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Abstract

Intelligent assistance systems for drivers is a wide topic of research nowadays. The human component,
driving behavior, is the main source of accidents on the road. These assistance systems aim at reducing
the driving workload to increase safety and increase the quality of the driving experience. To develop
such intelligent systems which will adjust to the driver, it is crucial to investigate the driver's behavior
and habitual driving patterns, also referred to as driving style. A lot of research, therefore, focuses on
determining the existing driver styles. It is crucial to keep in mind, that in order to use the term driving
style, the observed traits must be independent of the tra�c situation.
One of the main methods to determine driving styles is the use of machine learning, especially clustering.
This thesis provides a review of the approaches and makes use of the �ndings to cluster drivers from a
provided dataset, according to their driving style. The investigation focuses on the bahavior of drivers
at intersections. The results are validated against results of driving behavior investigation.
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1 Introduction

Nowadays, motor vehicles are equipped with an increasing amount of electronics and sensors to build

advanced driver support systems. These assistance systems are supposed to increase the quality of the

driving experience and reduce the driving workload to increase safety. Examples of such developments

are Adaptive Cruise Control (ACC) [72] [25], which performs the longitudinal following control task

for a driver, within limited acceleration ranges, Collision Warning (CW) [34] [51] or Lane Departure

Warning (LDW) [69] [45]. The performance of such driver assistance systems depends strongly on the

current driving context. It is crucial to develop the support system taking into account di�erent tra�c

situations and environments as well as the drivers' behavior. Such holistic approaches are the basis to

provide the system driver vehicle with adequate support which can ultimately result in a comfort gain

for the driver, increase in reliability under changing circumstances or an increase of the security of the

whole system. For this reason, building models of driver behavior and developing methods to describe

driving habits is a huge �eld of research. The motivation of this thesis �rstly, is to provide an overview

of the approaches developed to describe and classify driver behavior. Secondly, the aim is to develop a

method relying on these �ndings, that will help to cluster a given dataset. The clusters should represent

di�erent types/styles of driver behavior, that are coherent across various tra�c contexts.

1.1 Driver Behavior De�nition

This thesis focuses on approaches to access drivers' styles alias types. Before getting further into the

topic, it is necessary to explain what is meant by a driver's style. There is still no �xed de�nition of

driver style across literature. The concept often involves other constructs such as driver state, driver

condition and driver behavior in general. Some state-of-the-art de�nitions include the one of [16]

style concerns the way individuals choose to drive, or driving habits that have become estab-

lished over a period of years.

and [76]

Driving style concerns individual driving habits - that is, the way a driver chooses to drive

They are very similar to each other and agree that driver style is the habitual way drivers choose to

drive or driving preferences they have developed over time.

In [63], the author dealt with the review of di�erent de�nitions and concluded that a driver style

is:

... a habitual way of driving which means that it represents relatively stable aspect of driving

behavior.

and must di�er across individuals or between groups of individuals.

This thesis adapts this de�nition. Thus, a driving style must be habitual and di�er across individuals,

not the driving conditions or driving environments. The motivation for this thesis is to determine whether

it is possible to group drivers based on a data set recorded during a driving simulation. The literature

research is the basis and guide line for the development of the approach.
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1.2 Thesis Outline

The thesis is structured as follows. Chapter 2 focuses on the driver styles/categories described in lit-

erature and the motivation behind a speci�c classi�cation. It must be noted that not only approaches

regarding driver classi�cation are invoked, but also methods of analyzing and examining driver behavior.

They are a valuable source of preprocessing and feature extraction methods and actually make up the

biggest part of the literature review. The chapter also contains an overview of the input parameters and

features used to determine the driver types or driving behavior. The criteria for determining a speci�c

category are laid down.

Chapter 3 presents the provided data set, including anomalies and observations that might be crucial

for developing the right clustering algorithm. This is followed by Chapter 4, which presents the pipeline

used to analyze the given dataset in order to search for patterns and clusters.

The pipeline is then applied on the dataset in Chapter 7 and the results presented. Chapter 8 makes

an attempt at interpreting the observations made from the experiments. An outlook on future work and

conclusions are added in Chapter 9.

2 Driver Categories

In the course of this thesis drivers should be grouped according to their driving styles. The obvious

question that arises is how to judge whether the obtained groups are useful and meaningful and how

many of them seem a reasonable number.

For this reason it is important to have an overview of the current approaches to driver typi�cation

in terms of what are the types introduced so far and what is the motive for this particular choice.

Approaches for determining the driver categories can be split into two kinds, according to whether

the categorization is based on subjective assumptions and assessments or is a result of some classi�cation

of measurement data. The objective approaches are presented in section 2.1, followed by the subjective

approaches in section 2.2.

2.1 Objective Approaches

The author of [57] strives for improving safety on signalized intersections by studying the factors in�u-

encing it. The author cites [22] and [47] who state that safety on signalized intersections can be assessed

by observing the driver behavior in the so called dilemma zone (DZ). It is an area near the intersection

where drivers traveling at the legal speed limit can neither stop nor clear the intersection successfully.

One of the traits of a well designed signalized intersection, must be the elimination of any DZ for the

drivers who travel at the legal speed limit or slightly above it. For speeds lower than the speed limit,

an option zone (OZ) should be created, i.e. an area where either stopping or crossing can be exercised

successfully. [57] believes that examining the decision of drivers who �nd themselves in the dilemma

zone as well as their approaching speed is crucial for determining the intersection's safety record and

making the right adjustments to the intersection design to make crossing it as safe as possible. The cat-

egories proposed by [57] are normal, aggressive and conservative. They are obtained through a two-step

classi�cation process. In the �rst step it is checked whether the driver's approaching speed exceeds a

de�ned speed limit by some percentage. If so, the driver is automatically put in the aggressive group,
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otherwise considered as nonaggressive. The second step uses the behavior of the drivers when they face

a yellow signal as the criterion for classi�cation. The driver can either choose to stop before the crossing

or continue driving. Taking this into account and keeping in mind that the driver might happen to be in

the option or dilemma zone, three categories are presented, namely conservative, normal and aggressive.

Conservative is the driver who stops, even when she could safely exit the intersection. Normal is the

driver who acts as expected by the intersection design, either in the case of a dilemma zone or in the

case of an option zone. So, in the case of being caught in a DZ stopping should be a normal action and

crossing considered an aggressive action. Finally, aggressive drives are those who speed up and cross

the intersection when they �nd themselves in the DZ zone. This type of classi�cation is therefore a

process-based classi�cation. Classi�cations based on these two criteria, i.e. the approaching speed and

the choice to stop or not are inter-related. By combining the results of both classi�cation steps, a �nal

classi�cation of drivers is possible.

The authors of [33] concern themselves with dual-power vehicles such as hybrid electric cars. Their

goal is to develop a driver type classi�er which could be used to determine the optimal strategy for

shifting from one of the hybrid power sources to the other and estimate the available reserves of energy.

The authors also set for three categories of drivers, namely aggressive, moderate and conservative. The

classes are determined empirically.

The authors of [10] use clustering to identify six di�erent driving styles. The features used for

the clustering are reduced to components using Principal Components Analysis. Combinations of these

components are then referred to as aggressiveness, speed, accelerating and braking. Their manifestations

in turn establish six clusters, representing six driver categories.

The work of [4] presents a ranking approach, which arranges drivers according to values for a number

of sensor inputs recorded during their driving. The author makes a di�erentiation of three driving styles,

each one representing a part of the ranking scale. Together with data recorded during road tests, the

categorization of drivers was a foundation for the classi�cation of driving style.

In comparison [40] came up with six di�erent driving types throughout their research but limited

the number of driver styles. Four rules are used to create six distinctive representative driving patterns

which are then combined to three driver types, namely: low power demand, medium power demand and

high power demand. Each class represents di�erent types of standard deviation in power demand. The

�rst class for example represents typical urban driving patterns where the average power level is low

but the variation in power is large due to frequent stop-and-go tra�c conditions. The class six, on the

other hand, resembles suburban driving patterns where the average power level is high and the standard

deviation in power is relatively small.

The article of [23] examines drivers according to the level of fuel economy they pursuit. The authors

chose three classes according to a dynamic factor. It is generally acknowledged that the depth of the

accelerator pedal re�ects the demand of the driver for the current vehicle driving force. Moreover, pedal

change rate re�ects the demand for �erce change degree of vehicle driving force. Economical driving

would manifest itself in medium-sized or small throttle opening and operating the accelerator pedal

smoothly. The speed would also be kept at a level making the fuel consumption throughout the drive as

small as possible. On the contrary, large throttle opening and changing the position of the accelerator

pedal intensively, as well as high speed would contribute to big fuel consumption and thus, uneconomical
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driving. Considering this, the author developed a dynamic factor ranging from 0 to 1 and re�ecting the

economy of the driver. 0 represents economical driving and 1 driving for dynamic performance rather

than fuel economy. Three driver styles were picked to represent the whole of the dynamic factor scale,

namely sports, moderate and economical. Dynamic drivers fall into the category of sports driving style

where as attentive drivers frequently tend to demonstrate economy driving style.

