
Finding dependencies
between time series
in satellite data
Finden von Abhängigkeiten zwischen Zeitreihen in Satellitendaten
Master-Thesis von Elvir Sabic
Tag der Einreichung:

1. Gutachten: Johannes Fürnkranz
2. Gutachten: Hien Q. Dang

Fachbereich Informatik
Knowledge Engineering Group

Finding dependencies between time series in satellite data
Finden von Abhängigkeiten zwischen Zeitreihen in Satellitendaten

Vorgelegte Master-Thesis von Elvir Sabic

1. Gutachten: Johannes Fürnkranz
2. Gutachten: Hien Q. Dang

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle
Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich ge-
macht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prü-
fungsbehörde vorgelegen.

Darmstadt, den September 18, 2017

(E. Sabic)

i

Zusammenfassung
Wenn Satellitenmissionen durchgeführt werden, müssen Fachexperten diese überwachen
und in der Lage sein zuverlässige Aussagen über die Zustände der Satelliten zu ma-
chen, sodass weitere Entscheidungen korrekt getroffen werden können. Die Firma na-
mens Solenix stellte einen sehr großen Datensatz zur Verfügung welcher Messungen von
einer aktuellen, europäischen Satellitenmission enthält, die wiederum über die Zeit aufge-
nommen wurden. Solenix schlug vor eine Lösung zu entwickeln, welche Abhängigkeiten
zwischen Zeitreihen ermittelt um sie dadurch zu gruppieren.

Ein informationstheoretisches Maß namens Transfer Entropie wurde in dieser Arbeit
verwendet. Es quantifiziert gerichtete Auswirkungen zwischen Zeitreihen und vor allem
benötigt es kein Fachwissen über den Datensatz. Eine Pipeline zum verarbeiten der Da-
ten wurde implementiert und dann für die Durchführung von Experimenten genutzt bei
denen mehrere Relationen zwischen Zeitreihen untersucht wurden. Die Transfer Entro-
pie Werte wurden für verschiedene Zeitlängen und verschiedene Zeitraten berechnet, um
verschiedene Variationen von Abhängikeiten zu ermitteln.

Tatsächlich fanden wir die Ergebnisse meistens erklärbar, bedeutsam und unterscheid-
bar. Wir waren ebenfalls in der Lage Paare von Zeitreihen jeweils zu untersuchen aber
auch alle Abhängkeiten zusammen auf einem gerichteten Graphen abzubilden, wo man
wiederum separate Gruppen von Sensoren entdecken konnte. Basierend auf den Ergeb-
nissen behaupten wir, dass diese Lösung sich potenziell zur Fehlererkennung eignet.

ii

Abstract
When satellite missions are conducted, domain experts who monitor several satellites
need to be able to provide reliable information about the states of the active satellites so
that further decisions can be made correctly. A company called Solenix provided a large
data set containing measurements from a current European satellite mission which were
recorded over time. For these time series, Solenix suggested to develop a solution that
identifies dependencies between time series in order to group them.

An information theoretic measure called transfer entropy was used in this work. It
quantifies directional aspects between time series and most notably, it does not require
any domain knowledge about the data set. A data processing pipeline was implemented
and used to conduct different experiments where multiple relations between time series
were investigated. We computed the transfer entropy values for different time lengths and
different time rates in order to capture different variations of dependencies.

In fact, we found that the results were explainable, meaningful and distinguishable
most of the time. Also, we were able to investigate pairs of time series independently and
visualize all dependencies as a directed graph where one was able to discover separate
groups of sensors. Based on the results, we claim that this solution may potentially be
useful for flaw detection.

iii

Contents

1. Introduction 1
1.1. Working with time series . 1

1.1.1. Measuring similarity between time series 2
1.1.2. Causality detection and dependency modeling 2

1.2. Problem Statement . 3
1.3. Related Work . 4
1.4. Organization of the thesis . 4

2. Data Analysis 7
2.1. Feature Description . 7
2.2. Statistics . 8
2.3. Sort out Sensors . 10

3. Theoretical Background 11
3.1. Time Series Analysis . 11

3.1.1. Stationary Stochastic Process . 11
3.1.2. Autoregressive Process . 12
3.1.3. Markov Process . 12

3.2. Information Theory . 13
3.2.1. Entropy . 13
3.2.2. Relative Entropy (Kullback-Leibler divergence) 14
3.2.3. Mutual Information . 15
3.2.4. Entropy Rate . 15
3.2.5. Transfer Entropy . 16
3.2.6. Notes on continuous random variables 17

3.3. Probability Density Estimation . 18
3.3.1. Parametric Methods . 18
3.3.2. Nonparametric Methods . 19

4. Approach and Implementation 23
4.1. Data Processing Pipeline . 24

4.1.1. Pre-processing . 25
4.1.2. Transfer Entropy Estimators . 28
4.1.3. Analysis & Visualization . 32

4.2. Hypothesis for Dependency Detection . 34
4.3. Parameter Settings . 34

v

5. Experiments and Results 37
5.1. Performance of Estimators . 37
5.2. Example: Unidirectionally Coupled Maps . 38
5.3. Example: Heart-Breathrate Interaction . 39
5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 40

5.4.1. Results for short-term dependencies . 41
5.4.2. Results for long-term dependencies . 46
5.4.3. Comparing both experiments . 50

5.5. Investigation of relations between all sensors 50
5.5.1. Results for short-term dependencies . 50

6. Conclusion and Future Work 55
6.1. Conclusion . 55
6.2. Future Work . 55

A. Investigation of Schreiber’s Examples 57
A.1. Estimations for different sample lengths . 57
A.2. Investigation of KSG Estimator . 57
A.3. Plots for Heart-Breathrate . 59

B. Further Investigation: Analysis & Visualization 60
B.1. Plots . 60
B.2. Directed Graphs . 62

C. Further Investigation: Query Results 65
C.1. Results for short-term dependencies . 65
C.2. Results for long-term dependencies . 66
C.3. Results for short-term dependencies (all sensors) 67

List of Figures 68

List of Tables 71

References 73

vi Contents

1 Introduction
With the continuous progress in computer science and related technologies more
problems can be solved by computers in a feasible amount of time. Especially data
science draws more attention since nowadays more and more data is produced in
almost any environment. By collecting and investigating data it is possible to get
more insight about the corresponding environment and learn from it or even auto-
mate tasks. However, one cannot handle this vast amount of information by himself.
Therefore one has to rely more and more on data mining and machine learning
techniques in order to generalize data or create algorithms that help solving certain
tasks. Furthermore, the complexity of analyzing data becomes even higher when
time indices are involved.

Time-indexed data are usually called time series. A time series is a sequence of
observations taken sequentially in time and indexed with timestamps. Many exam-
ples of time series can be found in different task fields like economics, business,
natural sciences, neuroscience, social science and ecology. One feature that all kind
of time series share is that usually adjacent observations are dependent. Thus, based
on that property many stochastic and dynamic models have been studied [5] in a
linear fashion as well as in a non-linear fashion [12].

1.1 Working with time series

Depending on the data a variety of methods exist to tackle the corresponding prob-
lem. When working with time series, common tasks are to identify and build models
that represent the behavior of the data. Also it is important to fit parameters prop-
erly and check, if the created model is appropriate. According to Box et al. [5] five
important areas of application exist:

1. Forecasting of future values of a time series

2. Estimation of transfer functions which relate an input process to an
output process

3. Analysis of effects of unusual intervention events to a system

4. Analysis of multivariate time series, i.e. studying the interrelationships among
several related time series

5. The design of simple control schemes that allow to adjust the input time series
in order to change the output of a system for reaching it’s target values

As the title of the thesis already indicates, the following work will be framed to
analyzing dependencies between time series.

1

1.1.1 Measuring similarity between time series

Before explaining some concepts for causality detection and dependency modeling
two popular methods for comparing time series will be mentioned.

Besides euclidian distance and other known distance measures, a common method
that is used to check whether two time series are similar is called cross-correlation.
One is usually interested in computing the correlation coefficient that can range from
−1 to 1 which indicates that two time series are totally (negatively) correlated, if
the coefficient is 1 (−1) and that there is no correlation, if the coefficient is 0. This
can be useful, if one wants to group multiple time series into clusters to generalize
a set of different time series by their pattern, respectively.

However, when time series are similar according to their context but differ in
speed, cross-correlation may not be accurate enough to detect these kind of simi-
larities since it assumes that time series are already aligned. Instead, an algorithm
called dynamic time warping can be used to align sequences non-linearly along the
time which then allows to compute the average distance between those two time
series. This is especially useful in speech recognition.

Both mentioned methods share the fact that they quantify symmetric relations be-
tween time series. Because in this work we want to find dependencies we therefore
need methods for quantifying asymmetric relations.

1.1.2 Causality detection and dependency modeling

Wiener [31] studied the directional aspects of interactions between subsystems. In
his definition, a time series process X is said to have a casual influence on a time
series process Y , if it improves the prediction of the future values of Y given the
past values of both processes compared to only using the past values of Y . Later,
Granger [10] formalized this concept in the context of linear regression models as
Granger-causality (GC). One way of testing for GC can be implemented by using an
univariate auto regressive model (see section 3.1.2). For example let us model Y as

yt = a0 + a1 yt−1 + ...+ am yt−m + errort (1.1.1)

with random variables yt , yt−1, ..., yt−m and parameters a0, a1, ..., am to predict yt by
the past m values. Once the (optimal) parameters have been set, the model is
augmented by incorporating X , that is

yt = a0 + a1 yt−1 + ...+ am yt−m + bp x t−p + ...+ bq x t−q + errort (1.1.2)

where additional random variables x t−p, ..., x t−q and parameters bp, ..., bq with p < q
are involved.

Now the null hypothesis that X does not Granger-cause Y is accepted, if and only
if the parameters bp, ..., bq have no significant influence on the result of yt , that is
if these parameters are (nearly) zero.

For processes that behave linearly this may be suitable, however, in the case of
processes behaving non-linearly this method will usually fail to detect proper causal-
ities. Therefore, it is not appropriate to assume that the interactions can always be

2 1. Introduction

modeled linearly. Furthermore, the above example also has no quantification of how
much influence X has on Y .

Anyway, the idea of comparing predictive models based on different given val-
ues like in (1.1.1) and (1.1.2) is still reasonable. For example, one could take a
probabilistic approach and model the prediction of yt as

p(yt |yt−1, ..., yt−m) and p(yt |yt−1, ..., yt−m, x t−p, ..., x t−q). (1.1.3)

This approach is more abstract and still needs to be specified by some parametric or
non-parametric probability model. Furthermore, one still has to define an appropri-
ate method for quantifying the extent of causality or atleast a reasonable hypothesis
to decide, whether X has an impact on Y or not.

Based on the concept of information theory [6] (see section 3.2), Schreiber [23]
derived an information theoretic measure called transfer entropy (see section 3.2.5)
that is able to detect and quantify the directed exchange of information from one
process into another without knowing the underlying process model, respectively.
Furthermore, it has been shown [1] that Granger-Causality and transfer entropy are
equivalent for gaussian variables up to a scalar factor. The concept of transfer en-
tropy will also take a major part in this thesis and will be applied on a much
bigger set of time series.

1.2 Problem Statement

The data that is investigated during this work comes from a current European satel-
lite mission and is provided by the company Solenix. It has been measured by
sensors that are installed on several satellites of the same build type. These mea-
surements were sent to the ground stations and stored over time which then can
be investigated by operators who monitor the satellites to verify that the satellites
operate properly.

However, because the satellites have very many sensors and thus, by looking into
the raw data may be difficult to detect flaws early, we need ways to support the
detection of interesting or extraordinary behavior within the data. For the same
company another earlier work has been done [7] where a method has been im-
plemented to detect outliers and novelties within time series and furthermore, the
performance has been improved in subsequent work [19].

In addition to outlier detection, Solenix is looking for a method to find depen-
dencies between time series. The idea is to identify time series that depend on one
another in order to group them. Recently by another student, work has been done
that provides a basic implementation of this concept using cross-correlation, which
shows some promising results. However, the approach he took does not cover all
the cases they need to identify and it is rather slow (4 hours to process 1 day
of data). In this direction, Solenix wants to further develop the solution for which
this thesis will be aimed to support more use cases rather than focusing on the
performance.

1.2. Problem Statement 3

1.3 Related Work

Finding causalities and/or dependencies is a common task for many fields includ-
ing neuroscience [20, 25, 28, 29], ecology [4], econometrics [8] or thermodynamics
[11, 22]. Furthermore, causality has also been investigated in case of multivari-
ate time series [27]. Transfer entropy has not only been used for time series but
also for feature selection [26] where algorithms usually have been based on mutual
information (see section 3.2.3).1

Because a lot of data will be investigated in this thesis, different dimensionality
reduction techniques for time series [30] may be considered as relevant. One partic-
ular method that aggregates data along the time and converts those aggregates into
a symbolic representation is called symbolic aggregation approximation (SAX) [16, 17].
Variations of SAX [13, 21] have been implemented in which case the algorithms
were specialized for detecting discords which are subsequences of a longer time se-
ries that are maximally different compared to all other subsequences of the same
time series.

In order to estimate the probabilities for transfer entropy, Schreiber [23] has im-
plemented a kernel density estimator (KDE) which is a commonly used non-parametric
estimation technique and also superior compared to binning methods. Another more
recent non-parametric estimator that uses the k-nearest neighbors method has been
introduced by Kraskov et al. [15] whose idea was based on Kozachenko and Leo-
nenko [14].

Besides non-parametric models for estimating the probability densities for transfer
entropy, parametric models have also been investigated and for those cases transfer
entropy has also been formalized as a log-likelihood ratio [2] in order to test for
causality.

1.4 Organization of the thesis

We will investigate the available data in chapter 2. From there we will better un-
derstand the characteristics of the data and how we will treat certain problems that
may arise from it.

In order to understand transfer entropy, the fundamental topics will be explained
in chapter 3. This includes the modeling of time series and their key assumptions,
the information theoretic background for understanding the meaning of entropy and
finally, the techniques for estimating the probabilities for entropy.

chapter 4 will both give an overview and a deeper illustration of the data
pipeline. Most importantly, the differently implemented estimators will be intro-
duced along with their relevant characteristics. Finally, a hypothesis will be stated
that allows us to determine the presence of causality for a given pair of time series.

The conducted experiments and their results are presented in chapter 5. Here
we will start off with smaller examples from Schreiber [23] which contain both
generated and real world data. We consider this as useful since we want to get a
notion of how the other estimators behave compared to the estimator of Schreiber.
Next, a smaller feature set of the satellite data is investigated which gives us insight

4 1. Introduction

on how we setup our final experiment where we consider all features of the given
data.

Eventually, the work of this thesis will be concluded in chapter 6. Based on
certain problems in the experiments we will also propose some ideas for future
work that may be relevant in some scenarios.

1.4. Organization of the thesis 5

2 Data Analysis
The provided data consists of time series from four structurally identical satellites
that were measured for three months between July and September 2015. Altogether
it contains over 2.88 billion data points.

In this chapter we will get some insight about how the sensors are described
and how the data is distributed. Since no restrictions have been set about the
investigation, we have chosen to investigate a smaller part that consists of data for
ten days between July 1st and July 11th. Furthermore, the goal of this thesis is
to develop a method to find dependencies without further domain knowledge and
thus, we will include it only when we evaluate the results.

2.1 Feature Description

In the context of the satellite mission, each sensor occurring in the data set is called
a parameter. Since we use parameters for a different context in this work, we will
refer to the term "sensor". Each sensor is described by

• PID: Unique id of the sensor

• value: Measured value

• datetime: Timestamp of the measured value

• DBTYPE: Type of the measured value

• PNAME: Name of the sensor

• PDESCR: Brief description of the sensor

• UNITS: Unit of the value.

The feature PNAME is a short name which does not tell much about the sensor since
it is more an abbreviation. Instead, PDESCR is sometimes more telling which has
examples like "SUN ANGLE", "SOLAR ARRAY POW" or "GTMP1". UNITS describes in
which (physical) unit the value is measured. Mostly, the value of UNITS is null
and thus we mostly do not know the unit for these values which we will see in
the next section as well. The DBTYPE states the type of the value like a float value
or an integer value for example. However, when we compute the different statistics
we will treat all values as double-valued data.

