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Abstract

This thesis deals with combining a decision list classifiers with neural networks in order to gain a mixed classification
model, which can be further transformed into a pure multi-layered decision list classifier. The resulting classifier has the
potential of increase the accuracy especially for deep network topologies. In contrast to neural networks, the rules in
decision lists are better understandable by humans.

This thesis shows the relations of the mixed network to ensemble trainers (especially gradient boosting), fuzzy neural
networks and other descriptive rule learning algorithms.

The contribution of this thesis is a method for performing an online training of neural networks and decision lists. For
this purpose, a way of training decision lists with small portions of data (mini-batches) instead of complete data sets is
introduced. Further contributions include the way of combining rule learning algorithms with neural networks similar to
gradient boosting and a binary backpropagation scheme for symbolical methods.

During evaluation with the MNIST dataset, it is shown that existing classifiers like C4.5 and RIPPER benefit from the
results of the decision list layers and can increase their performance. In comparison to existing approaches, a model with
a reduced complexity can be obtained.

Zusammenfassung

Diese Abschlussarbeit befasst sich mit der Kombination von Decision-List-Klassifizierern und neuronalen Netzwerken
mit dem Ziel einen gemischten Klassifizierer zu erstellen, welcher danach in einen reinen mehrschichtigen Decision-
List-Klassifizierer überführt werden kann. Der daraus entstehende Klassifizierer hat das Potential, die Genauigkeit
inbesondere in tiefen Netzwerktopologien zu erhöhen. Im Gegensatz zu neuronalen Netzwerken sind Regeln einer
Decision List für Menschen besser verständlich.

Diese Abschlussarbeit zeigt die Ähnlichkeiten des gemischten Netzwerkes zu Ensembletrainern (besonders Gradient
Boosting), fuzzy-neuronalen Netzwerken und weiteren deskriptive Regellern-Algorithmen auf.

Diese Abschlussarbeit stellt eine neue Methode vor, die ein Onlinetraining von neuronalen Netzwerken und Decision
Lists ermöglicht. Zu diesem Zweck wird eine Trainingsmethode mit kleinen Datenstücken (mini-batches) vorgestellt.
Weitere Beiträge sind die Kombinierung von Regellernalgorithment mit neuronalen Netzwerken ähnlich zu Gradient
Boosting und eine binäre Backpropagation-Methode.

In der Evaluation mit dem MNIST-Datensatz wird gezeigt, dass Klassifizierer wie C4.5 und RIPPER von den Ergebnis-
sen der Decision-List-Schichten profitieren und dadurch die Genauigkeit erhöhen können. Im Vergleich zu vorherigen
Ansätzen kann ein Modell mit geringerer Komplexität erzielt werden.
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1 Introduction

The field of machine learning has evolved recently. Whereas in the early days, mainly separated domains were analyzed,
the amount of available data today has grown rapidly. Today, a huge amount of data is collected by sensors in small
devices such as smartphones, digital cameras or fitness trackers. These devices collect data such as image data, geo data,
temperature, or data on health. Furthermore, there is a tendency that previously unconnected control devices become
more frequently connected to the internet, such as devices in smart homes (thermostats, lighting controls etc.), vehicles
(autonomous driving).

Besides the increasing connectivity of existing everyday objects, there are many applications for cheap new sensors to
perform many kinds of monitoring tasks. Together with the growing availability of sensor devices, there is a financial
interest in collecting and analyzing these large amounts of data. In light of the ubiquity of cloud services, sensor data are
stored for a large quantity of users. On the one hand, this enables the users to easily control their data from the internet
more comfortable. On the other hand, it empowers the cloud services to aggregate and analyze large amounts of data.
Hence, there is more and more data available which is automatically collected by devices rather than by domain experts.

With the increasing amount of data, there is a need for scalable algorithms. One example domain is image processing.
In an image collection, a data sample may be an image of about 1 mio pixels. An algorithm then uses each pixel as an
individual attribute. Due to the large amount of attributes, the algorithms that will be used for the example domain need
a low computational complexity concerning the attribute space. Furthermore, it is beneficial if an algorithm can process
large amounts of images.

To process large amounts of data, deep neural networks have gained focus. These types of neural networks are
constructed layerwise, and can be largely scaled. In deep neural networks, the costs of training a network are expensive
and much computational resources are needed. However using these networks to make predictions and to perform their
tasks without much computational resources. Therefore, neural networks are used increasingly in embedded devices.
The applications include speech recognition in smartphones, lane-keeping assistants in vehicles and collision detection
in drones. For these applications, often objectives like costs, power consumption, weight and size have to be optimized.
Usually control circuits in these devices include a CPU with a RISC chip design. RISC chips allow for fast control flow and
logical operations. As floating point operations are primarily used in neural networks, special processors are required
which take into account.

Besides, the architectural limitations in terms of the command sets, there is a need for quickly accessing the memory
for neural networks. For this purpose, in embedded devices, there are specialized neural network chips, or chips that
have integrated GPU functionality.

However, it would be favorable to also use RISC Processors for that specific task. Therefore, it is necessary to use
a different model representation. One such representation are symbolical rules. Currently, symbolical rules cannot
be trained as efficiently as neural network. In this thesis, it is examined if symbolical rules can be trained efficiently by
combining them with a neural network. For this purpose, a general scheme for training rule models is adapted specifically
to the needs of large datasets.

In this thesis, a method will be further developed, that creates layered architectures of symbolical rules. This thesis is
structured as follows. In chapter 2, the foundations of machine learning are introduced. In chapter 3, the related works
is introduced. Chapter 4 deals a method for training symbolical rules will be introduced. In chapter 5, the new method
will be evaluated. Finally, chapter 6 concludes the thesis and gives a perspective on future works.
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Outlook Temperature Humidity Windy Class
sunny hot high FALSE not play
sunny hot high TRUE not play
overcast hot high FALSE play
rain mild high FALSE play
rain cool normal FALSE play
rain cool normal TRUE not play
overcast cool normal TRUE play
sunny mild high FALSE not play
sunny cool normal FALSE play
rain mild normal FALSE play
sunny mild normal TRUE play
overcast mild high TRUE play
overcast hot normal FALSE play
rain mild high TRUE not play

Table 1: Dataset example (taken from [Quinlan, 1986])

2 Machine Learning

In this chapter, machine learning is introduced. It can be considered as part of artificial intelligence. Machine learning
algorithms are used to detect regularities in a dataset. They are used in the following way: first, a dataset is analyzed
and a model is created during a training phase. Depending on the machine learning algorithm, the trained model allows
to distinguish important from unimportant information within the data, make inference on the dimensionality of the
underlying problem, give an insight for humans on the underlying problem and make predictions on new data of the
given domain.

The data that will be analyzed can have various forms. In the most basic case, a dataset consists of sets of attributes.
Each attribute is either binary, nominal or numeric. A binary attribute is either true or false, a nominal attribute can
have a value from a predefined set of possible values and a numeric attribute can be a natural or a real valued variable.
Besides the simple case in which a dataset consists of attributes only, the data can be composed of attributes and target
attributes. Attributes can be measured or otherwise collected or constructed for a given problem, whereas the target
attributes usually are collected with much effort and shall be predicted by the machine learning algorithms. Target
attributes can be natural or real numbers, or also binary or nominal values. They are called class attributes if they are
binary or nominal. If a prediction is to be made for a single class attribute the prediction is also called classification. A
prediction for one or more continuous target attributes is also called regression. The smallest unit of a dataset is called
sample. A sample is an observed state which contains information on all attributes.

In table 1, an example of a dataset taken from [Quinlan, 1986] is given. It contains information about the weather
condition and an observation of a golf player that either plays or does not play. The dataset can be used to predict if the
player does play golf depending on the weather situation. The dataset has four attributes (outlook, temperature, humidity
and windy) and one target attribute (play/don’t play). The nominal attribute outlook can have the value sunny, overcast or
rain. The attributes temperature (hot, mild or cool) and humidity (high, normal) are also nominal attributes. The binary
attribute windy states whether a certain wind speed threshold is exceeded. The present example does not contain any
numerical attributes. The binary target attribute states whether the player does or does not play. Each line of the table
represents a sample. The observation is made at a certain point in time.

It may be necessary to preprocess the given data, to meet the requirements of a specific machine learning algorithm.
Preprocessing steps include discretization, string preprocessing, attribute selection and many more. Discretization trans-
forms a numerical value to a binary or nominal value. Likewise, string preprocessing usually transforms a string into
binary attributes or a nominal attribute. Attribute selection is a step to reduce the number of attributes that is available
for the training algorithm. It is possible to discretize a target attribute in order to perform a classification.

For machine learning, it can be distinguished between three types of learning: supervised, unsupervised and semi-
supervised learning. In the case of supervised learning, the training data used consists of attributes and pre-labeled
target attributes. Supervised training is usually used to train a model for classifications or predictions of a numerical
target attribute. In unsupervised learning, an algorithm is only trained with attribute values and without any hand-
labeled data. Unsupervised training can be used to create a simplified dataset with reduced complexity, e.g. with
autoencoders (see section 2.4.1). Other unsupervised learning methods make predictions about arbitrary attributes
instead of predicting a target attribute. If rules are used, the data structure is called association rules. Training methods
for association rules are introduced in section 3.1. Another unsupervised training task is clustering. Here, similar samples
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Real Predicted: A Predicted: B Predicted: C
A 0 1 1
B 1 0 1
C 1 1 0

(a) Misclassification error: correctly classified instances
have a cost of 0, incorrectly classified instances have a
cost of 1.

Real
Predicted:

Critical = FALSE
Predicted:

Critical = TRUE
Critical = FALSE -1 (TP) 1 (FP)
Critical = TRUE 10 (FN) -1 (TN)

(b) Custom cost matrix: classifying a critical state as
normal in this example has 10 times higher costs
than classifying a normal state as critical.

Table 2: Cost matrix example for misclassification error and a custom cost matrix.

are grouped into a cluster. This method will not be covered in this thesis and can be seen in e.g. [Xu and Wunsch, 2005]
or [Baraldi and Blonda, 1999b].

Finally, it can also be beneficial to reduce the amount of attributes to speed up further processing. This step is called
feature selection. Here, attributes are removed based on similarity measures like covariance. Semi-supervised learning
is a mixture of supervised and unsupervised training. In semi-supervised learning tasks, only some of the available
instances are pre-labeled. A model can be trained here by applying an unsupervised algorithm in a pre-processing step
for the unlabeled data and a supervised algorithm in a second step for the labeled data.

According to [Baraldi and Blonda, 1999a], training methods can be distinguished between offline and online learning
methods. Offline trainers operate on a training set which is fully known in advance and process data. In contrast, online
training methods sequentially process data. While offline trainers process data as a block (also denoted as batch), online
trainers can process samples as they arrive and therefore require less memory for storage. Online methods either operate
on individual samples or on so-called mini-batches. In mini-batches, the complete dataset (batch) is divided into blocks
of few samples.

Most classification algorithms return the confidence for each possible target value. The confidence is the estimated
probability that the predicted target will actually be present in reality. In order to make a decision on how to improve
a model, as well as on how to compare two models, it is of importance to define a cost function (also denoted as loss).
For each sample, a cost function measures how well the algorithm maps the target function. During training, the costs
of the model for the provided training data should be minimized. In case of a binary or nominal target variable, a
simple definition is the misclassification error where a correct classification results in a cost of 0 whereas an incorrect
classification results in a cost of 1.

While the misclassification error defines a simple error measure, there might be training situations which require a more
elaborate balance of costs. Therefore, a cost matrix can be defined which defines a cost measure for each combination
of predicted label and target label based on prior knowledge. In table 2, two example cost metrices are defined: table
2a defines a cost matrix for the misclassification error, table 2b is an example of a fictive industrial facility. In the latter
example, some attributes may include measured sensor data, and a prediction target could be if a hazardous event
may occur in the facility. The desired behavior would be that a critical state is reported with high priority. Therefore,
reporting a critical state as non-critical, also denoted as false negative (short: FN) should be absolutely avoided and has to
be associated with a high cost. In contrast, reporting a non-critical state as critical, also denoted as true negative (short:
TN) would require a manual check for a problem, and therefore be associated with a low cost. In the other cases, where
a critical state is correctly predicted (also: true positive, shortly: TP) and a non-critical state which is correctly predicted
(also true negative, shortly: TN) are here associated with negative cost.

Besides defining a cost function for each sample, the function can also be defined for a set of samples. Usually this
is done by averaging the individual costs of the samples. In case of a binary or nominal target variable, where no cost
matrix is defined, this leads to the amount of wrong predictions, denoted as misclassification error. The opposite of the
misclassification error, which is the amount of correct predictions is denoted as accuracy. Besides averaging the individual
costs to gain a cost function for a set of samples, there are ways to include the confidence of the prediction. One such
cost function is the entropy (see [Shannon, 2001]), which will be explained in chapter 2.2.