In [53], the authors extract driver categories according to their rate of change in acceleration or

deceleration, alias jerk. The authors believe that jerk is a more e�ective feature in driver style classi�ca-

tion than just acceleration. They argue, that while an acceleration pro�le shows how a driver speeds up

and slows down, a jerk pro�le shows how a driver accelerated and decelerated, which is more important

in determining the driver's aggressiveness. The classi�cation is carried out as follows: if the standard

deviation of the jerk exceeds the average jerk of the road-type the driver is on, then the driver will be

classi�ed as aggressive. On the contrary, if the standard deviation of the jerk is much lower than the

average jerk of a normal driver; it will be classi�ed as calm, unless the velocity is zero. The reason for

using the jerk of the normal driving style on the road-type is currently on as a feature in the classi�-

cation is that the author believe a driver's driving style is strongly in�uenced by the roadway type and

tra�c congestion level the driver is on. Three categories are picked: calm driving, normal driving and

aggressive driving.

The work of [30] shows that driver safety can be deduced from driver style if it is de�ned in terms

of the driver's predictibility and the level in which the way they execute manoeuvers complies with what

is observed as average and standard. Only sensors provided by mobile phones are used to infer the driver

style and two categories are established. Either the driver is aggressive (non-typical) or not (typical).

The authors of [13] also support the claim that that the most typical classi�cation of driver styles

con�nes to the two categories, they refer to as aggressive and nonaggressive, depending on their pre-

dictability and consistency in driving behavior. They argue that choosing merely two categories preserves

generality.

In [35] an objective as well as a subjective approach is used to determine the driver style. Concerning

the objective method, three classes are assumed in the project, sports, normal and calm. The three

di�erent driver styles are in accordance with the work of [8]. The speci�c driver styles are acquired mainly

through the observation of maximal longitudinal and lateral acceleration alias maximal longitudinal lag.

Authors of [35] claim that having so many classes lacks generality and that three driver style categories

are enough to in�uence the characteristics of a driver assistance system.

In his paper, [48] refers to the S.A.N.T.O.S [35] project. He points out that the classi�cation of

drivers into as many as �ve or six categories is inconvenient and invokes the S.A.N.T.O.S report in this

context. For this reason, [48] decides to restrict himself only to three categories, namely sports, normal

and calm.

Heike Sacher [62] also uses a combination of di�erent approaches to de�ne the driver styles. Again,

in this section we will concentrate on the objective methods. The drivers completed four experimental

trips, during which four coe�cients were computed. Each coe�cient was assigned a weight value to

emphasize its contribution in describing a driver style. Considering previous literature, the author chose

lateral acceleration to be the most in�uential factor, thus denoting it highest weight. The choice of three
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driver styles was also made according to the �ndings of previous research. The categories are again

sports, normal and relaxed.

The study of [61] investigated the e�ect of driving style on the energy consumption and the potential

to reduce the consumption using driver assistance in trucks. Four driver styles are presented in the paper:

dynamic, e�ective driver style, undynamic, ine�ective driving style, undynamic, e�ective driving style and

dynamic, ine�ective driving style. Dynamic was determined by the longitudinal and lateral acceleration

and the vehicle's velocity, whereas e�ectiveness by the motor and shift-up speed. The explanation for

this choice is that all these aspect are in�uenced by the driver himself.

At this point it is pretty clear that throughout the literature, when dealing with measurement vehicle

data, researchers tend to classify the drivers into three categories. Even though the criteria may vary, the

categories seem to describe similar tendencies across literature. The review of [75] already summarized

that driving styles are usually clustered into three categories; "mild" drivers (calm driving or economical

driving style), "normal" drivers (medium driving style), and "aggressive" drivers (dynamic driving style).

There are however opinions that two categories is enough, because it preserves generality, as seen

in the case of [13] or [30].

Works of [50] (smooth, aggressive), [2] (aggressive, moderate), [9] (calm, aggressive), [42] (aggressive,

moderate), comply with this idea and also propose two categories.

2.2 Subjective Approaches

The goal of this thesis is to �nd a method to cluster drivers according to their driver styles, given

measurement data. It is still interesting however to take a look at approaches where self-report measures

of driving behavior are considered. Knowing how the drivers judge themselves, a part of evaluation

of the clustering approach developed in this thesis, could be the comparison between the drivers' own

assessment and the cluster they belong to according to their actual measurement data. Among these

self-reported measures, the easiest and most common way to determine drivers' driving style is with the

help of a questionnaire.

The paper of [27] includes reviews of several driving style questionnaires that have been presented in

the literature. The �rst one is the Driver Style Questionnaire (DSQ) introduced by [21]. Analyzing the

answers for 15 driving style questions lead to the discovery of six dimensions labeled speed, calmness,

planning, focus, social resistance (advise) and deviance. Together they describe the relation between

driving style, decision-making style and accident liability .

The authors of [28] suggested a Driving Style Questionnaire with eighteen questions separated over

eight components. The assumption underlying the questions was that driving style is an attitude, ori-

entation and way of thinking for daily driving. Each component included questions that were supposed

to reveal a particular aspect of the driving style. These included con�dence in driving, hesitation for

driving, impatience in driving, methodical driving, preparatory manoeuvres at tra�c signals, importance

of automobile for self-expression, moodiness in driving and anxiety about tra�c accidents. The ques-

tionnaire was validated by analyzing car following behavior at low speed. An example of an evaluation

�nding is that there is a positive correlation between con�dence in driving skill and the use of the gas

pedal.

Version: May 1, 2017 6



A very widely used inventory is the Multidimensional Driving Style Inventory (MDSI) [71]. Four

general driving styles were distinguished [27]:

� Reckless and careless driving, which is correlated with violations and thrill seeking while driving,

characterized by, for example, higher speed.

� Anxious driving, referring to feelings of alertness and tension.

� Angry and hostile driving, characterized by more use of the horn and �ash functionality.

� Patient and careful driving, re�ecting a well-adjusted driving style.

These four styles were the basis to create the 44 items for the MDSI.

The items focused on accessing the drivers' their feelings, thoughts, and behaviors on a 6-point scale

ranging from 1 (not at all) to 6 (very much).Each driver's responses on the relevant scales were averaged

to produce four driving style scores, with a higher score indicating a higher level of the particular style.

Analysis of the questionnaire answers revealed eight main factors in�uencing the assignment to a

particular style [27]:

� Dissociative driving, in which people are easily distracted and dissociated during driving.

� Anxious driving, in which people show signs of anxiety and lack of con�dence.

� Risky driving, in which people seek for sensation and more risky driving.

� Angry driving, in which people tend to be hostile and aggressive.

� High-velocity driving, in which people tend to drive faster and are more time driven.

� Distress-reduction driving, in which people engage in relaxing activities to reduce stress.

� Patient driving, in which people are polite to other road users and have no pressure of time.

� Careful driving, in which people drive carefully and structured.

To note is, that the MDSI [16] includes, among others, items from the previously mentioned inven-

tories, making it a very popular means of self-reported driving style assemessment.

Some approches develop their own self-reporting questionnaires to complement their �ndings made

through data measurements.

This is for example the case for the project S.A.N.T.O.S [35]. In his work [14], the author mentiones

the self-reporting methods used for classifying the drivers in the project. One of the groups taking part

in the S.A.N.T.O.S project used classi�cation instruments by [3] where the drivers were supposed to

determine their driving style by �lling out a polarity questionnaire. For each question there was a 6-level

scala, with opposed statements on the poles of the scala. This grading was supposed to di�erentiate

between the driving styles. [3] claims that three polarities are enough to determine a diver's attitude.

The �rst polarity factor could be described as attitude to the tra�c and other tra�c participants, the

second as personal attitude to the driving activity itself, and the third as assessment of ones own skills.

In the next step the group investigated th correlation between the three factors introduced by [3] and
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the drivers' velocity pro�les. The three factors were used to calculate a coe�cient, which denoted 1

for defensive and calm drivers and 6 for drivers re�ered to as aggressive and dynamic. The second

self-reporting tool was a standarized questionnaire based on literaure research. The questionnaire was

concipted to classi�y the drivers into �ve types:

� reckless, sporty use

� dynamic, progressive

� experienced, serene

� conservative, low-key

� anxious, reserved

Another example is the work of Heike Sacher [62]. Three methods were applied to determine the

driving style. One of them was a self-assessment method where the probands ere simply supposed to

choose which term described their driving behavior best, very dynamic, dynamic, comfort-oriented and

very comfort-oriented. There was also a questionnaire, including 10 questions. These questions were to

be answered in form of a value on a scale. Drivers were interviewed beforehand to concept the items. A

driver was then classi�ed as dynamic or comfort-oriented by calculating the median of the scale points

obtained on the questionnaire.

2.3 Correlation between Objective and Subjective Approaches

The scores obtained on questionnaires must correspond to the actually observed driving behavior. Oth-

erwise they do not ful�ll their purpose as indicators of driving style [64]. It was also found that there

was a correlation between the six driver styles and the pro�les of lateral and longitudinal acceleration.