7

UNITS count UNITS count UNITS count UNITS count
null 8130 CLS 32 BYTE 16 KHZ 8
V 660 DBM 26 KG 16 NSEC 8
C 587 HEX 24 VOLT 12 MV 8
MA 355 BAR 24 USEC 12 MSEC 8
A 268 M 24 RPM 8 nA 6
WATT 60 Ah 20 CMDS 8 Mode 4
DEG 52 SEC 16 SECS 8 DB 4
Hz 48 S/P 16 DEC 8 RAW 4
NTES 48 min 16 WORD 8
CNT 36 mg 16 PSEC 8

Table 2.1.: Occurrences of units in data set for all four satellites.

2.2 Statistics

In Table 2.1 we see the distribution of the values for the feature UNITS from all four
satellites together. It is important to mention that even though they are structurally
identical, for each satellite the measurements in the data set differ in the amount
and type of sensor. That is, from 2345 sensors the measurements were found for
all four satellites whereas from another 410 sensors the measurements for each of
them were found among three satellites. 2 more sensors were found for only one
satellite. However, assuming that all sensors are intact we expect that each missing
type of sensor simply implicates that no data was measured since the sensors have
different responsibilities and thus, not every measurement will be captured.

For each satellite we will see two kinds of investigations of the time series. One
is the range of values (Figure 2.1) and another one is the range of time values
and the resulting sample rates (Figure 2.2). For each plot the corresponding values
are sorted in ascending order. As one can see, not only there are some general
differences between all four satellites but also, the value ranges for each time series
differs. To make these time series comparable with others, one usually normalizes
the data which we will also see later in the approach of this work.

However, most importantly the sample count for all time series for each of the
four satellites ranges from a minimum of 32, 36, 28, 31 to a maximum of 829838,
825413, 829061, 828571. Additionally, the time delay ∆t between samples of a
time series is measured in seconds and ranges from a minimum of 1-5 seconds
(∆tmin) to a maximum of 12-179987 seconds (∆tmax). Therefore, the time series
are not synchronized and since the approach in this work expects synchronized time
series, resampling techniques will be considered as seen later. One can also see
that most time series start around 07/09 06:00 (tmin). This is also relevant for
resampling, since it is important to choose a proper time range to avoid data gaps
(for example, if we chose a time range earlier than 07/09 06:00 we would only
get data for ∼10% of all time series).

8 2. Data Analysis

0 700 1400 2100 2800

102
103
104
105
106

Count

0 700 1400 2100 2800
10−6

10−2

102

106

1010
Mean

0 700 1400 2100 2800

10−10

10−4

102

108
Std

0 700 1400 2100 2800

10−2

102

106

1010
Min

0 700 1400 2100 2800

100

103

106

109
Max

Sat 1
Sat 2
Sat 3
Sat 4

Figure 2.1.: Distribution of the values in the data set. For each time series, the count,
mean, standard deviation, minimum and maximum value were determined
and then sorted in ascending order.

0 700 1400 2100 2800

07/01 06:00
07/01 18:00
07/02 06:00
07/02 18:00
07/03 06:00
07/03 18:00

tmin

Sat 1
Sat 2
Sat 3
Sat 4

0 700 1400 2100 2800
1

2

3

4

5
Δtmin

0 700 1400 2100 2800
100
101
102
103
104

Δtmean

0 700 1400 2100 2800
07/0Δ 02:00
07/0Δ 08:00
07/0Δ 14:00
07/0Δ 20:00
07/10 02:00
07/10 08:00
07/10 14:00
07/10 20:00
07/11 02:00

tmax

0 700 1400 2100 2800
101

102

103

104

105
Δtmax

0 700 1400 2100 2800

100

102

104

Δtstd

Figure 2.2.: Distribution of the time values in the data set. For each time series, the fol-
lowing quantities were determined: Minimum and maximum time value, min-
imal and maximal time value difference between adjacent values (in seconds),
mean time value difference and standard deviation of time value differences.
Afterwards, the results were sorted in ascending order.

2.2. Statistics 9

2.3 Sort out Sensors

Before investigating time series for dependencies one may consider to sort out cer-
tain time series. This is usually done for sensors that either have no data or no
interesting data, that is, when the underlying time series would be (nearly) con-
stant.

Another characteristic of the data set is that many time series behave very simi-
larly which is also called a positive correlation (see Figure 2.3a). This makes sense
since the sensors are on the same satellite. Furthermore, there are many time series
having a somewhat identical shape which may indicate redundancies for fault toler-
ance. On the other hand, the data set also shows a presence of negative correlation
which means that one may know the values of the one time series by negating the
values of the other time series (see Figure 2.3b).

07-01 06 07-01 09 07-01 12 07-01 15 07-01 18 07-01 21 07-02 00 07-02 03

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) Positive correlation between time series

07-01 06 07-01 09 07-01 12 07-01 15 07-01 18 07-01 21 07-02 00 07-02 03

−4

−2

0

2

4

(b) Negative correlation between time series

Figure 2.3.: Examples for correlating time series from the data set. Note that the time
series have been normalized for better comparison.

One should also note that correlations in general can be found between non-periodic
as well as between periodic time series (see Figure 2.4). For correlated time series
(positively or negatively), a decisive judgment about which time series causes a de-
pendency is difficult in general. We will see later that the method used in this work
also does not provide enough expressiveness for these cases and thus the investiga-
tion between correlated time series may be omitted.

Therefore, one could group correlated time series to reduce the amount of com-
parisons that need to be done between time series which would increase the perfor-
mance and also make the results for dependency detection less verbose. Still, one
has to be careful at which degree of correlation the time series should be grouped.

2015-07-03 2015-07-05 2015-07-07 2015-07-09 2015-07-11
−6

−5

−4

−3

−2

−1

0

1

Figure 2.4.: Time series with a repeated pattern from the data set.

10 2. Data Analysis

3 Theoretical Background
In chapter 1 we gave a coarse overview of applications in time series analysis, how
to work with time series and also introduced a simple linear model that can be used
for detecting Granger-causalities [10]. After that, a probabilistic approach has been
mentioned but it was left open, how one could infer a causality with probabilistic
models.

Therefore the necessary background to understand transfer entropy [23] will be in-
troduced and explained further in this chapter. Mostly, we will refer to the contents
of Box et al. [5] and Cover et al. [6].

3.1 Time Series Analysis

When working with non-deterministic time series, one assumes that a given time
series x1, x2, ..., xn originates from a set of random variables X1, X2, ..., Xn. Such a
set {X i} = {X1, X2, ..., Xn} is called a stochastic process where x1, x2, ..., xn would be
seen as a realization of the stochastic process {X i}. In the context of time series
analysis the term "stochastic" is usually omitted, calling it simply a process.

The next sections describe common instances of these processes where certain
assumptions are made, respectively.

3.1.1 Stationary Stochastic Process

An usual way to deal with a process is to consider it as a stationary process where
the process is in some kind of (statistical) equilibrium.

A process is said to be strictly stationary, if the properties of the process are
invariant to time or formally

p(x1, ..., xn) = p(x1+u, ..., xn+u), ∀n, u ∈ N (3.1.1)

which means that for any subset of the time series the joint probability function is
invariant to time shifts u.

Another perspective is to say, that the moments between both probability functions
should be the same. However, when comparing these probability functions, one will
usually end up comparing moments up to an order of f . Therefore, a less restrictive
assumption is to have a weakly stationary process of order f where both probability
functions in (3.1.1) only need to be equal for the first f moments.

In case a normal distribution is assumed it is known that the probability distribu-
tion is fully characterized by its moments of first and second order which would be
a fixed mean and a fixed covariance matrix. Thus, showing that a process is weakly
stationary of order two and assuming normally distributed variables are sufficient to
prove strict stationarity.

11

x1 x2 · · · xn xn+1

Figure 3.1.: A Markov chain

3.1.2 Autoregressive Process

In section 1.1.2 we have already seen an example of how to model a stochastic
process. Such models, where the next value depends on a linear combination of
the past values p values is called an autoregressive process of order p.

Let µ and σ2 be the mean and variance of a given time series x1, ..., xn. In short,
the model is noted as AR(p) and formally defined as

zt = φ1zt−1 +φ2zt−2 + ...+φpzt−p + at (3.1.2)

where zt = x t − µ, that is, the time series becomes centered at its mean,
at ∼N (0,σ2

0) represents some random noise and φ1,φ2, ...,φp are the weight pa-
rameters of the model. This simple model can be sufficient in the presence of
periodic time series. However, for non-deterministic time series other approaches may
be preferred.

3.1.3 Markov Process

One relaxed instance of a stochastic process is one in which each random variable
Xn+1 only depends on its preceding variable Xn and is conditionally independent of
all other random variables. In this case, we call it a Markov process or Markov chain
where in the latter case the time indices are discrete valued.

Unless stated otherwise, for the remainder of this work we will always refer to a
Markov chain whenever a Markov Process is mentioned since it is easier to under-
stand the core idea (see Figure 3.1) and in this work only discrete time steps will
be considered. Formally, a Markov process is a stochastic process which satisfies the
Markov property, that is

p(xn+1|xn) = p(xn+1|xn, xn−1, ..., x1) (3.1.3)

for all x1, ..., xn, xn+1 ∈ X where p is the (conditional) probability function over the
value range X . This yields a simpler model in case one wants to model the joint
probability function because by chain rule it can be written as

p(x1, ..., xn) = p(x1)p(x2|x1) · · · p(xn|xn−1). (3.1.4)

Furthermore, if the conditional probability function p(xn|xn−1) does not depend on
n, the Markov chain is defined as time invariant, that is for all n ∈ N it holds that

p(xn+1|xn) = p(x2|x1) (3.1.5)

12 3. Theoretical Background

By assuming this property for a model, the problem of determining a conditional
probability function for each time step relaxes down to determining only one condi-
tional probability function. In that case, the probability function is usually called a
transition function since it used to infer a probability for transitioning from a current
state xn into a next state xn+1.

One can generalize the Markov process above into a Markov process of order k,
where k is the number of variables to be considered as the current state. Thus, the
example above would then be considered a Markov Process of order 1. Formally,
we define a word of length k or k dimensional delay embedding vector as

x (k)n = (xn, xn−1, ..., xn−k+1). (3.1.6)

Analogously, the equations (3.1.3), (3.1.4) and (3.1.5) hold, if the conditional prob-
ability function is modeled as p(xn+1|x (k)n) instead. Later we will see which rele-
vance the Markov process has for modeling transfer entropy.

3.2 Information Theory

Information theory is the science of how one can quantify, store and communicate
information based on probability theory and statistics. It was proposed by Shan-
non [24] and has its origins in signal processing and data compression and is used
in many applications including the development of internet, music, linguistics and
physics.

In this section, we first introduce the formulas for discrete random variables since
information theory was originally designed to deal with discrete valued data. Thus,
for a random variable X the value range X is countable. Here, we will refer to the
contents of Cover et al. [6]. In the end, we will point out some differences for the
case where X is continuous.

3.2.1 Entropy

The fundamental measure in information theory is called entropy, also sometimes
referred to Shannon entropy. It measures the amount of uncertainty of a random
variable X , that is, the higher the entropy the less biases we have for certain values
of X . Formally, the entropy H(X) of a random variable X is defined by

H(X) = −
∑

x∈X
p(x) log p(x). (3.2.1)

Usually, for the logarithm the natural base is used and the units of the sum are
called nats whereas with a base of 2 the units would be expressed as bits. Because
the base only changes the scale of the units and since it is more common to refer
information to bits, we will implicitly use the base 2 for the logarithm when com-
puting entropies for the remainder of the thesis. Note that H(X) is lower bounded
by zero, because of the continuity a log a = log aa→ 0 as a→ 0 and as a convention

3.2. Information Theory 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0
H
(p
)

Figure 3.2.: Binary entropy function

we will use 00 = 1. Furthermore, the entropy value is only depending on the proba-
bilities of X , not on their actual values. An illustrative example is coin flipping. Let
p be the probability for X = 1 for one side and 1− p the probability for X = 0 for
the other side of the coin. Then, in the interval of [0, 1] we can map the entropy
function as shown in Figure 3.2. The intuition is that, if the probability p is always
1 or always 0 then the random variable is deterministic and therefore there is no
uncertainty. Whereas if p = 1

2 the uncertainty reaches is maximum value which is 1.
Another perspective on (3.2.1) is to regard − log X as a random variable and take

the expectation of it, that is

E[− log X] = −E[log X] = H(X). (3.2.2)

Since we consider the entropy units to be bits, one could see H(X) as the average
amount of bits to encode the variable X .

3.2.2 Relative Entropy (Kullback-Leibler divergence)

Lets say we have a target distribution p and some distribution q and we want to
compare both with each other. In that case, one can use the relative entropy or also
called Kullback-Leibler divergence (KL divergence) to measure the distance of q from
p. It is defined by

KL(p||q) = −
∑

x∈X
p(x) log

p(x)
q(x)

(3.2.3)

14 3. Theoretical Background

and quantifies how much information on average is missing to describe a random
variable with q instead with p. One should note that it is a relative distance since
it is not symmetric in general, that is KL(p||q) 6= KL(q||p). The measure ranges
from a minimal distance 0 to a maximum distance of ∞ and again we use the
conventions of 0 log 0

0 = 0 and p(x) log p(x)
0 =∞ for p(x) > 0 and q(x) = 0 for any

x ∈ X .

3.2.3 Mutual Information

One commonly used measure is mutual information which quantifies how much in-
formation between two random variables X and Y is shared or in other words, how
much uncertainty from one variable is reduced by knowing how much information
the other one contains. Given two random variables X and Y , a joint probabil-
ity function p(x , y) and two marginal probability functions p(x) and p(y) we can
define the mutual information between X and Y as

I(X ; Y) =
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

= H(X) +H(Y)−H(X , Y). (3.2.4)

or we take the KL divergence between p(x , y) and p(x)p(y), that is

I(X ; Y) = KL
�

p(x , y)||p(x)p(y)
�

. (3.2.5)

It is notable to mention that two random variables X and Y are independent, if
and only if I(X ; Y) = 0 which is commonly used as an indicator when checking for
(in-)dependence between random variables.

If we condition on another random variable Z , we can extend this measure to
the conditional mutual information, that is

I(X ; Y |Z) = H(X |Z) +H(Y |Z)−H(X , Y |Z)
= H(X , Z) +H(Y, Z)−H(Z)−H(X , Y, Z) (3.2.6)

3.2.4 Entropy Rate

Lets say we have a stochastic process {X i} and we want to measure, how the en-
tropy grows as the length of the sequence increases. The quantity for this case is
called entropy rate which is defined as

H(X) = lim
n→∞

1
n

H(X1, X2, ..., Xn), (3.2.7)

if the limit exists. Since this quantity is more theoretical, we will look at another,
related quantity that is defined as

H ′(X) = lim
n→∞

H(Xn|Xn−1, Xn−2, ..., X1), (3.2.8)

3.2. Information Theory 15

if the limit exists. Even though both quantities have different notions for the en-
tropy rate, it has been shown that for a stationary process both limits exists and
are equal [see 6, chapter 4.2]. Therefore we have

{X i} is a stationary process ⇒ H(X) = H ′(X). (3.2.9)

Now, if we assume even further that the process has the Markov property as in
(3.1.3) the entropy rate is even more simplified. Formally, that is

{X i} is a stationary markov process ⇒ H(X) = H ′(X) = H(Xn|Xn−1). (3.2.10)

This makes it computationally tractable and we will finally see how this is used for
computing transfer entropy.

3.2.5 Transfer Entropy

The following quantity was proposed by Schreiber [23] and has gained much atten-
tion when trying to find causalities between time series. Since for the remainder
of this thesis we will always work with Markov processes instead of working with
random variables independently, we will abbreviate any process {X i} as X .

Let’s say we have two stationary Markov processes X and Y of order k and l,
that is, we work with embedding vectors x (k)n and y (l)n as defined in (3.1.6) and
we want to quantify the information transfer from a source process X to a target
process Y .

