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Abstract

The guitar fingering problem involves the automatic generation of left-hand fingerings for guitar pieces.
This thesis covers the extension of solutions which map the problem to finding an optimal path in

a graph. The presented approach is based on a linear-chain conditional random field (CRF) and can
generate fingerings to any guitar piece regardless of its note structure. It is the first approach to incorporate
knowledge on the physical dimensions of guitars and guitarists.

The generated fingerings were mostly appropriate regarding the choice of fretboard positions whereas
the quality of the finger assignments was lacking. Compared to measuring distances on the guitar by
a number of frets, the inclusion of the physical dimensions led to a slightly more accurate choice of
fretboard positions. Major improvements are expected once higher-order dependencies between more
than two subsequent notes are modeled.
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1 Introduction

1.1 The Guitar Fingering Problem

Sheet music for the guitar specifies the notes of a piece with the same musical notation used for other
instruments such as the piano. Unlike the piano, where a one-to-one mapping exists between the notes of
a piece and the keys on the keyboard, guitars offer multiple locations on the fretboard to play one note. A
frequently mentioned example of this specialty [19–22, 24, 31, 33] is the note E4 which appears on five
different locations on the fretboard, as depicted in figure 1.

E4
E4

E4
E4

E4

Figure 1.: The five locations of E4 on the fretboard of a classical guitar with standard tuning and 19 frets
(adapted from Tuohy et al. [33, figure 1])1)

To assist guitarists in playing a piece, the musical notation is commonly supplemented by a fingering. A
fingering assigns a finger of the left hand and a position on the fretboard, defined by a string and a fret,
to notes of a guitar piece.

However, sheet music published for the guitar typically provides this assistance only for difficult sections
or sections where the publisher deems it to be necessary. It is left out for sections where the fingering is
considered to be obvious to the performer. While this approach ensures tidy sheet music it hinders lesser
skilled guitarists, who lack the experience to complete the omitted fingering, at learning and playing a
piece. Depending on the guitar skills of the editor, fingerings may be of poor quality or cumbersome to
others, forcing guitarists to create their own fingerings. Since the creation of a good fingering is a complex
task (more on this later) a system which automatically completes or generates fingerings of guitar pieces
would be of great use to guitarists.

The task of generating a fingering for a guitar piece is commonly known as the guitar fingering problem
[23]. The formal definition is: Given a guitar piece, assign a string, a fret and a finger to each note so that
the fingering is optimal according to a quality measure.2)

An optimal fingering to a piece should be easy to play: It should avoid large jumps of the left hand
in time sensitive sections, should favor comfortable finger positions and should minimize the amount of
strength needed to play. The memorability of a fingering should be ensured by reusing finger positions
within the piece and across all pieces known by the performer. Most importantly, it should recreate the
feeling and acoustic outcome intended by the composer and the performer.

The computational complexity of the guitar fingering problem arises from the multitude of locations on
the fretboard available for each note: In the abovementioned example of E4, four of the five locations
can be played by either of the four fingers of the left hand commonly used for playing the guitar. The
remaining location requires no action of the left hand to be played. This leaves one with 17 different

1) Released under CC BY-SA 3.0. Fretboard inlay by Wikimedia user GreyCat, CC BY-SA 3.0, https://commons.wikimedia.
org/w/index.php?curid=520147

2) Finding a fingering does not include altering notes of a piece. This is part of another task called arranging, where notes of
a piece written for a certain instrument are omitted or changed to render it playable on a different instrument. Several
attempts have been made at automatically arranging pieces for the guitar [9–11, 30, 32], however, this thesis focuses
solely on generating fingerings.

1
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possibilities of playing the same note. As a result, a melody consisting of n notes can feature up to 17n

different fingerings in the worst case scenario, ruling out exhaustive search as a trivial solution approach.
Allowing polyphonic pieces increases the complexity of the task because one needs to pay attention to
additional dependencies among notes in a chord, i. e. whether a guitarist can play several positions on
the fretboard at the same time regarding biomechanical aspects of the human hand.

To make things worse, optimal fingerings depend on emotions which are subjective by nature, meaning
an optimal fingering is (in part) a matter of opinion. Guitarists might prefer a different, but equally
difficult fingering over one found in published sheet music because they are of the opinion that a certain
note fits the mood of the piece better when played on a string of a different timbre [33, p. 4]. Put in other
words, is is likely that more than one "optimal" fingering exists for a piece.

In summary, the guitar fingering problem is about finding one among several good solutions in a large
search space.

1.2 Thesis Structure

The following chapter provides an introduction to the guitar as an instrument and various aspects of
difficulty associated with playing the guitar. The literature review in chapter 3 offers an insight into
existing solutions to the guitar fingering problem.

An introduction to linear-chain conditional random fields is provided in chapter 4, followed by chapter
chapter 5 explaining their application to the guitar fingering problem. Chapter 6 touches upon the imple-
mentation of the presented approach and reports the selection process for the cost function components
of the linear-chain conditional random field.

In chapter 7, several generated fingerings are presented and evaluated. A discussion of the results
follows in chapter 8. The thesis closes with a summary and suggestions for further research on the topic
in chapter 9.

2



2 The Classical Guitar

This chapter provides knowledge on the classical guitar which is necessary to follow the reasoning of this
thesis and reinforces the points of the motivation.

The relevant parts of a classical guitar are explained first, followed by guitar playing techniques. An
overview of common notations encountered for guitar pieces and fingerings is presented afterwards.
Finally, the difficulty aspects of guitar playing are stated.

2.1 The Classical Guitar in its Parts

Figure 2.: Parts of a classical guitar1)

A classical guitar (as shown in figure 2) features 6 strings whose pitch is specified by a tuning. The
standard tuning is E2, A2, D3, G3, B3, E4 [27, p. 5]. Note that the intervals between the strings are
perfect fourths (5 semitones) except for the interval between the G and B string, which is a major third (4
semitones). Each guitar string can also be identified independently of its pitch: The standard numbering
scheme for strings associates strings with numbers ascending from 1 to 6, where 1 is assigned to the string
of the highest pitch (the rightmost string in figure 2) [27, p. 5]. The vibrating part of a guitar string is
bounded by the saddle on the corpus (or body) and the nut. The distance between these two reference
points is called scale length [14]. Classical guitars are built with a scale length of 650 mm. The distance
between the strings and the fretboard (the action) increases towards the saddle.

1) This image was created by William Crochot. William Crochot – Acoustic guitar parts.png,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37646236

3
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Depressing a string midway between nut and saddle doubles its vibration frequency when plucked,
producing a pitch which is one octave (12 semitones) higher than the pitch the string is tuned to. Guitars
are fretted instruments which means pitch increments on the guitar are discretized into semitones by
frets (small metal strips on the fretboard). For this reason, 12 frets are distributed over the area between
the nut and the midway point of the string. The spacing between the frets needs to be non-uniform to
achieve a clean intonation. Given the scale length l of a guitar, the distance d between the nut and fret fr
is defined by

d = l ·
�

1− 2−
fr
12

�

according to Mottola [14].
The frets of a guitar are identified by the number of semitones they add to the base pitch of a string,

meaning the fret at the midway point receives number 122). The highest fret found on a classical guitar is
fret 19. Figure 3 shows the mapping from fretboard positions to pitches for a guitar with standard tuning.
Notice how the tuning affects that any pitch on string s appears four or five frets higher on the string s+1.

E4 F4 F]4 G4 G]4 A4 A]4 B4 C5 C]5 D5 D]5 E5

B3 C4 C]4 D4 D]4 E4 F4 F]4 G4 G]4 A4 A]4 B4

G3 G]3 A3 A]3 B3 C4 C]4 D4 D]4 E4 F4 F]4 G4

D3 D]3 E3 F3 F]3 G3 G]3 A3 A]3 B3 C4 C]4 D4

A2 A]2 B2 C3 C]3 D3 D]3 E3 F3 F]3 G3 G]3 A3

E2 F2 F]2 G2 G]2 A2 A]2 B2 C3 C]3 D3 D]3 E3

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

fret

string

Figure 3.: Pitches produced by fretboard positions up to the 12th fret on a guitar with standard tuning

2.2 Playing Technique

A guitarist performs different tasks with each hand when playing the guitar: The fingers of the left hand
depress strings on the fretboard while the fingers of the right hand produce the sound by strumming or
plucking the strings3). The classical guitar playing technique incorporates no additional equipment such
as plectrums commonly used for playing the electric guitar.

All fingers on the left hand except for the thumb may depress strings. The fingers are identified by
the numbers 1 to 4, starting with the index finger [27, p. 16]. The term open string refers to a string
which is played without a finger of the left hand depressing it. The position of the left hand along the
fretboard is referred to by the fret in which the index finger is located. In case the index finger does not
depress any strings, its fret is estimated under the assumption that the fingers of the left hand are located
in consecutive frets.

A complete left-hand fingering of a guitar piece assigns a string, a fret and a finger to each note. The
number 0 is used for the finger assignment of open strings [27, p. 16]. Left-hand fingerings stand opposed

2) Frets are usually written in roman numerals – arabic numerals are used throughout this thesis instead to avoid confusion
in calculations.

3) The roles may be inverted for a left handed guitarist. Nonetheless, the term left hand is used synonymously for the hand
depressing strings on the fretboard.
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to right-hand fingerings which specify a finger of the right hand for each note of a piece. Right-hand
fingerings are not as relevant as left-hand fingerings to this thesis, therefore their details are not covered
in this introduction. The term fingering is used as a synonym to left-hand fingerings throughout this thesis.

2.3 Notation Systems for Guitar Pieces and Fingerings

Sheet music for the guitar uses standard musical notation. Musical notation can incorporate fingering
information, however, it becomes crowded if a string, a fret and a finger were indicated for each note. As
a result, fingering information is only provided for certain sections or is omitted entirely.

Alternative notations for fingerings exist in the form of tablature and fretboard charts.
Tablature represents each string of a guitar by a horizontal line. To notate a note played on string s in

fret fr, the number fr is written on the line corresponding to string s. Finger assignments are commonly
written below the horizontal lines. The temporal order of the notes is indicated by the horizontal
arrangement of the fret numbers. Chords are notated by a stack of fret numbers. The finger assignments
of chords are likewise notated by a stack of numbers which replicates the order of the fret numbers.

Tablature is only intended as a supplement to musical notation and as such provides no temporal
information except for the relative order of the notes and bar lines. It is commonly shared online in
textual representation (ASCII tablature) due to its portability compared to sheet music.

A fretboard chart visualizes the fretboard positions and finger assignments of a single chord on a
stylized fretboard. It can be understood as a vertical slice taken from guitar tablature. Strings which are
not supposed to be played are marked by an × symbol.

An example for each notation is shown in figure 4.

(a) Musical notation of an A minor scale and an A minor chord

E4|--------------|--------------|--------------|

B3|--------------|--------------|----1---------|

G3|--------------|--------0--2--|----2---------|

D3|-----------0--|--2--3--------|----2---------|

A2|--0--2--3-----|--------------|----0---------|

E2|--------------|--------------|--------------|

2 3 2 3 3 1

3

2

(b) ASCII tablature showing a possible fingering

E2

A2

D3

G3

B3

E4
1 2 3 4

2

3

1

(c) Fretboard chart of the chord fin-
gering in the third bar

Figure 4.: Common types of notation for guitar pieces
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2.4 Advanced Playing Techniques

The technique of depressing multiple strings with the same finger is referred to as a barre chord. The most
common type of barre chords are index finger barre chords, where the extended index finger is placed flat
over multiple strings (see figure 5a).

Several rarer variants of barre chords exist, such as barre chords played with different fingers than the
index finger. It is also possible to play positions in different frets with one finger. This requires a diagonal
positioning of the finger relative to the frets, hence the name diagonal barre chord (see figure 5b).

In a partially depressed barre chord, a finger depresses multiple strings in the same fret but is raised to
accommodate space for other fingers or to allow for playing higher strings openly (see figure 5c).

E2

A2

D3

G3

B3

E4
1 2 3 4

1

3

4

2

(a) F major barre chord

E2

A2

D3

G3

B3

E4
1 2 3 4

1

2

4

3

1

(b) F] major 7th diagonal barre
chord

E2

A2

D3

G3

B3

E4
1 2 3 4

2

1

(c) A major partially depressed
barre chord

Figure 5.: Fretboard charts of barre chords

2.5 Difficulty Aspects of Guitar Playing

The challenge of playing an instrument has been shown to be of both biomechanical and cognitive
nature [7].

The biomechanical challenges of playing the guitar mainly concern actions of the left hand. The left
hand and its fingers need to be moved to their target positions on the fretboard in time before the right
hand plays the respective strings. Fingers of the left hand endure potentially uncomfortable joint angles
whilst exerting enough force to keep strings from producing an undesirable buzzing sound. A lot of force
is necessary, in particular for playing barre chords and for playing in higher frets due to the increased
distance between strings and fretboard. Plucking or strumming strings with the right hand requires less
force. Also, the right hand is held in the same position near the sound hole most of the times, occasionally
moving along the strings to change the timbre of the sound. These movements are slower, cannot be
missed and are overall less critical to the rendition of a piece than the movements of the left hand.

Cognitive efforts of guitar playing involve the retrieval of fingerings from memory and the temporal
coordination between actions of both hands.

Experience and sufficient practice of a piece diminish the perceived difficulty of these aspects.
A behavioral study conducted by Heijink et al. [7] on the motor movements of professional guitarists

provides valuable insights to guitar playing. One finding was that guitarists preferred playing in lower
frets over playing in higher frets, presumably because of the familiarity of these positions. They also
documented that guitarists, when prompted to play at a fixed tempo, play notes leading up to difficult
sections ahead of time to compensate for an expected time loss.
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3 Review of Previous Approaches

Previously published approaches to the guitar fingering problem are reviewed in this chapter. Most of
the approaches belong to one of two families of approaches, characterized by their representation of the
optimization problem: Path-based approaches map the task of finding an optimal fingering to finding an
optimal path in a graph. Evolution-based approaches start with one or more arbitrary fingerings which
are gradually refined until no more improvements are possible.

Path-based approaches are reviewed first, followed by evolution-based approaches. Other notable
approaches not belonging to the two families are presented afterwards.

3.1 Path-Based Approaches

The basic concept
The idea of casting the guitar fingering problem as a path optimization problem appears as early as

1989 in a paper by Sayegh [25] in which he introduces the "optimum path paradigm", a basic concept
common to all path-based approaches:

Given a melody, one can create a layered (directed acyclic) graph with as many layers as there are notes
in the melody. Each layer contains nodes representing the various positions on the fretboard where a
certain note can be played. Based on the assumption that the difficulty of transitioning between fingerings
of neighboring layers only depends on the two fingerings directly involved, one may define transition
costs for each pair of nodes taken from two neighboring layers. At this point, finding the optimal fingering
to the melody is identical to finding the path covering all layers with minimum costs. This can be done
efficiently by the help of the Viterbi algorithm [25] (a dynamic programming algorithm which is explained
in section 4.2). The transition costs between fingerings can be calculated by a cost function instead of
declaring them for each individual pair [25].

The independence assumption (called adjacent note assumption by Rutherford [24]) is a key simplifi-
cation of the problem domain necessary for efficient inference in path-based approaches. However, the
gained efficiency comes at the expense of fingering quality: A cost function defined for the transition
between two notes cannot incorporate knowledge on the fretboard positions of previous notes, mean-
ing higher order concepts of a good fingering such as reoccurring patterns in the fingering cannot be
implemented.

Introducing polyphony
Sayegh’s work was improved upon by Radisavljevic et al. [23] who add support for basic polyphony.

Their cost function is a linear term of several features (of which few are mentioned) characterizing
aspects of fingering transitions and a new type of static costs used to penalize certain chord fingerings.
The need to restrict or penalize fingerings arises from the fact that not every combination of multiple
fretboard positions is biomechanically possible to play for the human hand. The feature weights were
then optimized by a technique called "path difference learning" to fit published tablature of seven guitar
pieces. Radisavljevic et al. report that their approach adapts well to the training data but performs poorly
on a test set. Neither an evaluation measure nor the composition of the test set is stated.

Radicioni et al. [20] cover the fingering of chords in greater detail. Whereas Radisavljevic et al. [23]
filter out unplayable chord fingerings by means of their cost function during the inference phase (thereby
examining many meaningless states), Radicioni et al. aim to keep the number of nodes in the layered
graph low by adding only the playable fingerings of a chord in the first place. The playable chord
fingerings are generated by enumerating the solutions to a constraint satisfaction problem (CSP). A CSP
is specified by several variables, their domains and constraints between those variables. Radicioni et al.
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model the fingering of a single note as a 3-tuple of integer variables: one variable for the string, one for
the fret and another representing the finger that plays the position. Constraints enforce the principles
of guitar playing and the biomechanical properties of a performer’s hand. The quality of the fingerings
was judged by guitar experts who asserted that every generated fingering is viable. Compared to a set of
fingerings created by the experts themselves the CSP approach missed 2.75 % of the fingerings found by
the experts.

Cost function considerations
In another paper, Radicioni et al. [21] explain their take on the cost function for fingering transitions.

Based on the research of Heijink et al. [7] a cost function was established which judges both hand
movement along the fretboard and finger movement across the fretboard. Costs are defined between
pairs of fingered positions (i. e. between 3-tuples of string, fret and finger), hence for calculating the total
cost of a transition between two fingerings, the sum of the costs for each pair of fingered positions is
calculated.