The review of [64] describes some of the approaches to verify whether such correlations exist. The

�rst to mention is [77]. In their work, correlations between observations made by observers sitting in the

vehicle and self-reported driving styles of the drivers are studied, The self-reported instrument here is the

Driving Style Questionnaire (DSQ) [21]. High correlations were found for speed (Pearson correlations

between 0.55 and 0.65) and more moderate for calmness (0.39 � 0.41), attentiveness (0.29) and carefulness

(0.38).

The authors of [28] also found signi�cant correlations between some of the factors of their Driving

Style Questionnaire and observed driving style. To investigate this, they made a car-following study

using an instrumented vehicle. The highest correlations were found with gas and brake pedal operations

during deceleration.

In [19] it was found that the high scores on the Multidimensional Driving Style Inventory (MDSI) [71]

"angry and hostile driving style" scale were signi�cantly correlated with both higher speed (r=0.32) and

shorter passing gaps (r = -0.20).

Also Heike Sacher [62] looks into the correlation between self-reporting and classi�cation based on

measurement data. She discovers that the correlation between the assessment based on measurement

data and the assessment based on the questionnaire score was signi�cant, namely 0.45.

The project S.A.N.T.O.S [35] mentions the attempts of [46] to establish a link between the types of

drivers determined thorugh a self-assessment questionnaire and the types obtained from driver dynamic
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parameters. The questionnaire used was the one by [3]. It could be shown that the driver described as

dynamic in questionnaire, typically manifests more sporty longitudinal and lateral accelerations.

To sum up, the signi�cant associations between objectively measured behaviour and the one re-

ported, implies that self-report instruments can still play a signi�cant role in driving style research [64].

2.4 Context

When trying to classify according to driver style, it is crucial to examine the full context in which driving

occurs. The context provides important information that might in�uence the way the drivers behave

and thus, in�uence or distort the classi�cation results. [49] for instance states that developing e�ective

counter measures for reinforcing safe and smooth operation of an vehicle in tra�c, the full context in

which driving occurs should be taken into account. Furthermore, the authors go on to de�ne three main

components of the overall driving context.

� Environment: including roadway infrastructure and the dynamic climatic situations.

� Vehicle: including ever increasing telematic devices and infotainment gadgetry.

� Driver: an essential part of the human-vehicle system which needs to be maneuvered safely in the

environment.

Driving behaviour might vary systematically across di�erent road, tra�c and driving conditions,

such as tra�c density, road geometry, weather, light conditions etc. Drivers may manifest di�erent

patterns of behaviour in di�erent conditions or the same patterns because the situation forces them too

(for example driving slowly when it is snowing).

Driving style however is supposed to vary systematically between individual drivers or groups,

independent of the tra�c situation.

Vehicle data depends on two factors: the drivers individual driving style and the driving context

in which the vehicle is operating. In order to evaluate driving style properly, we must take the current

driving context into account, �ltering out the aspects of the vehicle data that is a result of the current

driving context and not the driver's driving style.

For this reason, it is crucial to exclude behaviour patterns that are exclusively determined by the

driving context from the de�nition of driving style. The research of [52] outlines the most common types

of driving events that manifest di�erent behaviors, independently of the driver's global style. The events

are:

� driving a vehicle along right curves

� driving a vehicle along left curves

� turning a vehicle left on intersections with roundabouts

� turning a vehicle right on intersections with roundabouts

� turning a vehicle left on intersections without roundabouts

� turning a vehicle right on intersections without roundabouts

� driving straight across an intersection with a roundabout
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Figure 1: Driver style

2.5 Meaningful inputs

The crucial issue in this thesis is selecting features to use for the clustering. Depending on the driving

context, di�erent features might turn out to be relevant. Most driving situation that a driver might

encounter may be described by examining the drivers braking, accelerating and turning behavior [56] [73].

The thesis focuses on crossing intersections, where no turning maneouvers take place, so this aspect will

be omitted. The ramaining two behaviors, braking and acceleration, can be characterized by a subset of

features. These are the features that are broadly and consistently used in research when investigating

driver behavior.

The �rst feature is velocity. It can be found in as an input parameter in most of the approaches,

such as [57] [33] [61] [20] [56] [50] [2] [9] [29] [38] [68] [54].

Acceleration is the next straight-forward parameter that is often measured.

The next group of useful features are the pressures applied to the brake and acceleration pedals.

Pressure, alias brake torque and throttle is used among others by [49] [37] [33] [20] [56] [73] [18] [55].

Acceleration pedal pressure is considered by [33] [6] [56] [20] [55] [37].

Natrually, many of the mentioned approaches apply more complex feature engineering than just

considering these simple parameters. The authors of [33] for instace, present the so called throttle

activity index. It denotes the magnitude of the accelerator pedal relative to the frequency of change in

the accelerator pedal percentage. Accelerator pedal percentage is the proportion between the driver's

pedal position and the position recorded when the pedal is fully depressed.

There are also some opinions that these such a simple description of accaleration and braking are

not su�cient. The works of [7] [6] [53] use jerk as their feature instead. The argument is that jerk is
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a more e�ective feature in driver style classi�cation than just acceleration. They argue, that while an

acceleration pro�le shows how a driver speeds up and slows down, a jerk pro�le shows how a driver

accelerated and decelerated, which is more important in determining the driver's behavior pattern.

In addition to these features, attributes auch as driver's head and gaze direction ( [55] [39]) stand

out in the literature and might be relevant for intersection tra�c situations.

Steering wheel parameters, on the other hand, even though commonly used as well ( [55] [49] [33] [36] [39]),

are rather relevant when the drivers must turn. This is not very useful for the provided dataset, where

the driver does not turn on any of the intersections.

2.6 Parameter Interpretation

At this point it is pretty clear that aggressiveness is a common term for investigating driver styles. It

generally describes maladaptive and risk-related behavior in tra�c and is de�ned by a combination of

several behavioral indicators, such as the driving speed, headway, overtaking of other vehicles and the

tendency of commiting tra�c violations [64].

Aggressive driving is commonly characterized by higher speed, higher acceleration and braking peaks

(jerky driving in general), short headway keeing and distance to passing cars, large throttle opening and

changing the position of the accelerator pedal intensively [20] [70] [38].

In [78] it is mentioned that visual search patterns are associated with driver experience. Concerning

overtaking in this case, experienced drivers tend to allocate their viewpoints more widely in the horizontal

plane and farther in the longitudinal direction. Novice drivers, on the contrary, tend to pay more attention

to the more narrow scope in front of them.

2.7 Clustering Method

Unsupervised learning is the task of �nding a function to model structure in "unlabeled data", meaning

data where a categorization or classi�cation of the observations is not given beforehand [31]. Clustering

is one of the approaches to unsupervised learning. It aims to group the data observations, so that the

observations in the same group (cluster) are more similar (according to some metric) to each other than

to those observations assigned to a di�erent group.

As already observed by [41], fuzzy control theory and K-means algorithm are the most common

methods to cluster the feature parameters that describe the driver behavior characteristics, in order to

achieve classi�cation of the driver behavior characteristics into driver styles [12] [44] [60] [43] [75] [23] [73].

In [1] a good explanation can be found of how the algorithm works.

The K-means algorithm provides a simple and easy way to classify a given dataset, where

the number of clusters k, that should be produced, is set up in advance. The algorithm is

executed with the following steps:

1. Place k points into the space represented by the data samples that are being clustered.

These samples represent the initial cluster centroids.

2. Assign each data sample to the cluster that has the closest centroid.

3. When all data samples have been assigned, recalculate the positions of the k centroids.

The new centroids as barycenters of the clusters formed in the initial step.
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4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of

the objects into groups from which the metric to be minimized can be calculated.

The metric to be minimized is the least within-cluster sum of squares or, the squared error function:

k
∑

i=1

∑

x∈Si

‖x −ϕi‖
2 (1)

where k is the number of clusters, Si the subset of data samples belonging to cluster i and ϕi the

mean (centroid) of data samples in Si.

