
Extending Web Analytics with
Prediction Models to Detect
Anomalies in Distributed Web
Applications
Master-Thesis von Anupma Raj aus India
Tag der Einreichung:

1. Gutachten: Prof. Dr.-Ing. Johannes Fuernkranz
2. Gutachten: Eneldo Loza Mencia

Department of Computer Science
Knowledge Engineering Group



Extending Web Analytics with Prediction Models to Detect Anomalies in Distributed Web Applica-
tions

Vorgelegte Master-Thesis von Anupma Raj aus India

1. Gutachten: Prof. Dr.-Ing. Johannes Fuernkranz
2. Gutachten: Eneldo Loza Mencia

Tag der Einreichung:



Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 1st September 2016

(Anupma Raj)



Abstract

This aim of this thesis was to develop an automated anomaly detection system for typical web analytics
data which could accurately and efficiently detect anomalies, report them through alerts within the time
constraints and be easily incorporated into typical web analytics software.

Statistical techniques detect anomalies by relying on their standard deviation distance from the mean
to trigger preconfigured anomaly detection thresholds specific to different types of data distributions.
However, using these proves lacking in situations where data values are anomalous with respect to their
position in the time series, but do not have large enough standard deviation distances from the mean
of the whole time series. Another approach of anomaly detection is to train prediction algorithms with
historical data to make a forecast, and identify an anomaly when it exceeds acceptable Mean Absolute
Percentage Error levels when compared with the forecast. In comparison to statistical anomaly detec-
tion methods, prediction algorithms can be more resource expensive due to more complex computations.

This thesis proposes a solution which combines both approaches to overcome their respective draw-
backs. The resulting automated anomaly detection system showed 100% accuracy in anomaly identifi-
cation when tested against nine sample datasets collected from a web page which was tracked for over
eight months. Thereafter, upon examining the impact of the length of training data on the forecasts
made by the prediction algorithm, it was determined that the highest prediction accuracy was obtained
when the shortest training data of two weeks was used. When the impact of anomalies in the training
data upon the prediction accuracy were examined, results showed improvement in accuracy only during
some tests and hence, proved inconclusive in determining any correlation.
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1 Introduction

Today’s world that is increasingly dependent on internet technology. There a major shift from traditional
application provisioning to cloud-based Software-as-a-Service (SaaS) solutions and the importance of
understanding and optimizing web application usage becomes of increasing importance. In order to
better the quality of web applications and the content that they present, it becomes critical to gather
complete, consistent and current information about web application usage. Appropriately analysing such
data unearths a plethora of information that may support decision making and strategy formulation by
identifying aspects of a web applications which successfully meet goals and those which don’t. Examples
are determining how successful a marketing campaign is, whether certain links in a web application are
malfunctioning or detect which content works and which does not. The benefits of such knowledge are
applicable in diverse fields, including IT operations, IT security, search engine optimization, marketing
or advertising.

The process of measuring and collecting such usage data of web applications or web sites is known as
web analytics [1]. There are two major approaches: log file analysis and page tagging [2]. Both have
their advantages and disadvantages, and a choice of tracking method can be made based on which is
more suitable to serve a specific use case. Log file analysis is limited to analysis of server-side log files,
which mainly collect normal requests of clients to the server. Everything that is happening on client-side
that does not result in a request to the server cannot be logged, and thus cannot be analysed. The page
tagging approach adds insights about information and events that can only be detected on the client-
side, by embedding additional scripts to web pages that execute on client-side and send back the desired
information and/or events. Most of the popular web analytics software such as Google Analytics, Piwik,
Open Web Analytics and Adobe Analytics [3, 4] track web usage data through page tagging. The data
which has been collected through page tagging is usually presented to users of web analytics software
via pre-configured reports that can be consumed easily. More advanced solutions also allow the users to
individually query the collected raw data dynamically, and thus provide a means to deal with specialized
custom information requirements.

Although web analytics solutions usually provide users with the ability to browse and analyse historical
data a posteriori, they usually lack means to check the data automatically for the occurrence of special
events and situations that a user wants to be informed about in a timely fashion, without the need
of continuously checking the data manually. Examples for this are e.g. the detection of web traffic
spikes that require action from operations, or occurrence of unusual access patterns that might indicate
a security breach. This thesis will develop such an automated anomaly detection method that can easily
be added to typical web analytics solutions, is able to accurately detect deviations in web usage data,
and can be implemented in an efficient manner.

This chapter is structured into three sections. The first section provides the motivation of this thesis.
The second section gives an insight into the problem statement which this thesis aims to solve. The third
section explains the structure of the rest of the thesis.

1.1 Motivation

Web analytics software collect very valuable data. Understanding and appropriately analysing this data
is critical for extracting the maximum beneficial knowledge possible. While web analytics software
usually display the collected data in pre-configured reports, manual effort is required to observe these
reports and conclude information from them. In addition to the resources required to manually and
consistently observe these reports, the conclusions formed are also influenced by human error and bias
and therefore, might not always be completely correct. Moreover, if there is a need for a timely reaction
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to the occurrence of special events, a highly desirable solution would be one which could automatically
analyse data, detecting special events and notify interested stakeholders.

Web analytics software collect diverse data in the form of different features, and some of these features
can be considered to be universally important and interesting to common users of web analytics software.
One such feature is the number of page views that a web page receives. The number of page views can
give insights on when a web page is viewed, how many times it is viewed and upon analysis can deduce
the correlation between these. This correlation helps to conclude whether the number of page views
is increasing or decreasing over time (trend) and whether there are any repeating patterns (e.g. lower
access rates after working hours or during the weekend). If one can model expected behaviour of this
feature through these conclusions, it becomes possible to identify situations when this feature is not
behaving as expected, i.e. behaving abnormally. Issuing an alert after the detection of such a situation
allows the manual inspection of this anomaly and consequently, decisions can be made to handle the
effects of this anomaly.

1.2 Problem Statement

This thesis aims to develop an automated anomaly detection system for typical web analytics data that
is able to accurately detect anomalies, can be efficiently implemented and easily added to typical web
analytics software. The developed solution should notify interested stakeholders about the occurrence
of an anomaly automatically and in a timely fashion. While in the following this thesis focuses on page
views for illustration purposes of typical web analytics data, the application of the anomaly detection
system presented in this thesis is not limited to page views. The approach adopted to detect anomalies
is based on getting a statistical understanding of the typical number of page views that occur at different
times of the day and on different days of the week, and then recognizing when page views deviate from
the expected (i.e. predicted) behaviour.

1.3 Thesis Structure

In chapter 2, literature relevant to web analytics software, anomaly detection techniques, prediction
algorithms and forecasting accuracy evaluation methods is explored. In chapter 3, the concept of this
thesis solution is developed by making the necessary design decisions such as selection of feature and
best anomaly detection technique, prediction algorithm and forecasting accuracy evaluation method
which are used with different patterns of feature data. Chapter 4 introduces the example web analytics
software which is used for the purpose of obtaining real data and testing the ease of integration of
this thesis solution. The implementation of the discussed concept in R and Java is also explained. The
evaluation of the thesis solution is carried out in chapter 5 by testing its forecasting accuracy for 9 sample
datasets. The impact of different lengths of historical data and the presence of anomalies in the historical
data is examined. Moreover, the limitations of this thesis solution are discussed. Chapter 6 presents a
conclusion to this thesis and proposes relevant future research work.
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2 Literature Survey

The previous chapter introduced the motivation behind this thesis work and formulated the problem
statement within the scope of this thesis.

This chapter discusses the literature relevant to this thesis. The first section discusses the purpose
and types of web analytics software and the different methods of collecting data for it. Out of the
many diverse features in this data, some are considered to be universally important and interesting to
common users of web analytics software, and are time series. Therefore, the second section discusses the
different components of time series and the difference between univariate, bivariate and multivariate
time series. The third section discusses existing anomaly detection techniques that are applicable to
time series data depending on whether the data is normally distributed or non-normally distributed.
This section also discusses how statistical anomaly detection techniques employ thresholds based on
the z-score of a data point, and examines how this is calculated. A discussion of the advantages and
disadvantages of each anomaly detection technique allows the identification of promising approaches for
each data distribution. Finally, this section pinpoints the situations in which these promising anomaly
detection techniques may be found lacking. As a potential means to overcome such situations, the fourth
section discusses the use of prediction algorithms to identify anomalies. This includes a study of existing
prediction algorithms for time series, the advantages and disadvantages of each and identification of the
most promising algorithms. Moreover, prediction accuracy measurement methods are discussed which
identify the best methods of comparing the predictions made through these algorithms with actual data,
so that anomalies can be identified through this comparison. Finally, the sixth section discusses existing
methods which could be employed to evaluate the forecasting accuracy of the final thesis solution.

2.1 Web Analytics

The measurement and collection of web data unearths a plethora of information, analysis of which allows
us to understand and optimize web usage. This knowledge is powerfully beneficial in the several fields,
including IT operations, IT security, search engine optimization, marketing and advertising.

Web Analytics is the process of measuring and collecting such web data [1, 5] and is accomplished in
two ways: log file analysis and page tagging [6].

2.1.1 Log File Analysis versus Page Tagging

The following section states the definitions of log file analysis and page tagging and displays the differ-
ences between them.