To estimate the result of a machine learning algorithm, a trained model can be validated against data. One way to
achieve this is to use the available data once for training and then make a prediction for all the data available. The
original data can be then compared to the predicted data, and an estimation about the quality of the model can be made.
Models will achieve a good estimation if they can be used to reconstruct the target values accurately. However, the
training examples may include noise, e.g. in the form of falsely labeled instances. The reconstruction of noisy samples is
called overfitting. To detect if a model overfits the training data, samples have to be used for either training or validating.
Therefore, the labeled data is split into a training set and a test set. Then a model is trained with the training data. In
the second step, the algorithm makes a prediction about the test data by using only the attribute values. The resulting
prediction of the target value is then compared to the provided target value of the test set. Validation is used to estimate
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whether an algorithm fits well for a given problem or for the provided data. It can be used to compare machine learning
algorithms.

In training scenarios where sufficient training data is available, the data can be split into a training set and a validation
set. This is best done in a way that preserves the distributions among all attributes which can be achieved by using
stratification (see e.g. [Esfahani and Dougherty, 2013]). Here, homogeneous subgroups are created, which are then
equally distributed among the splits of the dataset. There are also cases, where the data is divided due to prior knowledge.
This was done in [LeCun et al., 1998], where hand-written digits are assigned to a training and a test set, so that a writer
either contributes written samples to the training set or to the test set, but not to both sets.

The split of available data into a training and a validation set in order to estimate the accuracy of the given dataset
has to drawbacks. On the one hand, there is only a reduced amount of data available for training. Especially for small
data sets, the reduced amount of training data can result in a model which is inferior to the model that is trained on
the complete training data. On the other hand, only a subset of samples is validated. It may be the case that these
samples are biased, and the estimation of the accuracy is prone to the split choice. To overcome these shortcomings,
cross-validation can be applied. Here, the available data is split into n equal-sized folds. Then n training sets and n
corresponding validation sets are created, and n models are trained and validated. Each training set contains n−1 folds,
the corresponding validation set contains the fold that is left out for training. The n training and validation sets are
created so that each fold is used once for validation. At cost of training multiple models, cross-validation creates models
based on the majority of samples and at the same time uses all samples once for validating these models.

So far, the use of training data in machine learning algorithms has been dealt with. In the remainder of this chapter,
machine learning algorithms will be introduced. This includes instance based, symbolical and neural network methods.
For each method, first a data model that generalizes the training data is presented. Besides, the training methods for
creating a model are introduced.

2.1 Instance based Algorithms

Instance based machine learning algorithms are the most basic way to perform a prediction. Here, no explicit model
is created for the training data. Instead, the training instances themselves are used to make a prediction for unlabeled
instances. The most prominent algorithm which uses instance based methods is the K-Nearest-Neighbors algorithm,
which was first published in [Cover and Hart, 1967] (also see [Peterson, 2009]).

The algorithm maintains a set of labeled samples. For each prediction, the k ∈ N most similar samples are searched in
the set of labeled samples. The prediction is made based on a voting of the k most similar samples. For a given dataset, a
suitable similarity measure and a voting scheme has to be defined. A frequently used similarity measure is the eucledean
distance:

d(x i , x j) =
q

(x i0 − x j0)2 + (x i1 − x j1)2 + ...+ (x ip − x jp)2

Here, x i and x j are two samples with p attributes and d(x i , x j) is the eucledean distance. The eucledean distance can
be applied well to numerical attributes. Other distance metrics include the hamming distance which counts the number
of unequal binary attributes, and the cosine similarity which uses the angle between two attribute vectors as a measure
for inequality. In contrast to the hamming distance, the cosine similarity has the property that two random vectors in
high dimensional spaces are likely to be orthogonal to each other (and thus have a maximum distance to each other).

As a voting scheme for classification, the majority voting can be chosen. Here, the class with the highest number of
labels among the nearest neighbors is chosen. By using k > 1, the prediction is less sensitive to noise. Voting schemes
can also take into account the distance of a sample to its nearest neighbors, so that samples with a larger distance have
less weight when voting.

In the general k-nearest-neighbor algorithm, all training samples are iterated. However, a prediction of one sample
has a high complexity of O(|training samples|*|features|) Therefore, there are algorithms that address this problem by
creating data structures where nearest neighbors can be found more quickly. These algorithms differ in the following
aspects:

• Complexity of creating the data structure

• Complexity of finding the nearest neighbors

• Applicable distance metrics

• Dimensionality of the feature vector

• Approximation or exact nearest neighbors
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outlook

humidity

sunny

play windy

overcast
rain

not play play not play play

high normal true false

p: 66%

c: 21.4%

p: 100%

c: 14.2%

p: 100%

c: 21.4%

p: 100%

c: 14.2%

p: 100%

c: 28.6%

(a) Example decision tree.

if outlook = sunny and humidity = high then not play
else if outlook = sunny and humidity = normal then play
else if outlook = overcast then play
else if outlook = rain and windy = true then not play
else if outlook = raun and windy = false then play

(b) Derived decision list. For each leaf node, a rule has been
created by following the path from the root to the leaf.
The traversed conditions of the decision tree are used as
the rule body.

if outlook = sunny and humidity = high then not play
else if outlook = rain and windy = true then not play
else play

(c) Derived decision list. An optimal decision list for
the example given. Here, the label that is present
in the majority of the leaf nodes is taken as a de-
fault class.

Figure 1: Symbolical methods: decision tree and decision list

One optimization approach is to reduce the number of training samples that are used during the search of the nearest
neighbors. In the ibl algorithms (ib1, ib2, ib3) which is introduced in [Aha et al., 1991], samples are iteratively added to
a reduced training set. The basic concept of the algorithm is that all samples are discarded which can already be correctly
classified with the reduced training set. As a consequence, samples are discarded in those areas of the input space where
only one label is present. The remaining samples reside near the borders of similarly labeled areas. [Aha et al., 1991]
also introduced a variant which is more resilient to noise.

Whereas one way to improve the lookup speed is to reduce the number of samples that are relevant for the nearest-
neighbor search, other optimization techniques address the efficiency of finding samples by creating database-like
structures. For low-dimensional input spaces, the complexity can be reduced by using multi-dimensional trees (see
[Dasgupta and Freund, 2008]). Instead of traversing the complete training set, only one or a few branches of the tree
have to be traversed. In high-dimensional input spaces, locality-sensitive hash functions can be used. Here, the di-
mensionality of the input space is reduced, by e.g. applying random projections from the high dimensional input space
to an input space with reduced dimensions. Usually, these methods do not realize an exact lookup so that there are
cases in which one nearest neighbors cannot be found with a small probability. Further information can be found in
[Pan and Manocha, 2011] and [Dasgupta et al., 2011].

2.2 Symbolical methods

So far, the algorithms that have been used operate on samples and do not create a model (see e.g. [Kubat, 2015]). In this
section, symbolical methods will be introduced which check the presence of attributes and make predictions based on
logical operations. First, some definitions are introduced, that are related to symbolical methods. A boolean expression,
that will check if a boolean or nominal attribute has a certain value, or if a numerical attribute value is in a certain
range will be denoted as feature. The amount of samples, that can be applied for parts of the model will be denoted
as coverage. A sample is said to cover a part of a model, if, according to the features of the model, a prediction can be
made. If a sample is not covered by one part of the model, another part will be checked for coverage.

In this section, two symbolical methods, decision trees and decision list will be introduced. In a first part, it will
be explained how the model is constructed. Then a general method for training models and two specific methods for
training will be introduced.

2.2.1 Decision trees

One symbolic model for making predictions is the decision tree. A decision tree is a directed tree, that is labeled with
features inside the inner nodes and possible feature values for its outgoing connections. The leaf nodes contain a class
prediction. An example is given in 1a. A decision tree is evaluated by following a path from the root node to one leaf
node. At each inner node, the feature value of the inner node is checked. Then the outgoing edge with that feature value
is followed. When arriving at a leaf node, the label of the leaf node is taken as the prediction for the given sample.
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2.2.2 Decision lists

Another symbolical structure besides decision trees are if-then rules. An example for an if-then rule is the following:

(1) if temperature = hot and windy = true then class := not play golf

(2) if outlook = overcast then class := play golf

(3) if a > 5 then class = 1
else if c < 3 then class = 2
otherwise class = 3

Here, rule (1), which is along the dataset shown in table 1, states a causality, that if the outlook is sunny and the
humidity is high, the player does not play golf. Here, if the outlook is not sunny or the humidity is not high, there is
no statement as to whether the player does play golf. An if-then rule is composed of two parts, a rule body and a rule
head. The rule body (e.g. temperature = hot and windy = true) is a conditional expression that can be evaluated for a
given sample. The rule body is composed of conditions (e.g. temperature = hot, a > 5) which are checks on whether a
feature has a certain value. The rule head (e.g. class := not play golf) is a statement which is predicted if the rule body
of a given sample is correct.

In the given example, rule (1) and rule (2) can be extracted from the dataset given in 1. However, the rules given do
not account for all possible combinations. Therefore, there might be feature combinations where no rule applies. If e.g.
the outlook is sunny and the temperature is mild, no prediction can be made when applying rule (1) and (2). There are
also cases where predictions are contradicting, e.g. if the temperature is hot, it is windy, and the outlook is overcast. In
such a case, there should be a defined order of evaluation for the rules.

A data structure that defines an evaluation order for if-then rules is a decision list. An example of a decision list is
given in (3). Here, the first rule body is evaluated first. If the first rule fires, the first rule head is returned. Otherwise, the
remaining rules are evaluated. The final rule of a decision list is a default rule, that always fires if its body is evaluated.
This rule does not contain any condition. The structure of the decision list ensures that exactly one head is returned for
all possible feature combinations.

The concept of decision lists is related to decision trees. A decision tree can be converted to a decision list by traversing
all paths from the root to the leaves and by creating a rule for each traversed path. The rule body is composed of the
conditions that are traversed by the path. The rule head is composed of the label of the decision tree. An example for the
conversion is given in figure 1.

2.3 Training with optimization methods

A very common approach to training a model in machine learning by solving optimization problem (see
[Bianchi et al., 2009]). Optimization methods are widely used, when the number of possible solutions is large, and
cannot be calculated by brute-force. To solve an optimization problem with a local search, a model is initialized with a
starting solution and refined stepwise. The starting solution usually is a random state (e.g. a random matrix), or a trivial
state (e.g. an empty set).

First, an objective function will be defined. The objective function is used as an estimate for the quality of a solution.
During optimization, the objective function will be maximized or minimized, depending on the optimization task. For
symbolical methods, common objective functions are the accuracy (which has to be maximized) and the entropy (which
has to be minimized). The entropy according to [Shannon, 2001] is defined as follows:

H = −
∑

pi ∗ log2(pi)

where pi are the probabilities, in with which an event i occurs. In case of a decision tree, the entropy is defined for an
inner node and its outgoing edges. For each edge ei , i = 1, ..., n of a node n, the probabilities pi are the probabilities of
traversing an edge ei after node n has been traversed. For example, in figure 3d, the node with the feature windy takes
the edge which is labeled with true in 6 of 14 cases and the edge which is labeled with false in 8 of 14 cases. Therefore,
pt rue = 6/14 and p f alse = 8/14. The entropy here is calculated as

H = −pt rue ∗ log2(pt rue − p f alse ∗ log2(p f alse)

= −
6
14
∗ log2(

6
14
)−

8
14
∗ log2(

8
14
) = 0.89
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In figure 3c, the node with the feature windy is not used in the root node. It is traversed in 5 of 14 cases, and pt rue = 2/14
and p f alse = 3/14. In this case the entropy is calculated as follows:

H = pwind y ∗ (−pt rue ∗ log2(pt rue − p f alse ∗ log2(p f alse))

= −
5
14
∗ (

2
5
∗ log2(

2
5
) +

3
5
∗ log2(

3
5
) = 0.35

Entropy is related to the minimum number of bits which are necessary to encode a message. A low entropy of the
decision tree means, that a low amount of information is necessary to correct the predictions of the decision tree.

The number of possible solutions may be arbitrary large and a brute-force approach, where all solutions are constructed
may exceed the computational capacities. However, solutions that are similar except some small detail will probably
have a similar result concerning the objective functions. Here, solutions that are similar to a good solution that has been
evaluated earlier might be a good candidate for further improvements. In contrast, solutions that are similar to a bad
solution will not further have to be evaluated. This observation leads to the definition of a so-called neighborhood. A
neighborhood of a solution is defined as a set of solutions, which can be constructed by changing an atomic detail of the
solution. For each domain, neighborhoods can be defined in many ways, and there is not one single definition.

In case of decision trees, a neighborhood definition can include splitting a leaf node by adding two child nodes (also
denoted as grow operation) and removing all children from an inner node (also denoted as prune operation). In case of
rules, the corresponding operations would be adding conditions (grow) and removing conditions (prune). Usually, grow
and prune operations are performed as separate optimization steps. Therefore, there may be one neighborhood definition
which only includes grow operations and a separate neighborhood definition which only includes prune operations.

An example for the neighborhood of decision trees for the dataset introduced earlier is given in figure 2 - 5. In figure 2,
the empty decision tree as the trivial starting solution is shown. Figure 3 shows the neighborhood for the empty decision
tree. The lowest entropy has the decision tree in figure 3a. The neighborhood of this decision tree is shown in 4. After
three steps, the decision tree in figure 5 can be constructed.

play

p: 64%

c: 100%

Figure 2: Empty decision tree with a single root node. The value play is used as the default class. Entropy: 0.94, Misclassi-
fication Error: 35.7%

Besides defining a small set of feasible refinement steps, compared to the set of possible solutions, a neighborhood
should be constructed in a way, that allows to transform one solution into any feasible solution.