If we predicted the future value yn+1 of Y and the Markov property holds for
Y when also including X then we would expect that X does not provide more
information for the prediction which we can express formally as

p(yn+1|y (l)n) = p(yn+1|y (l)n , x (k)n). (3.2.11)

However, if this equation does not hold, we can quantify this deviation again by
the Kullback-Leibler divergence (3.2.3) by which transfer entropy is defined as

TX→Y =
∑

yn+1,y(l)n ,x(k)n

p(yn+1, y (l)n , x (k)n) log
p(yn+1|y (l)n , x (k)n)

p(yn+1|y
(l)
n)

. (3.2.12)

Now, there are two more perspectives on how to interpret transfer entropy. If we
write TX→Y differently with the random variables Yn+1, Y (l)n , X (k)n , we get

TX→Y = E

�

log
p(Yn+1|Y (l)n , X (k)n)

p(Yn+1|Y
(l)
n)

�

= E
�

log p(Yn+1|Y (l)n , X (k)n)
�

− E
�

log p(Yn+1|Y (l)n)
�

= H(Yn+1|Y (l)n)−H(Yn+1|Y (l)n , X (k)n) (3.2.13)

16 3. Theoretical Background

which can be seen as the difference between two entropy rates, namely between
the entropy rate of including only the past values of the target process and the
past values of both processes.

Another way to look at it is to see it as a conditional mutual information as in
(3.2.6), namely between Yn+1 and X (k)n conditioned on Y (l)n . Formally, this can be
written as

TX→Y = E

�

log
p(Yn+1|Y (l)n , X (k)n)

p(Yn+1|Y
(l)
n)

�

= E

�

log
p(Yn+1, X (k)n |Y

(l)
n)

p(Yn+1|Y
(l)
n)p(X

(k)
n |Y

(l)
n)

�

= H(Yn+1|Y (l)n) +H(X (k)n |Y
(l)
n)−H(Yn+1, X (k)n |Y

(l)
n)

= I(Yn+1; X (k)n |Y
(l)
n) (3.2.14)

In general, transfer entropy can be seen as the information that X provides to Y
for predicting a future value yn+1. Thus, this quantity may help to find causalities,
since if a process X causes a process Y to change its behavior it is likely that the
future values of Y can be predicted better. However, in the experiments we will
also see that both for lower and for higher transfer entropy values, dependencies or
even causalities can be explained differently.

3.2.6 Notes on continuous random variables

As already mentioned, the formulas above were designed for discrete random vari-
ables and probabilities were computed by probability mass functions. However, the
concept can also be used for continuous random variables, where probability density
functions are used instead and the sums are replaced by integrals over some contin-
uous space. More precisely, this concept is called differential entropy [see 6, chapter
8].

Despite that it is still related to the shortest description length one has to be careful
when applying theorems from the original concept of entropy, since there are some
differences to consider when computing entropies:

• It may be negative

• It may be infinitely large (either negative or positive)

• It may not be invariant under a change of variable

Therefore, the interpretation of an entropy value may be more difficult in general,
since theoretically there are no bounds on the value itself. Still, differential en-
tropy is applicable and widely used. For computing these, we need some general
understanding in probability density estimation.

3.2. Information Theory 17

3.3 Probability Density Estimation

Let’s say we have a finite set of D-dimensional continuous values x1, x2, ..., xN ∈ RD

and we want to know the probability distribution over these values. Then the task
is to find an appropriate probability density function p(x) where it is assumed that
the values x1, x2, ..., xN are independent and identically distributed (in short iid) by
the resulting probability distribution. In any case, the probability density function
must be nonnegative and integrate to one, that is

∫ ∞

−∞
p(x) d x = 1. (3.3.1)

For this task, there are two general approaches which will be introduced in this
section.

3.3.1 Parametric Methods

When a specific model is assumed for the probability density function then it is usu-
ally governed by a small (or smaller) amount of parameters, which then describe a
parametric distribution. One common example in the continuous space is the Gaus-
sian distribution that is governed by a mean and a variance (or the covariance matrix
for multivariate distributions).

The probability density function in general would then be described as p(x |θ)
where θ would be a set of parameters for a particular model which is assumed
for p. With a given set of values D = {x1, x2, ..., xN} one is interested in finding
the parameters with the best fit for the model. Formally and with D iid, we can
express the objective as

L(θ |D) =
N
∏

i=1

p(x i|θ) (3.3.2)

where L is a function over θ . This function is called the likelihood function or
just likelihood since for every value given in D it computes how likely that value
came from p according to a parameter set θ . Eventually, one wants to find the
parameters θ̂ * that maximize the likelihood, that is

θ̂ * = argmax
θ̂

L(θ̂ |D) (3.3.3)

where θ̂ is called an estimator for L and θ̂ * the maximum likelihood estimator.
While this is just one concept of finding parameters for a parametric distribu-

tion, many other efficient concepts for finding the best fitting parameters have been
developed [3, 18], either in closed form, iteratively or in an approximate way.

However, one problem in general is that parametric distributions may not always
be an appropriate choice since it assumes a specific form of the probability density
function and thus, limiting the expression of a given set of values. Therefore, an
alternative approach is the nonparametric density estimation.

18 3. Theoretical Background

−3 −2 −1 0 1 2 3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(a) Real distribution

−3 −2 −1 0 1 2 3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

(b) Approximation with samples

Figure 3.3.: Example of a probability distribution and its approximation

3.3.2 Nonparametric Methods

Whenever it is difficult to determine a specific probability distribution for a given
data set, nonparametric methods can be used to describe the data with only a few
assumptions about the shape of the density function. One common method is the
histogram model where the data is partitioned in B intervals called bins and then
normalized, that is, for each bin bi the number of occurrences ni is then divided
by the total number N of data points (see Figure 3.3). Formally, this is

∫ ∞

−∞
p(x) d x ≈

B
∑

i=1

bi = 1, bi =
ni

N
. (3.3.4)

The only hyperparameter that needs to be set properly is the number of bins B.
Eventually, the values get discretized and we can simply compute our information
theoretic quantities. However, the example above contained one dimensional data
and because the bins scale along the dimension of the data, we get exponentially
many bins for which we also need exponentially more data. This is also called the
curse of dimensionality. To avoid this problem, other well-founded approaches exist.

Instead of bins, for each value x let us consider a region R in the D-dimensional
space where it came from. Similarly, we can obtain the probability for x falling
into Region R, that is, Pr(x ∈ R) =

∫

R p(r) dr. This means that the estimation of
the density value around that region R depends on the amount K of points that
lie inside R.

Assuming that R is sufficiently small such that the probability density is nearly
constant in that region, then by the Volume V of R one obtains

Pr(x ∈R) =
∫

R
p(r) dr ≈ p(x)V. (3.3.5)

Also, if R is sufficiently large, then

Pr(x ∈R)≈ K
N

. (3.3.6)

3.3. Probability Density Estimation 19

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(a) Kernel method

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(b) k -nearest neighbor method

Figure 3.4.: 2-dimensional example for density estimation with kernel methods and near-
est neighbor methods. The green color indicates the fixed variable while the
red color indicates the variable to be determined

With both assumptions (3.3.5) and (3.3.6), we can approximate the density as

p(x)≈
K

NV
. (3.3.7)

Now, one can choose to either fix V and determine K or fix K and determine V .

Kernel methods

In this method, we will determine the probability density function p(x) by fixing the
volume V and determining K . For this, we define a kernel function k(x) which must
satisfy the same properties as a probability density function (see Equation 3.3.1).
As seen in Figure 3.4a one can think of k(x) as a hypersphere or sometimes a
hypercube around x . To determine K , we need the following, general function

K(x) =
N
∑

i=1

k
�‖x − x i‖

h

�

(3.3.8)

where h is the kernel width and ‖·‖ is the an arbitrary norm. The meaning of this
function is that for a point x we compute how many points lie in the kernel. The
volume V depends on the kernel width h and scales along the dimension D, that is,
V = hD. Thus, the kernel width is the hyperparameter that determines how smooth
the resulting density function will be. Combining everything with (3.3.7) we get

p(x)≈
K(x)
NV

=
1

NhD

N
∑

i=1

k
�‖x − x i‖

h

�

. (3.3.9)

One of the most common and intuitive kernels is the gaussian kernel, which can
give smooth results of p(x), again depending on the chosen kernel width h.

20 3. Theoretical Background

k -Nearest Neighbors methods

The other, much simpler method is to fix K and determine the volume V . That is,
one defines a function V (x) where again a sphere is centered on x but the size of
it is set sufficiently big such that the K nearest points lie in it (see Figure 3.4b). In
general, K operates as a hyperparameter that determines how smooth the resulting
density function will be.

However, even though the resulting model does not represent a true probability
density function it is still used as an approximation and can be used for tasks where
the exact probability distribution is not too important (for example in classification
tasks).

3.3. Probability Density Estimation 21

4 Approach and Implementation
In this chapter we will introduce the framework that has been implemented within
the time scope of this thesis. In general, it is a pipeline that allows to evaluate and
determine the dependencies among a given amount of time series. Afterwards, the
results can be analyzed further and technically be visualized as a directed graph.

Before explaining in detail how the data is processed, we first consider multiple
problems that arised during the conception of how to find dependencies between
time series. Without any loss of generality, the following problems are considered:

1. Pre-processing time series
As already mentioned in chapter 2, the data needs to be synchronized due to
different sample rates. Furthermore, one may also consider a normalization of
the data set to allow for a better comparison.

2. Filtering time series
It is intuitive that, if a data query for a sensor is empty or the result is con-
stant, we will not consider the sensor for comparison. Still, it is left open by
which criteria a time series is considered or not.

3. Filtering pairwise relations between time series
Many relations between time series may or may not be relevant for investiga-
tion, especially when there is a guarantee for a causality or non-causality. The
problem here is to decide algorithmically which pairs should be omitted for
further investigation.

4. Quantifying the presence of causality for a given pair of time series
Without any domain knowledge, one has to find a general method of quanti-
fying the degree of causality for a pair of time series. The method should be
as expressive as possible but also have as little requirements as possible.

5. Determining, if a causality is present or not
Based on the quantity for causality, one then may decide if a particular relation
is considered a causality or not. The problem is to find an appropriate and
discriminative model.

6. Analyzing and Visualizing the result
Depending on how big the result is, the visualization can be provide meaning-
ful insight but also be too verbose. Here, one needs to make proper adjust-
ments that may also depend on the information one wants to query.

We will see how the following pipeline will tackle all of these problems even though
the solutions may sometimes be simple.

23

Figure 4.1.: The data processing pipeline consists of three phases:
Pre-processing, Evaluation and Analysis & Visualization

4.1 Data Processing Pipeline

In order to compare time series with each other from a data set and to create a
revealing result, several processing steps need to be defined. In this work, these are
Pre-processing, Evaluation and Analysis & Visualization (see Figure 4.1) which each
will be described further in this section.

In the first step, the data needs to be prepared and transformed into a compat-
ible format that can be used for evaluation. This includes the normalization and
synchronization of time series, as well as the creation of n-gram1 lists where for
two given time series the data from both is included and also the direction of
information transfer is implicated. This covers the first three problems mentioned
before.

In the second step the concept of transfer entropy is applied on a given set of
sensor pairs. This addresses the fourth problem and is the key part of this work.
Here, it is important to have an appropriate probability model and also to have
an efficient and accurate estimator to infer the probabilities in order to compute
transfer entropy.

Eventually, in the third step the computed transfer entropy values will be fil-
tered by some criteria which addresses the fifth problem. One can then query the
data results for a given sensor to check the dependency from or to other sensors.
Furthermore, one can also investigate the dependency along the time to understand
which time window may or may not be relevant. To have a general overview, a net-
work graph is created which allows to navigate through all considered dependencies.
These methods combined cover the sixth and last problem.

1 The term n-gram originates from the fields of computational linguistics and probability. Basically, it is a
contiguous sequence of n items from a longer given sequence.

24 4. Approach and Implementation

4.1.1 Pre-processing

Depending on the data format and on the evaluation method used in the subsequent
step of the pipeline, one may or may not use all methods of the introduced pre-
processing step. However, based on the results in chapter 2 some pre-processing
steps still have to be done. Overall there are two filtering steps and three options
for transforming the data before building a n-gram matrix for each pair of time
series.

Time Series Filter

Since one first has to query the time series for a given set of sensors, all sensors
need to be filtered that have no data for the attempted query. Furthermore, time
series that are not considered as important or have no interesting shape will also
be filtered out here. In the current implementation, all time series with a standard
deviation lower than a threshold parameter σmin are considered as constant and
thus filtered.

Resampling

Each time series was sampled with a different sample rate and therefore we need a
uniform time scale for all time series. To achieve this, we take a simple approach
that is implemented as follows.

For a given time range (dateFrom, dateTo) a time series is queried and then
padded, that is, the border values at dateFrom and dateTo are set by the mean
value of the time series. Then, within every time window of time length sampleRate
the mean value is taken. In case the time window is empty, the last known value
is taken. Figure 4.2 illustrates how the implemented resampling method is realized.

0 5 10 15 20 25 30 35 40
time index

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

(a) Arbitrary time series

0 5 10 15 20 25 30 35 40
time index

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

(b) Resampled time series

Figure 4.2.: Example for resampling an arbitrary time series within the date range of (0,
40) and a sample rate of 5.

Note that the time index could may be scaled by any time unit, however, in our
current implementation and based on the analysis of the data we are using seconds
as a time unit and therefore, the sample rate will also always be expressed in
seconds.

4.1. Data Processing Pipeline 25

Standardization

To make the time series more comparable, standardization methods are considered.
A common approach is to use z-score standardization where the time series are cen-
tered by some mean µ and rescaled by some standard deviation σ. Since we do
not know these values, one usually uses the sample mean and sample variance of the
time series to compute the z-score values, that is, for a given sequence x1, ..., xN
the z-score is computed by

zi =
x i −µ
σ

, i = 1, ..., N . (4.1.1)

We have seen something similarly already at Equation 3.1.2 where the data only
has been centered but not rescaled.

Now, in case the time series has a (nearly) zero standard deviation σ the com-
puted z-scores will be invalid. Therefore, one again can define a threshold value
σlow where a sequence of zeros is returned (since the z-scores are zero centered),
if the standard deviation σ is lower than σlow. However, in the previous step of the
pipeline we already filtered all time series with low standard deviations and thus,
this case will not occur.

Symbolic Aggregation Approximation (SAX)

So far, the time series from the data set are all considered continuously valued.
Since the information theoretic measures are all based on discrete valued data and
also some methods can only be applied on discrete data, an option for transforming
a time series into a discrete sequence of symbols has been implemented. For this
step, we will apply the SAX method [16].

0 16 32 48 64 80 96 112 128
time index

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

b

a a a a

b

c c

Figure 4.3.: A zero centered time series of length 128 that is mapped to a word "baaaabcc"
of length 8 with an alphabet size 3.

The method expects a z-score valued time series as an input and aggregates nw
succeeding subsequences respectively where nw is the desired word length. Then it
allocates each aggregate to a symbol from a finite alphabet set with size na which
results in a sequence of symbols (or a word of length nw) as shown in Figure 4.3.

26 4. Approach and Implementation

Unlike in the histogram model from section 3.3.2, it is important to note that
the value ranges for the symbols are divided into equiprobable regions of the
standard normal distribution. Another note on this method is that we do not need
the additional aggregation anymore since we have already implemented a resam-
pling method that also aggregates the data piecewise. Thus, only the allocation into
symbols is needed from this method.

However, as we will see in the evaluation segment of the pipeline, not every
method in the evaluation is depending on discrete data and therefore SAX may or
may not be used at all.

Time Series Pair Filter

Before creating the auxiliary data for each possible time series pair one may con-
sider to filter certain relations between time series. For example, if we knew that
two sensors are always correlated we would never consider to investigate causality
for any pair of time series from these two sensors. Therefore, for a list of pairs
that is going to be evaluated, one can first compute the cross-correlation between
these time series.