Movement along the fretboard is expressed by a term for the fretwise distance between the two fingered
positions and a term which penalizes playing at higher frets. The distance term is discounted for hand
movements towards the corpus. The costs for movement across the fretboard depend on the number of
strings between the two fingered positions. To reward comfortable fingerings, Radicioni et al. additionally
employ the concept of a comfort span for fretwise and stringwise distances between fingered positions.
They emphasize however, that all parameters, costs and comfort spans were determined by manual
experiments (without stating on which data the experiments were conducted).

The system was evaluated on three guitar pieces by comparing generated fingerings to fingerings
created by a guitar expert, counting the matching fingered position 3-tuples as the quality measure. Across
all pieces, 90.61 % of 3-tuples matched those from the reference fingering. The guitar expert was also
asked to provide feedback to the generated fingering. He criticized certain sections which were playable
from a biomechanical standpoint but were unfavorable to performers. The opposite case appeared as well
with the expert sometimes preferring difficult fingerings over easier ones. Radicioni et al. explain this
phenomenon by the omitted modeling of the cognitive aspects of guitar play in their approach.

While the concept behind the presented cost function appears promising, its implementation features
many parameters. This is negligible if a sufficient amount of training data is available or if extensive
parameter search is conducted to find a reliable parameter set. However, Radicioni et al. neither apply
a well-founded learning strategy nor tell details about their reference data used for experimentation.
Additionally, the size of the test set is relatively low. As a consequence, the results of the presented cost
function could vary in quality depending on the parameter set or the pieces for which fingerings are
generated.

Modeling advanced polyphony
Combining their previous work, Radicioni et al. [19] present a path-based approach to the guitar

fingering problem with the intent of supporting any given guitar piece. In addition to supporting melodies
and chords they aim to support melodies accompanied by chords as well.

The first step of their approach is to automatically categorize passages of a piece into one of the
categories MEL, CHO or MIX (melody, chord or a mixture of both). MEL and CHO passages are defined as a
sequence of non-overlapping notes and respectively as a set of held notes starting and stopping together.
A MIX passage needs to conform to both MEL and CHO with the added limitation that the melody must lie
temporally within the start and end of the held notes. This limitation keeps the approach from supporting
any piece because chords with notes starting or ending at different times (Radicioni et al. call these
"polyphonic textures") are left out.

Their second step is to generate a layered graph from the categorized passages. MEL and CHO are dealt
with as described in their previous work ([20] and [22]). When playing a MIX passage, the strings of the
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held notes need to be kept depressed while the melody notes are played. Therefore, a preliminary step to
handling MIX passages is to generate all fingerings of the held notes in the same way it is done for chords.
Each one of the held note fingerings is then used as a prerequisite constraint for generating matching
melody fingerings. The fingerings of the held notes and each of their melodies are added to the layered
graph as subgraphs.

Their third step is to generate the optimal fingering using the cost function described in [20] and a
dynamic programming algorithm for inference on the layered graph. After describing their approach, they
prove that the algorithmic complexity of this approach lies in O (n) given a piece of n events (an event
being the start or end of a note).

The approach was evaluated similarly to their previous paper covering chords [21], meaning a com-
parison between generated fingerings and fingerings from a guitar expert is run. Their test set consists
of excerpts of six guitar pieces of which three were already tested in [21]. For each kind of passage,
two representative test pieces were chosen. An accuracy of 86.18 % was achieved on the individual
fingered positions; less than in their previous paper. Radicioni et al. trace this deterioration in quality
back to the performance achieved on MIX passages for which their system performs worse than for MEL
and CHO passages. The overall accuracy reaches 97.50 % when finger assignments are excluded from
comparisons, i. e. when comparing only fretboard positions. Radicioni et al. conclude that their strategy
for the guitar fingering problem is appropriate based on these numbers. Future work may incorporate
tempo information and physical dimensions of a performer and the instrument to correct shortcomings in
the cost function.

Radicioni et al. succeed in modeling a common pattern to many guitar pieces for path-based approaches,
widening their scope of applicability. The only passages left unsupported are polyphonic textures.

The number of test pieces is still relatively low compared to what one would expect for an evaluation of
a complex system. Because the work of this paper depends on the cost function described in [21], the
same comments apply.

Incorporating tempo information in the cost function
Hori et al. [9] reformulate the guitar fingering problem for the use with hidden markov models (HMM)

and introduce a cost function which includes the duration between notes. Their system is catered to
beginners at guitar playing.

A HMM is a probabilistic graphical model defined by a set of output symbols, a set of states (called
hidden states), the transition probabilities between them, their initial probabilities and for each state and
each symbol a probability how likely it is that a certain state emits a certain output symbol [18]. The
decoding problem (the inference mechanism for HMMs) involves finding the sequence of hidden states
which is most likely to emit a given sequence of observed output symbols. A transition between two states
depends only on those two states without influence of states or symbols encountered earlier, meaning the
Viterbi algorithm can be used for the inference task. HMMs are usually trained using known sequences of
hidden states and output symbols. More details on the matter can be found in [3, 12, 18].

Hori et al. [9] restrict their approach to guitar pieces which can be expressed as a sequence of chords.
Similar to the definition of CHO passages by Radicioni et al. [20], every note of a chord must start and end
at the same time. Hori et al. coin the term form for all fingered positions simultaneously played by the
left hand. The guitar fingering problem is mapped to HMMs by associating forms with hidden states and
chords with output symbols. This way, finding the most likely sequence of hidden states results in the
most likely sequence of forms which emit the chords of a piece. The transition probabilities between states
encode the difficulty of transitioning between forms and the difficulty of the destination form. Which form
creates which chord is established through the emission probabilities of the states. There is no mention of
how the forms themselves are generated or if a layered graph is used internally to reduce the problem
size. It is stated however that the HMM "has a huge number of hidden states" [9, p. 3] which leads one to
assume that no simplifications were implemented.
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In line with the work of other authors, Hori et al. define the state transition probabilities manually.
Hand movement along the fretboard is modeled by a Laplace distribution whose variance is proportional
to the time interval available for the movement. This term is multiplied by three other terms which
represent the difficulty of the destination form, namely its fretwise span, the number of fingers involved
in the form and the fret in which the index finger resides (to penalize playing in higher frets).

A qualitative comparison was conducted between the results of the HMM approach and two instances
of tablature editing software with capabilities of generating fingerings. The HMM approach fared better
than the competitors on two scales and a short polyphonic piece by using open strings more efficiently
and generally requiring less movement of the left hand. The consistency of the fingerings to published
sheet music was not analyzed.

The approach presented by Hori et al. differs from previous path-based approaches in several areas.
Instead of employing a custom graph or inference technique Hori et al. resort to HMMs. They refrain from
modeling transitions of individual fingers and instead resort to characterizing basic attributes of forms.
This decision results in a concise definition of the state transition probabilities free from assumptions and
experimentally determined constants. Unfortunately, the results of Hori et al. are incomparable to the
results of other authors due to different evaluation techniques.

3.2 Evolutionary Approaches

Solutions to the guitar fingering problem based on genetic algorithms were presented by Rutherford [24],
Tuohy et al. [31], and Tuohy et al. [33]. Their works are summarized in abridged form with a focus on
their results and relevant aspects to path-based approaches.

Genetic algorithms are a technique for finding optimal solutions according to a non-convex cost
function in a large search space. Optimization starts with a random population, i. e. a set of valid but
unoptimized solutions. One evolutionary step involves calculating the quality of every solution by means
of a "fitness function" and afterwards recombining the solutions among each other. An optimization
across the population is achieved by using better solutions more often in the recombination process. The
evolutionary step is repeated for a fixed number of iterations or until the improvements after each step
stagnate. See [4] for more details on evolutionary algorithms.

Compared to path-based approaches, genetic algorithms have the advantage of optimizing solutions as
a whole instead of optimizing smaller parts. This provides a greater flexibility for the definition of the cost
function (resp. the fitness function). Disadvantages include the high number of iterations necessary until
the algorithm converges to good solutions [24]. Many parameters such as the size of the population, the
number of iterations and the recombination strategy are problem-dependent and need to be optimized
separately.

The basic concept
Tuohy et al. [33] are the first to apply genetic algorithms (GA) to the guitar fingering problem. The

mapping of the guitar fingering problem to GAs is straight-forward with several fingerings constituting
a population. Contrary to path-based approaches, no independence assumptions between neighboring
nodes need to be established. Tuohy et al. [33] examine only a subproblem of the guitar fingering problem,
namely the assignment of fretboard positions to notes – fingers are abstracted from in their approach.
The fitness function is influenced by the work of Heijink et al. [7] and consists of factors characterizing
the difficulties of hand movement and hand manipulation. Included factors are the number of notes
played as open strings, the fret distance between neighboring notes/chords and a factor penalizing index
finger barre chords. It is not stated how barre chords were penalized without modeling fingers. Detailed
information is given on the implementation of the recombination strategy and the manually chosen
parameters for the GA.
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Tuohy et al. discuss the quality of their results for 20 guitar pieces in comparison to published tablature
and the generated tablature of a commercial tablature editor. Whereas the commercial software regularly
generates uncomfortable or unplayable tablature, their approach mostly generated tablature close to
the published reference tablature. For this reason, Tuohy et al. consider their presented approach to be
successful.

Fitness function improvements and support for finger assignments
Tuohy et al. [31] refine their work by employing a distributed genetic algorithm (DGA) and by learning

the weights of the fitness function by meta optimization. They also present a separate approach for
assigning fingers to fretboard positions.

Each piece processed by their GA is manually segmented into "logical phrases" which are assumed
to have no influence on each other. Following the elaboration of their DGA, baseline tabulatures are
established by running a hand-tuned DGA on "eleven different musical excerpts" [31, p. 5]. The fitness
function is comprised of 14 individually weighted factors for biomechanical and cognitive aspects of guitar
play, again without explicitly modeling fingers or distances between them. The weights of the fitness
function were meta optimized by a GA with reference to excerpts of 30 guitar pieces with known fretboard
positions. The parameters of the DGA used for finding fretboard positions were also meta optimized on 11
excerpts. The composition of the datasets is not specified. Fingers are assigned to fretboard positions in a
separate process by an artificial neural network (ANN) with 59 input variables and 4 output variables.

ANNs are a machine learning technique inspired by the biological neural networks found in nature
[3]. An ANN consists of neurons which receive binary or real-valued messages from other neurons as an
input. The sum of those messages is inserted into an activation function which determines the value of the
output message sent to other neurons. Every input received from another neuron is associated with a
weighting factor. The most common architecture of ANNs are multilayer perceptrons which feature one
layer of input neurons, one layer of output neurons and a varying amount of hidden layers in between.
The neurons are connected to each other layer by layer. As soon as input values are supplied to the
neurons of the input layer, messages propagate through the ANN until neurons of the output layer return
their messages. ANNs are trained by adjusting the weights of the neuron connections to training data for
which the values of input and output neurons are known. More information on ANNs can be found in
Bishop [3].

The input variables are explained in detail. They cover the fretboard position of a single note and
information on the positions of surrounding notes. The four output variables represent the four fingers
of the left hand used for playing the guitar. Finding the finger best suited for a note is achieved by
feeding the input values of the note into the network and observing the output variable with the highest
value. The ANN was trained and tested on 30 pieces with fingerings taken from classtab.org1), totalling
6800 notes. Tuohy et al. employ another meta GA to select the most significant of the 59 input variables
(amongst other ANN parameters). 70 % of the notes in the dataset went into training the ANN while 15 %
served as a reference for assessing the fitness of the ANN. The remaining 15 % constitute the test set. No
information is given on the outcome of this optimization.

Tuohy et al. analyze the accuracy of their DGA for fretboard positions by counting the number of
times the previously established baseline solution was found within ten runs. The DGA outperforms their
previously published GA with 74.7 % accuracy compared to 40 % accuracy.

The DGA achieved an accuracy of 91.1 % "on [their] test set" [31, p. 9] when comparing fretboard
positions for consistency. Tuohy et al. report no significant increase in tablature difficulty for mismatching
fretboard positions. The accuracy of the ANN for assigning fingers to fretboard positions was 80.6 % on
the 15 % of the dataset put aside earlier. Tuohy et al. comment on the 90.61 % accuracy achieved by
Radicioni et al. [21] stating that the chosen guitar pieces are easy cases for generating tablature. Their

1) http://www.classtab.org, a moderated library of classical guitar tablature anyone can contribute to

11

http://www.classtab.org


DGA scored 98.9 % accuracy on the same pieces which Tuohy et al. regard as a confirmation of the quality
of their approach.

Tuohy et al. [31] are the first to include a direct comparison to the results of another author, establishing
a ranking in the otherwise incomparable results of previous literature. Valuable information was omitted
in some areas, such as the optimized selection of input variables for the ANN or the composition of the
various datasets cited throughout. It remains unclear which dataset was used for the final evaluation of
the DGA and why the DGA and the ANN were evaluated on different datasets. A detailed description
of the data would have benefited the comparability of the approach, especially since its results are so
encouraging by the numbers.

3.3 Neural-Based Approaches

Tuohy et al. [32] present another approach using neural networks, where the network generates fretboard
positions instead of assigning fingers.

Their network features 64 inputs and 20 outputs which are covered in detail. The information fed into
the network is based on a single note, on preceding notes for which the fretboard position was already
determined and on characteristics of succeeding notes. Each network output corresponds to a fret on the
guitar. Once the relevant information on a note is fed into the network, an approximate fret position can
be read from the network outputs. Tuohy et al. then determine an exact fretboard position by finding the
nearest position to the approximate fret creating the note.

The training data for the network initially consisted of 75 excerpts of guitar tablature taken from
classtab.org. As a measure to filter out noisy training data and irrelevant input states, Tuohy et al. decided
to employ meta optimization to select a subset of 65 excerpts and the subset of the input states which,
when used for training an ANN, result in the best accuracy on an independent test set. As in their previous
work, genetic algorithms are used for this purpose. Neither the source and composition of the independent
test set nor the selected network inputs are reported. However, the 65 excerpts were uploaded to the
author’s website.

Because the ANN occasionally misplaces notes Tuohy et al. introduce a second pass over the generated
tablature to correct obvious mistakes. The correction pass repurposes their GA fitness function from [31].

Tuohy et al. evaluate their ANN (trained on the 65 most significant excerpts) on the same 65 excerpts,
reaching an accuracy of 91.4 % when comparing fretboard positions for consistency. The accuracy after
applying the correction pass is 91.1 %. Their GA approach from [31] achieves 86.9 % accuracy on the
same data. The runtime of their algorithms is stated briefly. Generating tablature for a short excerpt
(which is included in the paper) takes 5.7 s with their GA and 55.6 ms with the ANN. No information is
included on the system used to obtain these measurements.

Since their GA and ANN approaches rely only on tablature, Tuohy et al. expect an improvement in
accuracy once tempo and note duration are included in the calculations.

Tuohy et al. present an ANN solution to (a simplified version of) the guitar fingering problem with a
reportedly high accuracy. It must be noted however, that the ANN was tested on the training data which
severely affects the significance of the presented results. Tuohy et al. are the first to provide the full
dataset used for their research. The accuracy of their GA on this dataset was used as a baseline in this
thesis.
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3.4 Summary

Many different algorithms have been applied to the guitar fingering problem over the years, each with
their own advantages and disadvantages. Path-based approaches are efficient at finding fingerings but
suffer from the locality of their cost function introduced by the necessary independence assumption
between notes. Evolutionary approaches remedy the cost function weakness but require many iterations
even for short pieces. Artificial neural networks were applied, solving either only a subproblem or
generating fingerings of uncertain quality.

One can hardly single out an approach as being the best among the presented work due to the
heterogenous problem formulations, data sources and evaluation techniques employed. By the numbers,
the works of Tuohy et al. [31] create the best fingerings, but on an unknown test set. No extensive
evaluation with more than three guitar experts has yet been conducted to judge the artistic quality of
generated fingerings.

Most of the difficulty aspects described in section 2.5 were addressed, albeit in an abstract sense: Until
now, distances on the guitar were always modeled as fret distances instead of true metric distances and
force was only implicitly represented by difficulty factors instead of assigning difficulty to exerting a
certain amount of force. Knowledge on tempo and note durations was so far only incorporated by Hori
et al. [9].

In conclusion, the guitar fingering problem cannot be considered as being entirely researched yet and
offers room for investigations or improvements in several areas.

3.5 Thesis Goals

The goal of this thesis is to expand the capabilities of path-based approaches to solve the guitar fingering
problem by

• lifting the restriction of path-based approaches only being applicable to specifically structured guitar
pieces (such as melodies or chord sequences) and by

• experimenting with including the physical dimensions of guitars and guitarists in the cost function.

Furthermore, the approach should take advantage of note values and the tempo of a piece.

Linear-chain conditional random fields were chosen as the underlying model because

• they offer features as modular cost function components whose individual weight can be optimized
to fit labeled training data, and because

• the cost function components have access to more knowledge than is available for the definition of
the state transition probabilities in HMMs.

Throughout this thesis, a focus is laid on reproducibility and attention to details, since from the personal
opinion of the author, these aspects are neglected in other publications.
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4 Linear-Chain Conditional Random Fields

This chapter serves as a short summary of linear-chain conditional random fields based on the introduction
on the topic written by Klinger et al. [12]. A full explanation can be found in their paper.