After having determined a suitable objective function and having defined a neighborhood as the search space, a strategy
for efficiently exploring the search space is needed. This strategy is also referred to as the search heuristic. A quite simple
approach is to perform a Breadth-First Search (BFS) or a Depth-First Search (DFS) on the search space, which traverses
all possible solutions, and would probably exceed the computational capacities. For this exhaustive search, a list of all
neighbors, which have not yet been visited, would need to be stored. However, many of those neighboring solutions
could be neglected due to the bad performance in terms of the objective function.

The most basic approach in searching the search space is the greedy best-first search strategy. Among all possible
neighbors, only the best neighbor according to the objective function is chosen. The greedy best-first search is used for
training of decision trees and decision lists. While the greedy variant of the best-first search only follows one path in the
search space, the beam search maintains a list of the best n solutions. At each step of the beam search, the neighborhood
of the maintained list is explored. Among the neighborhood, existing solutions are replaced by the best solutions in the
neighborhood.

A problem of the greedy search is that instead of terminating with a globally optimal solution, the algorithm might
terminate with a solution, that is only best among its neighborhood. Such a case is denoted as a locally optimum solution.
While the beam search follows more than one path in the search space, it might find superior solutions. Another way to
explore multiple paths in the search space is to start with more than one random starting solution. This is done in an
optimization phase of the RIPPER algorithm (see section 2.3.2).

2.3.1 C4.5

A common training algorithm is the C4.5 algorithm (see [Quinlan, 2014]). It performs a best-first search and uses
information gain as the split criterion. To handle numeric attributes, the attribute values that are present in a leaf node
during training are sorted. Then, the mean value of two consecutive attribute values x is checked as a split criterion.
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outlook

sunny

play

overcast
rain

not play play

p: 60%

c: 35.7%

p: 60%

c: 35.7%

p: 100%

c: 28.6%

(a) Entropy: 0.69, Information Gain: .25,
Misclassification Error: 28.6%

temperature

hot

play

mild
cool

not play play

p: 50%

c: 28.6%

p: 80%

c: 35.7%

p: 80%

c: 35.7%

(b) Entropy: 0.80, Information Gain: .14,
Misclassification Error: 28.6%

humidity

high normal

not play play

p: 57.1%

c: 50%

p: 85.7%

c: 50%

(c) Entropy: 0.79, Information Gain:
.15, Misclassification Error: 28.6%

windy

true false

not play play

p: 50%

c: 42.8%

p: 75%

c: 57.1%

(d) Entropy: 0.89, Information Gain:
.5, Misclassification Error: 35.7%

Figure 3: Example neighborhood of the empty decision tree: There are four attribute choices for splitting the root node.
In terms of misclassification error, the decision trees in figures 3a - c are the best choice. They have the lowest
misclassification error. When it comes to entropy, the best choice is figure 3a. It has the lowest entropy (and
the highest information gain respectively).

The split point x separates all attributes samples with an attribute value ai < x from attribute values ai >= x . For each
possible split point, the information gain criterion is checked.

In the beginning of this chapter, overfitting has been introduced as a lack of generalization abilities of the trained
model. During validation the separation of the training data into a training and a validation set has been identified as a
countermeasure. To detect and revise overfitting during training of a decision list, a similar approach is followed. Here,
a split is made to separate a grow set from a prune set. The decision tree is trained by applying grow operations based
on samples of the grow set. The prune set is then used to detect overfitting. There are two types of pruning: pre-pruning
and post-pruning. During pre-pruning, the decision list is grown until overfitting is detected when splitting a leaf node.
The leaf node is then not further refined. Another pruning method is post-pruning. Here, a decision tree is first grown
with the grow set until no improvement can be achieved. The resulting decision tree is then pruned by removing edges
and leaf nodes as long as an improvement can be achieved concerning the prune set. While grow operation use the
information gain criterion, the prune operation uses the misclassification error as the optimization metric.

2.3.2 RIPPER

While decision trees are trained by iteratively splitting nodes, there are two general ways to create sets of rules: general-
to-specific and specific-to-general. When creating a set of rules in a general-to-specific way, the set of rules is initialized
with an empty rule. This rule is then refined by adding conditions. Whenever there are uncovered samples, new rules are
created. When training rules in a specific-to-general way, a rule is created for each sample. Each rule contains a condition
for each attribute. Then, conditions are removed and rules with the same conditions are combined. While these general
schemes can also be applied for decision lists, the most popular way is to train the decision lists rule by rule. After having
trained a rule, all samples covered by this rule are removed from the training set and further rules are trained with the
remaining rules.

A popular training algorithm for decision lists is the RIPPER algorithm (Repeated Incremental Pruning to Produce Error
Reduction). The training in RIPPER is performed in two phases: an initial phase and an optimization phase. In the initial
phase, rules are created by growing and pruning. A rule corresponds to a decision tree in which only one path from
the root to a leaf is refined. The rule head contains the features of the path while the body bears the label of the leaf.
During the optimization phase, rules are replaced and removed based on their minimum description length. Due to the
rule changes, some previously covered samples are not covered by the optimized rules. Therefore, new rules are trained
based on these remaining samples.

In RIPPER, all rules are grown by using the information gain as the split criterion. In the initial phase, rules are pruned
with reduced error pruning. Here, the metric is

p− n
p+ n
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(a) Entropy: 0.49, Information Gain 0.20, Misclassifi-
cation Error: 21.4%
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rain
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(b) Entropy: 0.54, Information Gain: 0.15 Mis-
classification Error: 21.4%
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p: 50%

c: 14.2%

p: 66%
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p: 100%

c: 28.6%
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c: 35.7%

(c) Entropy: 0.69, Information Gain: 0.00, Mis-
classification Error: 28.6%
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playnot play
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35.7%

temparature

overcast
rain

play not play

mild cool
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c: 21.4%

p: 50%

c: 14.2%

p: 100%
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(d) Entropy: 0.68, Information Gain: 0.01, Mis-
classification Error: 28.6%

outlook

sunny

playnot play

p: 60%

35.7%

humidity

overcast
rain

play not play
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p: 50%

c: 14.2%

p: 66%

c: 21.4%

p: 100%

c: 28.6%

(e) Entropy: 0.68, Information Gain: 0.01, Mis-
classification Error: 28.6%

outlook

sunny

playnot play

p: 60%

35.7%

windy

overcast
rain

not play play

true false

p: 100%

c: 21.4%

p: 100%

c: 14.2%

p: 100%

c: 28.6%

(f) Entropy: 0.34, Information Gain: 0.35, Mis-
classification Error: 14.3%

Figure 4: Example neighborhood for the decision tree in figure 3a: In figures 4a - c, the first leaf node is used for the
next split, in figures 4d - f, the third leaf node is used. The second leaf node already has a precision of 100%
and does not need to be further refined. While in figure 3 there have been four attributes available as split
candidates, the attribute overcast will not be used for a second time here. The best candidate with the lowest
misclassification error and the lowest entropy is shown in figure 4f.

outlook

humidity

sunny

play windy

overcast
rain

not play play not play play

high normal true false

p: 66%

c: 21.4%

p: 100%

c: 14.2%

p: 100%

c: 21.4%

p: 100%

c: 14.2%

p: 100%

c: 28.6%

Figure 5: Decision Tree with three leaf nodes, Entropy: 0.20, Information Gain: 0.14, Misclassification Error: 7.1%
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where p is the amount of positive samples and n is the amount of negative samples covered. Since the decision list
is an ordered list which is constructed by growing and pruning the last rule in the initial phase, there is no other rule
succeeding the currently pruned rule. Contrary to the initial phase, in the optimization phase an intermediate rule is
adopted. Therefore, the pruning in the optimization phase takes into account the prediction of the succeeding rules. The
prune metric maximizes the true positives T P and the true negatives T N of the complete pruning set, so that the metric

T P + T N

is used. If both the label of the pruned rule and the prediction of the succeeding rules have the correct target label of
a sample a prune operation would not affect the accuracy of the sample. The same applies in cases where both have the
wrong target label, These cases are therefore being ignored.

At the begin of the optimization phase, the training set is shuffled and a new grow and prune set is created. For each
existing rule, two alternative rules are generated: one rule by growing and pruning the existing rule, the other one by
creating a new rule from scratch. The original rule is replaced by an alternative rule if it has a smaller minimum de-
scription length, whereby the alternative rule with the smallest minimum description length is chosen. Besides searching
for alternative rules during the optimization phase, existing rules are removed if they increase the overall minimum
description length.

To sum up the results of the optimization, the following effects might play a role. Firstly, the result of the pruning
takes into account the prediction of other rules and therefore leads to an increased accuracy compared to the pruning
during the initial phase. As the preceding rules in the decision list might change, the succeeding rules need to be adapted.
Additionally, training a rule with a different split of the grow and prune set leads to a lower influence of the random
assignment for the split.

2.4 Neural networks

Neural networks (also referred as artificial neural networks) are machine learning algorithms, which are inspired by
biological processes, that take place in the brain of humans and animals. Neural networks are widely used for tasks like
image processing, speech analysis and text analysis. Common image processing tasks for neural networks are optical char-
acter recognition and image classification. Speech analysis tasks like transcription and text analysis tasks like synonym
learnings can also be done with these algorithms. Neural networks are described e.g. in [Haykin and Network, 2004]

An artificial neural network can be represented as a directed graph. It contains neurons as nodes and weighted
connections as edges. A neuron is a unit that has several real valued inputs and one output, and has an activation function,
that restricts the range of the output. The calculation of an output value based on the input values is also denoted as
activation. During activation, the input values are multiplied by the incoming weights of a neuron and summed up.
The sum of the weighted inputs is then transformed by an activation function f : R → [0,1] or f : R → [0,∞) or
f : R→ (−∞,∞). An illustration for a neural network with a single output is shown in figure 6a.

w1

w2

w3

in1

in2

out

out = f (w1in1 +w2in2)w3

(a) Neural network with one
neuron and corresponding
network function.

w1

w2

in1

in2

out

in3

in4

w3

w4

w5

w6

w7

1

2

3

out = f3( f1(w1in1+w2in2)w5+ f2(w3in3+w4in4)w6)w7

(b) Neural network with three neurons and corresponding
network function.

Figure 6

The output of a neuron can then be used as an input for other neurons. The connections connect an output of a neuron
with the input of another neuron. Each time a neuron has been activated, the output of a neuron is passed to the next
inputs. This is illustrated in figure 6b. If an output of a neuron is used as an input for other neurons, such a neuron is
called a hidden neuron. Besides, a neuron that is used to predict a target value is called an output neuron. Finally, it
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is a convention to connect each input with a single neuron without applying an activation function. Such a neuron is
denoted as input neuron.

Common activation functions are shown in figure 7. They include the linear function (see figure 7a), the step function
(see figure 7b), the sigmoid function (see figure 7c), the relu function (see figure 7d) and the softmax function.
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f (x) = x

(a) Linear function
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(b) Binary step function
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(c) ReLU function
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(d) Sigmoid function

Figure 7: Activation Functions

The linear activation function (see figure 7a) applies no transformation and can be used if the underlying problem
depends on a linear combination of the inputs. As an example, the summation function can be implemented with a linear
activation function with the neural network described in figure 6a when using w1 = w2 = w3 = 1. While the outputs
value of neurons with the linear activation function is in the range of (−∞,∞), the result of the stepwise activation
function is bounded to the range of [0,1]. Moreover, the stepwise activation function has discrete outputs and therefore
is well suited to implement logical functions like the logical AND, OR and XOR functions.

While in the previous examples, target functions are composed of the functions that are available in neural networks,
other target functions can be approximated by summing up the result of overlapping transpositions of sigmoid (see
figure 7d) function. Before approximating arbitrary functions, it will be further looked at how sigmoid functions can
be moved and scaled along the x and y axes. This is illustrated in figures 8a - f. The neural network which is used for
this purpose has one input neuron, one hidden neuron with a sigmoid activation function and one output neuron with a
linear activation function (see figure 8a). The sigmoid function is returned if all weights are 1 and the biases are 0 (see
figure 8b). Both, the hidden neuron and the output neuron have a bias unit as an additional input. Hence, there are four
weights, that can be adapted. By changing the weight between the hidden neuron and the output neuron, the sigmoid
function can be scaled along the y-axis (see figure 8c). Changing the weight between the bias unit and the output neuron
can move the sigmoid function along the y-axis (see figure 8d). Furthermore, the function can be scaled among the x-axis
by adjusting the weight between the input neuron and the hidden neuron (see figure 8e), and can be moved along the
x-axis by adjusting the bias of the hidden neuron (see figure 8f).
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Figure 8: Transposed sigmoid function

After having illustrated how a single sigmoid or ReLU function can be transposed, examples for the approximation of
the sine function on a limited interval based on the ReLU and the sigmoid activation function are given. Figures 9a - d
show how the sine function can be approximated by the sigmoid function, figures 9e shows the plot of the sine function
for comparison. The neural network has been trained with the training methods that will be introduced later in this
chapter and are here presented for illustration purposes.