Let x1, ..., xN and y1, ..., yN be two time series with their corresponding means
µX ,µY and standard deviations σX ,σY , then we can compute the cross-correlation
at time lag τ by

ρX Y (τ) =
E [(X t −µX)(Yt+τ −µY)]

σXσY
=

1
σXσY

N
∑

t=1

(x t −µX)(yt+τ −µY). (4.1.2)

Since the time series are already standardized (i.e. zero mean and unit variance)
and we only want to know, if there is a correlation or not at any time lag, we com-
pute the maximum absolute correlation coefficient (MACC) for two time series which
we define as

MACCX Y =max
τ

1
N

�

�ρX Y (τ)
�

� , τ ∈ {−N ,−N + 1, ..., N − 1, N}. (4.1.3)

This quantity ranges between 0 and 1 and thus, we can again define some threshold
value to exclude further investigation for all pairs of time series that are considered
as correlated. Note that this step is not necessary but again it is an option to better
understand the data set.

n-gram Builder

As already seen in section 3.2.5, one needs to create the appropriate data format in
order to compute transfer entropy. Since the quantity is asymmetric we create two
n-grams each implicating one direction of information flow.

Let’s say we have two time series of length N originating from X and Y and
we define a lower bound tmin =max(k, l) with k, l ≥ 1 and an upper bound
tmax := N − 1, we then create an n-gram at time step t ∈ {tmin, ..., tmax} by

wX→Y (t) = (yt+1, y (l)t , x (k)t) and wY→X (t) = (x t+1, x (l)t , y (k)t) (4.1.4)

4.1. Data Processing Pipeline 27

where k is the number of values to consider from the past of the source process
and l is the amount of values to consider from the past of the target process.
Eventually, we create the n-gram matrices each containing its subsequent n-grams as

WX→Y =

wX→Y (tmin)
...

wX→Y (tmax)

 and WY→X =

wY→X (tmin)
...

wY→X (tmax)

 . (4.1.5)

Note here that the length N was used to describe the length of a (synchronized)
time series whereas now we use N̄ := N− tmin to describe the amount of n-grams in
a matrix W . From this point on we do not work with single time series anymore
but only with the generated n-gram matrices.

For better readability, we may also drop the subscript · X→Y for w and W when
the context is clear. Furthermore, we will iterate over all rows of W and thus, we
use a different notation for each row i which is

wi :=Wi· = (y
′
i , y (l)i , x (k)i), i = 1, ..., N̄ (4.1.6)

where again y ′i is the future value and y (l)i and x (k)i contain the past values, re-
spectively.

4.1.2 Transfer Entropy Estimators

Now, for the evaluation step of the pipeline, a list of n-gram matrices (W1, W2, ...)
is given. Depending on the task and the given data set, one may consider different
probability models. Since our domain knowledge about the data is limited and we
are rather doing an exploratory analysis, instances of nonparametric as described in
section 3.3.2 have been implemented for this pipeline which will be compared with
each other later.

Before going further in detail, we will recall the definition of transfer entropy
where we will define another useful term to gain more insight about the quantity.
Instead of computing transfer entropy for a whole n-gram matrix W from two pro-
cesses X and Y , we consider a single row wi as defined in (4.1.6) and compute
the information transfer pointwise. We will call this quantity local transfer entropy
and define it as

tX→Y (wi) = tX→Y (y
′
i , y (l)i , x (k)i) = log

p(y ′i |y
(l)
i , x (k)i)

p(y ′i |y
(l)
i)

. (4.1.7)

The original transfer entropy can then be regarded as an average of all local trans-
fer entropies, that is

TX→Y = E [tX→Y (·)] =
1
N̄

N̄
∑

i=1

tX→Y (wi). (4.1.8)

Using local transfer entropy and instead of computing the average, one can compute
all local transfer entropies along the time which may provide more insight about
where information transfer occurs. We will see some examples in the experiments
later.

28 4. Approach and Implementation

Word Count Estimator

The simplest approach here is to discretize the data with SAX as described in
section 4.1.1 and count the occurrences for all rows in W which is similar to the
idea of creating a histogram model as discussed in section 3.3.2 since the data is
partitioned into different regions when using SAX.

First, we need to compute four joint and marginal probabilities p(Y ′, Y (l), X (k)),
p(Y (l), X (k)), p(Y ′, Y (l)), p(Y (l)) for the discrete random variables Y ′, Y (l), X (k). Since
we only need to know the counts, we instead use n(y ′, y (l), x (k)), n(y (l), x (k)),
n(y ′, y (l)), n(y (l)) to look up the counts for a row w = (y ′, y (l), x (k)) so that we
can compute the local transfer entropy as

tX→Y (w)≈ log
n(y ′, y (l), x (k))/n(y (l), x (k))

n(y ′, y (l))/n(y (l))
. (4.1.9)

Not only is this approach simple but also linear in runtime. However, with an
alphabet size of na for a single discrete value, the number of unique occurrences
nk+l+1

a is atleast n3
a. This is the same downside as for histogram models which

is the curse of dimensionality and thus, we may need many too many samples.
Furthermore, for each row w of W adjacent rows are not regarded whereas kernel
methods or k-nearest neighbor methods are able to do so.

Schreiber Estimator

When Schreiber [23] introduced transfer entropy he considered continuously valued
data and used an kernel density estimator. Again, the joint and marginal probability
functions need to be computed as before. The difference now is that we compute
probabilities for each (sub-)row (y ′i , y (l)i , x (k)i), (y

(l)
i , x (k)i), (y

′
i , y (l)i), (y

(l)
i).

Let vi be one of these vectors for row i, then the probabilities are estimated by

p̂(vi) =
1
N̄

∑

j∈NE(i)

Θ
�

r −

vi − v j

∞

�

(4.1.10)

where j is the row index depending on the neighborhood NE(i) of row i, Θ is a
step kernel or heaviside function, r is the radius and ‖·‖∞ is the maximum norm.
The values for the kernel Θ are Θ(x > 0) = 1 and Θ(x ≤ 0) = 0. The equation
is similar to (3.3.9) and the idea is for each row i to count the number of data
points that are within the radius r. The local transfer entropy is then computed as

tX→Y (wi)≈ log
p̂(y ′i , y (l)i , x (k)i)/p̂(y

(l)
i , x (k)i)

p̂(y ′i , y (l)i)/p̂(y
(l)
i)

. (4.1.11)

What Schreiber also considered was the exclusion of dynamically correlated1 data
points where a defined amount of pre- and succeeding rows for some row i is
1 The idea of excluding points with respect to time is to improve the quality of estimation since data

points in continuous space that are close in time are usually not far apart each other.

4.1. Data Processing Pipeline 29

excluded from the neighborhood. Thus, the neighborhood NE(i) will be different
for each row i.

While this estimator is more efficient and does not need as many samples as
the word count estimator, the runtime is quadratic when implemented naively since
for each row nearly all other rows of W are compared for the kernel estimate.
However, one can use beneficial tree data structures to increase the lookup speed of
the neighborhood, which we will mention again for the next estimator that uses a
more recent approach in which we are interested more.

KSG Estimator

The idea for the following estimator has been introduced by Kraskov, Stögbauer,
and Grassberger [15] which we therefore call the KSG estimator. Their goal was to
estimate the mutual information between continuous random variables where they
used an entropy estimation method of Kozachenko and Leonenko [14] which uses
the k-nearest neighbor method. We will introduce this method shortly.

For once, let’s say X is a random variable and we have samples x1, ..., xN , then
the entropy is estimated by computing

Ĥ(X) = −ψ(K) +ψ(N) + log cd +
d
N

N
∑

i=1

logε(i) (4.1.12)

where ψ(x) is the digamma function Γ (x)−1 d
d x Γ (x) (the logarithmic derivative of the

gamma function), cd is the volume of the d-dimensional unit ball and ε(i) is twice
the distance from x i to its K-th nearest neighbor. For a full derivation of this
estimator we refer to the work of Kraskov et al. [15].

Now, in our case we want to estimate the conditional mutual information between
Y ′ and X (k) conditioned on Y (l). One could use Equation 3.2.6 and estimate each
entropy individually with (4.1.12) to compute

TX→Y ≈ Î(Y ′; X (k)|Y (l))
= Ĥ(Y (l), X (k)) + Ĥ(Y ′, Y (l))− Ĥ(Y (l))− Ĥ(Y ′, Y (l), X (k)). (4.1.13)

However, according to Kraskov et al. [15] the biases for each individual estimation
would not cancel and therefore they used another approach. Since their goal was to
estimate mutual information and not conditional mutual information, Vlachos et al.
[29] transformed the same idea for the latter case which we will also use.

In general, let’s say we have three random variables A, B, C each with dimen-
sion dA, dB, dC and N samples from the joint space (A, B, C) and we want to esti-
mate the conditional mutual information I(A; B|C). The estimate of the joint entropy
H(A, B, C) can then again be made with (4.1.12) which results in

Ĥ(A, B, C) = −ψ(K) +ψ(N) + log(cAcBcC) +
dA+ dB + dC

N

N
∑

i=1

logε(i) (4.1.14)

30 4. Approach and Implementation

where analogously ε(i) is twice the distance from a sample i to its K-th near-
est neighbor in the joint space. For the distance measure, we will use the
maximum norm ‖·‖∞ as in the estimator before (Schreiber estimator) and thus, any
volume c will be 1.

Now, to estimate the marginal entropies, for each sample i the same distance ε(i)
is used but the amount of regional points are now counted in the marginal spaces
within radius ε(i)/2. Figure 4.4 illustrates this idea for estimating mutual informa-
tion I(X , Y) in some joint space (X , Y).

i Δx
Δy

ε(i)

ε(i)

Figure 4.4.: Example for determining the counts in the marginal spaces with K = 3 (here,
any point i is always its 1st neighbor). For point i the K -th neighbor in the joint
space is located by the maximum norm ‖·‖∞ and therefore, the distance ε(i)
and the counts nX (i) and nY (i) are determined (nX (i) = 8 and nY (i) = 6).

For the marginal estimates the term ψ(K) is replaced with an average 1
N

∑N
i=1ψ(n(·)(i))

where n(·)(i) is the number of regional points in some marginal space (·) for the
i-th point within its radius ε(i)/2. This results in

Ĥ(A, B) = −
1
N

N
∑

i=1

ψ(nAB(i)) +ψ(N) + log(cAcB) +
dA+ dB

N

N
∑

i=1

logε(i) (4.1.15)

Ĥ(A) = −
1
N

N
∑

i=1

ψ(nA(i)) +ψ(N) + log(cA) +
dA

N

N
∑

i=1

logε(i). (4.1.16)

If we replace the terms in Equation 3.2.6 by the joint (4.1.14) and marginal en-
tropy estimations (4.1.15) and (4.1.16), the estimation of the conditional mutual
information I(A; B|C) is given by

Î(A; B|C) = Ĥ(A, C) + Ĥ(B, C)− Ĥ(C)− Ĥ(A, B, C)

=ψ(K)−
1
N

N
∑

i=1

�

ψ(nAC(i)) +ψ(nBC(i))−ψ(nC(i))
�

(4.1.17)

4.1. Data Processing Pipeline 31

In the same way, we can use this estimator for our variables (Y ′, Y (l), X (k)) and with
N̄ rows in W we compute the transfer entropy as

TX→Y ≈ Î(Y ′; X (k)|Y (l))

=ψ(K)−
1
N̄

N̄
∑

i=1

�

ψ(nY ′Y (l)(i)) +ψ(nX (k)Y (l)(i))−ψ(nY (l)(i))
�

. (4.1.18)

The local transfer entropy can be computed by removing the averaging, that is

tX→Y (wi)≈ψ(K)−
�

ψ(nY ′Y (l)(i)) +ψ(nX (k)Y (l)(i))−ψ(nY (l)(i))
�

. (4.1.19)

As the formula implicates, for each row i the joint space (Y ′, Y (l), X (k)) is only used
to determine the K-th neighbor and then one only needs to count the neighbors in
the marginal spaces (Y ′, Y (l)), (X (k), Y (l)) and (Y (l)) within radius ε(i)/2.

Not only is this estimator data efficient but according to Kraskov et al. [15] it is
more adaptive with increasing data and also has minimal bias. They have shown
empirically that the biases scale as functions of ∼ K/N which in general is useful
to know if one wants to compare different estimations with different amount of
samples and neighbors.

However, compared to the Schreiber estimator, dynamic correlation exclusion has
not been used for this approach. Furthermore and again similar to kernel methods,
if the method is implemented naively the runtime is quadratic. Therefore, improve-
ments have been developed [9] and in this work, k-d trees1 have been used for this
method to increase the performance up to log-linear runtime.

4.1.3 Analysis & Visualization

After evaluating all n-gram matrices W1, W2, ... we now have transfer entropy values
T E1, T E2, ... for each pair of time series that was considered for evaluation. Further-
more, if the MACC values have been evaluated in the pre-processing step then they
may be considered for the analysis as well. We will provide some examples in the
result later.

Note that not all estimators are needed and thus, depending on the estimator
and the parameters one may consider to filter these values once more. For this, we
will later formulate different hypotheses. Assuming we have filtered these values,
we can then query the results depending on the information of interest, e.g. for
one sensor one can fetch the top-10 highest outbound or inbound transfer entropy
values. Also, for each sensor one could aggregate the transfer entropy values, e.g.
adding up only outbound values or only inbound values or even both.

Still, it may be difficult in general how to interpret these values. Theoretically,
a high value would mean that for a process Y one can predict its future values
better when adding information from process X . But again, this does not always
imply causality. Therefore in this step, for a given time window one can plot two
time series together with their corresponding local transfer information values along
time such that one can make a better judgment about the causality for a particular
pair of time series.
1 A k-d tree is a data structure that consists of k-dimensional data. The data is partitioned in subspaces

which allows for faster queries but also takes up more memory.

32 4. Approach and Implementation

−4

−2

0

2

4

TS 1
TS 2

2015-07-03 2015-07-05 2015-07-07 2015-07-09 2015-07-11
−2

0

2

4

t1→2
t2→1

Figure 4.5.: Two time series together with their corresponding local transfer entropy val-
ues. The upper axis shows both time series, the lower axis shows the local
transfer entropy values for each direction.

However, when dealing with very many pairs of time series one may consider dif-
ferent approaches in order to understand the results better. Therefore, we have also
integrated a method to visualize the results as a directed graph. This may provide
some quick insight about the different relations between sensors and also allows to
justify more general statements.

Figure 4.6.: Demo example from the tool "visJS2jupyter". It provides a method
to create an interactive graph which also allows to move nodes, high-
light subgraphs and provide more details for nodes and arcs (see
https://github.com/ucsd-ccbb/visJS2jupyter).

4.1. Data Processing Pipeline 33

4.2 Hypothesis for Dependency Detection

One problem is that we do not have any labels for the relations that we want to
investigate and thus, we cannot evaluate the quality of the results. In order to
decide which transfer entropy values we consider as meaningful or even as true
causalities, we need to formulate a hypothesis. Vicente et al. [28] have formulated
a hypothesis specifically for neuroscience data by which they can exclude relations
that are not considered as causal interactions (i.e. false positives). Since we are
dealing with a large amount of possible relations between sensors, we keep our
statement more simple for now.

One problem in general is that it is difficult to formulate an upper bound for
transfer entropy since we work with continuous valued time series (see section 3.2.6)
and we also may choose a different length of samples. Also, it may be difficult to
justify which minimum value the transfer entropy needs to have. Therefore, we will
define a threshold parameter TEmin > 0 together with the hypothesis

H(1)0 : TX→Y < TEmin. (4.2.1)

If the null hypothesis is rejected for X → Y , we consider Y to be dependent on X ,
otherwise we do not consider it as dependent. Later, in the experiments we will
see that we can exclude many of these values even with low threshold values.

One more thing to consider is the difference between two transfer entropy values
of two time series since in the null hypothesis above, it is possible to have a (high)
transfer entropy value in each direction for the same processes X and Y . Thus, for
two processes X and Y one should compare TX→Y and TY→X . We formulate yet
another, more restrictive hypothesis with a second threshold parameter ∆TEmin > 0,
that is

H(2)0 : TX→Y < TEmin ∨ ∆TX→Y <∆TEmin (4.2.2)

where ∆TX→Y = TX→Y − TY→X . If we reject the null hypothesis here, then TX→Y is
higher than TY→X with a minimal margin of ∆TEmin which implies that the hypoth-
esis for the opposite direction Y → X will not be rejected. Thus, a dependency is
only considered for at most one of two directions X → Y and Y → X and never
both. Depending on the experiment we may use one of the two.