Notation

Sets: Sets are written in all capital letters. The size of a set Y is expressed as |Y |. The empty set is
written as ;.
Vectors: Unless specified otherwise, a vector consisting of elements y ∈ Y is written as ~y . Access to the
i-th item of a vector is written as ~yi.

Named tuples: Given a set of tuples T = { (a, b) | a ∈ A, b ∈ B } for any given sets A, B, access to the
a-component of a tuple t ∈ T is written as a(t).

Variable names: Variable names are chosen to be consistent with published literature where possible,
especially for the topic of conditional random fields.

4.1 Definition

Conditional random fields (CRFs) are a type of probabilistic graphical model initially described by Lafferty
et al. [13].

Probabilistic graphical models consist of a set of nodes and edges, where nodes represent random
variables whose dependencies to other variables are indicated by edges between the nodes [12, p. 10].
Two nodes not connected by an edge represent conditional independence between the random variables
[12, p. 10]. Two random variables a and b are conditionally independent iff p(a,b|c) = p(a|c) · p(b|c) for
any other random variable c [12, p. 10]. Consequently, the layout of the graph represents independence
properties of the probability distribution defined by its random variables, hence the name independency
graph [12, pp. 10–11].

CRFs model the probability p(~y|~x) for several labels (or outputs) ~y = (y1, y2, . . . , yn) ∈ Yn and
corresponding observations (or inputs) ~x = (x1, x2, . . . , xn) ∈ Xn where Y is called label alphabet and X is
the set of observations [12, p. 14]. In the case of linear-chain CRFs, the output variables are arranged as a
linear chain in the independency graph (see figure 6), meaning the output variables represent a sequence
[12, p. 15].

y1 y2 y3

...

yn

~x

Figure 6.: Independency graph of a linear-chain CRF – the variables ~x are shaded because their values are
known (adapted from Klinger et al. [12, figure 6 (a)])
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The independency graph conveys the fact the linear-chain CRFs adhere to the first-order Markov
assumption: Any output variable yt depends only on the immediate predecessor yt−1 and ~x but is
independent from the output variables yt−2, yt−3, . . . , y1.

Linear-chain CRFs can be used to find the most likely label sequence ~y∗ to a given observation
sequence ~x [12, p. 19]. More formally, this corresponds to finding ~y∗ = argmax~y∈Y p(~y|~x ,M) for a given
linear-chain CRF M, an observation sequence ~x and the set of all possible label sequences Y .

The probability of ~y given ~x with |~y|= |~x |= n+ 1 is defined as [12, Eq. 39, 44, 42]:
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Z~λ(~x) normalizes the term by summing over Y and is defined as [12, Eq. 40, 43]:
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fi ∈ F are problem-specific feature functions which establish the connection between labels and
observations. Arguments to a feature function are two subsequent labels y j−1, y j from ~y, the entire
observation sequence ~x and the current position within the sequence j. This stands in contrast to HMMs
which have only access to y j, y j−1 and ~x j to define the state transition probabilities. A CRF of higher
order would provide the feature functions with a longer history of labels [12, p. 19]. Feature functions
need not to conform to a specific co-domain because the enclosing exponentiation ensures the positivity
of the whole term [12, p. 13].

Each feature function fi is weighted by an individual factor λi. Finding the optimal weighting ~λ∗ is the
main training task of CRFs [12, p. 19].
Y depends on the problem and can be any subset of Yn.

A linear-chain CRF can be represented by a stochastic finite state automaton (SFSA, alternatively called
probabilistic automaton [15]) [12, p. 18]. An SFSA is comprised of a set of states S, a subset of initial
states and directed edges T ⊆ S × S. Edges are associated with a transition probability ps,s′(σ) depending
on the two states s, s′ ∈ S connected and an additional input value σ ∈ Σ[15, p. 5][12, p. 18].

For linear-chain CRFs, each state sy ∈ S of the automaton represents a label y of the label alphabet
Y [12, p. 18]. The set of initial states can be chosen freely depending on the problem. An edge s→ s′

specifies that the label y ′ may follow y . For the transition probabilities, ~x takes the role of σ, resulting in:

ps,s′(σ) =
Ψ j(~x , s, s′)

∑

s′′∈S Ψ j(~x , s, s′′)
=

exp
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4.2 Inference

The most likely output sequence ~y∗ = argmax~y∈Y p(~y|~x ,M) for a given linear-chain CRF M, an observa-
tion sequence ~x and the set of all possible label sequences Y can be computed efficiently with the Viterbi
algorithm [12, p. 23] commonly used for HMMs [18].
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Instead of finding ~y∗ by exhaustive search over all y ∈ Y , the Viterbi algorithm employs dynamic
programming, i. e. it reuses partial solutions to reduce the number of computation steps necessary to find
a solution.

An observation sequence ~x of n elements requires n iterations. In each iteration j ∈ [1,n] the maximum
achievable score δ j(s′) of a path through the SFSA ending at s′ ∈ S is computed. Because transitions
s→ s′ in SFSAs are independent of the history of previous states, δ j(s′) can be computed as the maximum
over s ∈ S of the score δ j−1(s) of the immediate predecessor state s times the score Ψ j(~x , s, s′). Another set
of variables ψ j(s′) keeps track of the respective predecessor state s which is responsible for the maximum
score stored in δ j(s′). Once the algorithm has reached δn(s′) the most likely state sequence can be
retrieved by following the best predecessors stored in ψ j(s′).

Technically, the values δ j(s′) are not probabilities because the results of Ψ j(~x , s, s′) are not normalized
to [0,1]. It is legitimate to omit the normalization because it has no influence on finding the most likely
output sequence.

The algorithmic complexity of the Viterbi algorithm is O (|S|2 · n) [12, p. 23].
Given that all labels y ∈Y may follow each other and given S as the set of start states, the exact steps

of the algorithm are [12, p. 24][18, p. 8]:

1. Initialization with the dummy start state ⊥:

∀s′ ∈ S: δ1(s
′) = Ψ1(~x ,⊥, s′)

ψ1(s
′) =⊥

2. Recursion for j = 2, . . . , n:

∀s′ ∈ S: δ j(s
′) =max

s∈S
δ j−1(s) ·Ψ j(~x , s, s′)

ψ j(s
′) = argmax

s∈S
δ j−1(s) ·Ψ j(~x , s, s′)

3. Termination:

~y∗n = argmax
s∈S

δn(s)

4. State sequence backtracking for j = n− 1, n− 2, . . . , 1:

~y∗j =ψ j+1(~y
∗
j+1)

Its mode of operation can be shown in a trellis diagram (or lattice diagram [3]) as depicted in figure 7.

4.3 Training

The optimal feature weights ~λ of a linear-chain CRF are determined by maximum likelihood estimation.
The log-likelihood L is maximized on labeled observation sequences T with respect to ~λ [12, p. 19]:

L(T ) =
∑

(~x ,~y)∈T
log p(~y|~x)

Overfitting1) is avoided by regularization, i. e. by adding a penalty term to L(T ) [3, p. 10]. The term
used for linear-chain CRFs is [12, pp. 19–20]

−
m
∑

i=1

λ2
i

2σ2

1) A model adjusting so well to the training data that its performance on unseen data suffers [35, p. 145].
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⊥

1 j − 1 j n

s1 · · · s1 s1 · · · s1

s2 · · · s2 s2 · · · s2

...
...

...
...

s|S| · · · s|S| s|S| · · · s|S|

~x1 · · · ~x j−1 ~x j · · · ~xn

δ j−1(s1) ·Ψ j(~x , s1, s1)

δ j−1(s2)
·Ψ j(~x

, s2, s1)

δ j−1
(s |S
|)
·Ψ j(
~x ,

s |S|
, s 1
)

δ j(s1) =max(·, ·, ·)
ψ j(s1) = argmax(·, ·, ·)

Figure 7.: Trellis diagram visualizing the recursion step of the Viterbi algorithm (adapted from Klinger
et al. [12, figure 9])

and prevents features from dominating the calculation by penalizing high weights. The influence of the
penalty term increases the lower σ2 is chosen [12, p. 20]. Note that feature functions of homogenous
co-domain are a prerequisite for this penalty term to operate correctly because otherwise, a high value λi
would not necessarily imply a high impact of the feature fi.

In the following, only the most important aspects regarding the training of a CRF are outlined, refer to
Klinger et al. [12] for details.

The derivation of L is elaborated in section 4.2.1. of Klinger et al. [12]. ∂L
∂ ~λ

(including the penalty
term) exhibits only one extremum because it is a concave function. This extremum can be found by
numerical optimization.

Evaluating ∂L
∂ ~λ

during the optimization requires an application of the forward-backward algorithm for
each tuple (~y , ~x) ∈ T [12, p. 22]. The forward-backward algorithm is a dynamic programming algorithm
similar to the Viterbi algorithm used for computing p(y|~x) for all y ∈Y [18]. It relies on the same SFSA
and trellis [18]. Analogous to the Viterbi algorithm, its algorithmic complexity is O (|S|2 · n).
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5 Application of Linear-Chain CRFs on the Guitar Fingering Problem

The problem statement (recapitulated from section 1.1) is to assign a string, fret and finger to each note
of a given guitar piece to obtain an optimal fingering according to a quality measure. A rough description
of the application of CRFs for this purpose is:

• Given a guitar piece, choose the sequence of notes as the observation sequence supplied to the CRF.
• Encode string, fret and finger as the labels of the CRF.
• Provide feature functions which encode the difficulty aspects of guitar playing.
• Compute the most likely label sequence to obtain the optimal fingering of the piece.

The sections of this chapter cover the implementation of this principle in greater detail: Section 5.1
specifies elements of the guitar domain for the use with CRFs. The application of CRFs is first shown for
guitar pieces of one voice in section 5.2. The subsequent section demonstrates the application on pieces
of multiple voices.

5.1 Formal Specification of the Guitar Domain

5.1.1 Basic Definitions

The smallest pitch increment notated in classical music is one semitone. Define the set of pitches P as
P= Z so that a pitch p ∈ P is represented by a number of semitones. The mapping between a pitch and a
value in Z can be chosen arbitrarily: In this thesis, let 0 represent the pitch C0. To improve readability,
pitches are referred to by their names instead of their numerical value in P.

The maximum number of pitches in a chord is restricted by the number of strings of a classical guitar (6
strings). Define a chord as a vector of notes ~p = (p1, . . . ,pc) ∈ Pc for c ∈ [1,6]. Let tu= (p1, . . . , p6) ∈ P6

denote a tuning for a classical guitar where pi is the pitch of the i-th string.
Because classical guitars have 19 frets, a position on the fretboard is defined by a string s ∈ [1,6] and a

fret fr ∈ [0,19]. fr= 0 denotes an open string analogous to guitar tablature. Let fi ∈ [0,4] denote a finger
of the left hand with same semantic as in sheet music and tablature, meaning the index finger is identified
by fi = 1, the middle finger by fi = 2 etc. and fi = 0 is the finger reserved for playing open strings. A
fingered position encodes a finger of the left hand depressing a certain position on the fretboard and is
defined as a 3-tuple 〈s, fr, fi〉 of a string s, a fret fr and a finger fi. This notation matches the notation
chosen by Radicioni et al. [19]. The set of fingered positions is defined as:

POSITIONS=
� 〈s, fr, fi〉

�

� s ∈ [1,6], fr ∈ [0,19], fi ∈ [0,4]∧ fr= 0⇔ fi= 0
	

Analogous to Hori et al. [9], let a form denote the fingering of a single chord defined by a vector of
fingered positions ~pos. A form is consistent to a chord ~p with respect to a tuning tu if the i-th fingered
position produces the i-th pitch of the chord:

consistent( ~pos, ~p, tu)⇔| ~pos|= |~p| ∧ ∀i ∈ �1,|~p|� : tus( ~posi) + fr( ~posi) = ~pi

To conclude: A consistent form ~pos establishes a 1:1 mapping of fingered positions to the pitches of a
chord ~p where the order of the positions follows the order of the pitches inside the chord.
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5.1.2 Definition of Playability

More predicates are necessary to narrow down the subset of forms which are playable for guitarists from
a biomechanical standpoint.

As mentioned in section 3.1, Radicioni et al. [19] already presented an approach for generating playable
forms by the means of a constraint satisfaction problem (CSP). Their CSP supports index finger barre
chords and forms which require stretching of the left hand to reach the positions on the fretboard.
Radicioni et al. [19] describe the constraints in textual form. Both the constraints and the CSP approach
were adapted in this thesis. The following paragraphs explain these constraints in detail and show a
formal definition of how they were implemented.

1. One note per string
A form whose fingered positions are consistent to a chord can only produce the pitches of the chord if

all its positions are located on different strings (obviously only one pitch can be played on one string at a
time) [19]. Given a form ~o, |~o|= c, this can be enforced by:

one_note_per_string(~o)⇐⇒∀i, j ∈ [1,c], i 6= j : s(~oi) 6= s(~o j)

2. Comfortable finger order
When assigning fingers to positions on the fretboard, the anatomical order of the fingers should be

respected so that the fingers do not cross. A finger identified by a higher number than another finger
should be placed in the same fret or in a higher fret [19]. If two fingers are located in the same fret, the
higher finger should be placed on a lower numbered string, i. e. behind the lower finger when seen from
the point of view of the guitarist. This rule can be explained by the the fact that guitarists do not hold
their left hand exactly parallel to the fretboard. Instead, the hand is rotated slightly towards the corpus
of the guitar so that the index finger is oriented at a 45° angle relative to the strings [7]. Placing higher
fingers on higher numbered strings in this posture would otherwise lead to crossed fingers.

Given a form ~o with |~o|= c, this principle can be modeled by:

finger_order(~o)⇐⇒∀i, j ∈ [1,c], i 6= j:
�

fr(~oi)< fr(~o j) =⇒fi(~oi)< fi(~o j)
�

∧
�

fr(~oi) = fr(~o j) =⇒
�

s(~oi)< s(~o j)∧ fi(~oi)≥ fi(~o j)
�

∨
�

s(~oi)> s(~o j)∧ fi(~oi)≤ fi(~o j)
�

�

3. Distances between fingers
Many biomechanially unplayable forms can be ruled out by restricting the total fret span of a form. This

measure is not sufficient on its own because forms of a relatively low fret span can nonetheless include
unplayable distances between certain finger pairs. The distance of how far two fingers can be spread apart
varies between the possible finger pairs [34]. The distance is especially low for the pair of middle and
ring finger [34]. Although it would be possible to model the finger and fretboard distances in metric units,
modeling distances by an integer of frets is computationally more favorable for constraint satisfaction
problems.

Determining the maximum fret spans for each finger pair in the first fret would result in relatively low
values due to the large gaps between frets. These values would falsely ban forms played in higher frets
where the gaps between frets are smaller. As a consequence, the fret spans need to be determined near
or on the corpus. The maximum fret spans implemented in this thesis are based on the values reported
by Radicioni et al. [19] and are shown in table 1. One span was increased because it was found to be
playable in higher frets.
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index (1) middle (2) ring (3) little (4)
little (4) 4 3 1 –
ring (3) 3 1 –

middle (2) 2 –
index (1) –

Table 1.: Maximum permitted number of frets lying between finger pairs (see Radicioni et al. [19, table 1])
– Modifications to the spans used by Radicioni et al. are emphasized.

Given table 1 and a form ~o with |~o|= c, the predicate for the finger distances can be formulated as:

finger_distance(~o)⇐⇒∀i, j ∈ [1,c], i < j:fr(~oi) = 0∨ fr(~o j) = 0 ∨
�

�fr(~oi)− fr(~o j)
�

�≤max_distance
�

fi(~oi), fi(~o j)
�

+ 1

Radicioni et al. [21] reportedly enforced minimum fret spans between finger pairs but do not go into
detail on how they were implemented. The concept of minimum spans was omitted in this thesis because
it was found to be hard to represent without a more sophisticated model of the left hand.

4. Barre chords
Radicioni et al. [19] describe the barre constraint as "all the positions of the barre are on the same fret

and all the other positions in the chord are in higher-numbered frets" [19, Table 1]. This constraint is
decomposed into individual predicates in the following.

Up to this point, no predicate has restricted the number of appearances of each finger yet. Since it
should be possible to play forms with multiple open strings and index finger barre chords, the fingers 0
and 1 should be the only fingers allowed to appear multiple times in a form. Given a form ~o with |~o|= c,
define:

allow_only_index_finger_barre(~o)⇐⇒∀fi ∈ {2,3,4} :¬∃i, j ∈ [1,c], i 6= j : fi(~oi) = fi∧ fi(~o j) = fi

Requiring that all positions of a barre are located in the same fret is equal to banning diagonal barres
(see section 2.4). Apart from the fact that diagonal barres are hard to model (the positions involved have
to be arranged approximately in a line, the line depends on the dimensions of a performer’s finger and
the instrument dimensions, etc.), they are a rare occasion and are therefore negligible to omit. Given a
form ~o with |~o|= c, restrict fingers to one fret by:

no_diagonal_barre(~o)⇐⇒∀i, j ∈ [1,c], i 6= j : fi(~oi) = fi(~o j) =⇒ fr(~oi) = fr(~o j)

The requirement of other positions being located in higher frets was split up in two predicates. Also, an
auxiliary predicate was necessary which states whether a form contains an index finger barre:

is_index_finger_barre(~o)⇐⇒∃i, j ∈ [1,c], i 6= j : fi(~oi) = 1∧ fi(~o j) = 1

The first predicate ensures that any position located on a lower numbered string than a position involved
in a barre has to reside in the same fret or above:

no_lower_frets(~o)⇐⇒∀i, j ∈ [1,c], i 6= j:
�

is_index_finger_barre(~o)∧ fi(~oi) = 1∧ s(~o j)< s(~oi)
�

=⇒ fr(~oi)≤ fr(~o j)

The second predicate bans partially depressed barres. The predicate is defined so that all fingers
involved in a barre fret have to be played by the index finger:

no_partial_barre(~o)⇐⇒∀i, j ∈ [1,c], i 6= j :
�

is_index_finger_barre(~o)∧ fr(~oi) = fr(~o j) ∧
�

fi(~oi) = 1∨ fi(~o j) = 1
�

�

=⇒ fi(~oi) = fi(~o j)
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Combining all barre-related predicates into one yields:

barre(~o)⇐⇒ allow_only_index_finger_barre(~o)∧ no_diagonal_barre(~o) ∧
no_partial_barre(~o)∧ no_lower_frets(~o)

Complete predicate
A form ~pos is considered to be biomechanically playable if the following predicate holds:

playable( ~pos)⇐⇒ one_note_per_string( ~pos)∧ finger_order( ~pos)∧ finger_distance( ~pos)∧ barre( ~pos)

Note that a form ~pos includes only those fingered positions of a barre which contribute to the pitches
of ~p. Other positions on the fretboard may be depressed but are not explicitly included in the form.