Finally, the limit of the sigmoid function is closer looked at. In the interval of [−x , x], the sigmoid function is linear
for x → 0, whereas in the interval of [x −1, x +1] for x →∞ and x →−∞. As a consequence, both the linear behavior
of the linear activation function and the discrete behavior of the binary step function can be imitated by adapting the
weights appropriately.

2.4.1 Topology

Previously, it has been explained how neural networks are constructed with neurons and connections. Neurons have
been further divided into input neurons, hidden neurons and output neurons. The neural networks have been visualized
as a directed graph. So far, a neural network configuration has been described as individual neurons with individual
connections to each other. However, as neural network grow large, there is a need for finding a more compact description.
Therefore, neurons are grouped into layers. All nodes of a layer share the same activation function. Besides, all neurons
of a layer are of the same type: input layers contain only input neurons, hidden layers contain only hidden neurons and
output layers contain only output neurons. Layers are then arranged hierarchically, so that in input layer is followed by
hidden layers, which are the followed by the output layer. Hidden layers are then enumerated due to their order.

Besides arranging neurons in layers, there are conventions for constructing the connections between neurons. A layer
i and layer i + 1 are called fully connected, if there is a connection between every neuron of layer i and every neuron
of layer i + 1. The edge weights between two fully connected layers can be stored in a matrix which is denoted as the
weight matrix. During a prediction, the activations of a layer can be described as a vector, and the propagation of one
layer to the next layer can be described as a matrix operation. Besides describing the connections between layers as a
matrix, the connections to a bias unit can be described as a vector. An example for a layered neural network is visualized
in figure 12. The resulting activation can then be formulated as

fi(x) = a(xw+ b)
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where fi is the activation function of layer i, x is the input vector of layer i, w is the weight matrix between layer i − 1
and layer i, and b is the bias vector of layer i.

Besides the layered construction of a neural network, there are more characteristics that help distinguishing certain
types of neural networks. In the following, three types of neural networks are introduced: feed-forward neural networks
(also denoted as multilayer perceptron), recurrent neural networks and autoencoders.

Feed-forward neural networks are stateless neural networks, where the prediction only depends on the input vector,
that is applied. The graph that is constructed is a directed acyclic graph. Connections only exist from layer i to layer
i + 1. No connection from layer i to a layer j < i is permitted. So far, all examples of neural networks have used the
feed-forward structure. In a feed-forward network, the layers are activated layerwise from the first to the last layer. Due
to the stateless property, the network can be activated with samples in an arbitrary order. Furthermore, the network can
be trained on individual samples instead of a series of samples.

So far, neural networks have been introduced with the intention of approximating a function. This has been achieved by
performing a regression with a single output neuron. In general, multivariate functions or more than one function at once
can be trained with a neural network, that has an output for each dimension of the multivariate function result. Besides
training a neural network for approximating functions, neural networks can also be trained to perform a classification.
Here, for each possible value of the nominal class value, an output neuron is created. The output neuron then predicts
the confidence for each class value of the given sample. While in case of multivariate regressions, an output might be
independent of other outputs, in classification problems the confidence sums up to 1. This can be achieved with the
softmax activation function, which is applied to the output layer for classification problems:

fi(x) =
exi

n
∑

k=0
exk

Here, i denotes the ith output of the softmax layer with n neurons. While feed-forward networks are used to predict
individual samples, recurrent networks can be used to predict time series of samples. Recurrent networks are stateful, so
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that a prediction alse depends on the result of previous predictions. This is achieved by using the previous result of the
last hidden layer as additional inputs for the first hidden layer for the next prediction.

Another neural network topology which is frequently used if many hidden layers are used are autoencoders (see
[Goodfellow et al., 2016]). Instead of training a network in a supervised way, where labeled classes or target variables
are available, an autoencoder is trained in an unsupervised way. An autoencoder can be trained with unlabeled samples
which may be available in addition to labeled instances. Therefore, by training an autoencoder in a preprocessing step,
the final classification result can be improved. The goal of the autoencoder is to find a representation of the attribute
space with a reduced dimensionality. The autoencoder mainly is a network where the attributes are used as both, inputs
and as outputs. It has two parts which are arranged symmetrically. The first part reduces the dimensionality while the
second part reconstructs the original attribute values. In the first part, the number of output units decreases with each
hidden layer while in the second part, the number of input units increases with each hidden layer. An example of an
autoencoder with one hidden layer is given in figure 10a.

To achieve a fast convergence, autoencoders are best trained layerwise. This means, that the training starts with an
autoencoder that has one hidden layer. After having trained the autoencoder with a single hidden layer, the hidden layer
is duplicated, and a new hidden layer is positioned between the duplicated hidden layer. The resulting new autoencoder
can be seen in figure 10b. It consists of three hidden layers. After training this new network, additional hidden layers
may be added by again duplicating the hidden layer in the middle and adding a new hidden layer in between. Due to
the symmetric structure of the autoencoder, the weight matrixes can be used twice, once for constructing the space of
reduced dimensionality, and as a transposed matrix to reconstruct the original attribute space. This is denoted as a tied
weight matrix.

... ...

...

... ...

(a) First training step of the
autoencoder (one hidden
layer).

... ...

...

...

...

... ...

(b) Second training step of the autoencoder
(three hidden layers).

... ...

...

...

... ...

(c) Usage of the autoencoder in classi-
fication. The first two layers are
taken from the autoencoder, the
third layer is added.

Figure 10: Autoencoder topology: the intesity of the node-connecting lines symbolizes the weights of connections.

2.4.2 Training of neural networks

At this point, it has been shown how arbitrary functions can be approximated by a neural network and a selection of
network topologies has been introduced. In the following, it will be described, how neural networks can be trained (see
[Haykin and Network, 2004]). The training method introduced here can be applied to feed-forward neural networks and
autoencoders. The training of recurrent neural networks will not be dealt with here.

The main idea of the neural network training is to minimize a loss function. The loss function is a measure how well
a target attribute can be predicted by the neural network. Common loss functions are the mean square loss, which is
frequently used for regression tasks and is defined as:

For classification tasks when using the softmax activation function, a frequently used loss function is the cross-entropy:
For a given input vector, and a given target value, the loss can be determined by activating the neural network with

the input vector and comparing the result with the given target value.
The general training of the neural network is done as follows. In a first step, the neural network is initialized with

random weights. Given the random weights, the prediction initially produces some random output. If the weights of the
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neural network are changed, the prediction for a given input may change. The idea is to change the weights with an
amount which is proportional to the reduction of the loss function. Weight changes which lead to a high reduction of the
loss are done with a high amount while weights which have no effect on the loss function remain unchanged and can be
adapted when optimizing the network for other samples. A mathematical definition of the loss for the given weight is:

∂W
∂ loss

where W is the weight matrix of the neural network and loss is the loss for a given sample. The loss of the bias b is:

∂ b
∂ loss

. To achieve a convergence and avoid divergence, the weights are adapted with a small learning rate α so that

Wt+1 =Wt +α
∑

s∈Samples

∂Wt

∂ loss(s)

. and

bt+1 = bt +α
∑

s∈Samples

∂ bt

∂ loss(s)

. In practice, learning rates like α = 0.01 are used. The network is iteratively refined. This can be done in an online
way, either by applying the weight updates for complete epochs in a batch way or by training in mini-batches for faster
convergence.
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3 Related Works

This section deals with topics which are of interest for this thesis. Of interest are works which either combine the
training of symbolical models with connectionist methods like neural networks as well as works in which sets of rules are
created in a competitve way. More specifically, three methods are further described in this section: descriptive symbolical
learners, ensemble training and fuzzy neural networks. The descriptive symbolical methods that are introduced here are
association rule learners, subgroup discovery, contrast set mining and emerging pattern mining. These methods create
a set of descriptive symbolical models instead of a single classification model. They are of interest, because a set of
symbolical rules is trained simultaneously. Ensemble learners are methods for training multiple instances of a training
algorithm and creating an improved solution by combining the results of the individual classifiers. Finally, fuzzy neural
networks are special instances of neural networks with a special topology. They exploit the training capabilities of neural
networks and can be transformed into fuzzy rules.

3.1 Descriptive symbolical methods

In this part, descriptive symbolical methods will be introduced. These methods can be used to generate a set of models
that is human-understandable. One descriptive method that creates rules in an unsupervised way are association rules
(see e.g. [Fürnkranz and Kliegr, 2015]. Association rules are if-then rules which explain relations in a set of attributes.
Whenever possible, a prediction for each attribute is made by an if-then rule, which uses other attributes as features.

Association rules can be trained with the apriori algorithms. This algorithm performs a breadth-first search in order to
get sets of so-called frequent items. Frequent items are conditions that have a high coverage on the training data. Each
set of frequent items is then transformed into association rules by checking all combinations of rules, that can be created
with the features of a frequent itemset.

While association rules generate a set of rules that is of interest for explaining the attributes, the aim of subgroup
discovery (see [Herrera et al., 2011]) is finding a set of symbolical models which are of interest for a given target variable.
In contrast to classifying a target variable with a single complex model and optimizing the precision concerning the target,
multiple models are created that optimize other measures like simplicity and generality. Training algorithms for Subgroup
Discovery can be deduced from classification algorithms. Similar to Association Rules, the space of possible subgroups of
a given dataset can be explored with a beam search algorithm.

While subgroup discovery aims to find rules that bear resemblance to a classification rule, contrast set mining is
an unsupervised approach, where objective is to predict groups that bear no resemblance to each other (see e.g.
[Novak et al., 2009]). Here, the sets that are created are tested to be stochastically independent concerning the used
dataset.

All three methods have in common, that a set of symbolical models is trained. The results of these methods could be
used as attributes for further classifiers and create a hierarchical classifier.

3.2 Ensemble Learners

Ensemble learning is a method of combining the result of multiple classifiers. Here, stacking, bagging and boosting are
introduced. In stacking (see [Wolpert, 1992]), a dataset is trained with different classification algorithms. The results
of the individual classifiers is then classified by a meta classifier. The meta classifier decides, which combination of
predictions leads to the best result.

Another ensemble training approach is Bootstrap Aggregating (short: Bagging) [Breiman, 1996]. Here, random sub-
sets of training data are created. These subsets may be smaller than the original training data and can lead to less
complex classifier models. A majority voting is then performed to get the final result.

The final ensemble training method that is introduced is boosting [Schapire, 2003]. Whereas Bagging uses a fixed
set of classifiers, boosting iteratively creates new classifiers. Here, the randomized training data includes misclassified
instances with a higher propability. The final classification result is then determined by performing a majority vote, where
the class is returned which is predicted by the majority of the classifiers.

3.2.1 Gradient Boosting

While boosting in uses a majority voting scheme most promising class is returned, the precision of the classifier can be
also taken into accout by applying a weighted voting. Gradient boosting as introduced in [Friedman, 2001] creates a
decision tree and stores the precision for each class in the leaf nodes. For a given set of attributes, a weight matrix can
be created. This matrix can be exploited to perform a gradient decent and determine nodes that can be split to refine
the decision trees as well as updating the precisions at the leafs for each class. An efficient implentation is introduced in
[Chen and Guestrin, 2016].
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3.2.2 Ensemble Pruning

Ensemble pruning is a method, that can be applied for trained ensembles of base classifiers which are combined by a
weighted voting. It is a pruning method, where the size of the trained ensemble is reduced by removing base classi-
fiers. This is done in order to decrease the model size and reduce the overhead that is produced by large models (see
[Tsoumakas et al., 2009]).

As stated in [Chen et al., 2009] simultaneously generating new instances of base classifiers and pruning existing classi-
fiers while updating the underlying meta classifiers outperforms separate ensemble training and ensemble pruning. The
authors of that paper used a genetic algorithm to maintain a set of base classifiers, and evaluated their method against
ten UCI datasets. Model refinements of the base classifiers were done by randomly mutating existing model instances.

3.3 Deriving descriptive rules from trained neural networks

Whereas ensemble learning methods can be applied to any learning algorithm, there are related topics that focus more
on the combination of the symbolical rules and neural networks. One such topic is the derivation of symbolical rules
from trained neural networks (see e.g. [Zöller, 2014]). Whereas neural networks gain high accuracy in classification
tasks, the trained model is difficult to understand by humans. In contrast, symbolical rules often provide a better insight.
The objective of deriving rules from trained neural networks is to find a model, that has a better descriptiveness. On the
other hand, a loss of accuracy is condoned.

These methods can be of use in real world applications like credit scoring or in critical applications like medicine or
power plants. In credit scoring (see [Baesens et al., 2003]), transparency may be required by law or the usage of some
features may be prohibited. In power plants or other critical applications, decisions made by neural networks may lead
to dangerous situations or harm humans. Therefore, a review of the decisions of neural networks might be necessary.