4.3 Parameter Settings

For both pre-processing (section 4.1.1) and evaluation (section 4.1.2), we have intro-
duced different parameters. In this section, we will list all those parameter and set
some default values wherever possible. These will be distinguished between query
parameters and evaluation parameters.

Query parameters

• (dateFrom, dateTo):
Determines the time range by which data will be queried for all time se-
ries.

34 4. Approach and Implementation

• sampleRate
The sample rate is expressed in seconds and determines the time window
for which a time series is aggregated piecewise. By this, one can also
determine, if short term dependencies (e.g. within seconds) or long term
dependencies (e.g. within several minutes) are considered in the evalua-
tion.

• maxSampleCount
Starting from dateFrom, this parameter sets an upper bound for the
amount of samples that will be queried. Based on the date range
(dateFrom, dateTo) and sampleRate, the amount of queried samples may
be lower.

• normalize
A boolean value that indicates whether the time series should be standard-
ized or not. Most of the time this value was set to True.

• alphabetSize
If a number is provided, the time series will be discretized into symbols.
Otherwise, the time series remain continuous valued. If used in this work,
it was set to 10 by default.

Evaluation parameters

• k, l
The lengths of the embedding vectors x (k)n and y (l)n for every time step n
where X is the source process and Y is the target process. This is used for
building the the n-gram matrices for a pair of time series. Larger values
for k or l imply that more past information is considered, however, com-
putation time may increase and numerical issues may occur. For simplicity,
we set k = l = 1 for all experiments in this work.

• kernelRadius (Schreiber estimator)
The kernel radius of the Schreiber estimator (in section 4.1.2 this was
defined as r) which allows to regulate the smoothness of the density esti-
mation. For normalized time series, this was set to 0.1.

• dynCorrExcl_ratio (Schreiber estimator)
The fraction of samples to exclude that are close in time. The intention
here is to reduce the bias of the estimator. By default, this was set to 0.01
which means that for each data point in a sequence 1% of the succeed-
ing data points and 1% of the preceding data points are excluded from
comparison in the density estimation.

• K (KSG estimator)
The K-th neighbor used in the KSG estimator which allows to regulate the
smoothness of the density estimation. By default, it was set proportionally
to the sequence length N , that is K = d0.01 · Ne. A higher value for K
may increase computation time while a lower value may increase the bias
at some point.

4.3. Parameter Settings 35

5 Experiments and Results
In this chapter we investigate the characteristics of the different estimators and fur-
thermore we will discuss the possible dependencies that were found by using trans-
fer entropy. In order to confirm the appropriateness of the estimators, we applied
them on two smaller data sets that were also discussed as examples in the work
from Schreiber [23]. One example contained a generated data set and another ex-
ample contained some physiological time series. Afterwards, the time series from
the satellite data was processed and investigated. For the query parameters and
evaluation parameters used in the experiments, Also, if we do not state any query
parameters or any evaluation parameters in the experiments explicitly, we will refer
to the default parameters mentioned in section 4.3.

5.1 Performance of Estimators

To get a first impression on how fast the estimators work, we let them run on
some generated data with different lengths. One should note that the generated
data was in-memory and not stored in a database which would increase the overall
processing time if one needs to query data first. Figure 5.1 shows the computation
time for each estimator and for different input lengths.

101 102 103 104 105
N

10−3

10−2

10−1

100

101

102

103

tim
e
(s
ec
on

ds
)

Schreiber
Word Count
KSG

Figure 5.1.: Runtimes for computing transfer entropy values in both directions
(i.e. X → Y and Y → X) for a given pair of time series.

Our implementation of the Schreiber estimator was not fully optimized and there-
fore, it is expected to be much slower than the other two estimators. Still, we
used the Schreiber estimator when computing shorter sequences around 103 for
comparison. The KSG Estimator also has an acceptable computation time if com-
pared to the simpler word count estimator and is generally the fastest estimator in

37

this work for N < 104. Furthermore, the runtime of the KSG estimator was affected
by the parameter setting K = d0.01 · Ne which implies that we can instead take a
fixed K (e.g. 15) to increase the performance. However, we also need to consider
a bias, if we want to compare two transfer entropy values that each had a different
length N .

5.2 Example: Unidirectionally Coupled Maps

For this example, the data set has been generated by some dynamical system where
100 different time series have been generated. Also, it has been generated in such
manner that information only flows in one direction. Let m ∈ {1, 2, ..., 100} be one
of 100 processes and f (x) = 2 − x2 be the map that has been used in the work
of Schreiber (they referred to the name "Ulam map"). For each process m, at time
step n the value for the next time step n+ 1 is then generated by

xm
n+1 = f (εxm−1

n + (1− ε)xm
n), ε ∈ [0,1] (5.2.1)

where ε is the coupling strength. Note that for m= 0 the process does not exist and
therefore the values from m= 100 are used which means that the information then
can only flow unidirectionally in a circle. For each process m, at the initial time
step n = 1 the value xm

1 was initialized randomly with a value between −2 and
2. By using (5.2.1) and for each coupling strength ε ∈ {0.00,0.02, ..., 0.98, 1.00},
105 transient values have been generated and then 104 iterates were recorded from
process m= 1 and m= 2. Therefore, for each coupling strength ε only two time
series have been compared with each other where it was expected to see a depen-
dency from m= 1 to m= 2 and not from m= 2 to m= 1. Furthermore, the data
has not been normalized except for the word count estimator since it discretizes
the data according to the SAX method. For the Schreiber estimator, the parameter
kernelRadius was set to 0.3. Figure 5.2 illustrates the result for all three estima-
tors that were applied to the same data set. Also, the MACC values were computed
for the pair of time series which remain the same for all three plots.

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3

TE

Schreiber Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3
Word Count Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3
KSG Estimator

1 2
2 1
MACC

Figure 5.2.: Comparison of all three estimators over a range of coupling strengths ε for 104

samples.

We confirmed that our implementation of the Schreiber estimator gives nearly the
same result as in their work. Also, the other two estimators are also behaving sim-
ilarly and therefore, for all results one can tell that the transfer entropy for 1→ 2

38 5. Experiments and Results

is higher than for 2→ 1 whenever the MACC value is not (nearly) 1. We also com-
pared the results for lower sample lengths N (see section A.1). Overall, the scales
of the transfer entropy values differ.

Furthermore, we found one exception where the KSG estimator yields different
results for time series generated with ε = 0.16. These were fully correlated time
series which we investigated further in section A.2. However, in this work we sort
out fully correlated pairs of time series during the pre-processing step.

5.3 Example: Heart-Breathrate Interaction

0 200 400 600 800 1000

−2.5

0.0

2.5

5.0

va
lu
e Heart

Breath

Figure 5.3.: Heart-breathrate time series.

A real world example from Schreiber was about physiological time series which were
measured from a sleeping human suffering from sleep apnea (see Figure 5.3). We
shortly investigated these time series where we took 1200 samples from the data
set as they did in their work. Also, we also normalized the data before evaluating
it.

Parameter value
kernelRadius 0.1

dynCorrExcl_ratio 1/12
K 12

Table 5.1.: Parameter settings for the heart-breathrate example.

Evaluator THeart→Breath TBreath→Heart
Schreiber Estimator 0.1687 0.1723

Word Count Estimator 0.4258 0.3060
KSG Estimator −0.024 0.015

MACC 0.097

Table 5.2.: Results for the heart-breathrate exampleusing by using different estimators.
For completeness, the MACC value has also been computed.

As a result, both time series almost have no correlation. Also, we again see different
scales of transfer entropy values. For both Schreiber estimator and KSG estimator,
the results indicate a higher transfer entropy for Breath→Heart. The word count es-
timator is expected to be less reliable when using too few samples and therefore we
see this as a possible reason for the more different result. For all three estimators

5.3. Example: Heart-Breathrate Interaction 39

we also plotted the local transfer entropy values which can be seen in section A.3.

0.05 0.10 0.15 0.20 0.25 0.30
kernelRadius

0.0

0.1

0.2

TE

Heart → Breath
Breath → Heart

Figure 5.4.: Estimating transfer entropies for heart-breathrate time series with Schreiber
estimator for kernelRadius= 0.01,0.02, ..., 0.29, 0.3.

10 20 30 40 50
K

−0.4

−0.2

0.0

TE

Heart → Breath
Breath → Heart

Figure 5.5.: Estimating transfer entropies for heart-breathrate time series with KSG estima-
tor for K = 1,2, ..., 49, 50.

In opposite to our results, Schreiber stated in his work that he found a higher
transfer entropy for Heart→Breath. We assume that either the used parameters
were slightly different than ours or some post-processing has been done. However,
even for different parameter values our implementation of the Schreiber estimator
showed most of the time higher values for Breath→Heart than for Heart→Breath
(see Figure 5.4). The same accounts for the KSG estimator when using different
parameter values Figure 5.5). Also, the figures above motivated us to set the pa-
rameters for kernelRadius and K as we did in Table 5.1.

5.4 Investigation of relations between sensors of type DEG, V, A, WATT, C
and DEG

In the following section, we show the results of two experiments for a smaller
part of the data set where the selection was suggested by Solenix. Overall we
investigated 426 sensors from the first satellite and of the unit type DEG, A without
the PYRO I, V and VOLT, WATT, C and DBM (see feature UNITS in section 2.2).
The idea here was to find different kinds of dependencies, that is, we wanted to
compare short-term dependencies and long-term dependencies. One experiment was
conducted with a shorter time window of 2 hours and a sample rate of 5 seconds
while the other experiment was conducted with a larger time window of 3 days
and a sample rate of 60 seconds. The results will be discussed separately in each
of the next sections.

40 5. Experiments and Results

5.4.1 Results for short-term dependencies

Parameter value
dateFrom 07/01/2015 06:00
dateTo 07/01/2015 08:00

sampleRate 5
maxSampleCount 1440
kernelRadius 0.1

K 15

Table 5.3.: Parameter settings for the "short-term dependencies" experiment

The parameter settings are shown in Table 5.3. After pre-processing and filtering
the selected time series, only 203 meaningful time series remained. Thus, for
20503 pairs (i.e. 41006 relations for transfer entropy) we computed the MACC
values and transfer entropy values where we used the Schreiber estimator and the
KSG estimator. Also, we did not filter any pairs after computing the MACC values.
The runtimes for the pipeline when evaluating MACC, Schreiber estimator and KSG
estimator were 10-11 minutes, 14-15 minutes and over 90 minutes, respectively.

For the analysis, we used the transfer entropy values from the KSG estimator
since we found it not only more practical but also more reliable compared to the
other two estimators. For comparison, further results can be found in Appendix B.
The transfer entropy values ranged from -0.11 to 0.88. When we removed all results
with MACC> 0.99 and also applied the first hypothesis (4.2.1) with TEmin = 0.01 we
were left with 1617 dependencies that we consider as dependencies. Furthermore,
when the second hypothesis (4.2.2) was applied with ∆TEmin = 0 additionally, 1196
dependencies were left. The threshold value TEmin was chosen according to Fig-
ure 5.6 close to the area where the transfer entropy values begin to rise quickly.

0 10000 20000 30000 40000
relations

0.00

0.25

0.50

0.75

TE

Schreiber Estimator
KSG Estimator

Figure 5.6.: Distribution of the transfer entropy values for the "short-term dependencies"
experiment. The values were sorted in ascending order.

First, we shortly investigated the results for each unit type by sorting the transfer
entropy values in descending order. One of the reasonable results that we cap-
tured was for the sensor 1G_035 (SUN ANGLE). We assume that the sun angle
describes some spacial information between the satellite and the sun. As one can
see in Table 5.4, the transfer entropies to the sensors 1J_216 (SOLAR ARRAY CUR)
and 1J_D16 (SOLAR ARRAY POW) are the highest. The solar array sensors seem
to represent the solar array panels and thus, we found this result intuitive. Also,

5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 41

we noted that the MACC value between both of these solar array sensors was 1
which is not listed here. Furthermore, the column "TE_delta" corresponds to ∆TX→Y
as introduced in section 4.2 and column "TE_mean" expresses the mean transfer en-
tropy value from each sensor X to each other sensor Y based on the result set
(here, 1196 dependencies).

We then plotted and inspected both time series together with their local transfer
entropy values. We found that the interaction was one-sided throughout the whole
time window of two hours. A closer look with 150 samples is shown in Figure 5.7.

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1683 1849 0.5327 0.5709 0.3496 0.5368 1G_035 SUN ANGLE DEG 1J_216 SOLAR ARRAY CUR A
1988 0.5327 0.5633 0.3496 0.5273 1G_035 SUN ANGLE DEG 1J_D16 SOLAR ARRAY POW WATT
1984 0.3591 0.3263 0.3496 0.3697 1G_035 SUN ANGLE DEG 1J_D11 IPD POWER WATT
1845 0.3554 0.3218 0.3496 0.3662 1G_035 SUN ANGLE DEG 1J_211 IPD CURRENT A
1579 0.5249 0.2741 0.3496 0.3342 1G_035 SUN ANGLE DEG 1F_034 MINUS 12 VOLTS V

Table 5.4.: Results for top-5 transfer entropy values (column "TE") for sensor 1G_035
(SUN ANGLE). The transfer entropy values for 1G_035 → 1J_216 and for
1G_035→ 1J_D16 are the highest in this result.

−2

0

2

1683
1849

06:00 06:01 06:02 06:03 06:04 06:05 06:06 06:07 06:08 06:09 06:10 06:11 06:12

−2

0

2

t1683→1849
t1849→1683

Figure 5.7.: A closer look at the time series for 1G_035 (SUN ANGLE, PID 1683) and for
1J_216 (SOLAR ARRAY CUR, PID 1849) at the top. On the bottom, we see that
the local transfer entropy values were mostly higher for 1G_035→ 1J_216.

Other results with higher transfer entropy also existed which we show in Table 5.5.
We do not know the true meaning of these sensors, however, from what we see,
we can only assume that interactions between these voltages exist.

Also, we took a closer look at 1E_029 (VN12V) and 1E_125 (5VUF2) as we can
see in Figure 5.8. It is interesting to note that although the behavior of the time
series for 1E_125 changed, the local transfer entropy values for 1E_029 still re-
mained higher most of the time. This occurred frequently for many other pairs of
time series as well. We assumed that this may be due to the fact that the data has
been normalized and also that generally, during estimation even smaller differences
between data points are captured which we cannot see at first view.

42 5. Experiments and Results

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1310 1406 0.2126 0.8760 0.5529 0.6998 1E_029 VN12V V 1E_125 5VUF2 V
1312 0.2126 0.8760 0.5529 0.6998 1E_031 VOL5V V 1E_125 5VUF2 V
1306 1405 0.2126 0.8760 0.5529 0.6998 1E_025 AVO5V V 1E_124 5VUF1 V

1406 0.2126 0.8760 0.5529 0.6998 1E_025 AVO5V V 1E_125 5VUF2 V
1311 1405 0.2126 0.8760 0.5529 0.6998 1E_030 VO12V V 1E_124 5VUF1 V
1310 0.2126 0.8760 0.5529 0.6998 1E_029 VN12V V 1E_124 5VUF1 V
1312 0.2126 0.8760 0.5529 0.6998 1E_031 VOL5V V 1E_124 5VUF1 V
1311 1406 0.2126 0.8760 0.5529 0.6998 1E_030 VO12V V 1E_125 5VUF2 V
1312 1412 0.2126 0.8747 0.5529 0.6984 1E_031 VOL5V V 1E_131 O_AU1 V

1413 0.2126 0.8747 0.5529 0.6984 1E_031 VOL5V V 1E_132 O_AU2 V

Table 5.5.: Results for top-10 transfer entropy values (column "TE") from the experiment.

−1

0

1

1310
1406

06:34 06:35 06:36 06:37 06:38 06:39 06:40 06:41 06:42 06:43 06:44 06:45

−2

0

2

t1310→1406
t1406→1310

Figure 5.8.: A closer look at the time series for 1E_029 (VN12V, PID 1310) and for
1E_125 (5VUF2, PID 1406) at the top. On the bottom, we see that the local
transfer entropy values were mostly higher for 1E_029→ 1E_125 even though
the values of the time series from 1E_125 were very small starting around time
step 06:40.