Given the above predicate, one can specify the following sets:

PLAYABLE =
�

~pos
�

� ~pos ∈ POSITIONSc, c ∈ [1,6]∧ playable( ~pos)
	

PLAYABLE_CONSISTENT~p,tu =
�

~pos
�

� ~pos ∈ PLAYABLE∧ consistent( ~pos, ~p, tu)
	

5.1.3 Generating Playable Forms

Obtaining the set PLAYABLE_CONSISTENT~p,tu for a given chord and tuning is necessary for the application
of the linear-chain conditional random field covered in the next chapter. To this end, the CSP technique
described by Radicioni et al. [19] was replicated:

Given a chord ~p and a tuning tu, define one triplet of variables 〈s, fr, fi〉 and their allowed domains for
each pitch ~pi. Post the predicates stated above including consistent( ~pos, ~p, tu) as the set of constraints
of the CSP. Each variable assignment which satisfies all constraints represents a playable and consistent
form ~pos ∈ PLAYABLE_CONSISTENT~p,tu. In case ~p is biomechanically unplayable, for example because it
contains one low note and one high note whose only positions lie on different ends of the fretboard, the
constraint satisfaction problem has no solution, meaning PLAYABLE_CONSISTENT~p,tu = ;.

A description of the search algorithms employed to find the solutions of CSPs is skipped here. Details
on the matter can be found directly in the paper by Radicioni et al. [19] or more general in [29].

5.2 Application on Guitar Pieces of One Voice

This section demonstrates how CRFs can be applied to generate optimal fingerings for guitar pieces of one
voice. Pieces of this type consist of a sequence of chords whose notes start and stop together, coinciding
with the type of guitar piece supported by the HMM approach of Hori et al. [9]. Note values and tempo
are abstracted from in this section and are introduced together with the support for guitar pieces of
multiple voices in the next section.

CRF Definition

As described in section 4.1, CRFs are defined on a label alphabet Y and observations X. In the guitar
fingering problem, biomechanically playable forms should be assigned to chords, therefore

Y= PLAYABLE

X= Pc for c ∈ [1,6]
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Given a piece ~x ∈ Xn as a sequence of chords, the possible label sequences are Y = Yn. The set of
consistent fingerings Y~x ,tu ⊆ Y for ~x given a tuning tu ∈ P6 is defined as:

Y~x ,tu =
�

~y
�

� ~y ∈ Y ∧∀ j ∈ [1,n] : consistent(~y j, ~x j, tu)
	

Note that |Y~x ,tu| � |Y | because Y consists of a vast amount of forms which create dissonant chords or
chords of keys not appearing in ~x when played. Invalid fingerings ~y ′ with mismatching forms and chords
originating from Y ′

~x ,tu = Y \Y~x ,tu should be ruled out, meaning p(~y ′|~x) = 0.
To this end, one can formulate a fully connected SFSA with one state sy ∈ S for each biomechanically

playable form y ∈Y. Analogous to the use of output probabilities in the HMM by Hori et al. [9], a CRF
feature fcons checks the consistency between forms and chords:

fcons

�

y j−1, y j, ~x , j
�

=

¨

0 if consistent(y j, ~x j, tu)
−∞ otherwise

Assuming λcons ∈ R+ and given other features fi ∈ F characterizing the difficulty of guitar playing and
their weights ~λ, this leads to:

∀~y ′ ∈ Y ′~x ,tu: p~λ(~y
′|~x) = 1

Z~λ(~x)
· exp

 

n
∑

j=1

�

λcons fcons

�

y j−1, y j, ~x , j
�

+
m
∑

i=1

λi fi

�

y j−1, y j, ~x , j
�

�

!

⇐⇒ =
1

Z~λ(~x)
· exp (−∞)

⇐⇒ = 0

for

Z~λ(~x) =
∑

~y∈Y
exp

 

n
∑

j=1

�

λcons fcons

�

y j−1, y j, ~x , j
�

+
m
∑

i=1

λi fi

�

y j−1, y j, ~x , j
�

�

!

The probability of consistent solutions from Y~x ,tu is not affected.
While this approach works in theory it is not feasible in practice: Computing the number of elements

in Y by counting the number of solutions to the constraint satisfaction problem specifying the elements
of PLAYABLE yields over 250 000 000 solutions. Considering that the algorithmic complexity of both the
forward-backward algorithm for training and the Viterbi algorithm for inference is quadratic in the number
of states, it becomes apparent that working with an SFSA of over 250 000 000 states is not feasible.

Notice however that fingerings from Y ′
~x ,tu do not contribute to the normalization Z~λ because their

exponential term is zero, which means normalizing over Y~x ,tu is equal to normalizing over Y . The optimal
fingering ~y∗ for a piece ~x must be among Y~x ,tu and no fingerings other than the ones found in Y~x ,tu
influence p(~y|~x). Therefore:

∀~y ∈ Y~x ,tu: p~λ(~y|~x) =
1

Z~λ(~x)
· exp

 

n
∑

j=1

m
∑

i=1

λi fi

�

y j−1, y j, ~x , j
�

!

Z~λ(~x) =
∑

~y∈Y~x ,tu

exp

 

n
∑

j=1

m
∑

i=1

λi fi

�

y j−1, y j, ~x , j
�

!

which means that modeling Y~x ,tu for a piece ~x and a tuning tu allows one to find the same optimal
solution ~y∗ on a much smaller set of potential solutions than Y . fcons can be omitted because:

∀~y ∈ Y~x ,tu :∀ j ∈ [1,n] : fcons

�

y j−1, y j, ~x , j
�

= 0
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Modeling Y~x ,tu by an SFSA creates a structure similar to the layered graphs described by Sayegh [25]:
the states of the automaton are structured in layers S j for

S j =
¦

s j,y

�

�

� y ∈ PLAYABLE_CONSISTENT ~x j ,tu

©

with S1 being the designated set of initial states and Sn being the set of final states. If a chord x ∈ X

occurs multiple times throughout ~x , every occurrence is represented by its own layer at the respective
position j in ~x . Edges connect nodes of neighboring layers:

E =
n
⋃

j=2

�

(s j−1,y , s j,y′)
�

� s j−1,y ∈ S j−1, s j,y′ ∈ S j

	

The transition probabilities between states are defined as in section 4.1. Every state sequence between an
initial state and a final state is a playable fingering ~y consistent to ~x with respect to tu. Creating such an
SFSA is simple given a technique for obtaining the sets PLAYABLE_CONSISTENT ~x j ,tu such as the constraint
satisfaction approach described in section 5.1.3. The process of generating a fingering can be canceled
immediately in case ~x contains an unplayable chord x̌ for which PLAYABLE_CONSISTENT x̌ ,tu = ;.

Overall, the reformulation via Y~x ,tu has the following advantages:

• It renders the use of CRFs feasible for the guitar fingering problem by reducing the number of states
to a manageable amount.

• Forms encountered at any step j during the forward-backward or Viterbi algorithm are known to
create the chord ~x j. Contrary to the works of Hori et al. [9], no comparisons are necessary to ensure
consistency between forms and chords. This leaves the CRF features fi ∈ F with the only task of
characterizing the difficulty of guitar playing.

• Any form in a generated fingering is guaranteed to be biomechanically playable.

Inference

Given a linear-chain CRF with features fi ∈ F characterizing the difficulty of playing and transitioning
between forms, their weights ~λ, a guitar tuning tu ∈ P6, find the optimal fingering ~y∗ for a piece of one
voice ~x ∈ Xn:

1. For j = 1, . . . , n, obtain the sets PLAYABLE_CONSISTENT ~x j ,tu for the chords ~x j and tu and create an
SFSA of a layered structure.

2. Find ~y∗ by applying the Viterbi algorithm on the SFSA. In order to exploit the layer structure, the
recursion step is changed to:

∀s′ ∈ S j : δ j(s
′) = max

s∈S j−1
δ j−1(s) ·Ψ j(~x , s, s′)

ψ j(s
′) = argmax

s∈S j−1

δ j−1(s) ·Ψ j(~x , s, s′)

Training

Given a corpus of labeled training data T =
�

(~x , ~y , tu)
�

� ~x ∈ X, ~y ∈Y, tu ∈ P6 ∧ |Y~x ,tu| ≥ 1
	

, features
fi ∈ F characterizing the difficulty of playing and transitioning between forms and the regularization
constant σ2, obtain the optimal feature weights ~λ∗:

1. For each dataset in T , create an SFSA of a layered structure with respect to the dataset’s tuning tu.

2. Employ numerical optimization to maximize the log-likelihood on the training data L(T ) to obtain
~λ∗. Invocations of the forward-backward algorithm run on the respective SFSA for each dataset. A
similar modification to the forward-backward algorithm is necessary to exploit the layer structure.
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5.3 Application on Guitar Pieces of Multiple Voices

Guitar pieces may be notated as consisting of multiple voices, where each voice exhibits notes of different
note values played on different beats. A common example is the separation of melody notes and bass
accompaniment into two voices. The possible ways in which the notes of multiple voices can overlap
include chords, melodies accompanied by chords and polyphonic textures (the CHO and MIX patterns
and the unsupported pattern described by Radicioni et al. [19]). A (somewhat academic) piece of two
voices with accompanied melody and polyphonic textures is shown in figure 8 and is used as an example
throughout this section.        

  
Figure 8.: Example piece of two voices (notated in one staff)

The challenge in generating fingering for pieces of multiple voices is to resolve the dependencies
introduced by the overlapping notes: The assignment of a certain fingered position to a note held for the
duration of one bar could lead to a dead end several notes later because no biomechanically playable
forms remain, given the assignment.

CRF Definition

Before modeling the CRF, the representation of guitar pieces needs to be revised as overlapping notes
cannot be modeled by a sequence of self-contained chords. Instead, notes need to be associated with their
start time and end time within a piece, for which the unit of time can be chosen arbitrarily. In this thesis,
points in time are represented by the elapsed microseconds since the start of a piece.

Another reformulation is necessary before one can specify the observations and labels of the CRF: Given
a piece of multiple voices, flatten the piece to one voice. This allows one to represent the overlapping
notes of multiple voices as a sequence of chords with tied notes, where the notes within each chord are of
the same note value1). The reformulated version of the example piece is shown in figure 9.

       

   

Figure 9.: Example piece flattened from two voices to one voice

The resulting chords are named constant segments in this thesis because they are the segments of a
guitar piece in which the set of currently played notes remains constant. From one segment to the next,
notes supervene, cease or persist. The set of constant segments CS is defined as

CS=
� �

~p, ~tied, tstart, tend

� �

� ~p ∈ Pc, c ∈ [1,6], ~tied ∈ {true, false}c, tstart ∈ N, tend ∈ N
	

1) This does not change the acoustic outcome of a piece: Tied notes are not played another time but are merely a notation
for extending the duration of the previous note.
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with one constant segment cs ∈ CS being a 4-tuple of a list of pitches ~p, a list of truth values ~tied denoting
whether the i-th note of a segment is tied from the previous segment and the points in time tstart, tend.
The constant segments of the example piece are listed in table 2. Forms can be assigned to the pitches of
constant segments the same way they can be assigned to the chords of pieces of one voice.

~p ~tied tstart tend

~x1 =
�

(A3, F]4), (false, false), 0, 375 000
�

~x2 =
�

(C]4, F]4), (false, true), 375 000, 500 000
�

~x3 =
�

(D4, F]4), (false, true), 500 000, 1 000 000
�

~x4 =
�

(G2), (false), 1 250 000, 1 500 000
�

~x5 =
�

(G2, C]4), (true, false), 1 500 000, 2 000 000
�

~x6 =
�

(G2, A3), (true, false), 2 000 000, 2 500 000
�

~x7 =
�

(A3), (true), 2 500 000, 3 000 000
�

Table 2.: Constant segments of the example piece (assuming a tempo of 120 bpm)

The labels and observations of the CRF are therefore defined as

Y= PLAYABLE

X= CS

with the goal of finding the most likely sequence of forms to a piece given as a sequence of constant
segments.

The next task is to model Y~x ,tu by an SFSA which respects the dependencies between constant segments.
If a note is split up across several segments, it must be assigned the same fingered position in every one of
these segments. This can be expressed by a predicate over two subsequent segments ~x j−1, ~x j ∈ CS and
their corresponding forms y ∈ PLAYABLE_CONSISTENT ~x j−1,tu, y ′ ∈ PLAYABLE_CONSISTENT ~x j ,tu defined
as

match(~x j−1, ~x j, y, y ′)⇐⇒∀i ∈ �1,|y ′|� : tied(~x j)i = true=⇒∃k ∈ �1,|y|� : p(~x j−1)k = p(~x j)i ∧ yi = y ′k

In words: For every index i indicating a tied note within ~x j, an index k has to exist which indicates the
same pitch within p(~x j−1). The fingered positions of each tied note, located at i and k in the forms for ~x j
and ~x j−1 respectively, must match.

The process of creating an SFSA starts out with

S1 =
�

s1,y

�

� y ∈ PLAYABLE_CONSISTENT ~x1,tu

	

and continues for j = 2, . . . , n with

S j =
¦

s j,y′
�

�

� y ′ ∈ PLAYABLE_CONSISTENT ~x j ,tu ∧ ∃ s j−1,y ∈ S j−1 : match(~x j−1, ~x , y, y ′)
©

E j−1, j =
�

(s j−1,y , s j,y′)
�

� s j−1,y ∈ S j−1, s j,y′ ∈ S j : match(~x j−1, ~x j, y, y ′)
	

As the SFSA is created, the match predicate is enforced for new states so that any state added to layer S j
is guaranteed to have at least one matching predecessor state from S j−1. However, this procedure cannot
guarantee that at least one matching successor from S j exists for every state in S j−1. States without a
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S1 S2 S3 S4 S5 S6 S7

〈3, 2,1〉
〈1, 2,2〉

〈2,2, 1〉
〈1,2,2〉

〈3, 2,1〉
〈1, 2,1〉

〈2,2, 1〉
〈1,2,1〉

〈2, 3,2〉
〈1,2,1〉

〈4, 7,1〉
〈2, 7,2〉

〈3,6, 1〉
〈2,7,2〉

〈3, 7,1〉
〈2,7,2〉 〈6,3, 1〉 〈6,3,1〉

〈3, 6,2〉

〈4, 7,1〉
〈2, 7,1〉 〈6,3, 2〉 〈6,3,2〉

〈2, 2,1〉
〈6,3,2〉
〈3,2, 1〉 〈3,2,1〉

〈6, 17,2〉
〈4, 16,1〉

〈5,16, 1〉
〈4,16,1〉

〈5, 17,2〉
〈4,16,1〉

〈5, 12,2〉
〈3, 11,1〉

〈4,11, 1〉
〈3,11,1〉

〈4, 12,2〉
〈3,11,1〉

Figure 10.: Layered SFSA of the example piece including dead ends – emphasized: fingered positions of
tied notes. The SFSA was created for standard tuning and with the omission of ring and little
finger to keep the number of states manageable. Notice how the reason for failure in the
topmost row dates back to a decision taken two segments earlier.

successor correspond to the aforementioned dead ends where no biomechanically playable forms remain.
Figure 10 shows the SFSA of the example piece including several dead ends.

Dead ends can be removed by iterating backwards over the segments Sn−1, . . . , S1 and removing any
state s j,y not connected to any successor s j+1,y′ ∈ S j+1. Once dead ends are removed, all paths through the
SFSA represent consistent and biomechanically playable fingerings for ~x , meaning the SFSA represents
Y~x ,tu.

The SFSA of the example piece after removing the dead ends is shown in figure 11.

Inference and Training

With the knowledge on how to obtain the SFSA for pieces of multiple voices one can turn toward
inference and training. Changing the definition of the observations X requires no major modification to
the procedures given in section 5.2 for pieces of one voice. The features fi ∈ F again characterize the
difficulty of playing and transitioning between forms. The timing information included in the constant
segments can be incorporated in the feature calculations.