Log File Analysis

Log file analysis is a process whereby log files collected from the web server are parsed to extract
information about page requests such as visitor IP address or requested page so that this information can
be analysed [7].

Page Tagging

Page tagging is a process whereby a JavaScript code snippet is embedded within the code of the web
page which accumulates information about web page usage, visitors and other client side events. When
JavaScript is disabled at the clients end, sometimes an invisible image is inserted into a web page as a
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fall back method of obtaining some minimal information about the web application usage such as when
and how many times the web page was accessed.

Comparison of Log File Analysis and Page Tagging

Table 1 shows a comparison between the log file analysis and page tagging methods and discusses the
advantages and disadvantages of both.

Table 1: Comparison of Log File Analysis and Page Tagging

Log File Analysis Page Tagging
Advantages Disadvantages Advantages Disadvantages

No extra code needs
to be embedded

within the code of the
web page.

Cannot track information
about user activities on the
client side as only requests

issued by the client are
logged. An example of user
activity on the client side is
mouse movement or clicks.

Along with having
access to additional
information about

activity on the client
side, it is also possible
to instrument code to

detect customized
events.

Extra code needs to be
embedded within the
code of the web page.

This causes more
bandwidth to be used

each time the page loads.
Moreover, it is harder to
change analytics tools as

the embedded code
would have to be

changed.
Caching drastically affects
the data collection as web
servers don’t recognize a

cache load as a new event
which needs to be recorded.

High speed of data
reporting.

If JavaScript or tracking is
disabled, or older

browsers are used, data
cannot be collected.

Server has to be specifically
configured to assign cookies

to visitors, eg. session
handling will have to be

turned on, even if it is not
required, to be able to track

users through a whole
session.

Page tagging usually
automates the process
of assigning cookies to

visitors.

Search engine spiders
statistics are not included
in the data collected as
they often do not run
JavaScript elements.

Data is stored on your
private server, which is

useful in situations
where the data is

confidential and it is
important that there is
no third-party access.

Data is stored on a local
server. This becomes

expensive as there is an
initial server set up cost, high

IT overhead of storing and
archiving data, providing

maintenance in the form of
updates and security patches.

Less expensive than
log file analysis.

Difficult to change
vendors because your

data is usually stored on a
foreign server.

Useful method for
companies that do not

run their own web
servers or do not have
access to the raw log

files for their site.
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Evaluation

Ultimately, the method choice depends on which of the advantages and disadvantages suit the website
owner best. There is also the possibility to use a hybrid data collection method, i.e. a combination of log
file analysis and page tagging.

Giants in the field of web analytics, like Google Analytics, Adobe Analytics, Open Web Analytics, Data
Workbench, Analyzer, Quantcast, Woopra and Yahoo! Web Analytics all use page tagging by embedding
JavaScript snippets into the web page code. Companies like AWStats and Webalizer use log file analysis.
An example of a company which uses a hybrid implementation of both methods is the open source web
analytics software Piwik.

2.1.2 Type of Analytics

There are three categories of analytics [8–10], and these are also applicable to web analytics.

The first is ‘descriptive analytics’, also known as reporting analytics, which employs a set of tools and
technologies to analyse historical data and thereafter identify patterns and trends within the data. This is
done through visualization of the data, reporting and trend analysis. This is the most common analytics
method used by companies [11].

The second category is ‘predictive analytics’, which determines probabilities and trends that are likely
to occur in the future. Predictive analytics used modelling, machine learning and data mining concepts
to find relations within the data that may not be identifiable through descriptive analytics alone and
thereafter extrapolate these relationships to make predictions.

The third category is ‘prescriptive analytics’, which uses the predictions made by predictive analytics of
possible probabilities and trends that can occur and suggests decision options to meet business objectives.
Prescriptive analytics performs deterministic and stochastic optimizations with the goal of providing a
decision or recommendation for a specific action.

2.2 Web Analytics Data: Time Series and its Components

Within the many features that web analytics measures, several occur sequentially through time. A time
series is defined as a collection of observations made sequentially through time [12, 13]. Examples of
such features are page views and visitors.

A time series can be decomposed into trend, seasonality and error components [14].

Trend

A trend exists when “there is a long-term increase or decrease in the data” [15]. This could be a linear
or non-linear component of the time series which changes over time but does not repeat.

Seasonality

Hyndman defines seasonality as a “pattern which exists within a time series when it is influenced by
seasonal factors” [15]. Such stable patterns, which repeat over a known and fixed period of time, can be
caused by factors such as weather, vacation or holidays [16, 17]. Seasonality can be by the week, month
or quarter year.

12



Error

The error component accounts for random changes within the time series which are unlikely to repeat.
These are not a part of the trend or seasonality of the time series.

2.3 Anomaly Detection For Time Series

The definition of an anomaly or outlier is largely dependent on the data itself and the detection method
used. While there is no single, universally accepted definition of an outlier, there are several which
are generic enough to address different data types and detection methods. Barnet and Lewis define
an anomaly as “an outlying observation that deviates markedly from other members of the sample in
which it occurs” [18]. Hawkins defines an outlier as “an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism” [19]. Johnson
defines an outlier as “an observation in a data set which appears to be inconsistent with the remainder
of that set of data” [20, 21].

Not all outliers are errors or noise, as is usually assumed. When an outlier occurs repeatedly at the
same phase in a season, it could be an important part of the dataset. Ignoring such a value could lead
to inaccurate modelling and imprecise results [22–24]. So apart from being used during preprocessing
to remove anomalous data from the dataset [25], outlier detection is also used in the areas of intrusion
detection, fraud detection, fault detection, voting irregularity analysis, data cleansing, severe weather
prediction, geographic information system, health monitoring, amongst others [18, 24, 26–28].

An anomaly detection system models a normal system, network or program activity and thereafter uses
this to identify activity which deviates from the model as a possible anomaly [29]. Anomaly detection
can be of interest both for the importance that the anomaly itself presents, or for preventing anomaly
contamination during data modelling [30]. For the purpose of this thesis, anomaly detection is used for
the purpose of identifying the importance of the anomaly itself.

2.3.1 Univariate, Bivariate and Multi-Variate Anomalies

There are three types of anomalies- univariate, bivariate and multivariate. Univariate anomalies are
those that occur within a single variable or attribute. Bivariate anomalies are those which occur between
two variables. And multivariate anomalies occur within multiple variables. [31, 32]

For the purpose of this thesis, the prediction algorithms and anomaly detection will be performed on
each feature individually, therefore we will be using univariate anomaly detection methods as there is
only one variable involved.

2.3.2 Anomaly Detection Categories

The methods of identifying anomalies can be based on the concepts of statistics or data mining.

Statistical Anomaly Detection

Statistical methods observe data activity and generate profiles which represent normal behaviour. Two
profiles need to be maintained to identify anomalies- the present profile and the historic profile. Events
observed in real time are used to update the present profile. By comparing this present profile with a
historic profile, an anomaly score is calculated. Upon comparison with pre-set thresholds, an anomaly
generates an alert if one of the thresholds is triggered.
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There are several advantages to using statistical anomaly detection methods such as not needing prior
knowledge of every type of failure or anomaly. Moreover, they can accurately identify anomalies that
typically occur over longer time durations, instead of just single occurrence anomalies.

There are also some disadvantages of statistical anomaly detection methods. With malicious intent, it
is possible to train a statistical scheme to accept abnormal behaviour as normal. Moreover, pinpointing
the right thresholds can be difficult. Setting them too strict may cause false alarms and setting them too
lax may ignore situations that should cause alarms.

Machine Learning Anomaly Detection

In contrast to statistical methods, machine learning methods develop a model which continually im-
proves performance by inculcating previous data behaviour.

Examples of machine learning methods include Bayesian models, Markov models, support vector ma-
chines, neural networks, clustering or principal component analysis, amongst others. The key to using
machine learning concepts for anomaly detection is to precisely identify which method models the data
accurately, as all these methods have certain assumptions about the data. Choosing an inaccurate model
will result in an inaccurate anomaly detection system.

Each method has its respective advantages and disadvantages. But generally, machine learning meth-
ods offer superior accuracy of prediction at the cost of high computation and expensive resources [29].
Hence, using such techniques for operations which have to be completed within strict, short frames of
time is not scalable.

2.3.3 Data Distributions

Choosing the correct anomaly detection technique or prediction algorithm for a certain dataset depends
on how the data is distributed. The section below discusses the different types of data distributions.

Gaussian Distributions

In statistics and probability, Gaussian distribution [33, 34], also known as normal distribution, is a
continuous probability distribution. The probability density of the normal distribution defined by the
following formula [35, 36]:

P(x) = 1
σ
p

2π
e−(x−µ)

2/2σ2

Where µ is mean or expectation of the distribution, as well as the median and mode, σ is the standard
deviation and σ2 is the variance.

The Gaussian distribution is the only absolutely continuous distribution whose cumulants, i.e set of
quantities that provide an alternative to the moments of the distribution, are zero after the first two
[37, 38].