5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 43

Visualization of Dependencies

One may not always want to investigate specific sensors and precisely explain dif-
ferences between higher or lower transfer entropy values. Therefore, we visualized
the results (1196 dependencies based on the second hypothesis) as a directed graph
which gave us a better overview (see Figure 5.9). We explored the graph and found
that the sensors for the solar array cells were clearly visible (see Figure 5.10). Fur-
thermore, other related electricity sensors like IPD CURRENT/POWER, MAIN BUS
CURRENT/POWER were also close by and we therefore assume an interaction be-
tween the current supply and some internal system. Another system we detected
was for the sensor SA ANGLE (see Figure 5.11). In this case, the SA ANGLE de-
pends on almost all connections that were highlighted in the figure.

For both mentioned figures, we also queried the results which can be found in
section C.1.

Figure 5.9.: Directed graph for the results of the "short-term dependencies" experiment.
The size of the node scales with the amount of connections the node has. The
more green a node is colored, the higher is its mean transfer entropy value to
all of its targets.

44 5. Experiments and Results

Figure 5.10.: Part of the graph which probably represents the interaction of the current
supply and the system. The nodes and its connections for SOLAR ARRAY
POW and SOLAR ARRAY CUR were highlighted.

Figure 5.11.: Part of the graph that may show another interaction between two systems.
The node and its connections for SA ANGLE were highlighted.

5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 45

5.4.2 Results for long-term dependencies

Parameter value
dateFrom 07/01/2015 06:00
dateTo 07/04/2015 06:00

sampleRate 60
maxSampleCount 4320

K 20

Table 5.6.: Parameter settings for the "long-term dependencies" experiment

As shown in Table 5.6, we now use a different parameter setting for the same sen-
sor subset. This time, 329 meaningful time series remained after pre-processing and
filtering the time series. For 53956 pairs (i.e. 107912 relations for transfer entropy)
we computed the MACC values and transfer entropy values where we only used the
KSG estimator. Again, we did not filter any pairs after computing the MACC values.
The runtimes for the pipeline when evaluating MACC and KSG estimator were over
90 minutes and over 125 minutes, respectively. Not only are the runtimes higher
due to more relations to be evaluated but also because of a longer time window to
query.

The transfer entropy values ranged from -0.13 to 0.39. Again, we removed all
results with MACC > 0.99 and after the first hypothesis (4.2.1) was applied with
TEmin = 0.05, we were left with 2301 dependencies. After the second hypothesis
(4.2.2) was applied with ∆TEmin = 0 additionally, the results reduced further to
1999 dependencies. Again, the distribution of the transfer entropy values (see Fig-
ure 5.12) motivated us to choose the threshold value TEmin.

0 20000 40000 60000 80000 100000
relations

0.0

0.2

0.4

TE KSG Estimator

Figure 5.12.: Distribution of the transfer entropy values for the "long-term dependencies"
experiment. The values were sorted in ascending order.

We first noted that sensor for the sun angle (from the experiment before) now had
a transfer entropy value of 0.03 to the solar array sensors. Because of TEmin = 0.05,
we do not consider this as a dependency in this result set. Also, as we can see
in Table 5.7 we got a different result when we queried the top-10 transfer entropy
values. To understand this better, we took a closer look at the sensors 1J_D17
(SWITCH BUS 1 POW) and 1E_031 (VOL5V) as we see in Figure 5.13.

Because we chose a sample rate of 60 seconds and a larger sample size for each
time series (here, 4320 instead of 1440), the found that for a pair of time series the
local transfer entropy values for each direction had higher variance. Even though

46 5. Experiments and Results

the range for the transfer entropy values is lower (0.39 at maximum) we therefore
think that one may still locate a possible causality along the time. This also means
that one has to be more careful when filtering the relations further.

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1989 1312 0.1351 0.3850 0.1288 0.3693 1J_D17 SWITCH BUS 1 POW WATT 1E_031 VOL5V V
1306 0.1351 0.3850 0.1288 0.3692 1J_D17 SWITCH BUS 1 POW WATT 1E_025 AVO5V V
1310 0.1351 0.3849 0.1288 0.3692 1J_D17 SWITCH BUS 1 POW WATT 1E_029 VN12V V
1311 0.1351 0.3849 0.1288 0.3692 1J_D17 SWITCH BUS 1 POW WATT 1E_030 VO12V V

1248 1310 0.1146 0.3697 0.1383 0.3868 1D_071 DWP TEMP MONITOR C 1E_029 VN12V V
1311 0.1146 0.3697 0.1383 0.3868 1D_071 DWP TEMP MONITOR C 1E_030 VO12V V
1306 0.1146 0.3695 0.1383 0.3867 1D_071 DWP TEMP MONITOR C 1E_025 AVO5V V
1312 0.1146 0.3695 0.1383 0.3866 1D_071 DWP TEMP MONITOR C 1E_031 VOL5V V

1850 1306 0.1350 0.3691 0.1401 0.3552 1J_217 SWITCH BUS 1 CUR A 1E_025 AVO5V V
1312 0.1350 0.3691 0.1401 0.3552 1J_217 SWITCH BUS 1 CUR A 1E_031 VOL5V V

Table 5.7.: Results for top-10 transfer entropy values (column "TE") from the experiment.

0

5

10

15

20

1989
1312

07/01 08:00 07/01 20:00 07/02 08:00 07/02 20:00 07/03 08:00
−2

0

2
t1989→1312
t1312→1989

Figure 5.13.: A closer look at the time series for 1J_D17 (SWITCH BUS 1 POW, PID 1989)
and for 1E_031 (VOL5V, PID 1312) at the top. On the bottom, we see that for
a certain amount of time the local transfer entropy values were much higher
for 1J_D17→ 1E_031.

5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 47

Visualization of Dependencies

We visualized the results again as a directed graph but the first graph that we
created for the 1999 dependencies was too verbose. Thus, we reapplied the second
hypothesis with a higher threshold value of TEmin = 0.1 (∆TEmin = 0 remained the
same) so that we were left with 820 dependencies. Figure 5.14 gives an overview
of the directed graph where we found three groups of sensors. The upper group of
sensors (containing voltages in the center) is again seen as in the experiment before.
However, we found that the semantics changed since we found more temperature
related dependencies rather than electricity related dependencies. For example, the
sensors GTMP1/GTMP2 showed a lot of interaction as we can see in Figure 5.15
whereas the sensor PEACE HEEA TEMP was depending on a large amount of other
components as seen in Figure 5.16.

Again, for both mentioned figures we queried the results and provided them in
section C.2.

Figure 5.14.: Directed graph for the results of the "long-term dependencies" experiment.
The size of the node scales with the amount of connections the node has.
The more green a node is colored, the higher is its mean transfer entropy
value to all of its targets.

48 5. Experiments and Results

Figure 5.15.: Possible interaction between temperatures. The nodes and its connections
for GTMP1 and GTMP2 were highlighted. Each of them had a TE_mean value
of 0.1268.

Figure 5.16.: A temperature sensor that is influenced by several other components but
not vice versa. The node and its connections for PEACE HEEA TEMP were
highlighted. This sensor had a TE_mean value of 0.0 which may indicate that
its component does not cause anything.

5.4. Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG 49

5.4.3 Comparing both experiments

Based on the results from both experiments we were able to interpret each of the
results differently. We wanted to understand how the transfer entropy values be-
tween the experiments are related. Thus, we considered all sensors that were found
in both experiments and compared these transfer entropy values as seen below (see
Figure 5.17). We can see that a large amount of transfer entropy values were below
0 for both experiments. Also, we can see that each experiment may have dependen-
cies that were not found in the other one, respectively. However, when both values
were over 0, no clear correlation was found for this case.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.17.: Comparison of transfer entropy values from each of the two experiments
("short-term dependencies" and "long-term dependencies"). The colormap
(hot) is scaled logarithmically.

5.5 Investigation of relations between all sensors

In this section, we show the results of one experiment where we compared the
relations of all sensors from the first satellite. We wanted to explore what happened,
if a large amount of sensors was investigated and also, if we were still able to
visualize the results properly. For simplicity, we only investigated the short-term
dependencies as we did it before with the smaller amount of sensors.

5.5.1 Results for short-term dependencies

We used the same parameters as the ones that were used in the "short-term de-
pendencies" experiment (see Table 5.8). From 2757 sensors, 1140 meaningful time
series remained after pre-processing and filtering the time series. For 649230 pairs
(i.e. 1298460 relations for transfer entropy) we computed the MACC values and
transfer entropy values where we only used the KSG estimator. This time, after
computing the MACC values we filtered all pairs with MACC > 0.99 by which we

50 5. Experiments and Results

Parameter value
dateFrom 07/01/2015 06:00
dateTo 07/01/2015 08:00

sampleRate 5
maxSampleCount 1440

K 15

Table 5.8.: Parameter settings for the investigation of relations between all sensors. These
are the same parameters as in the "short-term dependencies" experiment.

removed 57177 pairs. Therefore, instead of computing the transfer entropy values
for 1298460 relations we ended up computing these for 1184106 relations. The run-
times for the pipeline when evaluating MACC and KSG estimator were over 3 hours
and over 4 hours, respectively.

Compared to the "short-dependency" experiment from before where 203 sensors
were left, we now have a wider range of transfer entropy values from -0.29 to
1.33 as we can see in Figure 5.18.

0 200000 400000 600000 800000 1000000 1200000
relations

−0.2

0.2

0.6

1.0

1.4

TE KSG Estimator

Figure 5.18.: Distribution of the transfer entropy values after processing all sensors. The
values were sorted in ascending order.

Visualization of Dependencies

We applied the second hypothesis with TEmin = 0.3 and ∆TEmin = 0 which ended up
in 3940 dependencies. As a result, we found a more diverse but still distinguishable
result (see Figure 5.19). We explored this graph further and we will point out some
of the findings (some other close-ups can be found in Appendix B). Compared
to the first experiment, certain connections between some sensor groups were not
preserved. One instance is between the groups seen in Figure 5.20 and Figure 5.21
which used to be connected in the experiment before but now they were separated.
On the other hand, for each of these groups we were able to see and assume new
interactions to other sensor groups (compare Figure 5.21 and Figure 5.22).

We again point out the subgraph for the sun angle as shown in Figure 5.20 which
now seems to be a dependency for many more components than in the experiments
before. For this, we queried the results and attached them in section C.3.

5.5. Investigation of relations between all sensors 51

Figure 5.19.: Directed graph for the results of the "short-term dependencies" experiment
after processing all sensors. The size of the node scales with the amount of
connections the node has. The more green a node is colored, the higher is its
mean transfer entropy value to all of its targets.

Figure 5.20.: Part of the directed graph where SUN ANGLE is a dependency for many of its
surrounding components.

52 5. Experiments and Results

Figure 5.21.: Part of the directed graph where a group of voltage units are centered.

Figure 5.22.: Part of the directed graph where a group is connected with the voltage units.

5.5. Investigation of relations between all sensors 53

6 Conclusion and Future Work

6.1 Conclusion

The goal of this work was to develop a solution that allows to identify dependencies
between time series in order to group them. The idea of this work was to provide
a tool for domain experts in order to support their monitoring of the satellites.

To accomplish this goal, we were looking for a method that allowed us to find
dependencies or casual interactions without assuming a specific model or more gen-
eral, without having any domain knowledge. Therefore, we chose to use transfer
entropy to quantify the relations between time series.

We created a data processing pipeline that we used to conduct our experiments
where three different probability density estimators were used for evaluating transfer
entropy. We tended to use the most recent estimator since we found it was more
data efficient and also allowed us to explain the results appropriately.

We conducted three experiments where it was possible to detect short-term de-
pendencies and long-term dependencies between a smaller amount of sensors but
also between higher amount of sensors. We then were able to visualize all found
dependencies as a directed graph. Depending on the amount of nodes and con-
nections in the directed graph, it was useful to change the threshold values TEmin
and ∆TEmin since these helped to reveal groups of sensors. Most of the time, we
were able to see and assume that the dependencies we found were appropriate and
distinguishable.

Overall, we provided a solution that accomplished the mentioned goal. We con-
clude that this work may be more relevant for flaw detection rather than exploring
all kinds of dependencies since the method so far works only for batch data and
not for streaming data. Also, it can take a long time to evaluate, if simply all
possible relations between a greater amount of sensors are evaluated.

6.2 Future Work

As already mentioned, the pipeline is not ready to be used with streaming data
since the transfer entropy values are both computed and compared only for within
a query of time series. Thus, the pipeline is currently memoryless. One suggestion
is to use a parametric probability model. In that case, the probabilities are not
inferred directly like we did this with the nonparametric methods. Among other
possible parametric models, Deep neural networks currently gained large attention and
are used in many applications. For this work, it could be beneficial in several ways.
It can be used to incorporate a longer sequence of past information and also, it
is able to predict multiple future values simultaneously. Most important is that the

55

underlying parameters for the neural network can be updated incrementally and
stored for later use. However, this is only feasible for a small portion of relations
one wants to investigate.

The concept of transfer entropy was based on the idea to predict a future value
by some past values. Instead, one could also think of predicting some intermediate
value, based on its adjacent values. The idea here is to rather compare the contex-
tual information that is transferred between time series. This work could easily be
adapted for that concept and furthermore, it would be interesting to see how the
results would change.

Another drawback of transfer entropy as we used it in this work is that it com-
pares dependencies only pairwise. Let’s assume that two processes X and Y are
known to be independent from each other but are both driven by a another pro-
cess Z . Technically, the problem here could be that we inferred high transfer en-
tropy values between X and Y and thus, we assume some dependency between
both but the real cause is actually coming from process Z . Therefore, we think that
extending transfer entropy with more than one source process can help to evaluate
and discriminate pairwise relations better,

Other than that, the performance of the pipeline leaves room for improvement
and also the interactivity of the directed graph visualization can be adapted further-
more.

56 6. Conclusion and Future Work

A Investigation of Schreiber’s Examples
Here, we provide further results for the examples from section 5.2 and section 5.3.

A.1 Estimations for different sample lengths

The following figures show the differences of the estimations of transfer entropy for
different sample lengths N . The same parameters were used except for the KSG
estimator, where K was set to d0.01 · Ne (though for N = 102 we took K = 5).

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

TE

Schreiber Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

Word Count Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

KSG Estimator

TE(1→2)
TE(2→1)

Figure A.1.: Comparison of all three estimators over a range of coupling strengths ε for
N = 102 samples.

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3

TE

Schreiber Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3
Word Count Estimator

0.0 0.2 0.4 0.6 0.8 1.0
ε

0

1

2

3
KSG Estimator

TE(1 2)
TE(2 1)

Figure A.2.: Comparison of all three estimators over a range of coupling strengths ε for
N = 103 samples.

A.2 Investigation of KSG Estimator

Though the KSG estimator seems to work correctly, the estimations for the generated
time series for ε = 0.16 and ε = 0.18 are different, although both time series pairs
are fully correlated, respectively (see Figure A.3). One can see that there are minor
differences between the time series for ε = 0.16 (see Figure A.4) and ε = 0.18 (see
Figure A.5). However, we did not further investigate the reasons for the difference
between both results because in this work, fully correlated pairs of time series were
filtered anyway.

57

0.00 0.08 0.16 0.24 0.32 0.40
ε

0.0

0.5

1.0

1.5

2.0

TE

KSG Estimator

TE(1→2)
TE(2→1)
MACC

Figure A.3.: Partial result from Figure 5.2, N = 104. The time series pairs for ε = 0.16 and
ε= 0.18 are fully correlated but they differ in their transfer entropy values.

0

1

2

va
lu
e m = 1

m = 2

0 20 40 60 80 100 120 140

0

2

4

lo
ca
l T
E 1 → 2

2→1

Figure A.4.: Two time series generated with ε = 0.16 (top). The local transfer entropy
values (bottom) originate from the KSG estimator with N = 104. Each average
of the local transfer entropy values is above zero.

0

1

2

va
lu
e m = 1

m = 2

0 20 40 60 80 100 120 140

0

2

4

lo
ca
l T
E 1 → 2

2→1

Figure A.5.: Two time series generated with ε = 0.18 (top). The local transfer entropy
values (bottom) originate from the KSG estimator with N = 104. Each average
of the local transfer entropy values is nearly zero.