An important change regarding the training procedure is the format of the training data which needs
to be supplied in the form of labeled constant segments with timing information. This complicates
the acquisition of training data because in a addition to the reference fingering, a machine-readable
representation of note values is required (for example in the form of a MIDI file). Automatic extraction
of training data from ASCII tablature (as done by Tuohy et al. [32]) is not feasible because there is no
standard way of notating timing information in ASCII tablature.
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S1 S2 S3 S4 S5 S6 S7

〈3, 2,1〉
〈1, 2,1〉

〈2,2, 1〉
〈1,2,1〉

〈2, 3,2〉
〈1,2,1〉

〈4, 7,1〉
〈2, 7,2〉

〈3,6, 1〉
〈2,7,2〉

〈3, 7,1〉
〈2,7,2〉

〈6,3, 2〉 〈6,3,2〉
〈2, 2,1〉

〈6,3,2〉
〈3,2, 1〉 〈3,2,1〉

〈6, 17,2〉
〈4, 16,1〉

〈5,16, 1〉
〈4,16,1〉

〈5, 17,2〉
〈4,16,1〉

〈5, 12,2〉
〈3, 11,1〉

〈4,11, 1〉
〈3,11,1〉

〈4, 12,2〉
〈3,11,1〉

Figure 11.: Final layered SFSA of the example piece without dead ends – emphasized: fingered positions
of tied notes.

5.4 Feature Definitions

Each component of the cost functions found in published literature (e. g. state transition probabilites,
fitness functions or others) can be categorized according to table 3. A component either targets the whole
hand or individual fingers, judges transitions between forms or single forms and, in a broader sense, deals
with the biomechanical or cognitive difficulty of playing the guitar.

Cognitive Biomechanical

Static Transitional

Hand position along
the fretboard

comfort of forms hand movement
between forms

Fingers complexity and
reuse of forms

comfort of forms
and fret position
(w. r. t force)

finger movement
between forms

Table 3.: Categorization of cost function components by body part and difficulty aspects of guitar play

The following sections describe the CRF features implemented in this thesis, grouped by their category.
Beforehand, limitations and aspects applying to all CRF features are stated.

5.4.1 Limitations of CRF Features

Due to the first-order Markov assumption, CRF features are based only on two forms y j−1, y j and the
constant segments of a piece without any context of previous forms. Higher-order difficulty aspects such
as the reuse of forms within a piece cannot be implemented and have to be excluded altogether.

The amount of information available on finger positions available to CRF features is sparse because
forms only model the positions of fingers which actively depress strings. This issue especially affects
features concerning the position of the left hand: As stated in section 2.2, the position of the hand along
the fretboard hinges on the position of the index finger, whose position is estimated if it does not depress
any strings in a form. This estimation fails for forms consisting only of open strings where there are no
fingers available as a reference. In these cases, the hand could be located anywhere on the fretboard.
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Consider the following two examples:

1. A sequence of three forms where the first form is played in the first fret, the second form consists
only of open strings and the third form is played in the first fret again.

2. A sequence of three forms where the first form is played in the first fret, the second form consists
only of open strings and the third form is played in the fifth fret.

In the first example, guitarists would keep their hand positioned in the first fret while playing the
second form. In the second example, a transition from the first to the fifth fret is necessary. Guitarists
would take advantage of the fact that the left hand is not used in the second form by already moving their
hand during the second form, thereby lengthening the time period available for the transition.

The two examples are indistinguishable to a CRF feature which has only access to two forms at once.
The most reasonable way of dealing with this limitation given the forms y j−1 and y j is to assume that the
hand stays in place when y j is a form consisting only of open strings. In case y j−1 was a form consisting
only of open strings, assume that the hand is already positioned in the fret of y j. In the special case
that both y j−1 and y j are only played on open strings, assume again that no hand movement along the
fretboard is necessary.

Common Aspects among CRF Features

Within the scope of the CRF feature definitions, let

frindex : PLAYABLE→ [−2,19]∪◊

denote the function returning the fret of the index finger in a form ~pos ∈ PLAYABLE or, if the index finger
is not active in the form, its estimated fret. ◊ is returned when ~pos consists only of open strings.

Also needed is a function which returns the metric distance between the nut and fret fr, given a scale
length s (see section 2.1). The function is defined as

nut_dist : [−2,19]→ R[mm]

nut_dist(fr) = s ·
�

1− 2−
fr
12

�

for the scale length s = 650 mm of a classical guitar.
Every feature should have the same co-domain so that the regularization operates correctly during

training (see section 4.3). The co-domain [0,1] is the most reasonable choice because of its universal
applicability to other approaches including other probabilistic models such as HMMs. Most features are
based on the hyperbolic function 1

1+x for this reason.

5.4.2 Cognitive Features Targeting the Hand

Fretwise hand position

This feature judges the hand position along the neck in relation to the fret in which the index finger
resides and is adopted from Hori et al. [9]. It penalizes playing in higher frets with regard to the findings
of Heijink et al. [7].

The original formulation found in [9] is:

f
�

y j−1, y j, ~x , j
�

=
1

1+ frindex(y j)
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Hori et al. [9] do not mention the special case of forms consisting only of open strings discussed above.
Apart from this imprecision, the formulation overshoots its target at the lower frets: Because the highest
probability is achieved by frindex(y j) = 0, forms located "in the zeroth fret" are preferred over forms played
in the first fret (see figure 12). Furthermore, playing at fret −1 leads to a division by zero which is also
not addressed by Hori et al.2) These two flaws might not have arisen depending on how the forms were
specified for their HMM.

E2

A2

D3

G3

B3

E4
1 2 3 4

1

(a) index finger located in fret 1

E2

A2

D3

G3

B3

E4
1 2 3 4

2

(b) index finger located in fret 0

Figure 12.: Fretboard charts of forms differing in the location of the index finger

This thesis uses a formulation which mitigates the division by zero and the preference for playing in the
negative fret range:

fhand_fret

�

y j−1, y j, ~x , j
�

=



























1 if frindex(y j) = ◊

1
|frindex(y j)|+ 2

if frindex(y j)≤ 0

1
frindex(y j)

otherwise

As a result, forms consisting only of open strings receive the value 1. The value for forms in the standard
range [1,19] starts with 1 and decreases in hyperbolic fashion with increasing frets. Forms located in the
frets {0,−1,−2} receive the same values as forms in the frets {2,3, 4}.

Hand positioned in the first fret or higher

Even with the removed preference for negative frets (see above), unusual finger assignments for positions
in low frets were observed in test runs. At times, the little finger was assigned to positions in the first fret
without necessity. It was therefore decided to introduce a boolean feature which encodes whether the
hand is positioned in the first fret or higher.

fhand_first

�

y j−1, y j, ~x , j
�

=

¨

1 if frindex(y j) = ◊∨ frindex(y j)≥ 1

0 otherwise

5.4.3 Cognitive Features Targeting the Fingers

Complex forms involving many fingers lead to a higher cognitive effort than forms of few fingers: On the
one hand, guitarists need to memorize a larger number of positions for each finger. On the other hand,
transitions between forms grow more difficult because guitarists need to move the right fingers among
several.3)

2) The authors were not available to discuss this issue.
3) This is opposed to the difficulty of executing the transition, which is of biomechanical nature.
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Number of fingers involved in a form

This feature penalizes forms using many fingers and is adopted from Hori et al. [9] without modifications.
Given a form ~pos ∈ PLAYABLE, define FINGERS ~pos as the set of fingers used in ~pos excluding finger 0 which
is only assigned to open strings.

The feature is defined as:

fnumber_of_fingers

�

y j−1, y j, ~x , j
�

=
1

1+ |FINGERSy j
|

Number of fingers added / moved / removed / changed between two forms

Given two forms ~pos1, ~pos2 ∈ PLAYABLE, define the sets:
ADDED ~pos1, ~pos2

: The set of fingers appearing in ~pos2 but not in ~pos1, excluding finger 0.
REMOVED ~pos1, ~pos2

: The set of fingers appearing in ~pos1 but not in ~pos2, excluding finger 0.
MOVED ~pos1, ~pos2

: The set of fingers appearing in ~pos2 and ~pos1 whose position(s) changed. Keep
in mind that the index finger can play multiple positions by means of a barre
chord.

The features are defined as:

fadded

�

y j−1, y j, ~x , j
�

=
1

1+ |ADDEDy j−1,y j
|

fremoved

�

y j−1, y j, ~x , j
�

=
1

1+ |REMOVEDy j−1,y j
|

fmoved

�

y j−1, y j, ~x , j
�

=
1

1+ |MOVEDy j−1,y j
|

fchanged

�

y j−1, y j, ~x , j
�

=
1

1+ |ADDEDy j−1,y j
|+ |REMOVEDy j−1,y j

|+ |MOVEDy j−1,y j
|
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5.4.4 Static Features Targeting the Hand

Fretwise width of a form

The goal of this feature is to penalize forms with a high fret span. It was adapted from Hori et al. [9]
without modifications.

The fretwise width of a form ~pos ∈ PLAYABLE is returned by the function

width( ~pos) =

¨

0 if frindex( ~pos) = ◊
(maxfr ~pos)− �(minfr ~pos)− 1

�

otherwise

The feature is defined as:

fwidth_fretwise

�

y j−1, y j, ~x , j
�

=
1

1+width(y j)

Metric width of a form

An issue of the previous feature is the fact that it disregards the actual fret spacing found on a guitar: A
form spanning five frets would result in the same value regardless of whether it is played in the first or in
the twelfth fret, even though the lower fret spacing around the twelfth fret renders the latter form more
comfortable to play. This feature is supposed to be an improvement over the previous feature by judging
the width of a form with respect to the fret spacing.

The width of a form is redefined relative to the width of the first fret as:

metric_width( ~pos) =











0 if frindex( ~pos) = ◊

nut_dist(maxfr y j)− nut_dist((minfr y j)− 1)

nut_dist(1)
otherwise

The feature value is computed by

fwidth_metric

�

y j−1, y j, ~x , j
�

=
1

1+metric_width(y j)

Hand stretching feature

The previously described feature comes closer to modeling reality but is still flawed with respect to the
fingers involved in a form. Figure 13 shows two forms which receive the same feature value because
they cover the same frets. Most guitarists would consider the first form to be easier to play because no
stretching is necessary to reach the positions on the fretboard.

A feature judging the comfort of the left hand should therefore respect the fingers assigned to the
positions which affect the width of a form. The hand stretching feature employs the proportion of a
performer’s hand breadth to the metric width of a form for this purpose.

Going back to form (a) in figure 13, the span of the fretboard actually covered by the left hand is the
width of the frets 2, 3 and 4 plus the width of a performer’s index finger. The width of the first fret needs
not to be included because guitarists place their fingers close to the frets [7]4).

4) This is a simplified statement. Heijink et al. [7] report that performers actually divert from this principle the lower the
hand is positioned on the fretboard. It is nonetheless preferable to position the fingers close to the frets to avoid an
unwanted buzzing sound when playing a string.
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E2

A2

D3

G3

B3

E4
1 2 3 4

1

4

(a) no stretching required

E2

A2

D3

G3

B3

E4
1 2 3 4

1

3

(b) stretching required

Figure 13.: Fretboard charts of forms differing with respect to hand stretching

The closest information available on the hand dimensions of guitarists is a study conducted by Wag-
ner [34] covering the variation in hand dimensions across male and female pianists. Wagner’s results
should be roughly comparable. The median of the breadth of the left hand measured at the finger pads is
reported to be 84 mm for male subjects and 76 mm for female subjects. The average breadth of 80 mm
was chosen for computations in this thesis. Measurements on finger breadth are not included in the study.
The breadth of a finger was chosen to be 13 mm, originating from the fret distance found on a classical
guitar.

Using these measurements, the proportion of a performer’s hand breadth to the metric width of the
form (a) in figure 13 becomes:

80 mm
13 mm+ nut_dist(4)− nut_dist(1)

=
80 mm

110.6 mm
= 0.723

The metric width remains the same for the second, more difficult form (b). However, because the index
finger is located in the first fret and the ring finger is located in the fourth fret, three of the four fingers of
the left hand need to cover the same span of 110.6 mm on the fretboard. Consequently, the proportion
should be defined as:

3
4 · 80 mm

13 mm+ nut_dist(4)− nut_dist(1)
=

60 mm
110.6 mm

= 0.542

The generalized formulation of the hand stretching feature, given a hand breadth h and a finger breadth
b is:

fstretch

�

y j−1, y j, ~x , j
�

=















1 if frindex(y j) = ◊

min

�

1;
1
4 ·
�

1+maxfi y j −minfi y j

� · h
b+ nut_dist(maxfr y j)− nut_dist(minfr y j)

�

otherwise

The proportion exceeds 1 for forms using many fingers in few frets. The feature value was capped at 1
to conform to the uniform feature co-domain for these cases.

For the sake of comparability, the hand stretching feature can also be realized in a simplified version
based on distances measured in frets. In this case, the feature judges the proportion between the range of
fingers involved in a form and its fretwise width. Using the width function defined for fwidth_fretwise, the
simplified version is given by:
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fstretch_fretwise

�

y j−1, y j, ~x , j
�

=











1 if frindex(y j) = ◊

min

�

1;
maxfi y j −minfi y j + 1

width(y j)

�

otherwise

5.4.5 Static Features Targeting the Fingers

Maximum number of fingers in a fret

From personal experience, forms with many fingers positioned close to each other within a fret (such as
the A major form depicted in figure 14) can be difficult to play.

E2

A2

D3

G3

B3

E4
1 2 3 4

1

2

3

Figure 14.: Fretboard chart of a common A major form

Forms of this kind can be penalized by a feature which counts the maximum number of fingers occurring
in one fret of a form. This is achieved by the auxiliary function

max_fingers_per_fret( ~pos) = max
fr=1,...,19

| { fi | 〈s, fr, fi〉 ∈ ~pos } |

Using this function, the feature definition is given by:

fmax_fingers

�

y j−1, y j, ~x , j
�

=
1

1+max_fingers_per_fret(y j)

A shortcoming of this formulation is that apart from counting fingers in the same fret, the number of
strings between fingers is not considered. Forms with three fingers in one fret with each finger positioned
one string apart are unjustly penalized.

5.4.6 Transitional Features Targeting the Hand

Hand movement along the fretboard over time (Laplace)

Another feature adopted from the works of Hori et al. [9] is a feature judging the movement of the
left hand along the fretboard. Its general principle was already described in the literature review in
section 3.1.

The cost of hand movements along the fretboard is modeled by a Laplace distribution whose variance
is proportional to the time interval available for the transition. As a result, the Laplace distribution
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approaches the uniform distribution the larger the time interval becomes, meaning far movements are
tolerated if there is enough time available [9].

The formula stated by Hori et al. is:

f
�

y j−1, y j, ~x , j
�

=
1

2∆t(~x , j)
· exp

�−|frindex(y j−1)− frindex(y j)|
∆t(~x , j)

�

The time interval ∆t is defined as the interval between the start of two chords (two constant segments in
the context of this thesis):

∆t(~x , j) = tstart(~x j)− tstart(~x j−1)

Hori et al. [9] make no mention of how forms consisting only of open strings were treated. The unit of
∆t is not reported. Note that the definition of ∆t counts the time in which notes are sustained as being
available for hand movement too, effectively reducing the duration of each note to zero.

Experimentation with the formula revealed that using hundredths of a second as the unit of∆t produces
the best results. The formulation chosen for the hand movement feature based on the Laplace distribution
is:

fhand_laplace

�

y j−1, y j, ~x , j
�

=



















1 if frindex(y j−1) = ◊ ∨
frindex(y j) = ◊

1
2∆t(~x , j)

· exp

�−|frindex(y j−1)− frindex(y j)|
∆t(~x , j)

�

otherwise

for

∆t(~x , j) = tstart(~x j)− tstart(~x j−1)

Hand movement along the fretboard over time (Fitts)

Another approach for judging the difficulty of hand movements over a period of time can be derived from
Fitts’s law.

Fitts’s law is commonly used in the area of human-computer interaction to evaluate pointing actions [5,
6]. It specifies the time necessary to point on a target in relation to the distance to the target and the
target size [5]. The law was expressed by several different formulas over the years [5, 8] of which the
formula closest to the original publication by Fitts [6] was chosen in this thesis. The expected time t is
defined as

t = a+ b · log2

�

2A
W

�

given the initial distance to the target A, the target width W , the initial reaction time a and the index of
performance 1

b . The index of performance is the ratio between the difficulty of a task and the available
time t [6]. Consequently, it increases for larger target distances and lower time periods.

An application of Fitts’s law to the guitar fingering problem was mentioned by Allen et al. [1] but was
not covered in detail. For this feature, the task of moving the left hand along the fretboard to a certain
fret is interpreted as a one-dimensional pointing task with the intent of expressing the difficulty of hand
movements by the index of performance 1

b .
t corresponds to ∆t(~x , j), the time available for moving the hand as defined in the previous feature.

The target distance A is given by:

A=
�

�nut_dist
�

frindex(y j)
�− nut_dist

�

frindex(y j−1)
��

�
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The width of the target W is defined as the size of a fingertip which is again defined as 13 mm, the
smallest fret distance found on a classical guitar.