In this thesis the K-means clustering algorithm is used, due to its simplicity, covenience and common

use throughtout literature.
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3 Dataset Description

The given dataset consists of parameters captured by sensors in a driving simulator. Each of 34 test

subjects took the same route twice, resulting in 68 data samples. Each sample consists of data points

recorded at a 100 Hz frequency and each data point includes multiple parameters. These parameters can

be divided into di�erent categories: simulation parameters such as the length of the covered track or the

subject's gender; vehicle parameters such as the vehicle's position in the lane, driver tracking parameters

like brake pedal actuation, road features as well as tra�c features. Here is a complete overview of the

di�erent parameter types [74]:

Simulation Features

→ Simulation time from start
→ Covered track (ego-vehicle)
→ Sample time

Simulation

→ Subject age
→ Subject identification number
→ Subject gender

Subject

Traffic Participant 
Vehicle Features

→ Indicator left, right

Controls

→ position longitudinal, lateral
– velocity longitudinal, lateral
– acceleration longitudinal, lateral
– position on lane

Vehicle 
Dynamics

Driver Tracking 
Features 

→ head rotation up-down
→ head rotation left-right

Head 
Tracking

→ lid opening left
→ lid opening right
→  pupils diameter left
→  pupils diameter right
→  eye position left
→ eye position right
→ gaze direction

Eye 
Tracking

Road Features 

→ road type
→ number of lanes

Road

→ lane index
→ lane width
→ lane length
→ lane gap left
→ lane gap right
→ lateral distance
→ lane curvature x-y
→ lane curvature z
→ lane grade

Lane

Vehicle  Features 

→ accelerator pedal actuation
→ brake pedal actuation
→ steering wheel angular, angular 
speed
→ indicator left, right

Controls

→  position longitudinal and lateral
→ velocity longitudinal, lateral
→ acceleration longitudinal, lateral
→ yaw rate, acceleration

Vehicle 
Dynamics

→ gear state
→ engine speed
→ engine moment
→ wheel speed of each wheel
→ wheel moment of each wheel

Vehicle 
Parameter

→ distance to next vehicle ID1
→ distance to next vehicle ID2
→ distance to next vehicle ID3
→ distance to next vehicle ID4
→ ID of vehicle ahead
→ ID of vehicle left
→ ID of vehicle right
→ ID of vehicle behind

Traffic 
Interaction

Figure 2: Parameters
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The route guidance and the tra�c situations are the same for all trips. The route runs through a

village, thus the speed limit for the whole route is 50 km/h.

The route is created with focus on a speci�c tra�c situation, namely intersections. There are 25

intersections along the route. Each of the intersections has to be crossed. The intersections along the

route are three- or four-way intersections without tra�c lights. At 18 intersections the priority of tra�c

is given by priority to the right, in the other seven cases the driver has the right of way due to tra�c

signs. At �ve of the intersections the driver has to give a vehicle from the right the priority in way. Below

is an overview of the intersections, starting from the second intersection [74]. The �rst intersection is left

out because it is the point where the drivers start from a rest stop and the data might be noisy. Thus

index 0 actually speci�es the second encountered intersection.

Intersection Type Right of Way Tra�c

0 three-way priority sign -
1 three-way priority sign oncoming
2 three-way right over left oncoming
3 three-way right over left -
4 four-way right over left -
5 four-way right over left left
6 four-way right over left right
7 four-way right over left oncoming
8 three-way right over left -
9 four-way priority sign left
10 four-way priority sign -
11 four-way priority sign oncoming
12 three-way right over left oncoming
13 three-way priority sign right
14 four-way right over left left
15 three-way right over left right
16 four-way right over left -
17 four-way right over left -
18 four-way right over left oncoming
19 four-way priority sign right
20 three-way right over left right
21 three-way right over left right
22 four-way right over left right
23 three-way right over left oncoming

Table 1: Crossings in the simulation route
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4 Data Analysis Pipeline

In order to explore the drivers data and investigate how it can be clustered, multiple, sequenced steps

have to be undertaken [5]. Together they build a data processing pipeline which is depicted below.

As the �rst step it is crucial to choose the context, i.e. crossing group that is to be inverstigated and

determine potential features that might be relevant in that speci�c cotext. In the second step the dataset

is standarized and any data points considered abnormal are removed for further analysis. Step 3 involves

the Principal Component Analysis which helps to reduce the dimension of the feature space, at the same

time extracting as much information as possible from the dataset. In step 4 the actual clustering takes

place and step 5 assumes interpreting the clustering results. Depending on the conclusions drawn from

the interpretation, there might be cues how to change the feature space or the context used, in order to

obtain more satisfying results. The following sections will deal with each of the stages in the pipeline in

more detail and explain how they were carried out.

Choose the 
context 

(crossing 
group) and 

features

Standarize 
the data 

and remove 
outliers

Apply 
Principal 

Component 
Analysis on 

the data

Cluster

Interpret 
results

1

25

4 3

Figure 3: Data Analysis Pipeline

4.1 Choosing the Context and Features

Research proves that the driving context is crucial for exploring driving patterns. Depending on the

tra�c situation, di�erent features might be relevant and the drivers might manifest varying behaviours

depending on the context. The assumption made in this thesis is that the manifestation of features built

from the given vehicle data is in�uenced by the speci�c tra�c situation. Only after obtaining the driving

patterns for various tra�c situations it will be investigated if there exist distinct characteristics for the

drivers, stable across the various tra�c situations. Only then, could these characteristics imply a speci�c

driver style (see section 2.4).
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Regarding the choice of features, the approach in this thesis is to �rst determine which features/pa-

rameters could be most meaningful based on the �ndings from the literature and then see how subsets

and combinations of them in�uence the clustering results. Exploring the feature distributions and cor-

relations will help to determine the best feature combination. The clustering performance of for a given

set of features might vary depending on the tra�c context, making both of these aspects interrelated.

4.1.1 The Context

In the given data set, the intersections are the most distinct tra�c situation and the focus will be set

on them. The intersections however di�er between each other as well. The most prominent distinction

is that at some of the intersections the driver has the right of way and at some he does not. Table

1, presenting the intersections, references each one with an index, thus the intersections 0, 1, 9, 10,

11, 13, 19 impose the right of way and the rest do not. First of all the data for all the crossings will

be investigated and afterwards, it will be split according to the tra�c context, in this case meaning

the crossing type. This will enable to determine whether the patterns found are actually stable across

di�erent tra�c situations and thus indicate a driver style. The Table 2 depicts the various contexts

considered.

Case Index Intersection Type Tra�c Indices

1 all crossings all tra�c types range from 0 to 23
2 priority sign crossings no tra�c from the right 0, 1, 9, 10, 11
3 priority sign crossings tra�c from the right 13, 19
4 right over left crossings no tra�c from the right 2, 3, 4, 5, 7, 8, 12, 14, 16, 17, 18, 23
5 right over left crossings tra�c from the right 6, 15, 20, 21, 22

Table 2: Crossing groups

4.1.2 Crossings extraction

There is no parameter that indicated whether the driver is at an intersection on not. The information

has to be obtained indirectly from other parameters. For each sample trip it can be well recognized when

the driver is crossing an intersection by looking at the time series for lateral distance. When entering

an intersection, one can observe a positive peak of the lateral distance which turns to a negative peak

when the driver is leaving the intersection. For each driver and each trip, the point in time when the

positive and negative peak appeared, are both registered. However, the behaviour of a driver already

changes before the exact moment of entering the intersection and also after leaving it. To allow more

room for establishing pattern di�erences, it is necessary to extract a time window not only between the

positive and negative lateral distance peak, but some time before the positive one and some time after

the negative one. It was decided to observe the driver 100 m before entering the intersection, on the

intersection and 50 m after leaving the intersection.

For each driver and each trip, the covered distance is checked at the time of entering and leaving the

intersection. This is done by looking up the value of the parameter distance coverage for the time values

retrieved for the positive and negative lateral distance peaks. Then, 100 m is substracted from the route

coverage before the intersection and 50 m added to the route coverage after leaving the intersection.
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Again, the time value corresponding to these two distance coverage values is checked. Now, for every

driver and every trip, two time values de�ne the time window relevant for further feature extraction.

These time windows will be referred to as crossing time windows throughtout the thesis.

Time

La
te

ra
l D

is
ta

nc
e

Figure 4: Extracted crossing for one of the trip samples, the red interval corresponds to the extracted
crossing window.

4.1.3 Potential Feature Choice

In section 2.5 the most common features the researches worked with and found relevant are presented.

Running in line with these �ndings, the following features are established: jerk standard deviation in

longitudinal direction, mean velocity in longitudinal direction, mean of the brake pedal pressure, standard

deviation of the brake pedal pressure, mean of the acceleration pedal pressure, standard deviation of the

acceleration pedal pressure and last but not least, standard deviation of the head and gaze direction.

The authors of [53] showed that considering only the statistical acceleration properties (such as

mean acceleration or variance of the acceleration) was not su�cent to di�erentiate between drivers and

what turned out to be much more successful was observing the change in acceleration. Motivated by the

authors idea, for each driver, his both trips and crossings, the longitudinal acceleration is measured for

the corresponding crossing time window. Then the �rst discrete di�erence is calculated with a period

shift of 10 time units (meaning 0.1 s because the data was sampled at a 100 Hz rate). The result is the so

called jerk and describes the change of acceleration over the crossing time window. As described in [53],

the next step is to compute the standard deviation of the jerk across time. The chosen window length

is 30 time steps this time. The actual feature value for the crossing is the mean of this jerk standard

deviation. The plot below shows the pro�le of jerk standard deviation for the two of the crossings (index

0 and 4) and the �rst two drivers. It is pretty clear that the �rst driver obtains higher values than the

second one, during both trips.