58 A. Investigation of Schreiber’s Examples

A.3 Plots for Heart-Breathrate

0

5

va
lu
e

Schreiber Estimator

Heart
Breath

0 200 400 600 800 1000
−2

0

2

4

lo
ca
l T
E Heart → Breath

Breath → Heart

Figure A.6.: Heart-breathrate time series (top) compared with its local transfer entropy
values evaluated with Schreiber estimator (bottom).

0

5

va
lu
e

Word Count Estimator

Heart
Breath

0 200 400 600 800 1000

0.0

2.5

5.0

lo
ca
l T

E Heart → Breath
Breath → Heart

Figure A.7.: Heart-breathrate time series (top) compared with its local transfer entropy
values evaluated with word count estimator (bottom).

0

5

va
lu
e

KSG Estimator

Heart
Breath

0 200 400 600 800 1000
−1

0

1

lo
ca
l T
E Heart → Breath

Breath → Heart

Figure A.8.: Heart-breathrate time series (top) compared with its local transfer entropy
values evaluated with KSG estimator (bottom).

A.3. Plots for Heart-Breathrate 59

B Further Investigation:
Analysis & Visualization

B.1 Plots

0 5000 10000 15000 20000
pairs of time series

0.00

0.25

0.50

0.75

1.00

M
AC

C

Figure B.1.: Distribution of MACC values from the "short-term dependencies" experiment.
The values were sorted in ascending order.

0 10000 20000 30000 40000 50000
pairs of time series

0.00

0.25

0.50

0.75

1.00

M
AC

C

Figure B.2.: Distribution of MACC values from the "long-term dependencies" experiment.
The values were sorted in ascending order.

0 100000 200000 300000 400000 500000 600000
pairs of time series

0.00

0.25

0.50

0.75

1.00

M
AC

C

Figure B.3.: Distribution of MACC values from the "short-term dependencies" experiment
where all sensors were processed. The values were sorted in ascending order.

60

0.0 0.1 0.2 0.3 0.4 0.5
TE with Schreiber Estimator

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TE
 w
ith

 K
SG

 E
st
im

at
or

Figure B.4.: Comparison from "short-term dependencies" experiment between Schreiber
estimator and KSG estimator.

B.1. Plots 61

B.2 Directed Graphs

Figure B.5.: Directed graph for the results of the "short-term dependencies" experiment
based on Schreiber estimator. The size of the node scales with the amount of
connections the node has. The more green a node is colored, the higher is its
mean transfer entropy value to all of its targets.

Figure B.6.: Part of the directed graph based on Schreiber estimator. This result looks sim-
ilar to the part from the "short-term dependencies" experiment with the KSG
estimator as discussed in section 5.4.1.

62 B. Further Investigation: Analysis & Visualization

Figure B.7.: Part of the directed graph after investigating all sensors. One sensor seems to
be dependent on a large amount of other components.

B.2. Directed Graphs 63

Figure B.8.: Part of the directed graph after investigating all sensors. Here, we interpret
the substring "CNT" as a count value where we assume interactions between
some count values.

64 B. Further Investigation: Analysis & Visualization

C Further Investigation: Query Results

C.1 Results for short-term dependencies

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1849 1845 0.5534 0.1545 0.1172 0.1827 1J_216 SOLAR ARRAY CUR A 1J_211 IPD CURRENT A
1984 0.5658 0.1422 0.1172 0.1746 1J_216 SOLAR ARRAY CUR A 1J_D11 IPD POWER WATT
1832 0.4903 0.0550 0.1172 0.0828 1J_216 SOLAR ARRAY CUR A 1J_105 MAJORITY VOTING V

1683 1849 0.5327 0.5709 0.3496 0.5368 1G_035 SUN ANGLE DEG 1J_216 SOLAR ARRAY CUR A
1579 0.4168 0.1221 0.0808 0.0638 1F_034 MINUS 12 VOLTS V 1J_216 SOLAR ARRAY CUR A
1599 0.3735 0.0776 0.0582 0.0385 1F_055 PSU TEMPERATURE C 1J_216 SOLAR ARRAY CUR A
1306 0.0483 0.0516 0.5529 0.1247 1E_025 AVO5V V 1J_216 SOLAR ARRAY CUR A
1310 0.0483 0.0516 0.5529 0.1247 1E_029 VN12V V 1J_216 SOLAR ARRAY CUR A
1311 0.0483 0.0516 0.5529 0.1247 1E_030 VO12V V 1J_216 SOLAR ARRAY CUR A
1312 0.0483 0.0516 0.5529 0.1247 1E_031 VOL5V V 1J_216 SOLAR ARRAY CUR A
2313 0.1066 0.0250 0.0876 0.0419 1P_020 DPU +5V MONITOR V 1J_216 SOLAR ARRAY CUR A

Table C.1.: Query result for SOLAR ARRAY CUR.

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

2250 2703 0.0960 0.0528 0.0528 0.0292 1M_D02 SA ANGLE DEG 1T_308 CCS LOW SIDE T1 C
1311 2250 0.2313 0.0498 0.5529 0.0962 1E_030 VO12V V 1M_D02 SA ANGLE DEG
1310 0.2313 0.0498 0.5529 0.0962 1E_029 VN12V V 1M_D02 SA ANGLE DEG
1455 0.1814 0.0172 0.0799 0.0573 1E_174 5VP22 V 1M_D02 SA ANGLE DEG
1454 0.1814 0.0172 0.0799 0.0573 1E_173 5VP21 V 1M_D02 SA ANGLE DEG
1986 0.0532 0.0166 0.2558 0.0504 1J_D14 PERM BUS 1 POWER WATT 1M_D02 SA ANGLE DEG
1847 0.0532 0.0163 0.2662 0.0506 1J_214 PERM BUS 1 CUR A 1M_D02 SA ANGLE DEG
1524 0.1814 0.0116 0.0258 0.0424 1E_243 O_ET2 V 1M_D02 SA ANGLE DEG
1523 0.1814 0.0116 0.0258 0.0424 1E_242 O_ET1 V 1M_D02 SA ANGLE DEG
1520 0.1814 0.0116 0.0258 0.0424 1E_239 G_BW2 V 1M_D02 SA ANGLE DEG
1519 0.1814 0.0116 0.0258 0.0424 1E_238 G_BW1 V 1M_D02 SA ANGLE DEG

Table C.2.: Query result for SA ANGLE.

65

C.2 Results for long-term dependencies

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1424 1500 0.8635 0.1464 0.1268 0.2068 1E_143 GTMP1 C 1E_219 O_SP2 V
1499 0.8635 0.1464 0.1268 0.2068 1E_143 GTMP1 C 1E_218 O_SP1 V
1496 0.8635 0.1464 0.1268 0.2068 1E_143 GTMP1 C 1E_215 G_AN2 V
1495 0.8635 0.1464 0.1268 0.2068 1E_143 GTMP1 C 1E_214 G_AN1 V
1402 0.8642 0.1319 0.1268 0.1263 1E_143 GTMP1 C 1E_121 O_EU1 V
1403 0.8642 0.1319 0.1268 0.1263 1E_143 GTMP1 C 1E_122 O_EU2 V
1483 0.8635 0.1313 0.1268 0.1821 1E_143 GTMP1 C 1E_202 O_OA1 V
1484 0.8635 0.1313 0.1268 0.1821 1E_143 GTMP1 C 1E_203 O_OA2 V
1479 0.8635 0.1313 0.1268 0.1821 1E_143 GTMP1 C 1E_198 GPUY1 V
1480 0.8635 0.1313 0.1268 0.1821 1E_143 GTMP1 C 1E_199 GPUY2 V

1845 1424 0.2595 0.1608 0.1262 0.1748 1J_211 IPD CURRENT A 1E_143 GTMP1 C
1832 0.2573 0.1587 0.1514 0.1690 1J_105 MAJORITY VOTING V 1E_143 GTMP1 C
1310 0.0767 0.1528 0.1338 0.0101 1E_029 VN12V V 1E_143 GTMP1 C
1311 0.0767 0.1528 0.1338 0.0101 1E_030 VO12V V 1E_143 GTMP1 C
1312 0.0767 0.1528 0.1338 0.0100 1E_031 VOL5V V 1E_143 GTMP1 C
1306 0.0767 0.1528 0.1338 0.0100 1E_025 AVO5V V 1E_143 GTMP1 C
1846 0.2788 0.1446 0.1425 0.1638 1J_213 MAIN BUS CURRENT A 1E_143 GTMP1 C
1985 0.2789 0.1442 0.1424 0.1640 1J_D13 MAIN BUS POWER WATT 1E_143 GTMP1 C
1535 0.3787 0.1419 0.1501 0.1204 1E_303 EDI 2 TEMP C 1E_143 GTMP1 C
2701 0.3702 0.1287 0.1350 0.1343 1T_304 RB +Y IH TEMP C 1E_143 GTMP1 C

Table C.3.: Query result for GTMP1.

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

2723 2364 0.4760 0.1240 0.1553 0.1271 1T_D03 NRVP HTR PERFORM C 1P_071 PEACE HEEA TEMP C
2722 0.4760 0.1231 0.1552 0.1248 1T_D02 RCS AVERAGE TEMP C 1P_071 PEACE HEEA TEMP C
2721 0.4831 0.1208 0.1394 0.1617 1T_D01 MEP AVERAGE TEMP C 1P_071 PEACE HEEA TEMP C
2363 0.4578 0.1207 0.1573 0.1549 1P_070 LEEA SWEEP MONIT V 1P_071 PEACE HEEA TEMP C
2677 0.4336 0.1178 0.1180 0.1455 1S_033 ST_SA VOLT MON 2 V 1P_071 PEACE HEEA TEMP C
1279 0.3075 0.1166 0.1748 0.1664 1ED164 REG22 V 1P_071 PEACE HEEA TEMP C
1801 0.5636 0.1166 0.1546 0.0373 1H_374 HPA2 LPM CURRENT A 1P_071 PEACE HEEA TEMP C
1799 0.5636 0.1164 0.1539 0.0364 1H_372 HPA2 HPM CURRENT A 1P_071 PEACE HEEA TEMP C
2359 0.4299 0.1162 0.1208 0.1949 1P_066 LEEA MCP MONITOR V 1P_071 PEACE HEEA TEMP C
363 0.7276 0.1159 0.1241 0.1729 1B_907 RTU B CONV 25% V 1P_071 PEACE HEEA TEMP C
2707 0.3611 0.1133 0.1065 0.1822 1T_312 MEP LOW SIDE T3 C 1P_071 PEACE HEEA TEMP C
2751 0.4917 0.1095 0.1670 0.1038 1W_027 WIDEB TMP MONIT C 1P_071 PEACE HEEA TEMP C
2297 0.4517 0.1091 0.1200 0.1775 1P_004 DPU TEMPERATURE C 1P_071 PEACE HEEA TEMP C
1599 0.5616 0.1078 0.1146 0.1225 1F_055 PSU TEMPERATURE C 1P_071 PEACE HEEA TEMP C
1277 0.3772 0.1077 0.1046 0.1221 1ED156 REG12 V 1P_071 PEACE HEEA TEMP C
2710 0.4051 0.1064 0.1064 0.1712 1T_315 MEP LOW SIDE T6 C 1P_071 PEACE HEEA TEMP C
1579 0.2529 0.1061 0.1322 0.1209 1F_034 MINUS 12 VOLTS V 1P_071 PEACE HEEA TEMP C
1879 0.3875 0.1029 0.1098 0.0946 1J_251 LCL SR A CUR A 1P_071 PEACE HEEA TEMP C
2697 0.5516 0.1026 0.1072 0.1597 1T_300 A-BOOM -X TEMP M C 1P_071 PEACE HEEA TEMP C
1791 0.4513 0.1023 0.1023 0.1329 1H_352 HPA2 LOW TEMP C 1P_071 PEACE HEEA TEMP C

Table C.4.: Query result for PEACE HEEA TEMP.

66 C. Further Investigation: Query Results

C.3 Results for short-term dependencies (all sensors)

MACC TE TE_mean TE_delta PNAME PDESCR UNITS PNAME_Y PDESCR_Y UNITS_Y
X Y

1683 1636 0.4544 0.5815 0.4297 0.5660 1G_035 SUN ANGLE DEG 1F_D52 D PRIME SENSOR Y NTES
1596 0.6083 0.5714 0.4297 0.5681 1G_035 SUN ANGLE DEG 1F_052 PRIMARY SENSOR Y NTES
1849 0.5327 0.5709 0.4297 0.5368 1G_035 SUN ANGLE DEG 1J_216 SOLAR ARRAY CUR A
1637 0.5955 0.5659 0.4297 0.5438 1G_035 SUN ANGLE DEG 1F_D53 D PRIME SENSOR Z NTES
1988 0.5327 0.5633 0.4297 0.5273 1G_035 SUN ANGLE DEG 1J_D16 SOLAR ARRAY POW WATT
1597 0.6014 0.5632 0.4297 0.5416 1G_035 SUN ANGLE DEG 1F_053 PRIMARY SENSOR Z NTES
1606 0.6008 0.5527 0.4297 0.5501 1G_035 SUN ANGLE DEG 1F_063 SECONDARY SENS Y NTES
1639 0.6009 0.5507 0.4297 0.5484 1G_035 SUN ANGLE DEG 1F_D63 D SECON SENSOR Y NTES
1607 0.5854 0.5319 0.4297 0.5265 1G_035 SUN ANGLE DEG 1F_064 SECONDARY SENS Z NTES
1640 0.5881 0.5298 0.4297 0.5247 1G_035 SUN ANGLE DEG 1F_D64 D SECON SENSOR Z NTES
1713 0.4732 0.4850 0.4297 0.5895 1G_035 SUN ANGLE DEG 1G_R11 SL WIND WD 0 RAW null
1711 0.4723 0.4827 0.4297 0.5877 1G_035 SUN ANGLE DEG 1G_N01 G024 1=TRUE null
1712 0.4723 0.4827 0.4297 0.5877 1G_035 SUN ANGLE DEG 1G_N02 G024 3=TRUE null
1672 0.4723 0.4827 0.4297 0.5877 1G_035 SUN ANGLE DEG 1G_024 EFW SL WINDOW B0 null
1715 0.5013 0.4534 0.4297 0.5514 1G_035 SUN ANGLE DEG 1G_R13 SL WIND WD 2 RAW null
1676 0.5004 0.4523 0.4297 0.5505 1G_035 SUN ANGLE DEG 1G_028 EFW SL WINDOW B4 null
1739 0.5004 0.4523 0.4297 0.5505 1G_035 SUN ANGLE DEG 1G_U62 B2 DEPLD LENGTH CLS
1741 0.5004 0.4523 0.4297 0.5505 1G_035 SUN ANGLE DEG 1G_U64 B4 DEPLD LENGTH CLS
1627 0.5841 0.3900 0.4297 0.4394 1G_035 SUN ANGLE DEG 1F_B26 PRIME Z MSB=1 null
1626 0.5841 0.3900 0.4297 0.4394 1G_035 SUN ANGLE DEG 1F_B25 PRIME Z MSB=0 null
1630 0.5774 0.3896 0.4297 0.4360 1G_035 SUN ANGLE DEG 1F_B29 SECOND Y MSB=0 null
1631 0.5774 0.3896 0.4297 0.4360 1G_035 SUN ANGLE DEG 1F_B30 SECOND Y MSB=1 null
1632 0.5702 0.3603 0.4297 0.4234 1G_035 SUN ANGLE DEG 1F_B31 SECOND Z MSB=0 null
1633 0.5702 0.3603 0.4297 0.4234 1G_035 SUN ANGLE DEG 1F_B32 SECOND Z MSB=1 null
1745 0.5892 0.3512 0.4297 0.4419 1G_035 SUN ANGLE DEG 1G_U74 B4 CMDD LENGTH CLS
1744 0.5892 0.3512 0.4297 0.4419 1G_035 SUN ANGLE DEG 1G_U73 B3 CMDD LENGTH CLS
1743 0.5892 0.3512 0.4297 0.4419 1G_035 SUN ANGLE DEG 1G_U72 B2 CMDD LENGTH CLS
1742 0.5892 0.3512 0.4297 0.4419 1G_035 SUN ANGLE DEG 1G_U71 B1 CMDD LENGTH CLS
1677 0.5892 0.3512 0.4297 0.4419 1G_035 SUN ANGLE DEG 1G_029 EFW SL WINDOW B5 null
1984 0.3591 0.3263 0.4297 0.3697 1G_035 SUN ANGLE DEG 1J_D11 IPD POWER WATT
1673 0.5829 0.3225 0.4297 0.4220 1G_035 SUN ANGLE DEG 1G_025 EFW SL WINDOW B1 null
1845 0.3554 0.3218 0.4297 0.3662 1G_035 SUN ANGLE DEG 1J_211 IPD CURRENT A
1737 0.5848 0.3166 0.4297 0.4162 1G_035 SUN ANGLE DEG 1G_U54 B4 MOTOR STATUS null
1735 0.5848 0.3166 0.4297 0.4162 1G_035 SUN ANGLE DEG 1G_U52 B2 MOTOR STATUS null
1736 0.5580 0.3121 0.4297 0.4181 1G_035 SUN ANGLE DEG 1G_U53 B3 MOTOR STATUS null
1734 0.5580 0.3121 0.4297 0.4181 1G_035 SUN ANGLE DEG 1G_U51 B1 MOTOR STATUS null
1577 0.0431 0.3090 0.4297 0.3948 1G_035 SUN ANGLE DEG 1F_032 KEYHOLE WORD null

Table C.5.: Query result for SUN ANGLE.