First, rearrange Fitts’s law to

t = a+ b · log2

�

2A
W

�

⇐⇒ 1
b
=

log2

�

2A
W

�

t − a

Once a guitarist has sufficiently practiced a piece, movements of the left hand become planned actions
instead of reactions. One can therefore set the initial reaction time to a = 0.5)

The index of performance is then inserted into the hyperbolic function 1
1+x to ensure a feature domain

of [0,1]:
1

1+ 1
b

=
1

1+
log2

�

2A
W

�

t

=
t

t + log2

�

2A
W

�

The most suitable unit of t found for the hyperbolic formulation was again hundredths of a second. In
theory, the feature value could exceed 1 for 1

b < 0, which happens if the target distance is less than the
target size, meaning the target is already in reach. Since the fingertip size (the target size) was defined as
the smallest possible fret distance (the minimum possible target distance), this special case cannot occur
in this feature.

The complete definition of the feature is:

fhand_fitts

�

y j−1, y j, ~x , j
�

=







1 if frindex(y j−1) = ◊∨ frindex(y j) = ◊
t

t + log2

�

2A
W

� otherwise

for

∆t(~x , j) = tstart(~x j)− tstart(~x j−1)

A=
�

�nut_dist
�

frindex(y j)
�− nut_dist

�

frindex(y j−1)
��

�

W = 13

An simplified formulation fhand_fitts_fretwise of the feature relying on fretwise distances can be defined by
replacing A and W by

A=
�

�frindex(y j)− frindex(y j−1)
�

�

W = 1

Hand repositioning necessary

This feature is a simple boolean feature which returns 0 whenever the hand needs to move between two
forms. It is defined as:

fhand_reposition

�

y j−1, y j, ~x , j
�

=

¨

1 if frindex(y j−1) 6= ◊∧ frindex(y j−1) = frindex(y j)
0 otherwise

5) Values > 0 could be used to generate suitable fingerings for sight-reading, where a performer plays a piece ad hoc from
sheet music without previously practicing the piece.
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5.4.7 Features Covering Multiple Categories

HMM state transition probability by Hori et al. [9]

A feature computing the state transition probability employed in the works of Hori et al. [9] was
implemented for the sake of comparability. It is defined as a multiplication of several features:

fhmm

�

y j−1, y j, ~x , j
�

= fhand_laplace

�

y j−1, y j, ~x , j
�

· fhand_fret

�

y j−1, y j, ~x , j
�

·
fwidth_fretwise

�

y j−1, y j, ~x , j
�

· fnumber_of_fingers

�

y j−1, y j, ~x , j
�

36



6 Implementation and Feature Selection

6.1 Implementation

The approach to solving the guitar fingering problem presented throughout the previous chapters was
implemented in the Java programming language [16].

The linear-chain CRF was implemented using a publicly available CRF library [26] which was customized
to support the presented layered SFSAs in the forward-backward and Viterbi algorithms.

The constraint satisfaction problem responsible for finding the sets PLAYABLE_CONSISTENT~p,tu was
modeled and solved with the choco-solver library [17], a free and open source library specializing on
constraint programming. Because choco-solver found solutions to the CSPs in satisfactory time running
on the default settings, the settings were left unchanged.

Guitar pieces were supplied to the system in the form of MIDI files. In a MIDI file, each note is encoded
by two events denoting the start and end time within the piece [2]. This representation allows one to
directly segment a guitar piece into constant segments without much preprocessing. Each note in a MIDI
file belongs to a channel, which themselves belong to tracks. Unisons (two or more notes of the same pitch
played in a chord) need to be encoded by playing two notes of the same pitch on different channels or
different tracks. The implementation in this thesis does not differentiate between the channel or track a
note originated from, meaning unisons are not supported. Naturally, a different representation than MIDI
could be used as an input format as long as it provides the notes of a piece with their start and end time.

The reference fingering of each training piece was stored as a CSV file. The contents of such a file are a
reference form for each constant segment of a piece, addressed by the start time of the constant segment
tstart. Guitar tunings of training pieces were represented by serialized Java objects.

Given a set of CRF features, a set of training data (one MIDI file, CSV file and tuning file per piece)
and the dimensions of a guitarist and their instrument, the system returns the corresponding feature
weights ~λ obtained by training the CRF on the data. The best fingering to a guitar piece can be inferred
by providing the piece as a MIDI file along with a guitar tuning, a set of CRF features, their weights ~λ and
the dimensions of performer and instrument. The implemented output modalities for generated fingerings
are ASCII tablature and optionally a CSV file of the above format for further analysis.

Unit tests were employed as a countermeasure against programming mistakes in central components
of the implementation such as the creation of constant segments from MIDI files and the CRF feature
computations.

6.2 Feature Selection

Features of low explanatory power require processing time during inference and training but hardly
contribute to p(~y|~x). It is therefore beneficial to determine the subset of features with high explanatory
power among those listed in section 5.4.

The selection was realized by greedy forward selection. This technique is first explained for the general
case before moving on to its application on the CRF.
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6.2.1 General Selection Procedure

The general procedure for a given collection of features F and labeled data T is [35, p. 292]:

1. Start with an empty feature set F .
2. Estimate the accuracy of each feature set F ∪ { f }, f ∈ F on the training data T .
3. Redefine F as the feature set which achieved the highest estimated accuracy in step 2.
4. Return F if the termination criterion holds, otherwise continue with step 2.

Possible termination criteria include termination once F reaches a certain number of elements or termina-
tion if the accuracy did not increase from one iteration to the next.

The accuracy estimation in step 2 can be realized by k-fold cross validation. Compared to holdout
evaluation, where the accuracy is determined by training and testing a model on designated datasets,
cross validation is more efficient at reusing labeled data [35, p. 149]. This is advantageous since labeled
datasets may be costly to obtain [35, p. 146]. The process is:

1. Randomly divide the training data into k subsets of approximately the same size.
2. Run k iterations where in each iteration, subset number k is put aside as the test set. A model is

trained on the remaining k−1 subsets using the set of features F ∪{ f } and is then evaluated on the
test set.

3. The total accuracy achieved with F ∪ { f } is the average of the k accuracies from step 2.

6.2.2 Composition of the Dataset used for Feature Selection and Training

The labeled dataset consisted of 10 manually selected guitar pieces from classtab.org for which MIDI data
and ASCII tablature with left-hand fingering was available. The pieces were chosen to represent a mixture
of difficulties, tempos, hand positions along the fretboard and styles (more melodic or more chord-like).
The tablatures were created by various authors. One piece consisted of significantly more notes than the
other pieces and was therefore shortened to half its length to reduce its impact on the feature selection.

Smaller mistakes and inconsistencies in the MIDI files and the fingerings were resolved manually:

• Notes in MIDI files were quantized (note start and end times were moved onto the nearest beat)
to eliminate eventual interpretations of the guitarist who recorded the MIDI file and to reduce the
number of constant segments.

• Repetitions without variation were removed since they provide no new knowledge.

• Trill notes missing in MIDI files were added with a note value of one quarter of the following note.

• Obvious mistakes in MIDI files and the fingerings were fixed. Common mistakes included wrong
notes (wrong with respect to personal assessment and sheet music or videos of professional
performances found online), wrong frets or accidentally interchanged finger assignments in the
tablature.

• Unsupported sections such as chords including unisonos or barre chords played by fingers other than
the index finger were removed or modified to ensure the reference fingering could be generated by
the CRF. Certain held notes in MIDI files had to be shortened to ensure the playability of a piece.

• Certain fingered positions of evidently poor quality were modified based on personal opinion.

The chosen pieces and the detailed modifications made to the pieces are listed in appendix A. In total, the
labeled dataset consisted of 2897 notes.

After applying the above corrections, a preliminary fingering was generated for each piece in the form
of a CSV file. The preliminary fingerings were then manually edited to match the tablature.
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6.2.3 Adaptation of the Selection Procedure

Every feature of those defined in section 5.4 was included in the feature selection except for fhmm because
its values already stem from a selection of several features.

Longer guitar pieces were split up to homogenize the number of notes in each cross validation
fold. Given the lack of higher-order features, the negative consequences of splitting guitar pieces were
considered to be negligible. As a result, 15 parts of pieces of roughly 100 to 300 notes each were obtained.

The feature selection approach consisted of five executions of greedy forward selection where the
accuracy was estimated by means of cross validation.

In each execution, the pseudorandom number generator responsible for dividing the labeled data into
cross validation folds was initialized by a different seed. The division of the data was kept for one entire
run of greedy forward selection. Greedy forward selection was run until adding another feature would
have lead to a reduction in accuracy compared to the last iteration.

The final feature set was derived from the results of the five executions by picking all those features
which were selected in at least two executions.

Cross validation was carried out for k = 5, meaning three parts of guitar pieces per fold. In each
iteration of cross validation, a CRF was trained on a given feature set using σ2 = 10. To estimate the
accuracy of the CRF, a fingering was generated for each piece in the test set which was then compared
note by note to the reference fingering. The accuracy was defined as the percentage of matching fingered
positions (3-tuples of string, fret and finger) between the two. The accuracies were averaged on a per-note
basis across the 5 cross validation iterations. Averaging the accuracies per subset would have assigned a
higher weight to notes belonging to a fold consisting of shorter pieces.

A note on the reliability and appropriateness of determining the accuracy of a generated fingering:
Remember that more than one fingering can be considered optimal for one piece since the optimality
condition is of subjective nature for the guitar fingering problem. Comparing a generated fingering
to one reference fingering gives the false impression of only one "correct" solution. However, even if
multiple optimal fingerings were known for a piece, note by note comparisons could not reward generated
fingerings which are internally consistent but deviate from every reference fingering. The theoretically
best solution to this problem would be to let a representative sample of guitarists evaluate generated
fingerings. This is not a feasible approach, especially not when conducting a feature selection where
several thousand fingerings need to be evaluated. Therefore, despite it being only a rough guidance, the
percentage of matching fingered positions determined by a note by note comparison is the best choice for
a feature selection.

6.2.4 Selection Results

Table 4 shows the features selected in each of the five executions and their accuracy on the labeled data
after each greedy iteration.

iter. feature accuracy

1 fhand_fret 49.22
2 fstretch 56.85
3 fnumber_of_fingers 59.03
4 fhand_first 59.03

(4.1) Execution 1

iter. feature accuracy

1 fhand_fret 49.22
2 fstretch 57.16
3 fnumber_of_fingers 59.37
4 fhand_first 59.37

(4.2) Execution 2

iter. feature accuracy

1 fhand_fret 49.22
2 fstretch 56.85
3 fnumber_of_fingers 59.03
4 fhand_fitts 59.44

(4.3) Execution 3
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iter. feature accuracy

1 fhand_fret 49.22
2 fstretch 57.02
3 fnumber_of_fingers 58.85
4 fmax_fingers 58.96
5 fwidth_fretwise 58.99
6 fhand_fitts 59.41

(4.4) Execution 4

iter. feature accuracy

1 fhand_fret 49.43
2 fstretch 56.68
3 fnumber_of_fingers 59.03

(4.5) Execution 5

Table 4.: Results of the five executions of greedy forward selection

Table 5 lists the final selection of features. The feature set consists of a mixture of features taken from
the categories of cognitive and biomechanical cost function components (see table 3). Transitional and
static features are represented in the selection. A bias towards features concerning the hand can be
observed (4 hand features vs. 1 finger feature).

feature weight λ

fhand_fret 0.4352
fhand_fitts 0.1560
fstretch 0.1411
fnumber_of_fingers 0.1167
fhand_first 0.0316

Table 5.: Final selection of features and their associated weight λi after training the CRF

The final CRF was trained on the full pieces (not the split up versions) using the selected feature set and
σ2 = 10. The weights λ of each feature after training are listed in Table 5. With nearly triple the weight
of the next feature, the weighting of fhand_fret reflects the importance of choosing fretboard positions in
low frets.
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7 Results

The topic of this chapter is to evaluate the CRF approach presented in the previous chapters. The
approach is evaluated by its accuracy in reproducing known fingerings of guitar pieces and by a qualitative
assessment of its generated fingerings.

7.1 Accuracy in Reproducing Known Fingerings

This section covers the accuracy of the CRF in reproducing the fingerings of guitar pieces which were
included in previous evaluations by Radicioni et al. [19] and Tuohy et al. [32].

7.1.1 Datasets

Dataset A: Six Guitar Pieces used by Radicioni et al. [19]

This dataset consists of six guitar pieces from the 19th century [19]. Radicioni et al. chose two repre-
sentative pieces for each class in their categorization of passages (the classes being CHO, MEL, MIX – see
section 3.1). Three of the six pieces were included in shortened form with information on the exact bars
included for each piece.

An inconsistency was found in the description of the dataset: Op. 35 No. 3, written by Fernando Sor, is
reported to be an Andantino belonging to the CHO class. However, No. 3 in this opus is not an Andantino
but a Larghetto1). The Andantino would have been No. 2 in the same opus.2) It is unclear which one of
the two pieces was ultimately included in the dataset as neither of both are particularly chord-like.

The fingerings of the six pieces chosen by Radicioni et al. were completed by an independent guitar
expert and were not made available to the public. Except for the completion of the fingerings and the
shortened pieces, no information on preprocessing steps such as the treatment of repetitions or trill notes
is stated.

The authors were not available to discuss these issues. For this reason, the most likely composition of
the dataset and the preprocessing steps involved had to be deduced from hints on the number of notes in
comparison to sheet music of the pieces found online. The composition which came closest to the reported
number of notes (953 vs. the 948 notes stated by Radicioni et al.) included the Larghetto from Op. 35
No. 3 and removed repetitions and trill notes where applicable. Table 6 shows the deduced composition
of the dataset.

In absence of the original dataset, fingerings for the pieces were completed manually by the author
of this thesis (who has more than 15 years of experience in playing the classical guitar). The basis for
the fingerings was partially fingered sheet music found online. With the exception of one piece, reliable
sources for sheet music were found (see appendix B). The manually completed fingerings were not verified
by an independent guitarist. However, as Radicioni et al. mention themselves, the six pieces "do not
present particular difficulties" which is why "[they] assume that different performers would have provided
substantially similar results" [19, p. 20]. It can therefore be assumed that the fingerings evaluated in
this thesis are reasonably similar to the ones employed by Radicioni et al. [19]. The MIDI files for the
pieces were created to match the exact note values stated in the sheet music. Links to the sheet music
with partial fingerings are listed in appendix B.

1) See page 3 of the sheet music at http://carkiv.musikverk.se/www/boije/Boije_0481.pdf (visited on 03/21/2016)
from the Boije collection, a collection of free classical guitar sheet music.

2) See page 2 in the same PDF.
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Class Composer Title

CHO D. Aguado Estudio No. 3
F. Sor Op. 35 No. 3 Larghetto

MEL M. Carcassi Op. 60 No. 7, bars 1–8
M. Giuliani Op. 50 No. 13

MIX F. Carulli Op. 121 No. 15 Siciliana, bars 1–22
F. Sor Op. 21 No. 6, bars 1–16

Table 6.: The pieces of dataset A grouped by their class (adapted from Radicioni et al. [19, table 6])

Dataset B: Three Guitar Pieces used by Radicioni et al. [21]

Three of the six pieces from dataset A were used by Radicioni et al. [21] to evaluate their previous
path-based approach for generating fingerings which did not yet support MIX passages. The dataset
consists of one piece of each class from dataset A, however with one difference: There is no mention of
any shortening in [21] which lets one assume that the whole pieces were evaluated. Table 7 lists the
composition of this dataset.

Composer Title

D. Aguado Estudio No. 3
M. Carcassi Op. 60 No. 7
F. Carulli Op. 121 No. 15 Siciliana

Table 7.: The pieces of dataset B (adapted from Radicioni et al. [21])

The dataset was included in this thesis despite the similarity to dataset A because accuracies were
reported by Radicioni et al. [21] themselves using their path-based approach as well as by Tuohy et al. [31]
using their genetic algorithm. As mentioned in the literature review in section 3.2, Tuohy et al. consider
the creation of fingerings for this dataset to be "not particularly difficult" because an optimal fingering can
be created by choosing the fretboard position of the lowest fret for most notes [32].

Analogous to their following paper, Radicioni et al. let an independent guitar expert complete the
fingerings but refrained from making them available to the public.

The MIDI files and fingerings were therefore created by the same procedure as for dataset A using the
same sheet music.

Dataset C: Excerpts Taken from classtab.org used by Tuohy et al. [32]

This test set and the associated research were already mentioned in the literature review in section 3.3.
The dataset used in the evaluation by Tuohy et al. [32] consists of 65 excerpts of guitar tablature

(reportedly) taken from the website classtab.org. The dataset and the fingerings generated for each excerpt
were uploaded to the authors website3). The excerpts are represented exclusively by ASCII tablature
without information on note values or tempo. Because Tuohy et al. only analyzed the assignment of
fretboard positions to notes, no finger assignments are present in the dataset. The length of the excerpts
varies between two and six bars.

3) http://www.ai.uga.edu/tuohy/excerpts.html (dead link) – An archived version from 2007 is available at archive.org:
http://web.archive.org/web/20070724175959/http://ai.uga.edu/tuohy/excerpts.html (visited on 03/21/2016)
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The quality of the dataset is mediocre at best. Tuohy et al. rightfully state that they "have no reason to
believe that [their] data are devoid of [irrelevant inputs and noisy training data]" [32, p. 2], however,
major issues could have been easily resolved. The issues found with the dataset are:

• The dataset includes tablature from contemporary artists which are not (and were not at the time)
available on classtab.org.

• One excerpt appears twice in the dataset (Lucy in the Sky with Diamonds by The Beatles).
• Multiple excerpts were mislabeled, in some cases to the point where the original piece was unidenti-

fiable.
• Several of the fingerings are of low quality and were reportedly created by beginners to tablature

creation.