Additionally features concerning braking and accelerating are also created separatly. For this reason,

analogously, the standard deviation of braking and acceleration pro�les are built. The pro�les are based

on the corresponding pedal pressure pro�le. To allow more �exibility in the feature choice, two di�erent
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Figure 5: Jerk standard deviation for the crossing with index 0 the �rst two drivers

Figure 6: Jerk standard deviation for the crossing with index 4 the �rst two drivers
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windows are picked. The �rst discrete di�erence of the acceleration/brake pedal pressure is calculated

with a period shift of 5 and also with a period shift of 10. The standard deviation of this di�erence

is then calculated with a window length of 20 and 10, accordingly. Additionally, the potential feature

space includes the mean velocity of the driver, as well as the mean pressure of the acceleration and brake

pedal.

Last but not least, not only vehicle attributes are considered, but also the ones of the drivers

themselves. This includes gaze and head direction.

The changes in head and gaze direction are also added to the potential feature space in the form of

mean standard deviation. Again, two pairs of window lenghts are used; 5 and 10 for the �rst discrete

di�erence, 10 and 20 later for the standard deviation, accordingly.

4.1.4 Sample Formulation

The question that arises at this point is how to construct the feature vectors that are later fed to the

clustering algorithm. More speci�cally, how to build the feature vctors to include the information from

multiple crossings for a driver.

The most straight forward variant would be creating a sample for each driver, each trip and each

crossing. This yields n · m · k samples, n denoting the number of drivers, m the number of trips each

driver has to undertake and k the number of crossings in the route. Each of these samples is a vector

containing features extracted for the particular driver, trip and crossing.

Trip 1

...

Driver

#1

#...

Trip 2

Intersection

#1
 #2
 ...
#1
 #2
 ...

Feature sample for the 
clustering algorithm 

Trip

Trip 1#2

Trip 2

#1
 #2
 ...
#1
 #2
 ...

1. Jerk std
2. Velocity mean
3. Brake pedal pressure mean
4. Brake pedal pressure mean std 
5. Acceleration pedal pressure mean
6. Acceleration pedal pressure mean std 
7. Head direction mean std
8. Gaze direction mean std 

...

...

...

...

...

...

...

Figure 7: Sample Formulation
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4.2 Standarization and Outlier Removal

Standardization is especially crucial in order to compare similarities between features based on certain

distance measures. The K-means algorithm works with an Euclidean distance measure. This means that

when features are on di�erent scales, a feature with values of higher magnitude will e�ect the clustering

result more than the features on smaller scales. Moreover, K-means clustering produce more or less round

(rather than elongated) clusters. In this situation leaving variances unequal is equivalent to putting more

weight on variables with smaller variance. To assure that all features contribute to the clustering result

equally, the data needs to be rescaled. After standarization (or Z-score normalization), the features will

be rescaled so that they are centered around 0 with a standard deviation of 1. This assures they have

the properties of a normal distribution and in�uence the clustering result equally [59].

Standarization is also crucial when applying Principal Component Analysis to the dataset. This

will be further explained in section 5.

After standarization, there are still data points present, referred to as outliers and seen as noisy

observations which do not �t the assumed model that generated the data. They are markedly di�erent

from the majority and should be removed in order to make clustering more reliable. Including outliers in

the clustering process can skew the results. More speci�cally, in case of the K-means clustering algorithm,

outliers a�ect the mean of the data points in a cluster. If an outlier will happen to be chosen as an initial

seed, then no other point will be assigned to it during the next iterations. This will cause a singleton

cluster to be formed (a cluster with only one data point). Moreover, clusters including outliers might

have skewed centers and forced to include the outlier, reject other points that could form a tight cluster,

without the outliers.

In this thesis Tukey's Method is used for identifying and removing outliers. [24] explains the method

as follows. The �rst step in identifying outliers is to identify the statistical center of the range. To do

this, the 1st and 3rd Quartiles are calculated (Step 1, Figure 8). Next, the 3rd Quartile is substracted

from the 1st Quartile. This yields an Interquartile Range (IQR). The IQR gives a statistical way of

identifying where the main part of the statistical data points (the middle 50%) lies in the range, and

how spread out that middle 50% is. Tukey's Method assumes that a data point with a feature beyond

1.5 times the interquartile range (IQR) outside of the IQR is unrepresentative for that feature (Step 2,

Figure 8). More speci�cally, with Tukey's method, outliers are (Step 3, Figure 8):

� values below (Quar tile1)− (1.5 · IQR)

� values above (Quar tile3) + (1.5 · IQR)
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Step 1

Step 2

Step 3

a

Figure 8: Tukey's Method

a
24.

In this thesis, for all drivers �les and all crossings from the considered crossing group, the crossings/-

data points are identi�ed, where any feature lays beyond the calculated outlier step. The data point for

this crossing is then removed from the data set. The process is illustrated in Figure 9.
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Crossing 2
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Crossing n
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Trip 1

Feature 1 Feature 2 ... Feature m

Crossing 1

Crossing 2

...

Crossing n

Driver 2

Trip 1

...

12 
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left

11 
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left

... ...

Before outlier removal After outlier removal

Figure 9: Outlier removal

5 Principal Component Analysis

To reduce the feature space and simplify the graphical representation of clustering results, Principal

Component Analysis is carried out on the data. Principal Component Analysis is a way of identifying

patterns in data, and expressing the data in such a way as to highlight their similarities and di�erences.

Once these patterns are found, the data is compressed by reducing the number of dimensions, without

much loss of information [65]. Speci�cally speaking,

Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal trans-

formation to convert a set of observations of possibly correlated variables into a set of values

of linearly uncorrelated variables called principal components. This transformation is de�ned

in such a way that the �rst principal component has the largest possible variance (that is, ac-

counts for as much of the variability in the data as possible), and each succeeding component

in turn has the highest variance under the constraint that it is orthogonal to the preceding

components [58].
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For PCA to work properly, the data has to standarized so that the mean of the data set is zero.

Standarization of features has an e�ect on the outcome of a PCA. This is because standarization scales

the covariance between every pair of variables by the product of the standard deviations of each pair of

variables [59].

Now that the data had been scaled to a more normal distribution and has had any necessary outliers

removed, PCA can be applied to the dataset to discover the dimensions in which the feature variance

is the largest. On top of that, PCA will also provide the explained variance ratio of each dimension,

i.e. how much variance within the data is explained by that single dimension. Note that a component

(dimension) from PCA can be seen as a new "feature" of the space, however it is a composition of the

original features present in the data [5].

6 Clustering

In this thesis, the K-means clustering algorithm is used. The main trait of this algorithm in comparison

with other clustering methods, is that the number of clusters is set before clustering occurs. This can

turn out to be an advantage or a disadvantage. Setting the number of clusters that should be produced,

beforehand prevents the the K-means method from introducing new clusters in case of an anomaly data

point. Instead the anomaly data point is sorted to its closest cluster. The main drawback of having

�xed the number of clusters in advance, is that it might not be clear how many clusters a dataset might

contain. Using an unsuitable k may lead to poor results [17]. In this thesis a number of k values are

tried out, ranging from 2 to 5. Considering the research results, the most common cluster number is 2,

3 or 5. Therefore this is also the range of numbers in which good clustering results are expected in this

thesis.

6.1 Evaluation metric

Accessing the results of a clustering algorithm implies determining how similar the points in each cluster

are and how much the points belonging to di�erent clusters, vary from each other.

A metric used for this purpose is for example the Silhouette Coe�cient. It is computed to validate

and interpret the consistency within clusters of data. The Silhouette Coe�cient is computed for each

sample in the data. For its calculation, two parameters are needed; a denoting the intracluster distance

for a sample and b, the distance between a sample and the nearest cluster that the sample is not a part

of, shortly speaking, nearest-cluster distance. The Silhouett Coe�cient for a sample is then equal to:

(b− a)
max (a, b)

(2)

To validate the clustering result as a whole, the mean Silhouette Coe�cient over all samples is

determined. This mean is re�ered to as the Silhouette Score. The best value is 1 and the worst value is

-1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been

assigned to the wrong cluster, as a di�erent cluster is more similar [67]. According to [32], an average

silhouette greater than 0.5 suggests reasonable partitioning of data, wheras less than 0.2 indicates that

the data do not exhibit cluster structure.
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Additionally to this state of the art metric, other metrics are used in this thesis and rely on the

characteristics of this speci�c dataset and application. In order to establish a driver style, the behaviors

of a driver must reveal similar characteristics, independent of the tra�c situation, alias context. To see

if this holds for the behaviors of the given probands, the drivers belonging to a cluster representing a

speci�c behavior pro�le in one type of tra�c context, should also keep the same pro�le (i.e. belong to a

cluster representing a smilar behavior pro�le) in the second type of tra�c situation. It is an indication

that the driver's behavior is not a result of coincidence but rather a pattern.

Most importantly, the aspect that every driver completes two trips with the same route is used for

evaluating the clustering results. The notion that a driver style classi�cation is found, is reinforced if

both trip samples of a driver belong to the same cluster and this also across di�erent tra�c situations.