C.3. Results for short-term dependencies (all sensors) 67

List of Figures

2.1. Distribution of the values in the data set. For each time series, the
count, mean, standard deviation, minimum and maximum value were
determined and then sorted in ascending order. 9

2.2. Distribution of the time values in the data set. For each time se-
ries, the following quantities were determined: Minimum and maxi-
mum time value, minimal and maximal time value difference between
adjacent values (in seconds), mean time value difference and standard
deviation of time value differences. Afterwards, the results were sorted
in ascending order. 9

2.3. Examples for correlating time series from the data set. Note that the
time series have been normalized for better comparison. 10

2.4. Time series with a repeated pattern from the data set. 10

3.1. A Markov chain . 12
3.2. Binary entropy function . 14
3.3. Example of a probability distribution and its approximation 19
3.4. 2-dimensional example for density estimation with kernel methods and

nearest neighbor methods. The green color indicates the fixed variable
while the red color indicates the variable to be determined 20

4.1. The data processing pipeline consists of three phases: Pre-processing,
Evaluation and Analysis & Visualization . 24

4.2. Example for resampling an arbitrary time series within the date range
of (0, 40) and a sample rate of 5. 25

4.3. A zero centered time series of length 128 that is mapped to a word
"baaaabcc" of length 8 with an alphabet size 3. 26

4.4. Example for determining the counts in the marginal spaces with K = 3
(here, any point i is always its 1st neighbor). For point i the K-th
neighbor in the joint space is located by the maximum norm ‖·‖∞
and therefore, the distance ε(i) and the counts nX (i) and nY (i) are
determined (nX (i) = 8 and nY (i) = 6). 31

4.5. Two time series together with their corresponding local transfer en-
tropy values. The upper axis shows both time series, the lower axis
shows the local transfer entropy values for each direction. 33

4.6. Demo example from the tool "visJS2jupyter". It provides a method to
create an interactive graph which also allows to move nodes, high-
light subgraphs and provide more details for nodes and arcs (see
https://github.com/ucsd-ccbb/visJS2jupyter). 33

68

5.1. Runtimes for computing transfer entropy values in both directions
(i.e. X → Y and Y → X) for a given pair of time series. 37

5.2. Comparison of all three estimators over a range of coupling strengths
ε for 104 samples. 38

5.3. Heart-breathrate time series. 39
5.4. Estimating transfer entropies for heart-breathrate time series with

Schreiber estimator for kernelRadius= 0.01,0.02, ..., 0.29, 0.3. 40
5.5. Estimating transfer entropies for heart-breathrate time series with KSG

estimator for K = 1, 2, ..., 49,50. 40
5.6. Distribution of the transfer entropy values for the "short-term depen-

dencies" experiment. The values were sorted in ascending order. 41
5.7. A closer look at the time series for 1G_035 (SUN ANGLE, PID 1683)

and for 1J_216 (SOLAR ARRAY CUR, PID 1849) at the top. On the
bottom, we see that the local transfer entropy values were mostly
higher for 1G_035 → 1J_216. 42

5.8. A closer look at the time series for 1E_029 (VN12V, PID 1310) and
for 1E_125 (5VUF2, PID 1406) at the top. On the bottom, we
see that the local transfer entropy values were mostly higher for
1E_029 → 1E_125 even though the values of the time series from
1E_125 were very small starting around time step 06:40. 43

5.9. Directed graph for the results of the "short-term dependencies" experi-
ment. The size of the node scales with the amount of connections the
node has. The more green a node is colored, the higher is its mean
transfer entropy value to all of its targets. 44

5.10.Part of the graph which probably represents the interaction of the cur-
rent supply and the system. The nodes and its connections for SOLAR
ARRAY POW and SOLAR ARRAY CUR were highlighted. 45

5.11.Part of the graph that may show another interaction between two sys-
tems. The node and its connections for SA ANGLE were highlighted. . 45

5.12.Distribution of the transfer entropy values for the "long-term depen-
dencies" experiment. The values were sorted in ascending order. 46

5.13.A closer look at the time series for 1J_D17 (SWITCH BUS 1 POW, PID 1989)
and for 1E_031 (VOL5V, PID 1312) at the top. On the bottom, we
see that for a certain amount of time the local transfer entropy values
were much higher for 1J_D17 → 1E_031. 47

5.14.Directed graph for the results of the "long-term dependencies" experi-
ment. The size of the node scales with the amount of connections the
node has. The more green a node is colored, the higher is its mean
transfer entropy value to all of its targets. 48

5.15.Possible interaction between temperatures. The nodes and its connec-
tions for GTMP1 and GTMP2 were highlighted. Each of them had a
TE_mean value of 0.1268. 49

5.16.A temperature sensor that is influenced by several other components
but not vice versa. The node and its connections for PEACE HEEA
TEMP were highlighted. This sensor had a TE_mean value of 0.0
which may indicate that its component does not cause anything. . . . 49

List of Figures 69

5.17.Comparison of transfer entropy values from each of the two experi-
ments ("short-term dependencies" and "long-term dependencies"). The
colormap (hot) is scaled logarithmically. 50

5.18.Distribution of the transfer entropy values after processing all sensors.
The values were sorted in ascending order. 51

5.19.Directed graph for the results of the "short-term dependencies" exper-
iment after processing all sensors. The size of the node scales with
the amount of connections the node has. The more green a node
is colored, the higher is its mean transfer entropy value to all of its
targets. 52

5.20.Part of the directed graph where SUN ANGLE is a dependency for
many of its surrounding components. 52

5.21.Part of the directed graph where a group of voltage units are centered. 53
5.22.Part of the directed graph where a group is connected with the volt-

age units. 53

A.1. Comparison of all three estimators over a range of coupling strengths
ε for N = 102 samples. 57

A.2. Comparison of all three estimators over a range of coupling strengths
ε for N = 103 samples. 57

A.3. Partial result from Figure 5.2, N = 104. The time series pairs for
ε = 0.16 and ε = 0.18 are fully correlated but they differ in their
transfer entropy values. 58

A.4. Two time series generated with ε = 0.16 (top). The local transfer
entropy values (bottom) originate from the KSG estimator with N =
104. Each average of the local transfer entropy values is above zero. . 58

A.5. Two time series generated with ε = 0.18 (top). The local transfer
entropy values (bottom) originate from the KSG estimator with N =
104. Each average of the local transfer entropy values is nearly zero. . 58

A.6. Heart-breathrate time series (top) compared with its local transfer en-
tropy values evaluated with Schreiber estimator (bottom). 59

A.7. Heart-breathrate time series (top) compared with its local transfer en-
tropy values evaluated with word count estimator (bottom). 59

A.8. Heart-breathrate time series (top) compared with its local transfer en-
tropy values evaluated with KSG estimator (bottom). 59

B.1. Distribution of MACC values from the "short-term dependencies" exper-
iment. The values were sorted in ascending order. 60

B.2. Distribution of MACC values from the "long-term dependencies" exper-
iment. The values were sorted in ascending order. 60

B.3. Distribution of MACC values from the "short-term dependencies" ex-
periment where all sensors were processed. The values were sorted in
ascending order. 60

B.4. Comparison from "short-term dependencies" experiment between Schreiber
estimator and KSG estimator. 61

70 List of Figures

B.5. Directed graph for the results of the "short-term dependencies" exper-
iment based on Schreiber estimator. The size of the node scales with
the amount of connections the node has. The more green a node
is colored, the higher is its mean transfer entropy value to all of its
targets. 62

B.6. Part of the directed graph based on Schreiber estimator. This result
looks similar to the part from the "short-term dependencies" experi-
ment with the KSG estimator as discussed in subsubsection 5.4.1. . . . 62

B.7. Part of the directed graph after investigating all sensors. One sensor
seems to be dependent on a large amount of other components. 63

B.8. Part of the directed graph after investigating all sensors. Here, we
interpret the substring "CNT" as a count value where we assume in-
teractions between some count values. 64

List of Tables
2.1. Occurrences of units in data set for all four satellites. 8

5.1. Parameter settings for the heart-breathrate example. 39
5.2. Results for the heart-breathrate exampleusing by using different esti-

mators. For completeness, the MACC value has also been computed. . 39
5.3. Parameter settings for the "short-term dependencies" experiment 41
5.4. Results for top-5 transfer entropy values (column "TE") for sensor

1G_035 (SUN ANGLE). The transfer entropy values for 1G_035 →
1J_216 and for 1G_035 → 1J_D16 are the highest in this result. . . . 42

5.5. Results for top-10 transfer entropy values (column "TE") from the ex-
periment. 43

5.6. Parameter settings for the "long-term dependencies" experiment 46
5.7. Results for top-10 transfer entropy values (column "TE") from the ex-

periment. 47
5.8. Parameter settings for the investigation of relations between all sen-

sors. These are the same parameters as in the "short-term dependen-
cies" experiment. 51

C.1. Query result for SOLAR ARRAY CUR. 65
C.2. Query result for SA ANGLE. 65
C.3. Query result for GTMP1. 66
C.4. Query result for PEACE HEEA TEMP. 66
C.5. Query result for SUN ANGLE. 67

71

References
[1] L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causality and transfer en-

tropy are equivalent for gaussian variables”, Physical review letters, vol. 103,
no. 23, p. 238 701, 2009.

[2] L. Barnett and T. Bossomaier, “Transfer entropy as a log-likelihood ratio”, Phys-
ical review letters, vol. 109, no. 13, p. 138 105, 2012.

[3] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[4] O. N. Bjørnstad and B. T. Grenfell, “Noisy clockwork: Time series analysis of
population fluctuations in animals”, Science, vol. 293, no. 5530, pp. 638–643,
2001.

[5] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[6] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley &
Sons, 2012.

[7] Q. H. Dang, “Time series outlier detection in spacecraft data”, Master’s thesis,
2014.

[8] T. Dimpfl and F. J. Peter, “Using transfer entropy to measure information
flows between financial markets”, Studies in Nonlinear Dynamics and Economet-
rics, vol. 17, no. 1, pp. 85–102, 2013.

[9] D. Evans, “A computationally efficient estimator for mutual information”, Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 464, no. 2093, pp. 1203–1215, 2008.

[10] C. W. Granger, “Investigating causal relations by econometric models and
cross-spectral methods”, Econometrica: Journal of the Econometric Society, pp. 424–
438, 1969.

[11] S. Ito, “Backward transfer entropy: Informational measure for detecting hid-
den markov models and its interpretations in thermodynamics, gambling and
causality”, Scientific reports, vol. 6, 2016.

[12] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge university
press, 2004.

[13] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most unusual
time series subsequence”, in Data mining, fifth IEEE international conference on,
2005.

[14] L. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy of a
random vector”, Problemy Peredachi Informatsii, vol. 23, no. 2, pp. 9–16, 1987.

[15] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information”,
Physical review E, vol. 69, no. 6, p. 066 138, 2004.

73

[16] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time
series, with implications for streaming algorithms”, in Proceedings of the 8th
ACM SIGMOD workshop on Research issues in data mining and knowledge discovery,
2003.

[17] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel symbolic
representation of time series”, Data Mining and knowledge discovery, vol. 15,
no. 2, pp. 107–144, 2007.

[18] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[19] H. Niessner, “Detekce neobvyklých událostí v telemetrických datech ze
satelitu”, Master’s thesis, 2017.

[20] M. Paluš, V. Komárek, Z. Hrnčí̌r, and K. Štěrbová, “Synchronization as ad-
justment of information rates: Detection from bivariate time series”, Physical
Review E, vol. 63, no. 4, p. 046 211, 2001.

[21] N. D. Pham, Q. L. Le, and T. K. Dang, “HOT aSAX: A novel adaptive sym-
bolic representation for time series discords discovery”, in Asian Conference on
Intelligent Information and Database Systems. Springer, 2010, pp. 113–121.

[22] M. Prokopenko, J. T. Lizier, and D. C. Price, “On thermodynamic interpreta-
tion of transfer entropy”, Entropy, vol. 15, no. 2, pp. 524–543, 2013.

[23] T. Schreiber, “Measuring information transfer”, Physical review letters, vol. 85,
no. 2, p. 461, 2000.

[24] C. E. Shannon, “A mathematical theory of communication”, ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[25] C. J. Stam, “Nonlinear dynamical analysis of EEG and MEG: Review of an
emerging field”, Clinical neurophysiology, vol. 116, no. 10, pp. 2266–2301,
2005.

[26] A. Tsimpiris, I. Vlachos, and D. Kugiumtzis, “Nearest neighbor estimate of
conditional mutual information in feature selection”, Expert Systems with Ap-
plications, vol. 39, no. 16, pp. 12 697–12 708, 2012.

[27] P. Verdes, “Assessing causality from multivariate time series”, Physical Review E,
vol. 72, no. 2, p. 026 222, 2005.

[28] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer entropy—a model-
free measure of effective connectivity for the neurosciences”, Journal of compu-
tational neuroscience, vol. 30, no. 1, pp. 45–67, 2011.

[29] I. Vlachos and D. Kugiumtzis, “Nonuniform state-space reconstruction and cou-
pling detection”, Physical Review E, vol. 82, no. 1, p. 016 207, 2010.

[30] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh,
“Experimental comparison of representation methods and distance measures
for time series data”, Data Mining and Knowledge Discovery, pp. 1–35, 2013.

[31] N. Wiener, “The theory of prediction”, Modern mathematics for engineers, vol. 1,
pp. 125–139, 1956.

74 References

	Introduction
	Working with time series
	Measuring similarity between time series
	Causality detection and dependency modeling

	Problem Statement
	Related Work
	Organization of the thesis

	Data Analysis
	Feature Description
	Statistics
	Sort out Sensors

	Theoretical Background
	Time Series Analysis
	Stationary Stochastic Process
	Autoregressive Process
	Markov Process

	Information Theory
	Entropy
	Relative Entropy (Kullback-Leibler divergence)
	Mutual Information
	Entropy Rate
	Transfer Entropy
	Notes on continuous random variables

	Probability Density Estimation
	Parametric Methods
	Nonparametric Methods

	Approach and Implementation
	Data Processing Pipeline
	Pre-processing
	Transfer Entropy Estimators
	Analysis & Visualization

	Hypothesis for Dependency Detection
	Parameter Settings

	Experiments and Results
	Performance of Estimators
	Example: Unidirectionally Coupled Maps
	Example: Heart-Breathrate Interaction
	Investigation of relations between sensors of type DEG, V, A, WATT, C and DEG
	Results for short-term dependencies
	Results for long-term dependencies
	Comparing both experiments

	Investigation of relations between all sensors
	Results for short-term dependencies

	Conclusion and Future Work
	Conclusion
	Future Work

	Investigation of Schreiber's Examples
	Estimations for different sample lengths
	Investigation of KSG Estimator
	Plots for Heart-Breathrate

	Further Investigation: Analysis & Visualization
	Plots
	Directed Graphs

	Further Investigation: Query Results
	Results for short-term dependencies
	Results for long-term dependencies
	Results for short-term dependencies (all sensors)

	List of Figures
	List of Tables
	References