Standard normal distribution is the simplest type of normal distribution when µ = 0 and σ = 1. The
probability density function is given below [35, 36]:

φ(x) = e−
1
2 x2

p
2π

,
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All the other types of normal distributions are obtained by multiplying the domain of standard normal
distribution by the standard deviation and thereafter translating it by its the mean value. The probability
density function is given below [35]:

f (x | µ,σ) =
1
σ
φ
� x −µ
σ

�

68.27% of the data values in a Gaussian distributions are between one standard deviation from the
mean. The second standard deviation from the mean includes 95.45% of data values. The third standard
deviation from the mean includes 99.73% of the data values. These data value distributions are given
by the formulae below [39]:

Pr(µ−σ ≤ x ≤ µ+σ)≈ 0.6827

Pr(µ− 2σ ≤ x ≤ µ+ 2σ)≈ 0.9545

Pr(µ− 3σ ≤ x ≤ µ+ 3σ)≈ 0.9973

Non- Gaussian Distributions

Data distribution which does not follow the ‘bell curve’ characteristic to normal distributions is called
Non-Gaussian Distribution.

There are many diverse reasons for data to have non-Gaussian distribution. Data which can only
take positive values such as weight or height data cannot be normally distributed. Distribution also
gets skewed when the data has many extreme outliers. Furthermore, when data is a result of multiple
processes, it displays non-normal distribution. An example would be a dataset displaying website views,
in which both the weekday views and the weekend views are normally distributed by themselves but
when combined, they don’t collectively display a Normal distributed.

It is also possible that a different type of distribution is due to the specific data being analysed. For
instance, the Weibull distribution [40] is related to the survival times of a product. Log-normal distri-
bution [41] is displayed when the data is related to measuring lengths. Exponential distribution [42]
is displayed when the data tracks growth. Other examples of distribution patterns include Poisson and
binomial distributions.

2.3.4 Z-Score: Number of Standard Deviations from the Mean

The statistical anomaly detection methods for both Gaussian and non-Gaussian distributions which will
be discussed below rely on a the distance of a data point in standard deviations from the mean of the
dataset within which that point resides, called the z-score [43]. In the formula below used to calculate
the z-score, X is the value of the data point, µ is the mean and σ is the standard deviation.

z =
x −µ
σ

2.3.5 Anomaly Detection through Thresholds

An anomaly score is calculated by comparing present data behaviour with historic data behaviour. The
training phase of an algorithm is when normal behaviour of data is established and anomaly score
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thresholds are determined which differentiate between normal and anomalous data values [28]. Users
should be able to configure the thresholds to adjust the alerting sensitivity of the system to suit their
use case. Detection of anomalies and subsequent alerting occurs when the anomaly score surpasses the
threshold criteria [44].

There is a fine balance that needs to be maintained between the number of false positives and the
anomaly detection accuracy. Failure to suppress false alarms not only impacts system accuracy, but can
also cause system failure in cases where the burden of false alarms on the system is too high [45].
Moreover, anomaly detection in certain fields must satisfy a strict bound on the number of false positives
allowed in an effective anomaly detection system. For instance, Axelsson [46] states that for an intrusion
detection system to be effective, it should not surpass 1 false alarm for every 100,000 events.

2.3.6 Anomaly Detection Methods for Gaussian Distributions

There are several statistical methods that can be used for identifying anomalies in Gaussian data which
are dependent on the inherent properties of normally distributed data. For example, mean and standard
deviation calculations depend on the inherent assumption that the dataset is symmetric around its mean
and non-zero over the entire real line.

Three Sigma Rule

Statistical anomaly detection uses the normal distribution of data values to determine outliers through
the three-sigma rule [47], which concludes that 99.73% of data values lie within three standard devia-
tions of the mean [39].

Tukey’s Boxplot

J. W. Tukey introduced the Boxplot [48–50], which is a standardized method of displaying data dis-
tribution based on the minima, first quadrant, median, third quadrant, and maxima of a dataset. The
boxplot calculates robust values of the mean and standard deviation by using the values of the first and
third quadrants.

Using boxplot on symmetrically distributed data to identify anomalies is a common approach [51].
This method is more robust against extreme data values when compared to methods that depend on
standard deviation or mean calculations [29]. Moreover, Tukey’s method may not be appropriate for a
small sample size [52]. In Tukey’s boxplot, the Inter Quartile Range (IQR) is defined as the distance
between the lower and upper quadrants. The inner fences are located at a distance of 1.5 IQR below the
first quadrant and above the third quadrant. The outer fences are located at a distance of 3 IQR below
the first quadrant and above the third quadrant. A data point which lies between the inner and outer
fences can be identified as a mild outlier and a data point which lies beyond the outer fences can be
recognized as an extreme outlier.

An example boxplot constructed on a normally distributed dataset is shown in Figure 1. There is a
data point which lies outside the outer fences, and can clearly be identified as an outlier.

2.3.7 Anomaly Detection Methods for Non-Gaussian Distributions

Non-Gaussian datasets require anomaly detection methods that are different from those applied upon
Gaussian Distributions, as they do not share the same inherent properties. It is important to use the
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Figure 1: Boxplot of Normally Distributed Dataset with An Outlier

correct methods to avoid high false alarm rates. In statistics, there are several algorithms that can
identify outliers for Non-Normally distributed datasets.

Theorem 1: Markov’s Inequality

Markov’s inequality theorem calculates the upper bound for the probability of a variable’s function
being greater than or equal to some positive constant. The function generalizes to any random variable
that takes non-negative values. [53].

Hence, if X is a non-negative random variable and a > 0, then the probability P is equal to:

P(X ≥ a)≤
E(X )

a

However, the bound ‘a’ is quite weak as it can only increase linearly. Moreover, the restriction of
having only non-negative values is limiting. Therefore, we find Chebyshev’s inequality theorem , which
is a corollary of Markov’s inequality theorem but it removes this restriction of non-negativity.

Theorem 2: Chebyshev’s Inequality

Chebyshev’s inequality theorem guarantees that a minimum of just 75 percent of values within a
dataset must lie within two standard deviations of the mean and 89 percent within three standard
deviations [54–56].

It is a corollary of Markov’s inequality theorem, with the added advantage of not assuming the non-
negativity of the random variable. Moreover, the denominator ‘a’ rises quadratically, instead of linearly.
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Chebyshev’s inequality guarantees that 1
a2 is the maximum number of the distribution’s values which can

be more than ‘a’ standard deviations away from the mean.

If X is a random variable with a finite expected value of E(X ), then for any a > 0,

P(|X −E(X )| ≥ a)≤
Var(X )

a2

The bound can only decrease polynomially. Var(X) is the variance of X, calculated by the following
formula:

Var(X ) = E[(X −E(X ))2]

Table 2 shows the probability distributions of values for a non-Gaussian distribution per ‘a’ values.

k
Min. Percentage within
‘a’ Standard Deviations

from Mean(%)

Max. Percentage
beyond ‘a’ Standard

Deviations from Mean
(%)

1 0 100p
2 50 50

1.5 55.56 44.44
2 75 25
3 88.8889 11.1111
4 93.75 6.25
5 96 4
6 97.2222 2.7778
7 97.9592 2.0408
8 98.4375 1.5625
9 98.7654 1.2346

10 99 1

Table 2: Chebyshev’s Distribution

Theorem 3: Chernoff’s Bound

Chernoff’s bound [57] is a theorem which gives exponentially decreasing bounds on tail distributions
of sums of independent random variables. This contrasts with Chebyshev’s inequality, in which the
bound can only decrease polynomially. The bound is much sharper than in both Markov’s inequality and
Chebyshev’s inequality.

Chernoff’s bound can be found in the additive and multiplicative forms. The original additive form,
also known as Chernoff-Hoeffding theorem, bounds the absolute error.

Chernoff’s multiplicative form is much more practical and bounds the error relative to the mean. It is
defined by the formula below. Let X1, X2, ..., Xn be a sequence of independent random variables from 0 to
1, where P(X i = 1) = p. Let X =

∑

X i and u ≥ E[X ]. The sums expected value is denoted by µ = E[X ].
Then for any δ > 0,
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Pr(X > (1+δ)µ)< [
eδ

(1+δ)1+δs
]µ

However, the Chernoff bound requires the variates to be independent.

2.3.8 Evaluation of Anomaly Detection Methods

Out of all the statistical methods discussed for anomaly detection for Gaussian and non-Gaussian distri-
butions, each have their specific advantages and disadvantages.

Both the three sigma rule calculated via z-score and Tukey’s boxplot are promising methods for
anomaly detection for Gaussian distributions. They are simple and effective. Testing data with both
could help determine which is a better method for Gaussian distributions.

In non-Gaussian distributions, Chebyshev’s inequality is superior to Markov’s which only allows the
bound to rise linearly. Chernoff’s bound is even more promising because it allows the bounds to rise
exponentially. Out of the additive and multiplicative forms of Chernoff’s bound, the multiplicative is
much more practical as it bounds the error relative to the mean. However, Chernoff’s bound requires
the variates to be independent, and neither Markov nor the Chebyshev inequalities require this property.
Therefore, Chebyshev’s inequality seems to be the most promising method of anomaly detection for
non-normal distributions when the variates are not independent.