Taking all these aspect into account, the following facets are investigated:

1. Calculate the Silhouette Score for the current clustering trial. If the value exceeds 0.5, carry on

with the next steps.

2. Count how many samples belonging to one driver can be found in each cluster.

3. Consider the cluster with the most assignments for this driver. Calculate how much percent of all

samples belonging to this driver is assigned to this cluster.

4. Repeat for every driver.

5. If more than 60% of all drivers have a cluster to which more than 75% of their samples are assigned,

consider this clustering trial as a possible best result and keep it for fruther analysis.

7 Results

The data analysis was performed on all the crossing groups mentioned in Table 2. This section describes

all the steps of the data analysis and presents the outcome of every step.

Starting from step 1, the chosen context is the currently investigated crossing group, and the chosen

features are a subset of the potential features presented in section 4.1.3.

Already at the point of extracting crossings, some anomalies are noticed in the data. Three drivers

(six driver �les, because each driver takes two trips), had to be removed from further investigation.

since their The pro�le of the lateral distance does not clearly indicate at which point each intersection

is passed.

The data is then samples to keep only the part corresponding to the currently studied crossing

group. The dataset is standardized and outliers removed, according to the scheme described in section

4.2.

To visualize the feature distributions after standardization and outlier removal, a scatter plot matrix

is depicted below for all the crossing groups. A scatter plot matrix is de�ned as follows [66]:

Given a set of variables X1, X2, ..., Xk, the scatterplot matrix contains all the pairwise scatter

plots of the variables in a matrix format. That is, if there are k variables, the scatterplot

matrix will have k rows and k columns and the ith row and jth column of this matrix is a

plot of X i versus X j.
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On the diagonal of the matrix you can see the distributions of the features. Depicting the data in such

a way helps to understand the relationship between the attributes.

For example, from the matrices, one can �gure out that some of the features are correlated with

each other, across all crossing groups. The correlating feature pairs are:

1. mean_brake_pedal, mean_std_brake_pedal_data1

2. mean_std_brake_pedal_data2, mean_acc_pedal_data

3. mean_std_acc_pedal_data1, mean_std_acc_pedal_data2

4. mean_head_data1, mean_head_data2

5. mean_std_acc_pedal_data1, mean_std_gaze_data2

6. mean_std_gaze_data1, mean_std_gaze_data1

The correlations 3, 4 and 6 are straight-forward, since they represent the same aspect. They only

di�er in the length of sampling time windows.

The �rst correlation means the more pressure on the brake is applied on average, the higher the

standard deviation of the change in pressure. The explanation for this correlation might be the following.

A driver who, on average, exerts higher pressure on the brake pedal, probably makes use of a wider range

of the possible pressure that can be put on the brake pedal. For this reason the applied pressure also

varies more. A driver, who does not brake as severely might keep the pressure on the brake pedal

relatively stable.

Correlation 5 implies that the more pressure is applied to the acceleration pedal, the more that

gaze direction of the driver varies. This can be easily explained by the fact that before accelerating, the

drivers might �nd it a good idea to look around �rst to see if it was safe to speed up.

Determining which pairs of features correlate with each other is very important. It suggests that it is

su�cient to use one feature from each pair, since the second one will not yield any additional information.
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7.1 Clustering

For each crossing group, multiple clustering trials are carried out, with varying number of clusters and

varying parameter subset. The chosen number of clusters ranges from 2 and 5 (see section 6) and the

used feature subsets included all possible combinations of the features. To decide which of the clustering

trials might be meaningful, the introduced metrics had to be computed. Relevant clustering trials have

ideally high Silhouette Scores, as well a high value for the second metric presented in section 6.1. What

is important however to regard a trial as relevant, is that both of these metric values must lie above the

thresholds set and described in section 6.1. More speci�cally speaking, the Silhouette Score value must

be greater than 0.5 and the value for the second metric must be greater than 60%.

7.1.1 Evaluation

The Tables 3 to 9, each present a portion of the clustering results for a speci�c crossing group. Each table

includes the feature subset that was used for a trial, the number of clusters produced and the Silhouette

Score. The last column concerns the drivers, who have more than 75% of their samples belonging to one

cluster. The values in the last column correspond to these drivers. Each of them is represented by the

proportion of samples belonging to the most assigned cluster. Note that the number of drivers can vary

due to outlier removal. Trials that stand out because of (a) high metric value(s) are highlighted in green

in each table.

ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

0 0.66
mean_v el,

mean_brake_pedal 2 70.00

0.77, 0.83, 0.89, 0.80,
0.76, 1.0, 0.8125, 1.0,
0.98, 0.79, 0.925, 0.85,
0.90, 0.83, 0.86, 1.0,

0.91, 0.77, 0.79, 0.76, 0.77

1 0.66
mean_v el,

mean_std_brake_pedal_data1
2 70.00

0.77, 0.83, 0.86, 0.80,
0.76, 1.0, 0.8125, 1.0,
0.98, 0.79, 0.925, 0.85,
0.91, 0.83, 0.87, 1.0,

0.91, 0.77, 0.79, 0.76, 0.77

2 0.62
mean_brake_pedal,

mean_std_brake_pedal_data1
3 70.00

0.90, 1.0, 0.95, 0.78,
0.76, 0.87, 0.8125, 0.77,
0.83, 0.76, 0.97, 1.0,
0.87, 0.78, 0.88, 0.80,

0.80, 0.92, 0.98, 0.89, 0.89

3 0.72
mean_brake_pedal,

mean_std_brake_pedal_data1
2 86.67

1.0, 0.92, 0.96, 1.0,
0.98, 0.85, 0.97, 0.96,
1.0, 0.94, 0.95, 0.97,
1.0, 0.93, 1.0, 1.0,
0.93, 0.95, 0.98, 1.0,

0.95, 1.0, 0.80, 0.92, 0.98, 0.79

Table 3: Clustering Results Table for Crossing Group 1

The feature subset yielding the highest metric values for the crossing group 1, which contains all

the crossings, is the mean pressure put on the brake pedal and its mean standard deviation. This shows

that braking behavior is the best indicator for driver behavior when all crossings are taken into account.

The produced number of clusters is two for every trial. Figure 10 presents the scatter plot of the clusters

produced for the crossing group 1, when this feature subset is used. All the samples are annotated with
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a number corresponding to the driver they belong to. The driver indices range from 0 to 29, since 30

drivers are examined after removing three of them in the outlier removal phase.

For the crossing group 2, there are more interesting variants. The �rst four stand out because of

their Silhouette Score and include the combinations:

� mean_v el, mean_brake_pedal,

� mean_v el, mean_std_brake_pedal_data1,

� mean_brake_pedal, mean_std_gaze_data2

� mean_std_brake_pedal_data1, mean_std_gaze_data2

The features mean_brake_pedal and mean_std_brake_pedal_data1 are correlated with each

other, hence combinations which di�er only in these two features perform similarly well. What could be

gathered from these results is that the velocity and braking behavior seem to produce the best struc-

tured clusters. However, after adding some more features, even though the Silhouette Score decreases,

the value for the second metric is slightly higher. These combinations include:

� mean_v el, mean_std_brake_pedal_data1, mean_std_acc_pedal_data1,

mean_head_data1, mean_std_gaze_data2

� mean_v el, mean_brake_pedal, mean_std_acc_pedal_data1,

mean_head_data2, mean_std_gaze_data2

� mean_v el, mean_std_brake_pedal_data1, mean_std_acc_pedal_data1,

mean_head_data1, mean_std_gaze_data2

In this case, again, because of feature correlation, it is logical that the combinations will perform

similarly well. What can be observed, however, is that adding information about the change of pressure

on the acceleration pedal and information about the change of head and gaze direction, slightly improves

the clustering result according to the second evaluation metric. In other words, adding these features

results in samples belonging to one driver to be more often clustered together.
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ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

0 0.72
mean_v el,

mean_brake_pedal 2 68.97

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
0.88, 0.8, 1.0, 0.89,
0.88, 0.88, 1.0, 1.0,
0.9, 1.0, 1.0, 1.0

1 0.72
mean_v el,

mean_std_brake_pedal_data1
2 68.97

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
0.88, 0.8, 1.0, 0.89,
0.88, 0.88, 1.0, 1.0,
0.9, 1.0, 1.0, 1.0

2 0.72
mean_v el, mean_brake_pedal,
mean_std_brake_pedal_data1

2 68.97

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
0.88, 0.8, 1.0, 0.89,
0.88, 0.88, 1.0, 1.0,
0.9, 1.0, 1.0, 1.0

3 0.69
mean_brake_pedal,

mean_std_gaze_data2
2 76.67

1.0, 1.0, 0.78, 1.0,
0.89, 1.0, 1.0, 1.0,
1.0, 1.0, 0.88, 0.83,
1.0, 0.88, 1.0, 1.0,
1.0, 1.0, 0.9, 1.0,
1.0, 0.9, 0.78

4 0.69
mean_std_brake_pedal_data1,

mean_std_gaze_data2
2 76.67

1.0, 1.0, 0.78, 1.0,
0.89, 1.0, 1.0, 1.0,
1.0, 1.0, 0.88, 0.83,
1.0, 0.88, 1.0, 1.0,
1.0, 1.0, 0.9, 1.0,
1.0, 0.9, 0.78

5 0.69
mean_brake_pedal,

mean_std_brake_pedal_data1, mean_std_gaze_data2
2 76.67

1.0, 1.0, 0.78, 1.0,
0.89, 1.0, 1.0, 1.0,
1.0, 1.0, 0.88, 0.83,
1.0, 0.88, 1.0, 1.0,
1.0, 1.0, 0.9, 1.0,
1.0, 0.9, 0.78

6 0.67
mean_brake_pedal,

mean_std_acc_pedal_data1
2 66.67

0.89, 0.78, 1.0, 0.78,
0.78, 1.0, 1.0, 0.89,
0.9, 1.0, 1.0, 1.0,
0.83, 1.0, 1.0, 1.0,
1.0, 0.9, 1.0, 1.0

... ... ... ... ... ...

