.9926475931992749 0.9926475931992752 0.9926475931992752

GINI 0.98525951863985498 0.98525951863985506 0.98525951863985504

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 5 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.995850667556361 0.995850667556356 0.995850667556356

GINI 0.9917013351127123 0.9917013351127116 0.9917013351127116

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 6 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.9938779297901568 0.9938779297901565 0.9938779297901565

GINI 0.9877558595803135 0.987755859580313 0.987755859580313

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 7 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.9910567895550149 0.9910567895550146 0.9910567895550146

GINI 0.9821135791100294 0.98211357911003 0.9821135791100295

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 8 as the target class.

Measure Target class Non target class Weighted mean

AUC 0.9904080058921272 0.9904080058921267 0.9904080058921266

GINI 0.980816011784254 0.9808160117842535 0.9808160117842535

Measured results for the 10-fold cross validation training of the DANN model used on
the MNIST data set with the digit 9 as the target class.
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I Measured results for the 10-fold cross validation training of the MNIST DANN

models

Measure Target class Non target class

Precision 0.9560439560439561 0.9988998899889989

Recall 0.9886363636363636 0.9956140350877193

F-Measure 0.9720670391061453 0.9972542559033497

Accuracy 0.995 0.995

AUC 0.9997383373205742 0.9997383373205742

GINI 0.9994766746411483 0.9994766746411483

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 0 as the target class.

Measure Target class Non target class

Precision 0.9705882352941176 0.9977728285077951

Recall 0.9801980198019802 0.996662958843159

F-Measure 0.9753694581280787 0.9972175848636617

Accuracy 0.995 0.995

AUC 0.9995594665139484 0.9995594665139484

GINI 0.9991189330278969 0.9991189330278969

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 1 as the target class.

Measure Target class Non target class

Precision 0.9484536082474226 0.9955703211517165

Recall 0.9583333333333334 0.9944690265486725

F-Measure 0.9533678756476685 0.9950193691200886

Accuracy 0.991 0.991

AUC 0.9992740597345133 0.9992740597345132

GINI 0.9985481194690267 0.9985481194690264

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 2 as the target class.
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Measure Target class Non target class

Precision 0.9553571428571429 0.9898648648648649

Recall 0.9224137931034483 0.994343891402715

F-Measure 0.9385964912280702 0.9920993227990971

Accuracy 0.986 0.986

AUC 0.9984006865345607 0.9984006865345609

GINI 0.9968013730691214 0.9968013730691219

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 3 as the target class.

Measure Target class Non target class

Precision 0.927710843373494 0.9912758996728462

Recall 0.9058823529411765 0.9934426229508196

F-Measure 0.9166666666666667 0.99235807860262

Accuracy 0.986 0.986

AUC 0.9980070716811315 0.9980070716811316

GINI 0.9960141433622629 0.9960141433622631

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 4 as the target class.

Measure Target class Non target class

Precision 0.8958333333333334 0.9966814159292036

Recall 0.9662921348314607 0.9890230515916575

F-Measure 0.9297297297297298 0.9928374655647383

Accuracy 0.987 0.987

AUC 0.9968425856263644 0.9968425856263644

GINI 0.993685171252788 0.993685171252788

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 5 as the target class.
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Measure Target class Non target class

Precision 0.99 0.9933333333333333

Recall 0.9428571428571428 0.9988826815642458

F-Measure 0.9658536585365853 0.9961002785515319

Accuracy 0.993 0.993

AUC 0.9996594839052939 0.9996594839052939

GINI 0.9993189678105878 0.9993189678105878

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 6 as the target class.

Measure Target class Non target class

Precision 0.9292929292929293 0.9922308546059934

Recall 0.9292929292929293 0.9922308546059934

F-Measure 0.9292929292929293 0.9922308546059934

Accuracy 0.986 0.986

AUC 0.9981165708135742 0.9981165708135745

GINI 0.9962331416271484 0.996233141627149

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 7 as the target class.

Measure Target class Non target class

Precision 0.9680851063829787 0.9911699779249448

Recall 0.9191919191919192 0.9966703662597114

F-Measure 0.9430051813471503 0.9939125622578859

Accuracy 0.989 0.989

AUC 0.9970066929001447 0.9970066929001445

GINI 0.9940133858002893 0.9940133858002891

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 8 as the target class.
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Measure Target class Non target class

Precision 0.9866666666666667 0.985945945945946

Recall 0.8505747126436781 0.9989047097480832

F-Measure 0.9135802469135803 0.9923830250272035

Accuracy 0.986 0.986

AUC 0.9943598846797849 0.994359884679785

GINI 0.9887197693595697 0.98871976935957

Measured results for the selected DANN model and a decision threshold of 0.5 used on
the MNIST data set with the digit 9 as the target class.
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J ROC Curves for the Logistic Regression Models on the Influence Data Sets

LICON GSA PLAY

ROC curves of the logistic regression model for the target class trained on the influence
data set build by each method for the artificial data set.

LICON GSA PLAY

ROC curves of the logistic regression model for the non target class trained on the influ-
ence data set build by each method for the artificial data set.

LICON GSA PLAY

ROC curves of the logistic regression model for the target class trained on the influence
data set build by each method for the German credit data set.

LICON GSA PLAY

ROC curves of the logistic regression model for the non target class trained on the influ-
ence data set build by each method for the German credit data set.
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K Model Adjustments for the Logistic Regression Models on the Influence Data

Sets

LICON GSA PLAY

Model adjustment for the logistic regression model trained on the influence data set
build by each method for the artificial data set.

LICON GSA PLAY

Model adjustment for the logistic regression model trained on the influence data set
build by each method for the German credit data set.
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L Mean and Variance Images for the MNIST Data Sets

For the images showing the mean influence values, blue colored pixels indicate a posit-

ive influence and red colored pixels display a negative influence. For the images showing

the variance of in the influence values, black indicates the highest and white the lowest

variance.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 0.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 1.
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LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 2.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 3.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 4.
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LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 5.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 6.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 7.
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LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 8.

LICON PLAY GSA

Mean (top) and variance (bottom) of all influences calculated with the MNIST data set
for the digit 9.
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