However, the problem with all these methods discussed is that because they rely on standard deviation,
the detection of an anomaly can be inaccurate in some situations. Consider the following situation- a
web page is being tracked that has extremely a low number of page views during weekends. Even if
one of these weekend data points value is twofold or threefold, it would still be less than the value
of a data point from a weekday, as the number of page views during the weekdays are much higher.
Therefore, this data point would fall within an acceptable number of standard deviations from the mean
and be considered a non-anomalous value. However, this would be misidentification because if the value
is twofold or threefold the expectation for that data point, then it is obviously not displaying normal
behaviour and should be recognized as an anomaly.

2.4 Prediction Algorithms for Time Series

Extensive research has been done on prediction methods that can be applied upon time series, but these
are specific to the nature of time series, i.e whether the time series is univariate or multivariate. Chatfield
[58] defines an univariate prediction method as one “where the prediction depends only on the present
and past values of the single variable being forecast. It is possible that this series is augmented by a
function of time, such as a trend”. Furthermore, he defines a multivariate prediction method as one
“where the prediction depends on more that one time series variable”.

For the purpose of this thesis, we will be focusing on univariate prediction methods as only one isolated
feature will be used for making the prediction. An example of such a feature would be forecasting the
number of visitors within the next hour based on the number of visitors over the past two weeks.

Traditional univariate predictive methods include ARIMA models (also individually considering auto-
regression and moving average), exponential smoothing and Bayesian forecasts [59? , 60]. Moving
average, ARIMA and exponential smoothing are simpler to understand and implement due to their linear
nature, i.e. forecast values are constrained to be linear functions of past data.

Makridakis et al. [61] performed an extensive comparison of 24 univariate prediction methods using
data from 1001 time series. The data samples were selected to cover a wide spectrum of possibilities,
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including diverse sources and starting and ending dates. Although the authors specify that prediction
algorithm performance differs depending upon the accuracy criteria used, they determine Holt-Winters
and Parzen as the two prediction methods which exhibit the highest degree of consistency among the
different accuracy criterion out of the 24 prediction methods. It was also emphasized that the choice of
prediction method is largely dependent on the seasonality of data and the time horizon of forecasting,
for instance Holt-Winters displayed the most superior accuracy for short term forecasts, i.e. forecasts of
one period or less.

Gooijer et al. [62] researched 25 years of univariate time series forecasting methods and observed that
ARIMA and triple exponential smoothing display highest forecast accuracy when forecasts were made
by the hour and week respectively. After analysis of the state of ar, Gardner [63] concludes that Holt-
Winters triple exponential smoothing performs better than ARIMA for seasonal data, but they are both
promising approaches. Fildes [64], Rescher [65] and Chatfield et al. [64] further support the superior
accuracy of the exponential smoothing and ARIMA methods compared to other prediction methods.

This thesis does not comprehensively explore and compare all the possible univariate prediction meth-
ods for time series data, but instead focuses on the two which seem most promising according to the
aforementioned literature for univariate time series. The first method to be discussed is ARIMA models,
which inculcates auto-regression and moving average.The second method to be discussed is exponential
smoothing, which can be in single, double and triple form.

2.4.1 ARIMA

ARIMA modelling integrates both the auto-regression process and the moving average process as dis-
cussed below.

Auto-regression Process

Most time series consists of data which is serially dependent, so each data point is a linear combination
of previous data points and a random error component. Auto-regression requires that the time series
must be stationary. Brockwell et al. [13] define stationarity in terms of a consistent mean and variance
through time as the joint probability distribution also remains consistent through time. It is defined by
the formula given below. ϕ1, . . . ,ϕp... are parameters, c is a constant, and the random variable εt is
white noise.

X t = c +
∑p

i=1ϕiX t−i + εt

Moving Average Process

Elements in a time series can also be impacted by past errors, and the moving average process accounts
for this even though auto-regression cannot. Each data point is a linear combination of previous errors
and a random error component. In the formula for calculating moving average below, θ1, ...,θq are the
parameters of the model. µ is the expectation of X t (often assumed to equal 0). White noise and errors
are displayed as εt ,εt−1, ....

X t = µ+ εt +
∑q

i=1 θiεt−i
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ARMA model

The auto-regression moving average model was first popularized by Box and Jenkins [66]. The model,
referred to as ARMA(p,q), depicts auto-regressive degree in p and the moving average degree in q. It is
calculated using the Box and Jenkins approach with the following formula which combines the previous
two formulae.

X t = c + εt +
∑p

i=1ϕiX t−i +
∑q

i=1 θiεt−i.

ARIMA

Auto-regressive integrated moving average (ARIMA) model is a result of the generalization of the
ARMA model. The ARIMA model integrates auto-regression and moving average explained in the previ-
ous sections with differencing, which replaces data values with the difference between their values and
the previous values. ARIMA models also make an inherent assumption of stationarity, which is inherited
from the auto-regression process this is integrated in ARIMA.

For an ARIMA(p,d,q) model with drift δ/(1−
∑

φi) and L as the lag operator,

(1−
∑p

i=1φi L
i)(1− L)d X t = δ+

�

1+
∑q

i=1 θi L
i
�

εt

Box and Jenkins [66] developed a practical approach to building ARIMA models, which performs
model identification, parameter estimation and diagnostic checking. These steps are iteratively repeated
until the successful construction of a satisfactory model.

Model identification depends on the theoretical autocorrelation properties of an ARIMA series. It be-
comes possible to identify possible ARIMA models by matching empirical and theoretical autocorrelation
patterns. Sometimes, to achieve stationarity, data transformation is needed in this step.

Parameter estimation follows model identification and aims to reduce overall error through non-linear
optimization techniques.

After parameters are estimated, the step of diagnostic checking examines statistics and plots of the
residuals to test the accuracy of the model with past data. This step identifies whether there is a need
for a new model to be identified according to the accuracy, in which case, the cycle is repeated again
starting from model identification step.

Auto-ARIMA

The first method proposed for automating parameter selection by Hanna and Rissanen [67] involved
fitting a long auto-regressive model to the data, and then computing the likelihood of potential models
through several standard regressions. Gomez and Maravall [68] extended this research to account for
multiplicative seasonality and then automated the procedure to calculate the parameters with the lowest
Bayesian information criterion (BIC). In more recent literature, Forecast Pro [69] automates the ARIMA
function with high accuracy. Another automated method was introduced in 2000 is called AutoBox [70].

Hyndman et al. [71] introduced an automated ARIMA method which is one of the most widely used
which used the Akaike Information Criterion (AIC). The generic formula for AIC is given below where L
is the maximum value of the likelihood function, k is the number of estimated parameters in the model,
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p represents the auto-regression order and q represents the moving average order for non-seasonal part
of the series. P and Q represent the auto-regression order and the moving average order for seasonal
part of the series respectively.

AIC = −2log(L) + 2(p+ q+ P +Q+ k)

Hyndman and Khandakar’s algorithm [15] for automatic ARIMA modelling uses KPSS tests to de-
termine the differencing order. A KPSS test is named after Kwiatkowski, Phillips, Schmidt and Shin
tests, and is used for testing if an observable time series is stationary around a deterministic trend [72].
Thereafter, the seasonal differencing order is deduced with OCSB tests [73], when not specified.

Thereafter, P and Q values are calculated by minimizing AICc after differencing the data. Instead of
testing every parameter combination, this algorithm works stepwise to determine the best model.

2.4.2 Exponential Smoothing

Exponential smoothing is used for smoothing time series data by assigning exponentially decreasing
weights to the data points over time. There are three types of exponential smoothing- Single, Double
and Holt-Winters triple exponential smoothing.

Single Exponential Smoothing

This is the simplest form of exponential smoothing. It is explained by the formula below, where α is
the smoothing factor and takes values between 0 and 1.

st = α · x t + (1−α) · st−1

When the smoothing factor is closer to 0, older data points are given more importance while making
the prediction. When the smoothing factor is closer to 1, recent data points are given more impor-
tance while making the prediction. It’s possible to use statistical techniques to automatically deduce the
smoothing factor.

Alternatively, a statistical technique such as least squares may be used to optimize the value of the
smoothing factor. Single exponential smoothing is technically equivalent to an ARIMA(0,1,1) model and
provides no better performance. Single Exponential Smoothing cannot handle any trend or seasonality
in the time series data.

Double Exponential Smoothing

Double exponential is designed to handle a trend within the time series, which single exponential
smoothing cannot do. x t represents raw data, and starts at time t = 0. st represents the smoothed value
for time t, and bt is the best estimate of the trend at time t. The output of the algorithm is written as
Ft +m, which estimates x at time t+m, m>0 based on the raw data up to time t. Double exponential
smoothing is given by the formulas

α is the smoothing factor and must have a value between 0 and 1 and β is the trend factor and must
also have a value between 0 and 1. Double exponential smoothing’s formulae are given below.
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s1 = x1

b1 = x1 − x0

When time t > 2,

st = αx t + (1−α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

To make a forecast of future values,

Ft+m = st +mbt

One of the drawbacks of double exponential smoothing is that it accounts only for trend in time series
data and not seasonality.

Holt-Winters Triple Exponential Smoothing

Holt-Winters Triple Exponential Smoothing is able to handle both trend and seasonality in time series
data. This method calculates a trend line and seasonal indices which assign weight to data depending
on their position in the season. Triple Exponential Smoothing can be additive or multiplicative.