To prepare the dataset for the usage in this thesis, the tablature excerpts were manually transformed
into the previously described CSV format. Each excerpt was complemented by a MIDI representation: The
MIDI files were taken from classtab.org if available, otherwise matching MIDI files were derived from
sheet music found online. In total, 59 of the 65 pieces were prepared for the CRF.

It goes without saying that running the CRF on a dataset enhanced by MIDI files impairs the compa-
rability to the results achieved by Tuohy et al. [32] since the CRF is provided more information on the
dependencies between notes. The dataset was nevertheless included in the evaluation because it is the
only dataset appearing in published literature which contains more than six pieces.

Characteristics of the Datasets

The remark on the characteristics of dataset B by Tuohy et al. [31] becomes apparent when looking at the
occurrence probability of frets in the fingerings, as shown for all datasets in figure 15. All datasets exhibit
a considerable amount of notes played on open strings which can be recognized from the peaks at fret 0.
The peaks at frets 2, 5, 7 and 12 stem from the fretboard positions of important notes belonging to the
keys A and E, in which most guitar pieces are written. Datasets A and B are noticeably skewed towards
the lower frets whereas dataset C and the training dataset are more diverse.

7.1.2 Measures of Accuracy

Two measures of accuracy were employed in accordance with the works of Radicioni et al. and Tuohy
et al.:

〈s, fr, fi〉 Accuracy: The percentage of matching fingered positions when comparing generated fingerings
to reference fingerings note by note (the same accuracy measure employed in the feature selection).

〈s, fr〉 Accuracy: A relaxed version of the above ignoring finger assignments, i. e. the percentage of
matching fretboard positions when comparing generated fingerings to reference fingerings note by
note.

The reasoning behind the second measure is (apart from being able to compare approaches which do
not assign fingers to fretboard positions, such as the genetic algorithm by Tuohy et al. [31]) to reduce
the influence of personal preference on the computed accuracy, since choice of a finger for a fretboard
position is (even) more of subjective nature than the choice of a fretboard position itself. For the reasons
previously stated in section 6.2.3, the significance of both measures should not be overinterpretated.
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(a) Dataset A
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(b) Dataset B
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(c) Dataset C
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(d) Training Dataset

Figure 15.: Relative frequency of frets in the reference fingerings of each dataset

7.1.3 Achieved Accuracy

Table 8 displays the accuracy of the CRF achieved on dataset A in comparison to the reported accuracy of
the path-based approach by Radicioni et al. [19]. The accuracy is presented separately for each class of
pieces and averaged over all classes (weighted by the number of notes of each class). The CRF outperforms
the approach by Radicioni et al. across all classes with respect to finding the reference fretboard positions
but falls behind when finger assignments are taken into account.

〈s, fr, fi〉 Accuracy 〈s, fr〉 Accuracy

Radicioni et al. [19] CRF Radicioni et al. [19] CRF

CHO 88.21 72.14 98.40 99.64
MEL 87.02 85.11 98.25 100.00
MIX 83.31 75.63 95.77 98.49

total 86.18 77.40 97.47 99.27

Table 8.: Accuracy reached on dataset A

Likewise, table 9 shows a comparison of the accuracies achieved on dataset B, including the total
accuracy reported by Tuohy et al. [31] using their genetic algorithm. Tuohy et al. did not report detailed
results for each piece. Again, the CRF prevails for the second accuracy measure, scoring 100 % accuracy
on all three pieces, but deviates more from the reference fingerings once finger assignments are included.

Finally, the performance of the CRF on dataset C is shown in table 10: Despite the additional knowledge
offered by the MIDI files, the CRF performs worse than the genetic algorithm. The second measure was
not evaluated for this dataset, as it does not include finger assignments.
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〈s, fr, fi〉 Accuracy 〈s, fr〉 Accuracy

Radicioni et al. [21] CRF Radicioni et al. [21] Tuohy et al. [31] CRF

D. Aguado – Estudio No. 3 95.75 84.44 100.00 100.00
M. Carcassi – Op. 60 No. 7 87.69 82.53 95.86 100.00
F. Carulli – Op. 121 No. 15 88.41 82.76 97.60 100.00

total 90.61 82.82 97.82 98.90 100.00

Table 9.: Accuracy reached on dataset B

〈s, fr〉 Accuracy

Tuohy et al. [32] (GA) CRF

total 86.90 84.481)

1) obtained on a reduced dataset with in-
formation not available to the GA

Table 10.: Accuracy reached on dataset C
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7.2 Qualitative Assessment from the Viewpoint of a Guitarist

In the following, the quality of four exemplary fingerings is pointed out compared to their reference
fingering.

Dionisio Aguado – Estudio No. 3

Estudio No. 3 by Dionisio Aguado is a study on chords appearing in dataset A and B. Figure 16 shows the
first six bars of the sheet music and reference fingering as well as the fingering generated by the CRF.

(a) Sheet music of the piece

E4|--------|--------|--------|--------|--0--0--|--------|

B3|--1--1--|--0--0--|--3--3--|--1--1--|--1--1--|--3--3--|

G3|--0--0--|--0--0--|--------|--------|--2--2--|--2--2--|

D3|--2--2--|--0--0--|--3--3--|--2--2--|--------|--3-----|

A2|--------|--------|--2--2--|--3--3--|--------|--------|

E2|--------|--------|--------|--------|--------|-----1--|

1 1 4 4 1 1 1 1 4 4

2 2 3 3 2 2 2 2 2 2

2 2 3 3 3 1

(b) Tablature of the reference fingering

E4|--------|--------|--------|--------|--0--0--|--------|

B3|--1--1--|--0--0--|--3--3--|--1--1--|--1--1--|--3--3--|

G3|--0--0--|--0--0--|--------|--------|--2--2--|--2--2--|

D3|--2--2--|--0--0--|--3--3--|--2--2--|--------|--3-----|

A2|--------|--------|--2--2--|--3--3--|--------|--------|

E2|--------|--------|--------|--------|--------|-----1--|

1 1 4 4 1 1 1 1 4 4

4 4 3 3 2 2 4 4 2 2

2 2 4 4 3 1

(c) Tablature of the fingering generated by the CRF

Figure 16.: Fingering comparison of the first six bars from D. Aguado – Estudio No. 3 taken from datasets
A / B – deviations from the reference fingering are highlighted

The fingering generated by the CRF matches the reference fingering exactly with respect to the fretboard
positions. In bars 1 and 5, the CRF chooses unusual finger assignments and places the index and little
finger in neighboring frets, which is a decision guitarists would consider unnecessary and uncomfortable
to play. The deviation in finger assignment in bar 4 is a matter of personal preference.
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Matteo Carcassi – Op. 60 No. 7

Op. 60 No. 7 by Matteo Carcassi is a melodic piece appearing in dataset A and B. The first two bars of
sheet music and fingerings are shown in figure 17.

(a) Sheet music of the piece

E4|-------------------------------------------------|-------1-----------0-----------------------------|

B3|-------------------------------------------------|-------------------------------3-----------1-----|

G3|----2--2--2-----2--2--2-----2--2--2-----2--2--2--|----2-----2-----2-----2-----1-----1-----2-----2--|

D3|-------------------------3-----------2-----------|-0-----------------------------------------------|

A2|-0-----------3-----------------------------------|-------------3-----------2-----------0-----------|

E2|-------------------------------------------------|-------------------------------------------------|

2 2 2 3 2 2 2 4 2 2 2 1 2 2 2 2 1 2 3 2 2 2 1 4 1 3 1 3

(b) Tablature of the reference fingering

E4|-------------------------------------------------|-------1-----------0-----------------------------|

B3|-------------------------------------------------|-------------------------------3-----------1-----|

G3|----2--2--2-----2--2--2-----2--2--2-----2--2--2--|----2-----2-----2-----2-----1-----1-----2-----2--|

D3|-------------------------3-----------2-----------|-0-----------------------------------------------|

A2|-0-----------3-----------------------------------|-------------3-----------2-----------0-----------|

E2|-------------------------------------------------|-------------------------------------------------|

2 2 2 3 2 2 2 3 2 2 2 2 4 4 4 2 1 2 3 2 2 2 1 4 1 2 1 2

(c) Tablature of the fingering generated by the CRF

Figure 17.: Fingering comparison of the first two bars from M. Carcassi – Op. 60 No. 7 taken from datasets
A / B – deviations from the reference fingering are highlighted

Since the piece is supposed to be played allegro (fast), the reference fingering attempts to ease the
transitions between forms. Throughout most of the two bars, the middle finger is placed on the third
string to play A3 while the other fingers are responsible for the melody. Near the end of the second bar,
the idling ring finger takes over the position previously played by the middle finger to avoid having to
move the latter into position in time.

As for the previous piece, the generated fingering matches the fretboard positions of the reference
fingering while the finger assignments deviate for several notes. The generated fingering requires
unnecessary movement of the middle and ring finger in the first bar and misses the opportunity of
choosing the ring finger in the second bar.

Excerpt of The Beatles – Lucy in the Sky with Diamonds

Lucy in the Sky with Diamonds is a well-known song by The Beatles of which an excerpt of four bars was
included in dataset C. The CRF reached a low accuracy of 38.46 % with respect to fretboard positions
compared to the reference tablature. The reference tablature and the tablature generated by Tuohy
et al. [32] as well as the fingering generated by the CRF are shown in figure 18.

The reference fingering suggests to play the notes on alternating strings while keeping the hand
positioned in the 9th fret. Whereas the genetic algorithm roughly produces the reference fingering, the
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(a) Sheet music of the piece

E4|---------12--|------12------|------12------|-----10--9------|

B3|-----10------|----------10--|--------------|------------10--|

G3|--9----------|--12----------|--11------10--|--9-------------|

D3|-------------|--------------|--------------|----------------|

A2|-------------|--------------|--------------|----------------|

E2|-------------|--------------|--------------|----------------|

(b) Tablature of the reference fingering

E4|--0---5--12--|------12------|------12------|-----10--9------|

B3|-------------|---8------10--|---7----------|------------10--|

G3|-------------|--------------|----------10--|--9-------------|

D3|-------------|--------------|--------------|----------------|

A2|-------------|--------------|--------------|----------------|

E2|-------------|--------------|--------------|----------------|

(c) Tablature generated by the genetic algorithm of Tuohy et al. [32]

E4|--0---5--12--|---3--12---5--|---2--12---1--|--0--10--9---5--|

B3|-------------|--------------|--------------|----------------|

G3|-------------|--------------|--------------|----------------|

D3|-------------|--------------|--------------|----------------|

A2|-------------|--------------|--------------|----------------|

E2|-------------|--------------|--------------|----------------|

4 4 3 4 4 2 4 1 4 4 4

(d) Tablature of the fingering generated by the CRF

Figure 18.: Fingering comparison of an excerpt from The Beatles – Lucy in the Sky with Diamonds, taken
from dataset C – deviations from the reference tablature are highlighted4)

CRF places all notes on the first string, thereby requiring a lot of hand movement to play the excerpt.
Although playing multiple notes on one string while moving the hand along the fretboard is justifiable in
some cases, the fingering generated by the CRF is undeniably of poor quality and would be rejected by
any guitarist.

4) The discerning reader will notice that both tablature and sheet music are incorrect in the sense that they do not match
the actual notes of the song. The tablature was taken from the dataset provided by Tuohy et al. [32] without further
modifications. The MIDI was created to match said tablature.
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Excerpt of Leo Brouwer – Omaggio a Debussy

Omaggio a Debussy by Leo Brouwer is a melodic piece which is also included in dataset C. 33.33 % of the
fretboard positions in the fingering created by the CRF match the positions from the reference tablature.
The reference tablature, the tablature generated by Tuohy et al. [32] and fingering created by the CRF
can be found in figure 19.

(a) Sheet music of the piece

E4|--------0--------0--------0--------0--|--------0--------0--------0--------0--|

B3|-----0--------0--------0--------0-----|-----8--------8--------8--------8-----|

G3|--5--------5--------5--------5--------|--5--------5--------5--------5--------|

D3|--------------------------------------|--------------------------------------|

A2|--------------------------------------|--------------------------------------|

E2|--------------------------------------|--------------------------------------|

(b) Tablature of the reference fingering

E4|--------0--------0--------0--------0--|-----3--0-----3--0-----3--0-----3--0--|

B3|--1--0-----1--0-----1--0-----1--0-----|--1--------1--------1--------1--------|

G3|--------------------------------------|--------------------------------------|

D3|--------------------------------------|--------------------------------------|

A2|--------------------------------------|--------------------------------------|

E2|--------------------------------------|--------------------------------------|

(c) Tablature generated by the genetic algorithm of Tuohy et al. [32]

E4|--------0--------0--------0--------0--|-----3--0-----3--0-----3--0-----3--0--|

B3|--1--------1--------1--------1--------|--1--------1--------1--------1--------|

G3|-----4--------4--------4--------4-----|--------------------------------------|

D3|--------------------------------------|--------------------------------------|

A2|--------------------------------------|--------------------------------------|

E2|--------------------------------------|--------------------------------------|

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

(d) Tablature of the fingering generated by the CRF

Figure 19.: Fingering comparison of an excerpt from L. Brouwer – Omaggio a Debussy, taken from dataset
C – deviations from the reference tablature are highlighted

The reference fingering places the notes on alternating strings in a consistent pattern. A guitarist would
take advantage of such a pattern by choosing a right hand fingering strategy where one finger exclusively
plays on one string. One option would be to pluck the third string with the thumb, the second with the
index finger and the first string with the middle finger.

The fingering generated by the CRF follows a similar pattern at first but breaks with the pattern midway
through the excerpt, forcing guitarists to adjust their right hand fingering strategy to a less favorable

49



strategy where the exclusivity between fingers and strings is not given anymore. Contrary to the previous
example piece, the generated fingering is easily playable but is nonetheless unsatisfying for guitarists.

Summary

The perceived quality of the generated fingerings is mixed. Apart from occasional bad decisions, the
choice of fretboard positions for notes is appropriate. The assignment of fingers to fretboard positions is
convincing for cases in which the assignment is dictated by the distances between the fretboard positions,
by the number of notes in a form or by held notes. In any other case, the finger assignments appear
unsystematic.

The biomechanical playability of the individual forms needs no comment as it is guaranteed by the
presented approach.
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8 Discussion

The fingering generated for Op. 60 No. 7 shows weaknesses directly related to the first-order Markov
assumption: The chance of using the ring finger to play A3 near the end of the second bar is missed
because CRF features of first order only have access to two consecutive forms. In this particular case, the
features are given two forms belonging to bass note A2 and the respective note A3 but are unaware of the
role of the middle finger in previous forms.

The Markov assumption has a more serious impact on Lucy in the Sky with Diamonds: The low quality
fingering arises from the Markov assumption in conjunction with the strongly weighted fhand_fret feature
and the lack of a feature penalizing hand movement in the feature set. After each time playing E5 in the
12th fret on the first string, the CRF cannot look back enough notes to realize that it is beneficial to keep
the hand positioned near the corpus. Instead, fhand_fret pulls the hand towards the lower frets without
penalty for the resulting hand movement. The hand eventually needs to be moved towards the corpus
again for playing the next E5 (for which there are no better alternative fretboard positions except for an
even higher position in the 17th fret on the second string).

The genetic algorithm produces a better fingering for this piece because it optimizes the whole fingering
at once, providing the fitness function with the fretboard position of all fingers in each invocation of its
fitness function.

The presented CRF approach was built around the difficulty aspects of guitar play stated in section 2.5,
mainly concerning the actions of the left hand. Actions of the right hand were taken out of the equation
due to their low impact on difficulty.

Consequently, the CRF creates a fingering for Omaggio a Debussy which is easy to play for the left hand
but is not sophisticated enough to convince guitarists due to the lacking respect for actions of the right
hand. The fingering created by the genetic algorithm exhibits the same flaw.

Apart from this issue, the generated fingering for Omaggio a Debussy demonstrates the problem of
evaluating a fingering via note by note comparison to a reference fingerings: The first bar of the fingering
created by the CRF would be accepted by guitarists but receives a low 〈s, fr〉 accuracy of 33 % because
few fretboard positions coincide with the reference fingering. Overall however, the accuracies computed
for the three evaluated datasets reflect the view of a guitarist on the fingerings.

The low 〈s, fr fi〉 accuracy and the observation of unsystematic finger assignments can be traced back to
the lack of features in the feature set which break the tie between equally suited fingers for a fretboard
position. Additionally, no feature is present which penalizes finger movement. The approach by Radicioni
et al. [19] fares better in this respect due to the judgment of comfort spans between finger pairs in its cost
function (which are not covered in detail in their paper).

On the other hand, the high 〈s, fr〉 accuracy on datasets A and B can be explained by the way the
number of viable fretboard positions is restricted for each note. Naturally, the fewer fretboard positions
are possible for one note, the higher the chance of picking the "correct" position chosen in the reference
fingering. Every piece within the datasets A and B exhibits at least one of the following characteristics,
benefiting the creation of fingerings with the presented CRF approach:

1. It contains a large amount of chords with many notes, reducing the size of the sets
PLAYABLE_CONSISTENTx ,tu.

2. It contains notes near the low or high end of the pitch spectrum of a guitar for which few fretboard
positions exist.

3. It contains many sections with held notes which restrict the positions of other notes, creating fewer
links between layers of the SFSA.
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To conclude, the pieces are indeed easier cases to create fingerings for, as claimed by Tuohy et al. [31].
The second trait applies to fewer pieces of dataset C (as reflected in the fret distribution shown in

figure 15c), rendering it more difficult to reach high 〈s, fr〉 accuracies.
To gain a better insight into the performance of the CRF on dataset C, it is helpful to plot the 〈s, fr〉

accuracy broken down by the frets of the reference fingered positions, as shown in figure 20. As an
example, slightly more than 60 % of the notes played in the fifth fret in the reference fingerings were also
assigned a position in the fifth fret by the CRF.
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Figure 20.: 〈s, fr〉 Accuracy on dataset C, broken down by the frets of the reference fingered positions

The plot generally reveals that the accuracy diminishes for higher frets. A 30 % drop in accuracy can be
observed between the fourth and the fifth fret.