These methods however have some drawbacks. Firstly, the trained model of neural networks and symbolical rules
differs largely. For instance, there is no way to precisely describe a small neural network with few rules. Secondly, the
descriptiveness of symbolical rules is not good for all data sets. Here labeled features like e.g. temperature, humidity
can be well understood in contrast to features with unknown meaning. Furthermore, if there are many features with a
similar meaning, like pixels in an image, rules do not provide an adequate insight. This problem is increasingly present
for large attribute spaces, and if the extracted rules get more complex.

3.3.1 Pedagogical Methods

The first method of deriving symbolical rules from trained neural networks uses the neural network as a black box
(or ’Oracle’) and trains a symbolical rule. Therefore, instead of using the original training samples, a classification is
performed with the neural network and the results are used as new training instances for the symbolical rules (see e.g.
[Martens et al., 2008]). The main target of this method is to find suitable training samples for the symbolical rules. One
way is to use the attribute of the original training samples, and replace the class assignment by the classification result of
the neural network. However, samples with no class assignment can be used if present in a dataset. Moreover, derived
training samples may be generated from the original samples.

Further pedagogical methods are introduced in [Craven and Shavlik, 1996]. Here, symbolical rules are trained with the
available training samples. If additional samples are needed, they are sampled with respect to the marginal distribution of
the original samples. Moreover, [Craven and Shavlik, 1996] trains N-of-M rules. An N-of-M rule is evaluated by suming
up M selected attributes. If the sum exceeds the threshold of N, the result is set to true (otherwise false). These rules are
trained based on the information gain criterion.

3.3.2 Classifying Hidden Units

The second method of deriving symbolical rules from trained neural networks is to treat the neural network as a white
box, and reclassify layer-wise all hidden and output units of the neural network. In [Zilke, 2015] this approach has been
identified as the best way to derive symbolical rules from deep neural networks. In the suggested method, common
decision tree classifiers were used. However, it is expected that due to the large attribute space, these classifiers will not
scale well for large deep neural networks.

3.4 Fuzzy Neural Networks

As described in [Baraldi and Blonda, 1999a] fuzzy rules are if-then rules which operate on a transformed attribute space
(also denote as generic state). The assignment of the generic state is covered in fuzzy set theory. Fuzzy neural networks
are neural networks which model fuzzy rules as multi-layer neural networks. These neural networks can be trained and
transformed into fuzzy rules.

Fuzzy neural networks can be roughly seperated into three parts: the first part maps the attribute space to the generic
state; the second part models the symbolical rules as a neural network function; the third part maps the generic state
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to the target attribute space. According to [Leng et al., 2005], two kinds of learning can is of learning can be applied
in fuzzy neural networks, structure learning and parameter learning: “The parameter learning makes the network con-
verge quickly [...]. The structure learning attempts to achieve an economical network size with a [...] self-organising
approach.” [Leng et al., 2005, p. 218]. One fuzzy neural network topology which is called ANFIS is introduced in
[Jang, 1993]. It has a five-layer topology. The first layer is a gaussian bell-shaped function layer which models the mem-
bership function. The second layer is a multiplication layer and corresponds to the logical AND function. Layer three is a
normalization layer, layer four is a consequent layer corresponds to the then part of a fuzzy rule. Layer 5 is a summation
and normalization layer which is similar to the softmax function.

Another fuzzy neural network is the SOFNN (see [Leng et al., 2005]). It uses a special neuron denoted as EBF neuron,
which models the a fuzzy rule. An EBF neuron itself consist of two layers, one layer which has one or more nodes, and a
second layer which consists of a single node. The nodes of the first layer have a gaussian bell-shaped activation function
which is applied to the inputs of the EBF neuron. The neuron of the second layer also applies a gaussian function. Nodes
of the second layer are dynamically created and correspond to the selection of features in an if-then rule.

3.5 Further methods

Other methods that combine connectionist and symbolical methods are used in [rey Mahoney and Mooney, 1993]. Here,
a method has been created that combines rules from a knowledge base in a connectionist way. Then, backpropagation is
used to refine existing rules and add new connections by expanding decision trees. Even though the adaption phase of
the rules is of interest, the method requires prior knowledge and does not arrange rules in a layered way.
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4 Multi-Layer Rule networks

In chapter 2, Neural Networks and Rule Learning Algorithms have been introduced as two seperate concepts, that can
be used in classification problems. It has been explained that Feed-Forward Neural Networks are usually constructed
hierarchically by creating one input layer, one or more hidden layers, and an output layer. Additionally, to the final
concept at the neurons of the output layer, intermediate concepts are trained at the input layers. For datasets with large
numbers of attributes and samples, the amount of hidden layers and hence the amount of intermediate models can be
increased. While Neural-Networks provide ways to adapt the model size to the complexity of the training data, there is
no way in common symbolical methods to construct hierarchical topologies with symbolical rules.

Besides weakness of not being able to train hierarchical models, according to [Cohen, 1995], decision trees and de-
cision list are prone to noisy data. This weakness can be well illustrated by examining decision trees. Here, only a
small number of attributes are checked for a prediction, compared to a neural network, where all available attributes are
checked. The problem for decision trees is, that the model size (i.e. the number of nodes of the decision tree) grows
exponentially with the average number of attributes that are checked at each prediction. As an example, a balanced
decision tree with 10 conditions needs space for 210 = 1024 Leaf Nodes and 210 − 1 = 1023 inner Nodes. A balanced
decision tree with 20 conditions already needs 220 = 1,048, 576 leaf nodes and 220 − 1 = 1, 048,575 inner nodes. In
conjunction with the large model, the coverage of the training data for each leaf would be evanescently small. In practice,
the training algorithm would stop at a certain point, so that the number of conditions remains small.

In most problems that can be solved with decision trees, an acceptable result will be achieved by only using a few,
but most promising conditions. However, there exist problems, where a decision tree model can only make accurate
predictions, if all attributes are checked. An examples is the parity function:

y = (
n
∑

i=0

x i)mod2, (x i ∈ B)

For n = 2, the parity function is equal to the XOR function. Because all attributes have to be checked for a correct
prediction of the parity function, 2n leaf nodes and 2n−1 inner nodes need to be created for complete model. However, for
n> 2, the parity can be calculated in a hierarchical way by combining XOR functions. The result of two XOR functions is
used as attributes for another XOR function. An example for the parity function with n = 16 is given in figure 11. Here,
a decision tree would need 216 = 65536 leaf nodes. However, the XOR-Function can expressed with 4 leaf nodes. In
the example, 15 XORs were used, so that in total only 15 ∗ 4 = 60 leaf nodes are needed in the hierarchical approach.
More general, the number XORs and likewise the number of nodes that are needed in the hierarchical model only grows
linearly for the parity function.

Parity

XOR XOR XOR XOR XOR XOR XOR XOR

XOR XOR XOR XOR

XOR XOR

XOR

Figure 11: Parity function with 16 inputs, Parity function modeled hierarchically with XORs

The example of the parity function is a motivation to develop methods, that can create hierarchical topologies of
symbolical models. In this thesis, such a method will be introduced. Here, a mixed model that consists of hierarchical
symbolical and neural layers will be created. This chapter is structured as follows ...

4.1 Relation to earlier works

The idea of combining symbolical methods and connectionist methods like neural networks hierarchically has been
addressed earlier. The method that is developed in this thesis can be seen as a further development of three methods, that
have been introduced in chapter 3, Fuzzy Neural Networks (see 3.4), Gradient Boosting (see 3.2.1 and the classification
of hidden units.

Even though, both symbolical and connectionist methods are present in all three methods, the relation between the
connectionist part and the symbolical part varies. In Fuzzy Neural Networks, the structure of Neural Networks is exploited
to train fuzzy rules. As a simplification, the fuzzy rules can be expressed as a 3-layer feed-forward structure, where the
first and the third layer are a connectionist layer that model the fuzzy membership function, and the second layer is
a symbolical layer that models the symbolical if-then-rules. It should be noted, that a set of symbolical rules can be
achieved by training a fuzzy neural network, where only the second layer and the third layer are present. While fuzzy
neural networks use special layers like RBF-Layers, that are later transferred to symbolical rules, Gradient Boosting
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explicitly trains decision trees, with the appropriate training method. In Gradient Boosting, the connectionist part resides
in the leaves of the decision trees. The boosted trees can be transformed into a two-layer feed-forward structure, where
the first layer contains the decision trees and the second layer contains all weights as the connectionist part. Due to the
usage of a backpropagation method, the method can be applied to more than one connectionist layer.

While in Fuzzy Neural Networks and Gradient Boosting the symbolical part and the connectionist part will be trained
simultaneously, during classification of the hidden units, the connectionist and a symbolical model a constructed sep-
arately. Here, a Feed-Forward Neural Network is created in a first step, and symbolical methods like decision trees or
decision lists are used to predict the result of the hidden units. However, there are two drawbacks with this method.
Firstly, final model contains errors of two models, the neural network model and the symbolical model. Secondly, a
symbolical unit cannot compensate errors, that are generated by another symbolical unit.

In this thesis, the ideas of the three methods picked up. The resulting topology is the same as in the method used by
[Zilke, 2015]. While the model is created in two separate training steps, a mixed network of symbolical layers and neural
network layers will be created in a single training step here. The mixed network is used as an intermediate result and
successively transferred to a hierarchical symbolical topology. The model is trained in mini-batches, and symbolical layers
and the neural network layers are refined simultaneously. Like in Gradient Boosting, the gradient descent method will be
used to determine an error for each of the symbolical nodes. However, instead of defining the weights to the outputs in the
leaves of the decision trees, a binary regression will be performed for each decision tree, and the weights will be defined
as a separate layer. By doing this, more than one connectionist layer can be added. The topology bears resemblance to
Fuzzy Neural Network topology concerning this aspect. A difference to the Gradient Boosting implementation XGBoost
will be, that the number of symbolical units of the symbolical layer will be statically defined in advance, while in XGBoost,
new decision trees are added when necessary.

The resulting topology can be summed up as follows. From the neural network point of view, the symbolical rule sets
are considered to be a black box pre-classifier. The outputs of the symbolical rule sets are used as inputs for the neural
network. From the point of view of the symbolical rule part, the neural network is considered to be a support for the
information, that is not yet covered by symbolical rules. On the one hand, the neural network covers all layers, that will
be later replaced by symbolical rule layers. Furthermore, the neural network provides a distributed error measure for the
symbolical rules as a basis for rule refinement. The Idea of this thesis is to train multiple small decision lists instead of
one large decision list. These small decision list are trained in parallel and hierarchically combined to a single decision
list. Here, at the upper layers, regressions are performed. The result of the regressions is used as a new input vector for
the next layer. A classification is only performed at the final layer. The topology and the training process will be further
explained in the following.

4.2 Structure of the mixed network

The mixed neural network that is constructed in this thesis has a feed forward topology. There are two types of layers
that are used for the mixed network, Neural Network Layers and decision list layers. NNet-Layer consists of incoming
connections to a set of NNet-Nodes. The nodes are transformed by an activation function. At this thesis we assume, that
the outputs of the previous layer is fully connected to the nodes of a current layer. During training, the connection weight
is updated once each minibatch. Figure 12 illustrates the structure of a neural network layer.

1

... ...

... ...

Figure 12: Neural Network Layer

In the decision list layers, each node is a decision list, that contains an ordered list of if-then-rules. In this thesis, a
binary class label is chosen for the decision list layer. The results are labeled with ’0’ and ’1’. It should be noted, that
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each decision list can have more than one rule with a label ’0’ and more than one rule with a label ’1’ in the rule body.
Figure 13 illustrates, how a decision list layer is constructed and gives an example for the propagation of inputs of the
rule layer to its outputs. Similar to neural networks, the results of rule layers are passed to the following layers of the
mixed network.

1

1

0

1

0

1

0

0

... ...

... ...

Decision List 1
(1a) if in1 = 1 & inn = 1 then out0 := 1
(1b) else if in0 = 1 & inn = 1 then out0 := 1
(1c) else if in1 = 1 then out0 := 0
(1d) otherwise out0 := 1

Decision List 2
(2a) if in2 = 1 then outn = 0
(2b) else if in0 = 1 then outn = 1
(2c) else if inn = 1 then outn = 0
(2d) otherwise outn := 0

Example Evaluation
Input vector in= (1,1, 1, ..., 1) would match Rules 1a, 1b, 1c, 1d and 2a, 2b, 2c, 2d.
Due to first order evaluation, labels from 1a and 2a are taken. The output vector
out = (1, ..., 0) is passed as an input to the next layer.

Figure 13: a) Structure of a decision list, b) Example decision list

In this thesis, it has been chosen to use decision lists in favor of decision trees. Even though decision trees are a popular
choice for symbolical methods and can be trained with a less complex algorithm, they can be adapted less flexible. This
is the case when pruning a decision tree, because conditions that reside in inner nodes cannot be removed without also
removing complete branches (or reordering the decision tree). Furthermore, if the training data changes, the conditions
that were chosen for inner nodes based on previous training data may deteriorate the performance of a decision tree
and may need to be pruned. It is assumed, that changes of the training data of the symbolical model will occur quite
frequently.