41 0.61

mean_v el,
mean_std_brake_pedal_data1,

mean_std_acc_pedal_data2,
mean_head_data1,

mean_std_gaze_data2

2 75.86

1.0, 0.78, 1.0, 1.0,
1.0, 1.0, 1.0, 0.8,
1.0, 1.0, 1.0, 0.83,
1.0, 0.88, 0.83, 1.0,
1.0, 1.0, 0.9, 1.0,

1.0, 0.9

42 0.61

mean_v el,
mean_std_brake_pedal_data1,

mean_std_acc_pedal_data1,
mean_head_data1,

mean_std_gaze_data2

2 79.31

1.0, 0.78, 1.0, 0.78,
1.0, 1.0, 1.0, 1.0,
0.8, 1.0, 1.0, 1.0,

0.83, 1.0, 0.88, 0.83,
1.0, 1.0, 1.0, 0.9,
1.0, 1.0, 0.9

43 0.60

mean_v el,
mean_brake_pedal,

mean_std_acc_pedal_data2,
mean_head_data2,

mean_std_gaze_data2

2 75.86

1.0, 0.78, 1.0, 1.0,
1.0, 1.0, 1.0, 0.8,
1.0, 1.0, 1.0, 0.83,
1.0, 0.88, 0.86, 1.0,
1.0, 1.0, 0.9, 1.0,

1.0, 0.9

Table 4: Clustering Results Table for Crossing Group 2

Because some of the feature combinations correlate with each other, only the clusters for

one variant of each correlating subset are plotted, namely mean_v el, mean_brake_pedal,

mean_brake_pedal, mean_std_gaze_data2 and mean_v el, mean_std_brake_pedal_data1,

mean_std_acc_pedal_data1, mean_head_data1 , mean_std_gaze_data2. The produced num-

ber of clusters for every trial, is again, two.
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ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

44 0.60

mean_v el,
mean_std_brake_pedal_data1,

mean_std_acc_pedal_data2,
mean_head_data2,

mean_std_gaze_data2

2 75.86

1.0, 0.78, 1.0, 1.0,
1.0, 1.0, 1.0, 0.8,
1.0, 1.0, 1.0, 0.83,
1.0, 0.88, 0.86, 1.0,
1.0, 1.0, 0.9, 1.0,

1.0, 0.9

45 0.60

mean_v el,
mean_std_acc_pedal_data2,

mean_head_data1,
mean_std_gaze_data2

2 68.97

1.0, 1.0, 0.78, 1.0,
1.0, 1.0, 1.0, 0.8,
1.0, 1.0, 1.0, 0.8,
1.0, 0.8, 1.0, 1.0,
0.9, 1.0, 1.0, 0.9

46 0.60

mean_v el,
mean_brake_pedal,

mean_std_acc_pedal_data1,
mean_head_data2,

mean_std_gaze_data2

2 79.31

1.0, 0.78, 1.0, 0.78,
1.0, 1.0, 1.0, 1.0,
0.8, 1.0, 1.0, 1.0,

0.83, 1.0, 0.88, 0.86,
1.0, 1.0, 1.0, 0.9,
1.0, 1.0, 0.9

47 0.60

mean_v el,
mean_std_brake_pedal_data1,

mean_std_acc_pedal_data1,
mean_head_data2,

mean_std_gaze_data2

2 79.31

1.0, 0.78, 1.0, 0.78,
1.0, 1.0, 1.0, 1.0,
0.8, 1.0, 1.0, 1.0,

0.83, 1.0, 0.88, 0.86,
1.0, 1.0, 1.0, 0.9,
1.0, 1.0, 0.9]

Table 5: Clustering Results Table for Crossing Group 2

The crossing group 3, seems to be best described by the mean velocity and braking behavior, like in

the case of crossing group 2. Adding the change in head direction also increases the value of the second

metric, just like the addition of change in gaze and head direction increased the value for crossing group

2.

ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

0 0.67
mean_v el,

mean_brake_pedal 2 76.67

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0

1 0.67
mean_v el,

mean_std_brake_pedal_data1
2 76.67

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0

2 0.67
mean_v el,

mean_brake_pedal,
mean_std_brake_pedal_data1

2 76.67

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0

Table 6: Clustering Results Table for Crossing Group 3
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ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

3 0.65
mean_brake_pedal,

mean_std_brake_pedal_data1
2 73.33

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,

1.0, 1.0

4 0.59
mean_brake_pedal,

mean_std_gaze_data1
2 66.67

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0

... ... ... ... ... ...

18 0.51
mean_v el,

mean_std_brake_pedal_data1,
mean_head_data1

2 79.31

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0

19 0.51
mean_v el,

mean_brake_pedal,
mean_head_data1

2 79.31

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0

Table 7: Clustering Results Table for Crossing Group 3

Again, since mean_brake_pedal and mean_std_brake_pedal_data1 correlate, only the clus-

ters for the combination with mean_brake_pedal are plotted from the two possibilities; mean_v el,

mean_brake_pedal and mean_v el, mean_std_brake_pedal_data1.

In case of the crossing group 4, the braking behavior produces the best structured clusters. However,

adding velocity to the braking information, increases the number of drivers whose samples are often (in

more than 75% cases), clustered together.

ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

0 0.74
mean_brake_pedal,

mean_std_brake_pedal_data1
2 83.33

1.0, 0.96, 0.96, 1.0,
1.0, 1.0, 0.92, 0.95,
0.96, 1.0, 0.92, 1.0,
1.0, 1.0, 1.0, 0.87,
1.0, 0.96, 1.0, 0.78,

0.95, 1.0, 0.94, 0.92, 0.86

1 0.65
mean_v el,

mean_std_brake_pedal_data1
2 70.00

1.0, 1.0, 0.91, 0.96,
1.0, 0.91, 1.0, 0.88,
0.96, 0.77, 0.91, 1.0,
0.88, 0.91, 0.84, 0.96,

1.0, 0.88, 0.88, 0.89, 0.88

2 0.65
mean_v el,

mean_brake_pedal 2 70.00

1.0, 1.0, 0.91, 0.96,
1.0, 0.91, 1.0, 0.88,
0.96, 0.77, 0.91, 1.0,
0.83, 0.91, 0.85, 0.96,
1.0, 0.88, 0.88, 0.89,

0.88

Table 8: Clustering Results Table for Crossing Group 4
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Equivalently, only the clusters for one of the combinations mean_v el, mean_std_brake_pedal_data1

and mean_v el, mean_brake_pedal are plotted. Just like in all previous cases, the number of clusters

produced for all trials is two.

ID Sil. Score Features No. of Clusters 2nd Metric Score Driver Samples Proportion

0 0.83
mean_brake_pedal,

mean_std_brake_pedal_data1
2 83.33

1.0, 0.80, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 0.89, 1.0,
1.0, 1.0, 0.90, 0.80,
1.0, 0.89, 0.78, 1.0,
1.0, 0.90, 1.0, 0.90,

0.90

Table 9: Clustering Results Table for Crossing Group 5

The crossing group 5 is best clustered with the feature combination mean_brake_pedal,

mean_std_brake_pedal_data1. No additional features boost this performance.

8 Interpretation

To better study the results, for each crossing group a plot is created, depicting the characteristics of the

produced clusters. For each relevant feature combination and the clusters created for it, a plot of two

histograms is visualized. Since in every case, only two clusters are produced, the cluster labels are always

0 and 1. The �rst histogram in each plot visualizes the distribution of the feature for drivers belonging

to the cluster with index 0, the second histogram, analogously, the cluster with index 1.

The �rst cluster result to interpret belongs to the crossing group 1 and feature combina-

tion mean_brake_pedal, mean_std_brake_pedal_data1 Figure 24. From the plot for feature

mean_brake_pedal, it is clear that cluster 0 represents drivers who apply less pressure on the brak-

ing pedal and the range of the pressure is not as wide as in case of drivers belonging to the cluster

with index 1. The second feature of the combination, mean_std_brake_pedal_data1 correlates with

mean_brake_pedal, so it is clear that the distributions will have a similar histogram pro�le. Drivers

assigned to cluster 0, have a lower deviation in the pressure they apply to the brake pedal.