Similar to the formulae for Double Exponential Smoothing, st represents the smoothed value and the
output of the algorithm is written as Ft+m. The seasonal change is of length L bt represents the sequence
of best estimates for the linear trend that are superimposed on the seasonal changes and ct represents
the sequence of seasonal correction factors. α is the smoothing factor, β is the trend factor nd γ is the
seasonality factor. α,β and γ must have a value between 0 and 1. Holt-Winters requires a minimum of
two seasons of data to initialize a set of seasonal factors.

An additive model adds the Seasonality, Trend, and Error components. The formulae for additive
seasonality are given below.

s0 = x0

st = α(x t − ct−L) + (1−α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

ct = γ(x t − st−1 − bt−1) + (1− γ)ct−L

Ft+m = st +mbt + ct−L+1+(m−1)mod L

A multiplicative model multiplies Seasonality with the Trend and Error components. The formulae for
multiplicative seasonality are given below.

s0 = x0

st = α
x t

ct−L
+ (1−α)(st−1 + bt−1)
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bt = β(st − st−1) + (1− β)bt−1

ct = γ
x t
st
+ (1− γ)ct−L

Ft+m = (st +mbt)ct−L+1+(m−1)mod L

The general formula for the initial trend estimate b0 is given by the formulae below.

b0 =
1
L

� xL+1−x1
L + xL+2−x2

L + . . .+ xL+L−xL
L

�

Seasonal indices are initialized using the formulae given below. Lets assume N to be the number of
complete cycles present in your data.

ci =
1
N

∑N
j=1

xL( j−1)+i
A j

∀i = 1,2, . . . , L

where

A j =
∑L

i=1 xL( j−1)+i
L ∀ j = 1, 2, . . . , N

2.4.3 Evaluation of Prediction Algorithms

As per the literature survey, forecasting accuracy is affected by trend, seasonality and error in the time
series. ARIMA and Exponential Smoothing are the two most promising methods for making forecasts for
univariate time series data as they are capable of handling trend and seasonality. Out of the three forms
of exponential smoothing, if the data displays no trend or seasonality, then single exponential smoothing
may be employed. If the data display only trend, then double exponential smoothing may be employed.
If the data employs both trend and seasonality then triple exponential smoothing, i.e. Holt-Winters may
be employed.

Furthermore, relevant literature highlights the superiority of Holt-Winters predictions for short term
forecasts, i.e. forecasts of one period or less.

Therefore, both ARIMA and the relevant form of exponential smoothing (depending on the presence
of trend, seasonality and error) will be applied to the time series data to make forecasts. A comparison
will then be made to determine which of the two methods has higher forecasting accuracy.

It is also worth mentioning that in comparison to statistical anomaly detection techniques, prediction
algorithms are more resource expensive during as the computations are more extensive.

2.4.4 Prediction Accuracy Measurement Methods

Due to the importance of evaluating forecasting accuracy of a prediction algorithm, there is much dis-
cussion about different methods and their performance. Fildes et al. [74] further emphasized the impact
that understanding accuracy of forecasting methods has on method selection. Finding the best possible
accuracy measure depends highly on the purpose of forecasting, how important it is in making future
business decisions and the exact needs and concerns that resulted in this forecasting.

This discussion started as early as 1984 when Mahmoud [75] presented a summary of different ac-
curacy measuring methods. Makridikis et.al [61] identified Mean Absolute Percentage Error (MAPE),
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Mean Square Error (MSE), Average Ranking (AR), Medians of absolute percentage errors (Md), and
Percentage Better (PB) as the most common methods. Campbell [76], Fildes et al. [74] and Gooijer
et al. [62] discussed the advantages and disadvantages of different methods and identified MSE and
MAPE as promising approaches. Therefore, in continuation with the conclusions from the aforemen-
tioned literature, both these methods, along with their advantages and disadvantages, will be explored
below.

Mean Square Error

Mean Square Error (MSE) squares and subsequently averages errors, and hence is a quadratic loss
function. The implication of this simple method is that larger errors are given more importance than
smaller ones. Hence, it is advantageous to use MSE when the weight of large errors is more impacting
than smaller ones.

When X t is the actual data at period t, Ft is the forecast made at period t, et is the forecast error at
period t and m is the number of observations, the mean square error is calculated as follows:

MSE =
∑

(X t−Ft )2

m =
∑

(et )2

m

There are some disadvantages to this simple method as well. Firstly, MSE is highly sensitive to extreme
values. Secondly, Chatfield [64] and Armstrong et al. [77] correctly identified that MSE calculates
absolute measures and is scale dependent, so it becomes difficult to make comparisons between different
series.

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) expresses errors as a percentage of the data as a relative
measure. MAPE is easy and intuitive in understanding the importance of errors and due to its relative
nature, making comparisons between multiple methods becomes easy.

When X t is the actual data at period t, Ft is the forecast made at period t, et is the forecast error at
period t and m is the number of observations, it is calculated using the formula below.

MAPE = (
∑

�

�

�

Xt−Ft
X t

�

�

�

m )100= (
∑

�

�

�

et
X t

�

�

�

m )100

MAPE has one obvious drawback which Makridakis et al. [61] recognized in that it gives equal errors
regardless of whether the actual data, X t , is larger or smaller than the forecast data,Ft . The difference
in absolute percentage errors from this is highly problematic when the value of the actual data is close
to zero and the value of the forecast data is high. Moreover, the MAPE is very sensitive to outliers and
can be largely impacted in its value from them.

Evaluation of Prediction Accuracy Measurement Methods

Makridakis et al. [61] concluded that MSE is the best method in situations where a forecasting model
has to be selected. However, for situations where an error evaluation has to be made of a single series or
comparisons have to be made across several series, MAPE is the best method.
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For the purpose of this thesis, a method is necessary which evaluates the accuracy of a forecasting
method by studying error. Therefore, MAPE is the most suitable method for making such an error
evaluation.

2.5 Evaluation of Forecasting Accuracy of Thesis Solution

Measurement of forecasting accuracy can be done by recognizing if an outcome is correctly inferred (true
positive or true negative) or is a Type I (false positive) or Type II (false negative) error. In this thesis,

1. A true positive occurs when a data point is an anomaly and is categorized as an anomaly.

2. A true negative occurs when a data point is a non-anomaly and is categorized as a non-anomaly.

3. A false positive occurs when a data point which is a non-anomaly is categorized as an anomaly.

4. A false negative occurs when a data point which is an anomaly is categorized as a non-anomaly.

The false negatives rate is defined with the formula below

False Negatives Rate=
False Negatives

True Positives + True Negatives + False Positives + False Negatives
× 100

The false positives rate is defined with the formula below

False Positives Rate=
False Positives

True Positives + True Negatives + False Positives + False Negatives
× 100

Once each outcome has been classified into one of the four categories, the accuracy rate can be calcu-
lated with the formula below.

Accuracy Rate=
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
× 100
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3 Concept

In the previous chapter, literature relevant to this thesis was discussed including the purpose and types
of web analytics software and methods of data collection. The type of data was examined to identify it
as univariate time series. Anomaly detection techniques were discussed and it was concluded that three
sigma rule and Tukey’s boxplot were promising approaches for normally distributed univariate time se-
ries data and Chebyshev’s inequality theorem was a promising approach for non-normally distributed
univariate time series data. However, disadvantages of using only standard deviation dependent meth-
ods for anomaly detection were examined. To overcome these, prediction algorithms were explored and
according to the literature, ARIMA modelling and Holt-Winters were identified as promising prediction
algorithms for time series data which displayed trend and seasonality and for making short term fore-
casts. MAPE was identified as the best prediction accuracy measure for error evaluation of a single series
or made across several series and hence, was chosen for finding the deviation of the prediction from the
actual value.

This chapter describes the step-wise development of the concept of this thesis solution. The first
section discusses feature selection, where one feature is selected from web analytics software as an
example of its typical data, to be used during the development and testing of this thesis solution. In the
second section, this features’ typical data is examined to identify its seasonality and distribution. The
frequency of data collection is also determined. Moreover, this section discusses all the different patterns
that this features’ data can display and these data patterns are artificially generated using JMeter. The
third section discusses an appropriate anomaly detection technique for the data distribution of the web
analytics feature, which is then used to determine z-score thresholds that identify anomalies. In the
fourth section, the different data patterns generated using JMeter are used to compare the forecasting
performance of Holt-Winters against ARIMA to find the prediction algorithm that performs with higher
accuracy. Thereafter, MAPE levels are determined which will be used to detect anomalies by comparing
the forecast values from the chosen prediction algorithm with the actual data value. The fifth section
discusses how this thesis’ final solution will detect anomalies by combining the Chebyshev’s inspired
thresholds with MAPE level difference between forecasts and actual. Finally, this concept design is
presented in the sixth section.

3.1 Feature Selection for Prediction Algorithm

In machine learning and pattern recognition, a feature is an individual measurable property of a phe-
nomenon being observed [78]. Web analytics software measures multiple features, many of which are
inter-dependent. For example, the visitors and visits feature is directly related to the number of page
views, and both show similar seasonal usage patterns. The feature visits per visitor is also related to page
views per visit.