4.3 Topology and training steps

So far, the two building blocks of the mixed network, neural layers and rule layers, have been introduced. While neural
layers provide a way to propagate an error from the outputs to the inputs, this is not done with common symbolical algo-
rithms. In section 4.7, a scheme will be developed for propagating an error through the binary decision lists. However, at
this point of the thesis, the topology will be constructed without using backpropagation through symbolical rule layers.
Besides this limitation, only the feed-forward topology will be examined. A consequence of the lack of backpropagation
is, that only one rule layer can be trained at once. For two consecutive rule layers, only the last of the two layers has an
error measure, and only this layer can be trained. Besides, it is necessary that the first of two consecutive layers is already
trained, so that the inputs of the second consecutive layer already have the information of the intermediate concepts of
the first layer.

This observation leads to the following step-wise scheme, were only one rule layer is trained at once. The training
process starts with a mixed neural network that has only a single rule layer, which is the first hidden layer (see figure
14). The remaining layers are neural layers. After having trained the network (including the rule layer and all neural
layers), the second hidden layer is replaced with an empty rule layer. The network is then trained again, including all
layers except the first hidden layers. The procedure is repeated, until the network only consists of rule layers. All rule
layers that have been trained in previous steps are kept static. In contrast, all neural network layers are trained again, so
that they adapt the rules, that are added iteratively. An example of the training order is given in figure 14.

At this point, the role of the final layer should be further examined. In neural networks, a node is created for each
possible class. A common activation function of the final layer is the softmax function, for which the output then is the
confidence for the returned class. Decision lists (and decision trees) in contrast can have multiple labels without having
to create multiple models for each class. Here, if there are two or more rules with different labels that can fire, the order
of the decision list determines which rule is evaluated first and therefore which label is returned. In this thesis, the final
layer therefore has been classified with a common algorithm like RIPPER and C4.5.

Up to this point, the structure of the mixed network has been explained. In the following, the implications of the
topology for the training process will be further dealt with.
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Figure 14: Training steps of the Mixed Network

4.4 Refinement of rule layers

Before examining the training process of the complete mixed network, the training process of the layers is further looked
at. As in pure neural networks, the neural layers are trained by adapting the weights based on the error gradients. The
training process has been described in chapter 2 and is applied for all neural network layers. While the training process of
the neural layers has not been changed, the training process of the rule layers differs from commonly used rule learning
algorithms.

In this thesis, a mini-batch scheme for training the neural layers should also be applied for the rule layers. At each
time, the decision list should cover the complete input space. As a consequence, rule layers will be initialized with a
starting solution and refined with each mini-batch. It was decided to choose, a general-to-specific scheme, so that the
initial decision list consists of a default rule with no condition. Rules are then refined by adding conditions and new
rules. This will be explained in detail below.

Here, it has been chosen not to follow the training process of RIPPER. In the initial phase of RIPPER, decision lists are
constructed by successively adding rules. The input space is not completely covered until the initial phase is completed.
A low coverage of the input space is a problem for training the neural layers, because no weight adaption can be applied
for missing inputs. Another problem of rule-wise training is, that especially in the beginning of the training, the neural
layers will be heavily changed. The training of rules with many conditions will probably be very ineffective at this point,
so that rules will have to be pruned and regrown at a later time. The heavy changes of rules also adds a dynamic, which
should be avoided in RIPPER.

The usage of a different algorithm than RIPPER also comes with a possible drawback concerning the accuracy of the
generated rules. However, the neural network will probably balance the errors that are made at the rule layer, so that
some errors that cannot be compensated by one rule could be reduced by another rule. Unfortunately, the errors of the
final layer cannot be balanced by a neural layer. Here, the used algorithm will probably have its drawbacks.
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In the following, it will be explained how the decision lists are created in this thesis. The decision lists are trained
here iteratively by applying the refinement operations grow, prune and cut. The grow and prune operations have been
previously defined in chapter 2. In this thesis, an operation that removes a complete rule from the decision list is denoted
as a cut operation. While existing training algorithms are usually divided into a grow (and a prune) phase, where only
grow operations (or prune operations respectively) are applied, the operations here can be applied in no predefined
order. This is done, so that rules can faster adapt to changes in the neural layers. As an optimization criterion, the
misclassification error has been chosen. Based on this decision, the improvement that can be achieved is only determined
by the samples, that are classified with a different label after a refinement operation.

The chosen method of refining rules has a few implications on the operations that are applicable and on additional
changes that have to be applied. It is intended to avoid constellations, that could block the rule generation process. After
a grow operation of the default rule , a new empty rule has to be appended to the decision list. The new rule then matches
all samples that are not covered by any previous rule. Due to the setup, where only ’0’ and ’1’ labels are used, the label of
the new default rule is set to the opposite label of the old default rule. In the implementation of the proposed algorithm,
it is made sure that two default rules with opposite labels exist. This way, the improvement of a grow operation for the
first default rule can be determined more easily.

While the grow operation adds complexity to the model, a prune operation can be used to revoke early decisions, that
do not contribute to the accuracy of the model at a later time. One constellation that should be avoided during a prune
operation, is an intermediate rule that has zero conditions. The consequence of such a rule is, that this rule will always
fire, and later rules will never be evaluated. Further rule refinements only affect earlier rules as long as the intermediate
rule contains no conditions. If this is the case for a longer period of time, the rules that are followed by the zero condition
rule may drift apart from the rest of the decision list. Growing the rule then will become less likely. A prune operation
which results in an empty rule can be therefore only applied, if the rule is immediately followed by a default rule, that
has a different label.

Similar to the restriction of prune operations, a cut operation is not permitted, if the resulting decision tree would
contain a rule, that is followed by a default rule with the same label.

4.5 Training of rule layers

After having defined the structure of the rule layers and the possible refinement steps, the basis on which grow and prune
operations are applied will be further focused. The main objective of choosing a refinement operation is the expected
improvement of the operation. In section 4.6, it will be explained how the expected improvement for a sample will be
calculated, based on the backpropagated error and the change of a label due to a refinement operation. The improvement
of a refinement operation is then determined by summing up all expected improvements among the samples.

A crucial difference between the training of rule layers with this algorithm and the training of symbolical models with
other algorithms will be, that neural layers and rule layers will be trained simultaneously. The model will be trained
in mini-batches. At each mini-batch, the weights of neural layers are adapted and decision lists are refined. Among all
possible refinements of all decision lists, only the refinements with the highest improvements will be applied. Moreover,
only few decision lists will be affected by the refinement operations at one mini-batch. In contrast to neural networks,
where all weights are changed by a small amount each mini-batch, a change by a refinement results in a maximum
change of the activation value for the samples affected. After doing refinements, it may it will be necessary to adapt the
neural layers to compensate the error, that may occur for some samples after rule training and ensure, that the distributed
error is calculated correctly.

While symbolical methods use the complete training data to estimate the improvement of refinement operations,
estimating the improvement of refinement operations based on mini-batches would be too inexact. This is because
mini-batches only contain a small portion of the available training data. As a consequence, grow operations would
add many conditions, that would have to be pruned at a later time. Furthermore, prune operations could prematurely
remove important conditions. To overcome this, the improvements of grow, prune and cut will be collected over multiple
mini-batches.

For prune and cut operations, an exponential moving average has been chosen

impt = α · impt + (1−α) · impt−1

where impt is the average improvement of a refinement operation of the mini-batch at time t, and impt is the improve-
ment at time t. The parameter α < 1 determines the size of the moving average. The expected improvement of prune
and cut operations can be efficiently calculated in O (|condi t ions|) and O (|rules|) respectively for each mini-batch. In
the following, a condition, that can be pruned, and that has an associated estimation for the improvement of a prune
operation, will be denoted as a prune operation. Likewise, a rule with such an estimation will be denoted as cut candidate
and a condition that can be grown will be denoted as grow candidate.

Whereas a list of prune candidates and cut candidates can be easily maintained, keeping a list of all possible grow
operations requires a large amount of memory and computational time. The complexity for this operation is O (|rules| ∗
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|at t ributes|) and exceeds the complexity of O (|at t ributes|2) which can be achieved with neural networks. To reduce
the complexity, only the most promising grow refinements will be monitored, while the rest is being discarded. More
precisely, at each mini-batch, a condition for a possible grow operation is added to a list of grow candidates with a
probability that is proportional to the improvement of a single sample. The list of grow candidates is then updated for a
defined number of batches. If a low number of batches is chosen, the estimated improvement may become imprecise. A
high number of batches may result in outdated estimations, if there are large changes in other decision lists and in the
neural layers.

Algorithm: Rule Layer Refinement

Variables : S: Samples of the mini batch
RS: Set of Rulesets, which form the rule layer
n: Number of Layers
Hi: Hidden Layer i, i ∈ {0, ..., n− 2}
O: Output Layer
f irst_rule: First Rule of a Ruleset R, which matches s
second_rule: Second Rule of a Ruleset R, that matches s

Functions: improv ement_grow(r, s): Reduction of error, that is achieved by a grow operation of r -> r ′, if r
matches s and r ′ does not match s;
improv ement_prune(r, s): Reduction of error, that is achieved by a prune operation of r -> r ′, if r does

not match s and r ′ matches s
; forall Sample s ∈ S do

Classify s ;
Backpropagate the error from O through Hi to RS to obtain er rs ;
f irst_rule := NU LL, second_rule := NU LL ;
forall Rule r ∈ R do

if s matches r then
if f irst_rule = NU LL then

f irst_rule := r
else if second_rule == NU LL then

setsecond_rule := r
calculate improv ement_grow( f irst_rule, s), under consideration of the target values of f irst_rule,
second_rule and er rs ;

end
end
forall Rule r ∈ R do

calculate improv ement_prune(r, s), under consideration of the target values of r, f irst_rule and er rs ;
end

end
Algorithm 1: Rule Layer Refinement

Algorithm: Grow Operation

improv ement := {} Stochastically get grow candidates GC : {(r, r ′)|r, r ′ ∈ R} ;
forall r, r ′ ∈ GC do

set improv ement(r, r ′) := 0 ;
forall s ∈ S do

if r matches s and r ′ not matches s then
improv ement(r, r ′) := improv ement(r, r ′) + improv ement_grow(r, s) ;

end
end

end
get r, r ′ with MAX (improv ement) R := R r R := R+ {r ′}

Algorithm 2: Grow Operation
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Algorithm: Prune Operation

forall Rule r ∈ R do
forall Predicate p ∈ r do

improv ement(r, r p) := 0 ;
forall sinS do

if r not matches s and r ′ matches s then
improv ement(r, r p) := improv ement(r, r p) + improv ement_prune(r, s) ;

end
end

end
end
get r, r ′ with MAX (improv ement) R := R r R := R+ {r ′}

Algorithm 3: Prune Operation

4.6 Error estimation

In this part, it will be explained how an error is calculated for the outputs of the rule layer. It will be further explained,
how an improvement for a sample is estimated, based on a change of the label due to a refinement operation. For the
purpose of determining the error in rule layers, it will be shortly recapped, how error estimation for hidden units in
neural networks is realized. As a first step, the output error is calculated. The output error is then propagated backwards
through the neural network by applying the derivative functions in the inverse order of the forward pass. Finally, for each
weight, a delta is calculated. The delta is multiplied by the learning rate (usually about 1%) and added to the existing
weight.

While in neural networks, an error at the output neurons can be traced back to the weights of all hidden units, the
concept cannot be easily adapted to propagate an error from the output of the decision lists to the rule conditions. Firstly,
symbolical rules use predicates to make boolean decisions. If a predicate should be added or removed, this could only
be realized in a stochastically way. Secondly, for decision lists, the rule order of a rule set is crucial to the result of a rule
evaluation. Therefore it is also of importance, which rule is altered. To overcome these difficulties, a method is followed
that bears much resemblance to Gradient Boosting. Here, the error is only backpropagated to the outputs of the decision
list layer, and used as the criterion for refinement operations. In other words, refinement operations will be performed to
compensate the backpropagated error. At this point it is expected, that reducing the largest sum of error yields the best
improvement. Likewise, if a change is made that points to the opposite direction of the error, a decline is expected. This
leads to the following metric:

impre f ,dl =
∑

s∈Samples

−er rs,dl ∗ changes,re f

where impre f ,dl is the improvement of a given refinement operation re f and a given decision list dl, er rs,dl is the error
of sample s, that has been backpropagated to decision list dl. changes,re f here is the label change, that will be induced
by refinement operation re f and sample s.

The error backpropagation method has been successfully applied for training the decision list layers. A problem that
occurred was, that after some time, there were dead decision lists, which still contained no condition. Further training
then lead to no change for these decision lists. After some tests, a dynamic has been identified, that leads to dead decision
lists. Due to the stepwise refinement, there were decision lists, where no grow operation has been applied after some
time. These decision lists with no condition always return a constant value. Furthermore, the neural layers increased the
weights to other decision lists, which had already some conditions. Due to the higher weight, the backpropagated error
has been higher, if a decision list already had contained some conditions.

As a countermeasure, a normalization has been applied to the backpropagated error. For each decision list, the back-
propagated error is divided by the sum of outgoing weights. 1 Here, it has also been observed, that errors of different
layers vary. E.g. if a decision list at layer i is trained, the average error at layer i varies from the average error at i + 1,
which is observed when training the decision lists at layer i+1. Here, an additional normalization of the error is applied,
so that the average absolute error is normalized to a value of 1.