Remember that due to the overlapping pitch ranges of a guitar, the fretboard positions of one note on
different strings are mostly five frets apart from each other (see section 2.1), therefore every note in the
reference fingering (except for high notes) played in the fifth fret or above can also be played five frets
lower. The drop in accuracy again demonstrates the tendency of the CRF to choose these lower fretboard
positions over the higher alternatives, influenced by the fhand_fret feature.

Note that despite accuracies of around 50 % for any fret higher than the fifth, the CRF reaches a total
〈s, fr〉 accuracy of 84.48 % due to the prevalence of lower frets in the dataset (see figure 15c).

8.1 Impact of the Feature Set on the Results

This section analyzes the impact of different several feature sets on the accuracy of the CRF and quality of
the generated fingerings.

The feature set obtained by feature selection serves as the baseline. The following feature sets were
chosen for the comparison:

Baseline feature set with fretwise distance computation: To assess the influence of incorporating
knowledge on the physical dimensions of guitar and guitarist, a feature set is chosen which re-
sembles the baseline feature set but replaces the fhand_stretch and fhand_fitts features by their counterparts
based on fretwise distances.

HMM state transition probabilities: A comparison to the HMM approach pursued by Hori et al. [9] is
established by choosing a feature set which consists only of fhmm (see section 5.4.7).

The exact composition of each feature set is listed in table 11.
Table 12 shows the accuracies achieved with each feature set. On datasets A and B, the baseline
〈s, fr〉 accuracy is matched but not surpassed by the other two feature sets. The HMM feature set fares
slightly better on dataset C than the baseline. Regarding the 〈s, fr, fi〉 accuracy measure, the baseline was
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feature weight λ

fhand_fret 0.4352
fhand_fitts 0.1560
fstretch 0.1411
fnumber_of_fingers 0.1167
fhand_first 0.0316

(11.1) Baseline

feature weight λ

fhand_fret 0.3909
fhand_fitts_fretwise 0.3238
fstretch_fretwise 0.1127
fnumber_of_fingers 0.1010
fhand_first 0.0102

(11.2) Fretwise

feature weight λ

fhmm 1.0000

(11.3) HMM

Table 11.: Composition of the three feature sets included in the comparison

Dataset 〈s, fr, fi〉 Accuracy 〈s, fr〉 Accuracy

Baseline Fretwise HMM Baseline Fretwise HMM

Dataset A CHO 72.14 75.71 71.43 99.64 99.29 99.64
MEL 85.11 81.56 78.72 100.00 97.52 99.29
MIX 75.63 76.13 78.89 98.49 94.73 97.24

total 77.40 77.60 76.66 99.27 96.88 98.54

Dataset B D. Aguado – Estudio No. 3 84.44 92.22 80.00 100.00 100.00 100.00
M. Carcassi – Op. 60 No. 7 82.53 77.93 80.92 100.00 97.01 98.62
F. Carulli – Op. 121 No. 15 82.76 81.50 85.89 100.00 96.55 100.00

total 82.82 80.81 82.70 100.00 97.16 99.29

Dataset C total 84.48 80.16 85.04

Table 12.: Accuracies achieved by each feature set on the three datasets – emphasized: accuracies surpass-
ing the accuracy of the baseline feature set

outmatched on two different pieces of dataset B. This is also reflected in the accuracies of dataset A due
to the overlap between the two datasets. The largest improvement over the baseline feature set can be
observed for D. Aguado – Estudio No. 3 with nearly 8 % more matches. This difference is not as significant
as it might appear because the guitar piece in question consists of only 90 notes, meaning the feature set
with fretwise features matches only 7 notes more than the baseline feature set.

Overall, the accuracies are comparable and exhibit no major increase or loss in accuracy. The baseline
feature set utilizing physical dimensions shows no significant improvement but has a slight edge over
the other feature sets with respect to choosing matching fretboard positions. Regarding the quality of
the fingerings, similar observations were made: The generated fingerings of either alternative feature set
exhibited no notable improvements or weaknesses compared to the fingerings generated by the baseline
feature set.
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9 Conclusion and Future Work

This chapter summarizes the approach and the findings of this thesis and provides suggestions for further
research on the topic.

9.1 Conclusion

The topic of this master’s thesis was to extend the capabilities of approaches to the guitar fingering which
are based on finding an optimal path in a graph (path-based approaches).

The aspired extensions were to lift the restriction of path-based approaches being only applicable for
guitar pieces of a special structure (such as melodies or chord sequences) and to investigate the potential
of incorporating physical properties of instrument and performer into the cost function.

A linear-chain conditional random field (CRF) was chosen as the underlying model because of its
beneficial properties for the guitar fingering problem and the above extensions.

The support for guitar pieces of arbitrary structure was realized by automatically dividing a given piece
into segments in which all notes remain constant (constant segments). These segments consist of a chord,
a duration, their time of occurrence in the piece and additional information necessary to identify notes
held across multiple segments.

For each chord inside the segments of a piece, a set of viable chord fingerings (a set of forms) was
generated. To this end, a technique described by Radicioni et al. [21] was adopted. It involves the
formulation of a constraint satisfaction problem whose constraints model principles of guitar play and
biomechanical limitations of the human hand. Given a chord, the set of solutions to such a constraint
satisfaction problem represent the set of viable forms.

These sets of forms were organized in a layered graph in which each layer contains the viable forms
of one constant segment. The concept of layered graphs was necessary to facilitate the use of CRFs for
the guitar fingering problem. To generate a fingering for a guitar piece, the CRF is provided with the
sequence of constant segments and the layered graph derived from the piece.

Several CRF features (components of the cost function) were defined which judge the biomechanical
and cognitive difficulty of guitar playing. Besides features adopted from the cost functions of other
authors, new features incorporating physical properties were defined such as a penalty for forms which
require stretching of the left hand based on the true distances found on a guitar.

The subset of features with the highest explanatory power was determined by feature selection. The
CRF evaluated throughout the rest of the thesis was trained on 10 guitar pieces with known fingerings
using the feature subset just mentioned.

The CRF approach was evaluated on three datasets of guitar pieces with known fingerings which were
previously used in evaluations by Radicioni et al. [19] and Tuohy et al. [32]. From the standpoint of
a guitarist, the fingerings generated by the CRF were mostly appropriate with respect to the fretboard
positions chosen for each note. The quality of the finger assignments was considered to be unsatisfying.

This assessment was reflected in the quantitative comparison between fingerings generated by the CRF
and reference fingerings from the three datasets: The fretboard positions of the generated fingerings
matched the positions of the reference fingerings for 99.27 %, 100.00 % and 84.48 % of all notes in the
respective datasets. Once finger assignments were included in the accuracy measure, the accuracies
dropped to 77.40 % and 82.82 % on the first two datasets (finger assignments were not included in the
third dataset). Due to one strongly weighted feature which preferred positions in lower frets over positions
in higher frets, the CRF reached the highest accuracies for pieces which were played in lower frets.

The mixed quality of the generated fingerings was traced back to the first-order Markov assumption
inherent to the presented CRF approach and other path-based approaches. While the assumption
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guarantees efficient inference, it provides CRF features only with a narrow window of two forms at a time,
which hinders their explanatory power.

Experiments with alternative feature sets revealed that features incorporating physical attributes of
guitar and guitarist led to a slight increase in accuracy without a noticeable improvement in fingering
quality.

To conclude, the presented CRF approach to the guitar fingering problem can be applied to generate
fingerings for any given guitar piece. While it has the potential to create convincing fingerings, it is held
back by modeling only first-order dependencies between forms in its present state.

9.2 Future Work

The presented approach offers many possibilities for experimentation besides the obvious expansion to
higher-order dependencies. Several possibilities are listed in the following section. In the subsequent
section, suggestions concerning all approaches to the guitar fingering problem are stated.

9.2.1 Future Work Concerning the CRF Approach

Raise the order of path-based approaches
So far, any of the published path-based approaches to the guitar fingering problem employs a first-order

inference technique. It was originally planned to investigate higher-order CRFs for the guitar fingering
problem. The idea was dropped to keep the scope of the thesis manageable.

The results of this thesis strongly suggest that raising the order leads an increase in fingering quality.
The presented CRF approach is likely to profit the most from raising the order among the family of
path-based approaches because its features can access the whole observation sequence: Given the order
k, CRF features would have access to the history of forms y j, y j−1, . . . , y j−k and their corresponding
constant segments from ~x . This would allow one to define transitional features incorporating much more
knowledge on finger positions and timing than is available in the first-order case.

Include movement of the right hand in the features / the cost function
Neither of the existing approaches to the guitar fingering problem includes movements of the right

hand into their cost function. Its inclusion might improve the quality of generated fingerings by tipping
the scale in favor of playing on as many strings as possible (for arpeggio sections) or on as few strings as
possible (for tremolo sections) for fingerings which would otherwise be considered equally appropriate.
The findings of a paper covering the automatic generation of right hand fingering for guitar pieces [28]
could be adapted for this purpose.

Integrate knowledge of chord databases
Online chord databases collect "chords" (strictly speaking: forms of chords) which are often used for

guitar accompaniment. In order to reduce the effort of memorizing unique forms for guitar pieces, one
could favor common forms for chords by testing whether a form appears in such a chord database. The
feature was not implemented due to a lack of time. Its utility could be evaluated in future research.

Investigate CRFs for the task of arranging music
Similar to the work of Hori et al. [9, 10] where a HMM is formulated to arrange pieces for the guitar,

one could attempt to formulate features which add this ability to a CRF. However, one would need to put
more thought into finding the optimal weights since conventional training is likely to be unrealizable due
to very sparse labeled data for this purpose.
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9.2.2 Future Work Concerning all Approaches

Compile a reliable dataset of guitar pieces and fingerings
This thesis has motivated the need for a dataset of guitar pieces and reliable, high quality fingerings.

An optimal dataset would include pieces of a wide range of difficulty levels, tempos, playing styles (barre
chords, tremolos, embellishments, etc.) and genres. The dataset could then be used as a common test set
across future publications to improve the comparability of individual approaches.

Experiment with other methods to evaluate the quality of fingerings
The percentage of matching fingered positions is commonly used to evaluate the quality of fingerings

despite its unrealiability, as pointed out initially by Tuohy et al. [33] and multiple times throughout this
thesis. On the other hand, conducting a study with expert guitarists promises reliable results but is a very
time consuming process.

An alternative could be to offload the task of evaluating fingerings to online communities of guitar
players via crowdsourcing which, given enough participants of different levels of expertise, should yield
reliable results with comparably low effort.
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A Training Data Composition

Table A.1 lists the pieces chosen from http://classtab.org to conduct feature selection and to train the
presented CRF approach. The remarks in table A.2 concern the state of the MIDI files and tablatures as of
March 21st, 2016.

ID Composer and Title URL (classtab.org/. . . ) Included Bars BPM
�

♩
�

# Notes

Training Selection

1 D. Aguado – Nuevo Método para
Guitarra – Part 2, Section 1,
Chapter 1, Lesson 10

http://www.classtab.

org/aguado_nuevo_

metodo_para_guitarra_

p2_s1_c1_l10.txt

[1–27] [1–27] 109 90

2 D. Aguado – Nuevo Método para
Guitarra – Part 2, Section 2,
Chapter 1, Exercise 2

http://www.classtab.

org/aguado_nuevo_

metodo_para_guitarra_

p2_s2_c1_ex02.txt

[1–24] [1–24] 80 186

3 S. Assad – Farewell http://www.classtab.

org/assad_sergio_

farewell.txt

[1–86] [1–48], [49–86] 100 479

4 A. Barrios – Las Abejas http:

//www.classtab.org/

barrios_las_abejas.txt

[1–18] [1–18] 171 378

5 A. Barrios – La Catedral (first
movement)

http://www.classtab.

org/barrios_la_

catedral_1_prelude.txt

[1–49] [1–24], [25–49] 60 196

6 A. Barrios – Preludio in Cm http://www.classtab.

org/barrios_preludio_

in_cm.txt

[1–32] [1–16], [17–32] 60 379

7 F. Carulli – Op. 114 No. 10 http://www.classtab.

org/carulli_op114_

no10_prelude_in_em.txt

[1–28] [1–14], [15–28] 150 330

8 F. Carulli – Op. 114 No. 16 http://www.classtab.

org/carulli_op114_

no16_prelude_in_a.txt

[1–32] [1–16], [17–32] 120 460

9 N. Coste – Op. 38 No. 1 http://www.classtab.

org/coste_op38_no01_

allegretto_in_am.txt

[1–44] [1–44] 109 295

10 J. Dowland – Orlando sleepeth http://www.classtab.

org/dowland_john_

orlando_sleepeth.txt

[1–12] [1–12] 109 104

= 2897

Table A.1.: Composition of the training dataset
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ID Remarks

2 • bar 23: wrong MIDI – changed A2 to E2

3 • bar 1 ff.: bad tab – changed 〈4, 7, 4〉 to 〈4, 7, 3〉 and 〈3, 5, 3〉 to 〈3, 5, 1〉
• bar 10: wrong MIDI – changed A3 to G3
• bar 38: finger_order constraint violated in tab→ B3 at 〈3,4,4〉 shortened and D4 at 〈2,3,2〉 changed to 〈2,3,4〉
• bar 48: bad MIDI – A2 changed to dotted quarter note, otherwise 〈4, 7, 1〉 and 〈4, 10, 4〉 clash
• bars 67/68: wrong tab – changed F2 at 〈6, 1, 1〉 to A2 at 〈5, 0, 0〉
• bars 79/80: wrong MIDI – A2 should be held across both bars

5 • first fingering chosen
• bar 6: wrong MIDI – changed D5 to F]5
• bar 18: wrong MIDI – changed E3 to F3
• bar 27: wrong MIDI – two F]4 changed to E4
• bar 28: wrong MIDI – two F]3 changed to G3
• bar 29: wrong MIDI – changed A3 to A]3
• bar 35: wrong MIDI – changed D3 to C]3
• bars 47/48: removed all flageolett notes

6 • first fingering chosen
• bar 13: bad tab – changed G at 〈6, 3, 4〉 to 〈6, 3, 3〉
• bar 21: contains little finger barre chord which can be interpreted as two single positions
• bar 31: bad tab – much easier when played in the first fret

8 • first MIDI and first fingering chosen
• bar 3: bad tab – changed occurrences of 〈2, 9, 4〉 to 〈2, 9, 3〉
• bar 6: bad tab – changed to index finger barre chord and middle finger
• bar 8: bad tab – changed to index finger barre chord and middle finger
• bar 25: bad tab – changed 〈2, 7, 4〉 to 〈2, 7, 3〉
• bar 37: bad tab – changed 〈2, 2, 1〉 to 〈2, 2, 4〉

9 • bar 5: bad MIDI – shortened first C to eighth note to avoid violation of finger_order constraint
• bar 14: bad MIDI – shortened first chord to eighth notes, is unplayable otherwise
• bar 22: bad tab – swapped fingers 2 and 4 in first chord
• bar 23: bad MIDI – shortened first chord to eighth notes, is unplayable otherwise
• bar 35: bad MIDI – shortened first chord to eighth notes, is unplayable otherwise

10 • all repetitions removed
• last bar: bad tab – changed 〈4, 2, 3〉 to 〈4, 2, 2〉 and 〈3, 2, 4〉 to 〈3, 2, 3〉

Table A.2.: Remarks and modifications regarding the MIDI files and tablature of the training dataset
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B Test Data Composition

Table B.1 lists the sources of the sheet music chosen for the pieces of dataset A and B.

ID Composer and Title URL BPM
�

♩
�

Dataset A Dataset B

Bars # Notes Bars # Notes

1 D. Aguado – Estudio
No. 3

http://johnny-jerome.fr/

partitions/1800/Aguado_

Dionisio/Estudio%20Nr%203%20%

28Aguado-Bierschenk%29.pdf

100 [1–16] 90 [1–16] 90

2 M. Carcassi – Op. 60
No. 7

http://carkiv.musikverk.se/www/

boije/Boije_0094.pdf

120 [1–8] 121 [1–28] 435

3 F. Carulli – Op. 121
No. 15 Siciliana

http://classicalguitarschool.

net/en/Download.aspx?id=1009

75 [1–22] 182 [1–39] 319

4 F. Sor – Op. 35 No. 3
Larghetto

http://classicalguitarschool.

net/en/Download.aspx?id=1023

66 [1–26] 186

5 M. Giuliani – Op. 50
No. 13

http://carkiv.musikverk.se/www/

boije/Boije_0139.pdf

109 [1-11] 161

6 F. Sor – Op. 21 No. 6 http://classicalguitarschool.

net/en/Download.aspx?id=1104

75 [1–16] 213

Table B.1.: Composition of the datasets A and B
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