Arguably, one of the features which is universally important to track is the number of page views to a
web page. It is interesting for the common user of web analytics. Therefore, this thesis will be using the
feature ‘page views’ for forecasting and consequent anomaly detection.

3.2 Page Views Data

In this section, typical page views data is examined to identify its seasonality and distribution. The
frequency of data collection is also determined. Moreover, all the different patterns that page views data
can display are discussed.
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3.2.1 Seasonality of Data

Page views data displays strong periodicity for the same day of the week. For example, every Monday
in consequent weeks displays the same levels of page views. Hence, the season of page views data is
weekly.

3.2.2 Distribution of Page Views Data

To understand the distribution of typical page views data, a random page views data sample to a technical
web page was collected from a sample web analytics software. The seasonality of the data is weekly.

The graph in Figure 2 shows the distribution of this sample dataset. The mean of the dataset is shown
as a green vertical line, the yellow lines show the one standard deviation distance from the mean. The
orange lines show two standard deviations distance from the mean. The red lines show three standard
deviations from the mean. The blue line on the graph displays what a normal distribution would look
like and is shown for comparison purposes.

Figure 2: Distribution of Typical Page Views Data

As can be seen in Figure 2, page views data is not normally distributed. There are two reasons
for this- firstly, weekly data combines weekdays data with weekend data. Both of these datasets are
normally distributed on their own, but when they’re combined the resulting dataset is no longer normally
distributed. As can be seen through the two peaks in the graph, the resulting dataset has bimodal
distribution instead of normal distribution. Secondly, the nature of the data is such that page views
cannot be lower than 0, and hence, cannot take negative values. This explains the skewing of the data
distribution after 0 on the x-axis.

Even though the graph shown and the discussion of reasons for non-normal distribution is for this
specific dataset example, both these reasons hold true for all other page views data to this specific web
page. For the purpose of this thesis, all the real page views data and samples are collected from the same
web page. Therefore, the data used in this thesis will also show non-normal distribution and the anomaly
detection techniques and prediction algorithms used should be those specific to data with non-normal
distributions.

3.2.3 Frequency of Data Collection

Web analytics software inherently displays data at varying time granularities. Out of the possibilities
of collecting data every minute, hour, day, week and month, for the purpose of this thesis, data will be
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collected hourly. This is because hourly data is fine enough to identify minute data patterns and recurring
unexpected behaviour without impacting efficiency of the prediction algorithm with too unnecessary fine
data.

3.2.4 Page Views Data Patterns

When all the different data patterns that page views can display have been identified, it becomes possible
to develop a thesis solution which is prepared to accurately detect anomalies if any such data pattern
occurs and it also becomes possible to identify any limitations of this solution.

Ten different page views data patterns are identified in this section. These are- page views that are
consistent everyday, continuously increasing, continuously decreasing, seasonally repeating, displaying
big increases or big decreases, displaying momentary increase during a spike or momentary decrease
during an outage.

Graphs displaying these different datasets are shown below. The number of page views are mapped
on the y-axis and the time period, measured in seasons, is mapped on the x-axis.

Figure 3: Page Views Dataset Type- Continuously Iden-
tical Data

Figure 4: Page Views Dataset Type- Continuously In-
creasing Data

Figure 5: Page Views Dataset Type- Continuously De-
creasing Data

Figure 6: Page Views Dataset Type- Seasonally Repeat-
ing Data

Figure 7: Page Views Dataset Type- Seasonally Repeat-
ing, Gradually Increasing Data

Figure 8: Page Views Dataset Type- Seasonally Repeat-
ing, Gradually Decreasing Data

Dataset 1: Continuously Identical Data

In the unlikely event of a web page receiving continuously similar or identical number of page views,
the dataset hose graph is shown in Figure 3 would be useful to train the prediction algorithms.
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Figure 9: Page Views Dataset Type- Big Increase in
Data

Figure 10: Page Views Dataset Type- Big Decrease in
Data

Figure 11: Page Views Dataset Type- Spike Data Figure 12: Page Views Dataset Type- Outage Data

Dataset 2: Continuously Increasing Data

The dataset displayed in Fig 4 a scenario where the number of page views are continuously and steadily
increasing per season.

Dataset 3: Continuously Decreasing Data

The dataset displayed in Figure 5 displays a scenario where the number of page views is slowly and
steadily decreasing per season.

Dataset 4: Seasonally Repeating Data

The dataset displayed in Figure 6 shows a scenario where the data shows a seasonally repeating pattern
without any increasing or decreasing trend. For the dataset graphed below, the season is one week and
the pattern of page views repeat themselves every season on the x-axis, i.e. 7 days.

Dataset 5: Seasonally Repeating, Gradually Increasing Data

The dataset displayed in Figure 7 shows a scenario where the pattern of page views repeats every
season and number of page views increases continuously and gradually within the season. There is no
trend in the dataset depicted below, as the long-term movement of page views is steady.

Dataset 6: Seasonally Repeating, Gradually Decreasing Data

The dataset displayed in Figure 8 shows a scenario where the pattern of page views repeats every
season and number of page views decreases continuously and gradually within the season. There is no
trend in the dataset depicted below, as the long-term movement of page views is steady.
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Dataset 7: Big Increase in Data

The dataset displayed in Figure 9 shows a scenario where the normal pattern is disrupted with a large
increase in the number of page views. The increased number of page views then becomes the new
normal pattern.

Dataset 8: Big Decrease in Data

The dataset displayed in Figure 10 shows a scenario where the normal pattern is disrupted with a
large decrease in the number of page views. The decreased number of page views then becomes the new
normal pattern.

Dataset 9: Spike Data

The dataset displayed in Figure 11 shows a scenario in which there is a drastic, but fleeting increase
in the number of page views. The dataset graphed below shows seasonally repeating data with a large
spike between season 1 and 1.5 on the x-axis.

Dataset 10: Outage Data

The dataset displayed in Figure 12 shows a scenario in which there is a drastic, but fleeting decrease
in the number of page views. The dataset graphed below shows seasonally repeating data with a large
outage between season 1 and 1.5 on the x-axis.

3.3 Anomaly Detection in Time Series

It is necessary to understand which situations classify as an anomaly so that it becomes possible to
identify those situations. The scope of an anomaly is obviously specific to the use case. A web page that
tracks a patients heartbeat, might need to identify fluctuations of less than 5 heartbeats per minute as
anomaly which needs alerting. However, if a web page is tracking weather conditions in Fahrenheit, its
possible that even a 10 fahrenheit fluctuation might not be considered an anomaly.

For the purpose of this thesis, the selected feature is page views. The time series page views data will
be used and the standard deviation will be calculated. If the new data point lies a certain number of
standard deviations from of the mean, it will be identified as an anomaly. However, since anomalies
can be of different severities, it is important to have different classifications of an anomaly to identify its
severity.

3.3.1 Chebyshev Inspired Thresholds for Triggering Alerts

The severity of an anomaly and the level of alert that is consequently issued will depend on thresholds
that state the number of standard deviations that the data point is from the mean. The initial thresholds
will be inspired by values from the Chebyshev’s inequality theorem, but these can also be configured by
the user to adjust the alerting sensitivity specific to their use case. Applying only one set of thresholds
to different use cases can lead to over alerting, which increases resource consumption and operational
costs, or under alerting, which can be dangerous by missing out on real anomalies that require attention.
Having multiple levels of alerting also allows for appropriate attention to be given to an anomaly as
some anomalies may need immediate resolution while others could merely be a warning.
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Levels of Alerts

There will be three levels of alerts- low level alert, medium level alert and high level alert.

Low level alerts serve as a warning to web page owners that the page views behaviour is not as was
expected, and could potentially become alarming in the future. Following the data distribution according
to Chebyshev’s inequality theorem, a low level alert will be initially configured to trigger whenever a data
value is 2 standard deviations from the mean, i.e. falls outside 75% of the data values.

Medium level alerts inform web page owners that the difference between the predicted page views
and actual page views is vast enough that it should be looked into. As per Chebyshev’s distribution,
medium alerts will be initially configured to trigger when the data point is 3 standard deviations away
from the mean, i.e. falls outside 88.89% of the data values.

High level alert inform web page owners that very unexpected behaviour is occurring and that it
should be manually investigated immediately. As per Chebyshev’s algorithm, the high level alert will be
initially configured to trigger when the data point is 4 standard deviations away from the mean, i.e. falls
outside 93.75% of the data values.

Only the user will be able to balance the sensitivity of the thresholds with the frequency of alerts
according to their requirements. For this reason, the thresholds are configurable by the user.

3.4 Prediction Algorithms

As per the discussion in Chapter 3, conceptually the most promising algorithms to make predictions on
the time series generated from tracking page views are ARIMA modelling and Holt-Winters Algorithm. In
this section, both of these algorithms will be tested on the different types of Datasets discussed in Chapter
3.2 and a comparison will be made of the accuracy with which both algorithms performed prediction of
page views.

3.4.1 Comparison of ARIMA and Holt-Winters Algorithm on Different Datasets

To compare the performance of ARIMA and Holt-Winters on the different datasets during this phase
of the thesis, these algorithms were implemented in R where the hyper-parameter selection of both
algorithms is automated. In the implementation phase in the next chapter, there is further discussion
and elaboration of the R implementation.