1 XBoost Paper also states that increasing small weights increases the probability for a refinement operation. However, weights are only
increased initially to increase the probability for a split. For older rules, they state, that a rule is considered to be less important. Therefore
it is not further refined. In this thesis, the goal is to gain a balanced size of the rules at each layer. Therefore, small decision lists are more
interesting split candidates, in order to avoid imbalances.
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1 1
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Inverse Function:
ini out j
1 0
0 1

Constant (out j = 0):
ini out j
1 1
0 1

Constant (out j = 0):
ini out j
1 0
0 0

Function Derivation
Identity Function 1
Inverse Function -1

Constant Function 0

Table 3: Caption here
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NOT NOT

Figure 15: Decision List Scheme

4.7 Backpropagation through rule network

So far, the decision list network is constructed layerwise, so that all neural layers are being replaced iteratively by decision
list layers. While during layerwise construction, only the neural layers are used for determining an error for the decision
lists, a symbolical backpropagation scheme will be introduced here. The new backpropagation scheme will allow to get
an error estimate at the inputs of a decision list layers. Moreover, the error can be propagated through all rule layers.

As a first step, the hidden units should be further focused. At each hidden unit, a regression is performed. While the
regression in the neural layers operates on a continuous scale, the regression in the rule layers is applied on a binary
scale. The symbolical derivation will be based on theoretical considerations. Here, it is assumed, that only one input is
changed at a time. The other inputs are considered to be constant. This assumption makes it possible to decompose the
rule function into binary logical functions with one input and one output (see table 15). Each of the functions used to
model the decision lists can be reduced to one of the following three functions:

1. Identity function:
A change at an input results in the same change at the output. The derivative of the identity function is 1.
Therefore, the error of the output is passed to the input.

2. Inverse function:
A change at the input results in the opposite change at the output. If the input is true, the output is false and vice
versa. The derivate of the identity function is -1. Therefore, the negative error of the output is passed to the input.

3. Constant function.
A change at the input results in no change at the output. The derivation of the constant function is 0. Thus, the
error at the output results at a zero error at the input.

To achieve one of those three binary functions, the decision lists are first decomposed into three functions, a logical
NOT function, a logical AND function, and a decision list function that models the first order nature of the decision lists.

In the method described, only boolean attributes are accepted. Boolean attributes can be used directly as features in
rule heads or inverted before by a logical NOT operation. These features are combined as the head of the rule with a
logical AND operation. If the result of the AND operation is true, the rule fires. Depending on which rules of a rule list
fire and on the body of the rule lists, the result of the rule lists is determined. Though possible, this function is not further
decomposed into logical components. Instead, it will be directly replaced by the identity, inverse or constant function for
the case that all but one inputs are constant.
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AND
If all inputs of the AND operation are true, the result is true. Otherwise, the result is false. Here, we will distinguish 3

cases:

(1) all inputs are true,

(2) all inputs except one are true,

(3) more than one inputs are not true.

In case (1), the result of the AND operation can be changed from true to false by changing one of its inputs from true to
false. Hence, the change that is done at one input results in the same change at the output. Therefore, it is assumed that
the error of the input is equal to the error of the output here. In case (2), the result of the AND operation can be changed
from false to true by changing one input from false to true. Changing one of the inputs that are true to false has no effect
on the result. Therefore, it is assumed that the error of the input that is set to false is equal to the error of the output. For
all other outputs, an error of 0 is assumed. In case (3), the output of the AND operation cannot be changed by changing
only one of its inputs. Therefore, the error of the inputs is set to 0 here.

NOT
The logical NOT operation has one input and inverts its value. For a true input, the output value is false and vice versa.

For the error, it is assumed, that the input is inverted.

Decision list function
As already stated before, the decision list can be seen as a set of boolean function, when determining the gradients.

The output of the AND operation of the rule heads are the inputs for these functions. It has to be checked if the output
of the decision list changes, if one of the rules inverts its result, i.e. a rule that currently fires will not fire, and a rule that
currently does not fire will fire. Because of the first order manner of the decision lists, the following procedure can be
applied:

1) The rules of the decision list are evaluated in order until two rules are found, that fire

2a) Collect all rules that were evaluated before the first firing rule and that have a different rule body. If the body of
the not firing rule is false and the body of the first firing rule is true, the error of the output is passed to the head
of the rule. If the body of the not firing rule is true and the body of the first firing rule is false, the negative error
is passed to the head of the rule

2b) Next, the first two firing rules are evaluated, if the body of the first firing rule and the body of the second firing
rule differ. If the body of the first firing rule is true and the body of the second firing rule is false, the error is
passed from the output to the head of the first rule. If the body of the first firing rule is false and the body of the
second firing rule is true, the negative error is passed from the output of the first rule to its head.

4.8 Combined Training

Initially, the training of the decision list network was done layer-wise, so that only one rule layer was trained at a time.
Now, by using the symbolical backpropagation method, a decision-list-only approach, where no neural layer is constructed
could be used. However, all decision lists would be initialized with zero conditions. Therefore, all decision list functions
would be constant in the beginning. Hence, all derivations would be zero, and no error would be propagated through
the decision-list-only network.

Instead of training a decision-list-only network, it has been decided to train a network, that still uses neural layers to
gain a distributed error for all decision lists. The error will now be calculated by voting the error of the neural layers
and the error of the rule layers. The network for the combined training is created as follows. First, a topology is created,
that only contains decision list layers. For each decision list layer except the first hidden decision list layer, an additional
neural network layer is created.

1. Forward activate all decision list layers DLL0, DLL1, ..., DLLn

2. Backpropagate last decision list layer DLLn and get er rDL,n−1

3a. Activate last neural layer N Ln with output of DLLn−1

3b. Backactivate error of last neural layer N Ln and get normalized error er rN ,n−1
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4. Generate voted error er rn−1 by adding er rN ,n−1 and er rDL,n−1

5. Proceed steps 2-6 with the previous layer. The following generalizations are made for layer i in steps 2. and 3.:

2’. er rN ,i−1 is gained by backpropagating the voted error er ri

3’. The neural network that consists of layers N Li , N Li+1, ..., N Ln is used
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5 Evaluation and Results

In this chapter, the method that has been introduced earlier will be evaluated and compared. First, some training
parameter adjustments will be performed and discussed. The evaluation starts with a two-layer model and will be
successively performed for deeper topologies. The results will be compared to Jrip (a RIPPER implementation) and J48
(a C4.5 implementation). As a second reference, the method of [Zilke, 2015] will be used. More detailed, a multi-layer
neural network will be trained. The hidden unit activations, that result for the training set will be re-trained with a the
regression tree algorithm REPTree. The final layer will be trained with Jrip and J48.

The method that has been introduced will be evaluated in a similar way. All rule layers except the final rule layer is
trained with the mixed network. The final layers will then be trained with Jrip and J48.

5.1 MNIST Dataset

The method described in chapter 4 will be evaluated here with the dataset MNIST. MNIST consists of 70000 images of
handwritten digits, which were centered and normalized to a resolution of 28x28 pixels. All images are further hand-
labeled with the target numeric value. The images are separated into a training set of 60000 samples and a test set
of 10000 samples. According to [LeCun et al., 1998], the samples were originated from two datasets, SD-1 and SD-3,
where SD-1 was collected among high school students and SD-3 was collected amount Census Bureau employees. When
separating the data, it was ensured, that a writer only contributed either to the training set or the test set. The 60000
training samples were further divided for training neural networks into a training set of 50000 samples and a test set
of 10000 samples (see [mni, ]). Here, the training set is used to adjust the network weights, and the validation set is
used ’for selecting hyper-parameters like learning rate and size of the model’ [mni, ]. The validation set is also used for
detecting, when the training algorithm converges to a local optimum.

The MNIST dataset suits well as a task that can be accomplished by the new method introduced. It has many training
samples compared to other datasets. Besides, the number of attributes is large, so that existing decision tree and decision
list classifiers which create a single layer model will perform worse compared to the multi-layered approach.

While the source images of the MNIST dataset are gray-scale images, where each pixel is mapped to a float value
between 0 (black) and 1 (white), the mixed network is only capable of processing boolean values. Therefore, the
continuous scale of (0, 1) has been discretized, so that inputs in the range of (0, 0.5) have been interpreted as 0 (black)
and inputs in the range of [0.5, 1) have been interpreted as 1 (white).

For evaluating the algorithms, the tensor framework Theano [Theano Development Team, 2016] is used. Theano is
written in python and runs on a CPU or a GPU. While there is a good support for using the CPU, the GPU implementation
needs additional setup and does not support all graphic cards. The framework provides methods for numerical operations
like dot products of arrays and metrics or fast element-wise operations like the sigmoid function. In contrast to an
imperative definition, where a method is created and evaluated for each sample, theano requires a functional syntax and
provides methods for deriving and inverting the defined functions. This way, the framework can generate a gradient for
the defined neural networks, that is used for the update function of the weights.

On top of Theano, the library theanets2 is used. Theanets provides an abstraction for various neural network topologies
like tied autoencoders or classifcation nnets. Besides, it has utility functions for using common evaluation datasets like
MNIST.

Unfortunately, extending theano and theanets with custom element-wise operations is difficult to achieve. Therefore,
the training of the rule has been separated from the training of the neural network. Whereas the gradients of weights are
symbolically derived by theano, the backpropagation error for the outputs of the rule layer has been manually derived.

5.2 Mixed Network Setup

Training neural networks usually is performed in mini-batches. Each mini-batch, the network is trained with a small
amount of samples (e.g. 32 samples). For the setup in this thesis, mini-batches of a size of 320 samples were used. The
value was chosen larger in order to better compare samples of a single mini-batch. Both parts of the mixed network were
trained alternatingly with their respective training algorithm. Mini-batches for the neural layers and the rule part were
created independently, by selecting random samples from the training set.

The topologies that are used include two topologies with a single rule layer and one neural network layer. Here the
first tests were done with 256 hidden layers. The comparison of the reference method was done with the topologies
784-256-10 (784 input units, 256 hidden units, 10 output units) and 784-64-10. For topologies with multiple layers,
a fixed size of 64 hidden units has been chosen for the last hidden layer, in order to reduce the influence of the final
classifier (J48 and Jrip).

For the neural network layers of the mixed network, mainly the default parameters of theanets are used. This in-
cludes an evaluation every 10 mini-batches, a minimum improvement of 1% for each evaluation and a patience of 10

2 https://github.com/lmjohns3/theanets
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evaluations, after which the training is interrupted. For training, the algorithm rmsprop is used. Standard parameters
for theanets are a training rate of 0.1%, a halflife of 14 training batches. The parameter that was adapted is the size of
the mini-batches, which has been increased from a default of 32 samples per mini-batch to a value of 320 samples per
mini-batch. This was done, because the decision wether an attribute or its negation is taken as a feature was done based
on the samples of a mini-batch.

5.3 Evaluation

In [Herrera et al., 2011], four groups of interest were introduced for subgroup discovery, which can also be applied for the
training task in this thesis: complexity, generality, precision and interest. Complexity measures are measures that estimate
the simplicity of the model and include the number of rules and conditions. Generality measures include coverage and
support and determine to which amount a rule can be applied on the training data. Precision is a measure for correctness
and includes the confidence. For subgroup discovery, interest is identified as a measure of ranking subgroups in relation
to each other which includes novelty and significance.

During evaluation, two of the four interest groups were covered: complexity and precision. As a complexity measure,
the number of conditions is counted among the classifiers. For the reference method, the number of conditions for the
regression at the hidden units and the number of conditions for the classifier is summed up. For the method introduced
in this thesis, the total number of conditions during regression and the number of conditions at the final classifier are
summed up. The precision is measured as the accuracy of the neural network and as the accuracy of the final classifiers.

5.3.1 Regularization

The first test series deals with a regularization factor. In order to keep the amount of conditions small, conditions which
do not contribute much to the result are removed. Besides, in first tests, the number of rules per decision list of a layer
has been varying strongly. Here, some rules with many conditions and many rules with few conditions existed. However,
it is preferred that decision lists have a similar number of rules so that the information gain is uniformly distributed
among the decision lists of a layer.

As a countermeasure, grow and prune operations have been adapted. For grow operations, if the number of rules of
a decision list is small, a condition is added even if the expected improvement is below average. Besides, more grow
candidates were created for small decision lists. For prune operations, a penalty for is added for large rules, so that a
prune operation becomes more probable. Here, the penalty is proportional to the number of rules per decision list. A
condition is removed in the following case:

impcond > av g(imp) · sizedl(cond)/r f

Here impcond is the improvement that is determined for a condition, sizedl(cond) is the size of the decision list which
includes the condition cond, and r f is the regularization factor. For most conditions, the expected improvement in case
of a prune will be negative, and thus pruning will lead to a decline. Therefore, conditions are pruned only if a positive
improvement will be expected. With regularization, a condition will also be pruned, if the size of the decision list that
contains the condition is equal to the regularization factor and if the expected improvement is above average.