According to the notions presented in section 2.6, drivers with stable braking behavior are regarded

as calm drivers, whereas frequent changes in brake operation and intensive brake operation indicate an

aggressive or dynamic driver. Thus, cluster 0 will correspond in this case to the cluster of calm drivers.

When it comes to the crossing group 2, three relevant clustering trials are observed. The histograms

for the feature combination mean_brake_pedal, mean_std_gaze_data2 are depicted in Figure 25.

One can see, that even the histograms of applied pressure on the brake pedal almost overlap with each

other, the one for cluster 0 being set slightly more to the left. There is however a substantial di�erence in

the velocity pro�les. Drivers belonging to cluster 0 tend to driver slower than drivers assigned to cluster

1. Thus for this particular feature combination, again cluster 0 is regarded as the one including calmer

drivers and 1 the dynamic ones.

Next in turn for crossing group 2, is the feature combination mean_brake_pedal,

mean_std_gaze_data2. The histograms for the mean brake pedal pressure almost overlap again for

both clusters, but drivers from cluster 0 tend to change their gaze direction far less abruptly than drivers
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in cluster 1 Figure 26. Invoking the �ndings described in section section 2.6 , cluster 0 is here again seen

as the one of the calm drivers.

Finally, the histograms for the combination mean_v el, mean_std_brake_pedal_data1,

mean_std_acc_pedal_data1, mean_head_data1 , mean_std_gaze_data2 indicate that this time

cluster 1 is the one in which drivers tend to reach lower velocity, less deviation in the pressure applied

to the acceleration pedal and less deviation in gaze direction 27. The histograms for braking and head

direction deviation overlap, indicating the behavior seems similar in both clusters. The braking deviation

values are set only slightly more left for cluster 1. In this case, therefore, cluster 1 is the one assigned to

calmer drivers, whereas cluster 0 includes the more dynamic ones 2.6.

Crossing group 3 with feature combination mean_v el , mean_brake_pedal cluster 1 manifests

lower velocity values and its histogram for the mean brake pedal pressure is set slightly more to the left,

than the histogram for cluster 0. This indicates that that less pressure is applied by the drivers in cluster

1. Thus, analogously, 0 represents the cluster for dynamic drivers, and 1 for the calm ones.

The feature combination mean_v el, mean_brake_pedal, mean_head_data1 produces the clus-

ter 0, with drivers putting slightly less pressure on the brake pedal and driving with lower velocity. The

head direction changes are similar for both clusters, probably to the fact that unexpected tra�c comes

from the right in this crossing situation. Cluster 0 is therefore regarded as the cluster with calm drivers.

Crossing group 4, analogously assigns the drivers with traits attributed to calm driving 2.6, to

cluster 0. These traits are lower velocity values and the braking histogram representing a smaller value

range and this on the lower value side, too.

Finally, for crossing group 5, cluster 0 assumes more brake pressure, more deviation in the pressure,

and wider range of the values, indicating more unstable braking than for drivers in cluster 1. Hence, in

this case, cluster 1 represents the calmer drivers.

To visualize whether the drivers were assigned to clusters with similar pro�les (i.e. the 'calm' or

'dynamic' cluster), across di�erent crossing situations, Table 10 is created.

The columns of the table represent indices of the drivers, ranging from 0 to 29, since 30 drivers are

considered. The rows represent the di�erent relevant clustering cases in terms of the feature combination

and crossing group.

For each driver and each clustering trial, it is checked which cluster label is assigned to the driver.

The cluster labels can be 0 or 1. The two clusters represent the calm and dynamic drivers. Keep in mind

that the label can represent a di�erent type of driver, depending on the the particular clustering trial.

If the label corresponds to a cluster of calm drivers for the particular trial, the cell is highlighted in

green. Analogously, if the label corresponds to the cluster with dynamic drivers, the cell is highlighted

in pink.

Cells with no label indicate that for this particular trial the driver had less than 75% of the samples

assigned to one cluster and is therefore not taken into account.

What can be noticed is that drivers with the majority of "calm" assignments across the di�erent

crossings, in fact belong to the "calm" cluster for all the intersection situations. It is also quiet prominent

that drivers assigned to the "dynamic" cluster in some situations, do not keep the assignment consistently.

They also happen to have unde�ned assignments in many cases, meaning that less than 75% (exclusively)

of the driver's samples were assigned to one cluster. Another apparent observation is that in case of
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the crossing group 5, with tra�c coming from the right side, the drivers tend to be classi�ed as calm,

independent of the assignments for other situations. The same uni�ed assignments are found for the

crossing group 1, which includes all the encountered intersections. The case of crossing group 5 may

be one of the situations where driver behavior depends mostly on the driving context. According to

the assumptions made in section 2.4, such behaviors should be disregarded when investigating driver

style. The fact that taking into account all crossings does not lead to di�erentiation between drivers

might also be explained by the fact that driving behavior strongly depends on the context and each

situation (in this case intersection type) must be viewed separately (section 2.4). If these crossing groups

are removed, the drivers, who display dynamic behavior in some of the crossing groups, will show it in

the majority of crossing situations, without the consideration of unknown. This indicates that if the

threshold for having a cluster assigned was lowered (to less than 75%), the assignments would turn out

to be of dynamic character, as well. In this case one might speak of a driving style classi�cation with

two styles; calm and dynamic.

9 Conclusion and Future Work

The thesis is devoted to the subject of clustering driver simulation data according to the drivers' be-

haviour on intersections. The K-means clustering algorithm used for this purpose is one of the most

prominent clustering algorithms in the driver style research �eld. Assuming that driving behaviour is

dependent on the tra�c context, the data were clustered separately for di�erent types of intersection

and for all the intersections, for comparison. Two clusters were found that corresponds to the number of

categories used for driver style classi�cation described in literature. The drivers in each cluster manifest

behaviour patterns that can be regarded as "aggressive" (dynamic) and "calm" driving style. Thus, the

clusters are named "dynamic" and "calm". Dynamic drivers exhibited more varying usage of the brake

and acceleration pedal, higher velocity and less variety in gaze direction. The drivers were also almost

uniquely clustered in case of the crossing group where the drivers had to let tra�c from the right pass

�rst and there was actually tra�c coming from the right. All of them had to slow down before the

intersection to let the tra�c through and they were expecting to do so because they had no right of way.

Therefore, the velocity was relatively low and the braking not as severe because the drivers expecting it.

All the crossing types did not provide a precise di�erentiation of driving behaviour. However, there is an

indication that two styles could be established if certain conditions were met. The �rst condition is that

the uninformative crossing situation with tra�c coming from the right is discarded. The second, that a

milder criteria is set for determining the speci�c cluster a�liation in a crossing situation. In the thesis

a relatively strict constraint was assumed. The clustering results that drivers are best distinguished

according to their braking behaviour stands in agreement with the �ndings reported in literature. More-

over, cognitive features such as gaze and head direction did boost the performance of the clustering. To

determine more precisely if one can speak of driver style should be continued. The common traits of

drivers at a speci�c type of intersection comes out as another topic for further investigation.
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Figure 15: Scatter plot for crossing group 1, features: mean_brake_pedal,
mean_std_brake_pedal_data1

Figure 16: Scatter plot for crossing group 2, features: mean_v el , mean_brake_pedal
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Figure 17: Scatter plot for crossing group 2, features: mean_brake_pedal, mean_std_gaze_data2

Figure 18: Scatter plot for crossing group 2, features: mean_v el, mean_std_brake_pedal_data1,
mean_std_acc_pedal_data1, mean_head_data1 , mean_std_gaze_data2
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Figure 19: Scatter plot for crossing group 3, features: mean_v el, mean_brake_pedal

Figure 20: Scatter plot for crossing group 3, features: mean_v el, mean_brake_pedal,
mean_head_data1
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Figure 21: Scatter plot for crossing group 4, features: features: mean_brake_pedal, mean_v el

Figure 22: Scatter plot for crossing group 4, features: mean_brake_pedal,
mean_std_brake_pedal_data1
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Figure 23: Scatter plot for crossing group 5, features: mean_brake_pedal,
mean_std_brake_pedal_data1
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Figure 24: Feature distribution in clusters for crossing group 1, features:mean_brake_pedal,
mean_std_brake_pedal_data1
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Figure 25: Feature distribution in clusters for crossing group 2, features: mean_v el ,
mean_brake_pedal
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Figure 26: Feature distribution in clusters for crossing group 2, features: mean_brake_pedal,
mean_std_gaze_data2
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Figure 28: Feature distribution in clusters for crossing group 3, features: mean_v el ,
mean_brake_pedal
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Figure 30: Feature distribution in clusters for crossing group 4, features: mean_brake_pedal,
mean_v el
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Figure 31: Feature distribution in clusters for crossing group 5, features: mean_brake_pedal,
mean_std_brake_pedal_data1
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