ARIMA has three hyper-parameters: p which is the auto-regressive Order, d which is the degree of
differencing and q which is the moving average order. The optimal value of these was calculated using a
variation of the Hyndman and Khandakar algorithm [15] which combines unit root tests, minimization of
the Akaike Information Criterion (AIC) and Maximum Likelihood Estimation (MLE) to obtain an ARIMA
model.

As explained during the literature review, Holt-Winters has three hyper-parameters: 1. alpha which
identifies the time series level, 2. beta which identifies the time series trend component and 3. gamma
which identifies the time series seasonal component. These hyper-parameters can be optimally auto-
generated using limited memory-BFGS algorithm [79–81]. Limited memory-BFGS is an optimization
algorithm which uses an estimation to the inverse Hessian matrix to steer its search through a variable
space using limited memory to approximate the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[82, 83].
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Dataset 1: Continuously Identical Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 13 and Figure 14 for Dataset 1.

Figure 13: ARIMA Prediction- Continuously Identical
Data

Figure 14: Holt-Winters Prediction- Continuously
Identical Data

Dataset 2: Continuously Increasing Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 15 and Figure 16 for Dataset 2.

Figure 15: ARIMA Prediction- Continuously Increasing
Data

Figure 16: Holt-Winters Prediction- Continuously In-
creasing Data

Dataset 3: Continuously Decreasing Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 17 and Figure 18 for Dataset 3.

Figure 17: ARIMA Prediction- Continuously Decreas-
ing Data

Figure 18: Holt-Winters Prediction- Continuously De-
creasing Data
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Dataset 4: Seasonally Repeating Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 19 and Figure 20 for Dataset 4.

Figure 19: ARIMA Prediction- Seasonally Repeating
Data

Figure 20: Holt-Winters Prediction- Seasonally Re-
peating Data

Dataset 5: Seasonally Repeating, Gradually Increasing Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 21 and Figure 22 for Dataset 5.

Figure 21: ARIMA Prediction- Seasonally Repeating,
Gradually Increasing Data

Figure 22: Holt-Winters Prediction- Seasonally Re-
peating, Gradually Increasing Data

Dataset 6: Seasonally Repeating, Gradually Decreasing Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 23 and Figure 24 for Dataset 6.

Figure 23: ARIMA Prediction- Seasonally Repeating,
Gradually Increasing Data

Figure 24: Holt-Winters Prediction- Seasonally Re-
peating, Gradually Decreasing Data
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Dataset 7: Big Increase in Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 25 and Figure 26 for Dataset 7.

Figure 25: ARIMA Prediction- Big Increase in Data
Figure 26: Holt-Winters Prediction- Big Increase in

Data

Dataset 8: Big Decrease in Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 27 and Figure 28 for Dataset 8.

Figure 27: ARIMA Prediction- Big Decrease in Data
Figure 28: Holt-Winters Prediction- Big Decrease in

Data

Dataset 9: Spike Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 29 and Figure 30 for Dataset 9.

Figure 29: ARIMA Prediction- Spike Data Figure 30: Holt-Winters Prediction-Spike Data
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Dataset 10: Outage Data

Predictions made after automating the generation of optimal hyper-parameters for both algorithms
are shown in Figure 31 and Figure 32 for Dataset 10.

Figure 31: ARIMA Prediction- Outage Data Figure 32: Holt-Winters Prediction- Outage Data

Evaluation of Forecasting Accuracy of Prediction Algorithms

Table 3 below compares the accuracy of the predictions made by ARIMA modelling and Holt-Winters
algorithm by comparing the error percentage of predictions made by both for different types of datasets.

Overall, Holt-Winters displays over 10% more accuracy than ARIMA modelling in making predictions
for all the datasets. The biggest difference in absolute prediction error, when Holt-Winters is 49% more
accurate than ARIMA, is for the predictions of seasonally repeating gradually increasing dataset. Predic-
tion errors are also substantially different in the spike dataset, with an absolute percentage difference
of 18.9%. Also worth discussing is the difference in predictions for the seasonally repeating dataset, as
this is the most natural and realistic dataset. Holt-Winters makes a more accurate prediction, with 7.6%
more accuracy than ARIMA.

It is clear from the performance of Holt-Winters prediction on the different datasets that it models the
data better and makes more accurate predictions than ARIMA. Therefore, from here on, Holt-Winters
algorithm will be used for the purpose of this thesis.

3.4.2 MAPE Levels for Triggering Alerts

As discussed, after studying page view behaviour and patterns from the training data, a prediction will
be made about the expected behaviour using Holt-Winters. When the actual behaviour is compared to
the prediction that was made, an anomaly will identify situations where the difference between the two
situations surpasses a pre-configured threshold. An example would be if the actual page views for the
next hour are 15% more or less than the predicted value of page views for the next hour, then trigger an
alert.

Levels of Alerts

Clearly, it is important to determine the difference between the forecast value and the actual value.
This can be calculated with the MAPE between the two values. For the purpose of this thesis, if the MAPE
between the forecast value and the actual value of the data point value is over 100%, then the actual
data point will be considered a low level anomaly. If the MAPE between the forecast value and the actual
value of the data point value is over 150%, then the actual data point will be considered a medium level
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Table 3: MAPE Comparison of ARIMA and Holt-Winters on Different Datasets

Dataset Type

Actual page
views for
the Next

Hour

ARIMA HOLT-WINTERS

Predicted
Value For
Next Hour

Percentage
Error

Predicted
Value For
Next Hour

Percentage
Error

Continuously
Identical Data

602 602.0000 0.0000 601.9948 0.0009

Continuously
Increasing Data

1010 1009.5000 0.0495 1009.0000 0.0990

Continuously
Decreasing Data

896 896.0001 0.0000 895.9993 -0.0001

Seasonally
Repeating Data

69 111.0969 61.0100 32.1649 -53.3842

Seasonally
Repeating,
Gradually

Increasing Data

503 751.7463 49.4525 501.0227 -0.3931

Seasonally
Repeating,
Gradually

Decreasing Data

1010 954.8328 -5.4620 1010.9950 0.09852

Big Increase in
Data

427 607.6119 42.2979 606.7635 42.0992

Big Decrease in
Data

607 426.4776 -29.7400 424.1725 -30.1199

Spike Data 69 119.9619 73.8578 31.1037 -54.9222
Outage Data 69 104.3746 51.2676 34.1900 -50.4493

Mean Percentage Error 24.2733 -14.697
MAPE 24.2733 -14.697

anomaly. And finally, if the MAPE between the forecast value and the actual value of the data point value
is over 200%, then the actual data point will be considered a high level anomaly.

3.5 Combining Anomaly Detection and Prediction Algorithms

For a robust solution for finding any anomalies in page views behaviour, a combination of anomaly detec-
tion technique with the prediction algorithm output needs to be implemented. To determine whether a
data point is an anomaly, this thesis solution will first calculate the standard deviation of that data point
with its historical data. If the data point is enough number of standard deviations away from the mean
to trigger any one of the three alerting thresholds, i.e. the data point will be identified as a low level
anomaly if it is more than 2 standard deviations away from the mean, or as a medium level anomaly if
it is more than 3 standard deviations away from the mean or as a high level anomaly if it is more than 4
standard deviations away from the mean.

If the data point lies at a distance of 2 standard deviations or less from the mean and does not trig-
ger any of the three thresholds, then its MAPE will be calculated. The process of calculating the MAPE
involved using historical data values before the data point for training the Holt-Winters prediction algo-
rithm, which will then make a forecast of what the value of that data point should be. A comparison is
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made between the forecast value and the actual value for that data point and the MAPE is calculated. If
the MAPE is over 100%, then the actual data point will be considered a low level anomaly. If the MAPE
is over 150%, then the actual data point will be considered a medium level anomaly. Or finally, if the
MAPE is over 200%, then the actual data point will be considered a high level anomaly.

3.6 Concept Design

The conceptual decisions made in this chapter now allow for the generation of a complete concept
design. Figure 33 shows the collection of page views data from the web analytics software and how it is
processed in order to determine anomalous behaviour.

Figure 33: Concept Design of the Thesis Solution
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4 System Implementation

The previous chapter described the step-wise development of the concept of this thesis solution. The
feature ‘page views’ was selected as an example of typical web analytics data because it is universally
considered important and interesting by common web analytics software users. Page views data was
examined and its seasonality was determined to be weekly. Because it combined two normally distributed
datasets (i.e. data from the weekdays and data from the weekends), its distribution was determined to
be bimodal and hence, non-normal. Ten different types of patterns which page views data could display
were discussed and artificially generated using JMeter. Thereafter, Chebyshev’s inequality theorem was
determined as the favourable anomaly detection technique because of the non-normal distribution of
data, and was used to determine anomaly thresholds. Thereafter, the different data patterns generated
using JMeter were used to compare the forecasting performance of Holt-Winters against ARIMA, and
Holt-Winters made forecasts with higher average accuracy, which was calculated using MAPE. Thereafter,
it was determined that the thesis’ final solution will develop an anomaly detection system which depends
on both Chebyshev’s inspired thresholds and MAPE level difference between forecasts made by Holt-
Winters and actual data value. Finally, a concept design diagram which encapsulated all these decisions
was presented.