For the tests, a topology with one decision list layer and one neural layer have been used. There are 784 input units,
256 hidden decision list units and 10 neural network output units in the mixed network. The outputs of the 256 hidden
units have been used as attributes of the final J48 and Jrip layer. For regularization, three measures have been used: one
absolute measure for the regularization factor, and two relative measures.

1. Constant r f = x (see figure 16a, b and g)

2. Relative r f = max(sizedl) · x , which is relative to the maximum decision list size (see figure 16c, d and h)

3. Relative r f = av g(sizedl) · x , which is relative to the average decision list size (see figure 16e, f and i)

Observations:
The following observations can be made if all tests are compared with each other:

a) The accuracy and model complexity increases for growing regularization factors. It can be seen, that smaller
regularization factors decrease the decision list size.

b) The accuracy of the neural network layer exceeds the accuracy of the symbolical classifiers. It can be seen, that
the sybolical classifiers are inferior here due to the high number of attributes (256). The accuracy of J48 is worse
than the accuracy of Jrip. This is probably because a decision tree has limited conditions that are checked at a
path from the root to a leaf. A decision list in contrast can check more conditions.
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Figure 16: Regularization results.
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c) With a regularization factor of 7 in test 1), a factor of 1.5 in test 2) and a factor of 2.0 in test 3), the accuracy
converges to the accuracy of a model without regularization.

d) While the model complexity of the decision list layer of the mixed network increases, the model complexity of the
final classifiers slightly decreases. Here, it is assumed that more information is captured by the decision list layer,
so that slightly less information has to be captured by the final layers.

d) The number of training batches differs for the three tests. In the constant test and test which uses the regularization
that is relative to the maximum size, the number of training batches increases for higher regularization factors.
In case of the regularization that is relative to the average size, the number of training batches have a peak at 1,
and decrease after. There might be two effects: on the one hand, with increasing regularization factor, the model
might become more detailed, and the accuracy of the neural layer increases for a longer time during training; on
the other hand, for the average size regularization, a factor of 1 removes too many conditions, that are recreated
again. This might consume additional time. For larger regularization factors relative to the average size, bad
conditions are probably removed at an early stage, and this might decrease the number of training batches.

In this test, it has been shown that regularization during prune operations can decrease the model size while the
accuracy of the model stays constant. It is concluded, that a regularization that is relative to the average decision list size
yields the best results. Here a factor of 2 is a good choice. Other regularization factors also are of use. In the following
tests, a regularization has been applied. In some tests, a marginal constant factor of 10 has been used, other tests have
been applied with a relative factor.

5.3.2 Grow and prune rate

The next tests deal with the number of grow operations, that can be applied per mini-batch (see figure 19). In common
symbolical methods, an offline training is performed. Therefore, it could be a problem if many changes are applied at the
same time. In the training method that has been developed here, the number of grow and prune operations scales with
the total number of rules. This way, the number of grow and prune operations for each rule constant as decision lists
become larger. A factor of 1 means, that every rule is changed once per epoch on average. Both, the grow and the prune
rate have been adapted, so that the maximum number of prune operations is equal to the number of grow operations for
each mini-batch.
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(a) Accuracy for different grow rates.
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Figure 17: Impact of different grow/prune rates.
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Observations
The following observations have been made based on the tests:

a) The accuracy concerning the neural layer increases until a grow and prune rate of 50% is reached and then stays
constant. For prune and grow rates < 50%, the mixed network probably grows too slow, so that the neural layer
stops training too early.

b) The number of conditions for the mixed network increases for a growing grow and prune rate. Here, it is assumed
that the heavy simultaneous adding of conditions leads to a high complexity of models, which is not reduced later.

c) The number of training batches until convergence decreases with a growing grow and prune rate. Here, it is
assumed that adding conditions faster will lead to a faster convergence.

As a result of these tests, concerning the model complexity, low grow and prune rates are favored. Concerning the training
speed, high grow and prune rates are favored. As the complexity of the model also has an impact on the training speed,
because larger models have more refinement opportunities and take more time to be evaluated, the model complexity is
considered to be the more important factor. Therefore, a grow and prune rate between 50% and 100% is considered to
be best.

5.3.3 Grow and prune split

Until now, grow operations have been applied on 50% of the data ( 78 mini-batches) and prune operations have been
applied on an exponential moving average. The window has been chosen with α = 1/78. Here, the influence is after 78
mini-batches is about three times lower ( 36.8%), compared to the influence of the sample in the beginning.

Here, three test series are performed and compared (see figure 18): at the first series, the grow and prune size are
scaled simultaneously. In the other tests, grow and prune rates are adjusted individually. Higher values will probably
increase the accuracy. However, improvement statistics are collected over a longer period of time so that the training
speed will decrease. Another problem could be, that the same samples are used for both, growing and pruning. Therefore,
overfitting might occur.

In the two tests, where grow and prune sizes are adapted individually, the amount of grow and prune operations had
to be adapted. For smaller grow windows, the amount of grow operations that can be applied during an epoch is higher.
Here the amount of grow operations per epoch had to be reduced to match the amount of prune operations per epoch.
On the contrary, for larger grow windows, a lower amount of grow operations can be applied during an epoch. Here, the
prune amount needs to be reduced.

Observations:
The following observations could be made:

a) During adaptation of both windows, the accuracy has a peek at 35.7% for Jrip and J48 (see figure 18a). Only the
accuracy of the neural layer increases afterwards, while the accuracy of Jrip and J48 slightly decline. Here, the
behaviour of the neural network part could overestimate the accuracy, because the samples which were applied
during prune and grow are overlapping for the window between 50% and 100%. The change of the accuracy of
Jrip and J48 could be linked to the model complexity, which has its peak at 37.5%.

b) The number of conditions for the rule layer of the mixed network in figure 18b has the characteristic, that it
increases until 37.5% and decreases afterwards. Here, two effects could have an impact. At the begining, the
small windows could lead to an inexact model, which leads to an early stop of the training algorithm of the neural
network (also see figure 18g). The decline of model complexity afterwards could occur due to the reduced number
of grow and prune operations which need to be applied for large grow and prune windows.

c) In figure 18c and d, there could be observed that with larger grow windows, the accuracy increases and the model
size decreases.

5.3.4 Regularization with two layers

In the following test series the regularization factor with two rule layers is examined. While all decision lists of the last
rule layer of the mixed network will probably contribute to the classification result, the other layers will probably contain
rules that are not used as conditions by the following layer. Therefore, in the two-layer approach, a smaller regularization
factor can be used for all decision lists of the first layer, that do not contribute to the classification result. Here, a constant
regularization factor of 10 is used for all decision lists that are used as conditions.

36



0.5 1
0.88

0.9

0.92

0.94

0.96
Mixed network
DL layer + Jrip
DL layer + J48

(a) Accuracy for the simultaneous adaptation of grow and
prune windows.

0.5 1

2,000

4,000

6,000
Mixed network
DL layer + Jrip
DL layer + J48

(b) Number of conditions for the simultaneous adaptation of
grow and prune windows.

0.5 1
0.88

0.9

0.92

0.94

0.96
Mixed network
DL layer + Jrip
DL layer + J48

(c) Accuracy for the adaption of the grow rate.

0.5 1

2,000

4,000

6,000

8,000
Mixed network
DL Layer + Jrip
DL Layer + J48

(d) Number of conditions for the adaption of the grow rate.

0.5 1
0.88

0.9

0.92

0.94

0.96 Mixed network
DL layer + Jrip
DL layer + J48

(e) Accuracy for the adaption of the prune rate.

0.5 1

2,000

3,000

4,000

5,000
Mixed network
DL layer + Jrip
DL layer + J48

(f) Number of conditions for the adaption of the prune rate.

0.5 1

40

60

80

100

(g) Number of training batches for the
mixed network during simultaneous
adaptation of grow and prune win-
dows.

0.5 1
60

70

80

90

(h) Number of training batches for the
mixed network during adaptation of
the grow window.

0.5 1

70

80

90

(i) Number of training batches for the
mixed network during adaptation of the
prune window.

Figure 18: Results for adaption of grow and prune windows.
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Figure 19: Impact of different grow/prune rates.

Observations:
In the plots, it can be observed that the number of conditions can be reduced whereas the accuracy does not drop

much for small regularization factors. However, it was expected, that the unconnected decision list do not have an affect
on the accuracy of the mixed network and could therefore be pruned more strongly.

5.3.5 Checking topologies

In Table 4, the different classifiers are compared with each other. Here it can be seen, that Jrip and J48 can benefit from
the mixed network. In comparison to the pedagogical approach, it can be seen that much less conditions are need for the
mixed network. However, the accuracy is worse than the accuracy that can be achieved with the pedagogical approach.

5.4 Visualization of hidden units

In neural networks, the matrixes of neural networks can be plotted, so that a representation of the training result can be
visualized. This is done by reverting the trained network and activating single neurons. An example representation for
the trained neural network for MNIST is given in figure 20. In contrast to the neural layers, the decision layers cannot be
visualized like that. However, the activations of the hidden layers can be checked, and an overlay image of all digits that
yield an activation can be created. During the image creation, all images that yield an activation of 1 are taken as they
are and all images that yield an activation of 0 are negated. Figure 21 shows the visualization for the mixed network
after layerwise training
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Algorithm Topology
Number of
Conditions

Number of
Conditions
(last layer)

Number of
mini-batches Accuracy

Jrip 3451 89.65%
J48 2953 87.12%
Neural Network 784-64-10 104 96.84%

784-256-10 60 97.51%
784-256-64-10 71 97.82%
784-256-128-64-10 45 97.3%

Pedagogical derivation (Jrip) 784-64-10 128000 1661 91.35%
784-256-10 512000 1530 92.28%
784-256-64-10 640000 798 93.29%
784-256-128-64-10 1120000 562 93.52%

Pedagogical derivation (J48) 784-64-10 128000 1673 88.89%
784-256-10 512000 1574 89.35%
784-256-64-10 640000 802 91.34%
784-256-128-64-10 1120000 637 92.55%

Mixed Network + Jrip 784-64-10 1038 2674 86 90.13%
784-256-10 3978 2092 91.81%
784-256-64-10 3856-1673-895 2363 57 90.44%
784-256-128-64-10 3722-1433-769 1987 51 89.12%

Mixed Network + J48 784-64-10 1038 2060 86 88.93%
784-256-10 3978 1921 88.22%
784-256-64-10 3856-1673-895 2045 57 88.37%
784-256-128-64-10 3722-1433-769 1963 51 87.97%

Table 4: Evaluation results. Comparison with other algorithms.

(a) 256 Hidden units of the first hidden layer are plottet in 16 rows
and 16 columns

(b) 64 Hidden units of the sec-
ond hidden layer are plottet
in 8 rows and 8 columns

Figure 20: MNIST neural network weight visualization
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6 Conclusion and Future Works

This thesis has dealt with training multi-layer feed-forward symbolical rules for classification by exploiting neural network
structures. A mixed network has been created as an intermediate structure, that consists of decision list layers and
symbolical layers. These two types of layer have been trained simultaneously. After training the mixed network, a final
rule layer has been added, which is trained by the C4.5 or the RIPPER algorithm. This way, a multi-layer rule network
could be trained.

Another contribution of this thesis is the usage of a symbolical backproagation scheme, which allowed to use back-
propagation through decision list layers. A voting of the backpropagation errors from the decision list layers and addition
neural network layers allowed a simultaneous training of the rule layers. However, when increasing the number of layers,
the simultaneous training of all rule layers did not

The new method has been compared with a method that was introduced earlier, where the decision lists have been
trained based on the hidden activations of a pre-trained neural network. The new method has been shown to be superior
concerning model size and training speed when only a single layer is used. The training speed could be mainly increased
by applying stochastic search methods for new conditions. The model size could be significantly reduced by training
decision lists. Concerning the accuracy, the new method has shown to be inferior compared to the reference method.
Especially the final layer could not yet be trained with the method.

In future works, the weak decision list training method could be exchanged. Current problems might be caused by
the usage of the misclassification error instead of information gain. The decision in this thesis against rule-wise training,
which is used in the RIPPER algorithm, might play a role. Besides, the RIPPER algorithm has an optimization phase
which is not present in the method of this thesis. Therefore, in future works, an optimization phase similar to the second
phase of the RIPPER algorithm could be introduced. During this phase, previously trained rules could be replaced by
rules which are trained with the information gain as a split criterion.

The training of the hidden layers could also be improved by performing a regression on a linear scale instead of a
binary scale. To realize this, the backpropagation scheme would need to be extended.

Another open issue that could be further looked at is the voting scheme, which is used for determining the error for the
combined training. Here, a simple voting scheme has been applied, where the error of the two models has been added
up. However, the error that is gained by the neural network layers is normalized to a mean absolute value of 1.0, whereas
the error that is gained by backpropagation through the rule layers is not normalized. Besides, some rules will produce a
backpropagated error of zero whereas a few rules could produce a quite large error. Here, a further investigation on the
characteristics of the two types of error, as well as new schemes for another voting or a normalization of the errors could
be the target of future research.
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(a) 256 Hidden units of the first hidden layer are plottet in 16 rows
and 16 columns

(b) 64 Hidden units of the sec-
ond hidden layer are plottet
in 8 rows and 8 columns

Figure 21: MNIST neural network weight visualization
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