This chapter discusses the implementation details of the concept design formulated earlier. To obtain
real web analytics data and to test integration of the developed concept, there is a need for an illustra-
tive web analytics software. The first section introduces SAP Web Analytics (SWA), which is used as an
example of a typical web analytics software. As SWA tracks page views and currently has no anomaly
detection alerting method, it is an appropriate system for testing the integration of the developed con-
cept. When the accuracy of forecasts made by Holt-Winters and ARIMA had to be compared to determine
the best prediction algorithm in chapter 3, there was a need for a fast paced development environment
where these two algorithms could be efficiently implemented. The second section discusses R, which is
used as the programming language and development environment for the initial concept development
because it already has both these algorithms in its default forecast package and is user friendly and fast
while generating graphs which aid in the analysis of results. R’s forecast.Arima and forecast. HoltWin-
ters functions are explored. Methods of automating the identification of optimal model paramteres and
hyper-parameters respectively are discussed. The third section emphasizes the need to implement the
final concept in Java so that it can be integrated in SWA, the web analytics software being used as an ex-
ample in this thesis, whose backend is written Java and identifies Java as the preferred language for any
"extensions" to be added to SWA to allow easy integration with the existing web application stack. Firstly,
the REST calls made to SWA API to obtain page views data are discussed along with the configurations
file, which holds the configuration settings required to make successful calls to the API. Thereafter, the
received data is discussed along with how it is processed. The method for calculating z-score is then dis-
cussed so that the Chebyshev inspired thresholds can use it to identify anomalies. The implementation
of Holt-Winters algorithm is discussed, including its hyper-parameter generation using cross-validation
and the implementation of both the additive and multiplicative forms after the calculation of the ini-
tial trend, level and seasonal indices. All the open-source libraries used are discussed. Thereafter, the
comparison of the Holt-Winters forecast with the actual data value to calculate the MAPE is shown. The
MAPE levels are determined which identify anomalies and are integrated with the Chebyshev inspired
thresholds to form the final thesis solution - an automated anomaly detection system. The alerts gener-
ated from the automated anomaly detection system are then displayed. Finally, this section concludes
with an architecture diagram of the Java implementation.
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4.1 SAP Web Analytics

SAP Web Analyrics (SWA) is used as an example web analytics software to obtain real web analytics
data and test the integration of this thesis concept. SWA, like other web analytics software, aims to
understand how users use a web application by tracking page loads, click events, or custom events. SWA
runs on SAP SE’s propriety HANA Cloud Platform, and uses the page tagging technique of embedding a
JavaScript snippet into the code of the web page being tracked.

SWA has a series of predefined reports including new and recurring visitors, device used, browser
language, operating system, geographic location, click-through paths, heat map of popular positions on
the web page and page views, the feature selected to represent typical web analytics data in this thesis.
Moreover, as there is currently no anomaly detection alerting system in SWA, it is an appropriate system
for testing the integration of the developed concept.

Figure 34 a screen shot of the SWA landing page. The menu on the left displays the different precon-
figured reports, which have been grouped into six categories- behaviour, technology, geography, social,
search and clickmap.

Figure 34: SWA- Landing Page

The sample page views report in Figure 35 gives information about how many page views there are
for the website and how many of them are unique page views. This report allows the identification of
behavioural patterns in the usage of the website. In the graph below, the page views report displays data
for one week and the data collection is set to be hourly. The data points in blue display the page views
per hour and the data points in green display the number of unique visitors per hour.

As per the users convenience, the report can be displayed as a line chart, horizontal and vertical bar
chart or a table view. The data for the selected time range and granularity of data collection can be
downloaded as a CSV or Excel file.
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Figure 35: SWA- Page Views Report

4.2 R Implementation

In chapter 2, theoretical comparisons were made between several prediction algorithms to determine
which were worth further investigating for the purpose of this thesis. The prediction algorithms were
narrowed down to Holt-Winters and ARIMA on the basis of the literature review. During the concept
development phase, the forecasting accuracy of these two algorithms needed to be compared on different
data patterns to determine the one with highest average performance. Hence, an environment was
required where this comparison could be made.

R is a powerful open-source language for statistical computing and graphics. It is an easy choice of
programming language and development environment to compare the accuracy of forecasts made with
ARIMA and Holt-Winters because it already has both these algorithms in its default forecast package
[84, 85], resulting in fast paced development and prototyping. Moreover, R is user friendly and fast in
generating graphs which aid in the analysis of results.

For this thesis, the R version used is 0.99.893. The version of the aforementioned forecast package is
7.1 which includes implementations of both ARIMA as forecast.Arima function and and Holt-Winters as
forecast.HoltWinters function. Both these functions are written by Rob J Hyndman [86]. The implemen-
tations of these functions are discussed below.

4.2.1 forecast.Arima

The forecast.Arima function is used on univariate ARIMA models and returns forecasts and related in-
formation. The object whose forecast has to be made is usually the result of a call to R’s arima(),
auto.arima(), ar(), ar f ima() or f racdi f f () functions. In this thesis, the auto.arima() function
was used to automate the identification of optimal ARIMA model parameters to generate this object.
Manually determining model parameters can be time consuming and potentially an inaccurate method.
auto.arima calculates the first order differencing through KPSS tests and seasonal order differencing
through OCSB tests. First order and seasonal values of the parameters p and q are determined through
step-wise selection.
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The page views data is read from a CSV file, downloaded directly from SWA, using the read.csv ()
function and stored into a time series object using the ts() function. The time series object is then passed
as an argument of auto.arima() function. Thereafter, the resulting object and the number of periods of
forecasts to be made are passed as arguments of the f orecast.Arima() function. The output elements
of forecast function are shown in Table 4 and these also apply to the forecast.Arima function.

Table 4: Output Elements of forecast Function

Element Name Description
summary Summary of the forecasting results
plot Plot of the forecasts and prediction intervals
residuals Residuals from the fitted model, calculated by subtraction the original time

series from the fitted values.
fitted Fitted values, one-step forecasts.
model A list containing information about the fitted model
method The name of the forecasting method as a character string
mean Point forecasts as a time series.
lower Lower limits for prediction intervals
upper Upper limits for prediction intervals.
level The confidence values associated with the prediction intervals
x Original time series.

4.2.2 forecast.HoltWinters

The forecast.HoltWinters function is used on univariate Holt-Winters models and returns forecasts and
related information. The object whose forecast has to be made is usually the result of a call to R’s
Hol tWinters() function.

The page views data is read from a CSV file, downloaded directly from SWA, using the read.csv ()
function and stored into a time series object using the ts() function. The time series object is passed as
an argument of Hol tWinters() function to generate a Holt-Winters model. Thereafter, this model and
the number of periods of forecasts to be made are passed as arguments of the f orecast.Hol tWinters()
function. Within this function, the hyper-parameters can either be manually specified, or automatically
calculated if set to NU LL by minimizing the squared one-step prediction error. The alpha parameter
signifies trend. The beta parameter signifies trend and can be set to FALSE indicating lack of a trend.
The gamma parameter signifies seasonality and can be set to NU LL indicating lack of seasonality. The
hyper-parameter values range from 0 to 1. Values close to zero indicate that relatively little weight is
placed on the most recent observations while making forecasts and vice versa.

The output elements of forecast function are shown in Table 4 and these also apply to the
f orecast.Hol tWinters() function.

4.3 Java Implementation

SWA, the example web analytics software being used for this thesis, has its backend written in Java
and identifies Java as the preferred language for any "extensions" to be added to SWA to allow easy
integration with the existing web application stack. Therefore, this thesis solution was implemented in
Java.

The Java implementation is a command line application that serves as a prototype to demonstrate
the likelihood of this thesis solution being able to integrate in a real web analytics application and
in principle, enable timely alerts when anomalies are detected. This section discusses the REST calls
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made to SWA API to obtain page views data and the processing of the response data. Thereafter,the
method for calculating z-score is discussed so that the Chebyshev inspired thresholds can use it to identify
anomalies. The implementation of Holt-Winters algorithm is discussed, including its hyper-parameter
generation using cross-validation and the implementation of both the additive and multiplicative forms
after the calculation of the initial trend, level and seasonal indices. All the open-source libraries used are
discussed. Thereafter, the comparison of the Holt-Winters forecast with the actual data value to calculate
the MAPE is shown. The MAPE levels are determined which identify anomalies and are integrated with
the Chebyshev inspired thresholds to form the final thesis solution- an automated anomaly detection
system. The alerts generated from the automated anomaly detection system are then displayed. Finally,
this section concludes with an architecture diagram of the Java implementation.

The project was implemented using the software stated in Table 5.

Table 5: Java Implementation - Software and Technologies Used

System Property Description
Java Version 1.8.0_102
Eclipse Version: Mars.2 Release (4.5.2)
SAP Web Analytics (SWA) Beta Version- Backend written in Java and Frontend in Javascript.

The Java project consisted of 3 packages with different classes and these have been briefly explained
in Table 6. Kingly note that ‘*’ signifies "com.sap.webanalytics." string.

4.3.1 Obtaining SWA Page Views Data and Processing It

The first step in implementing this thesis solution is obtaining the page views data from SWA so that it
can be processed. This is done by sending an HTTP GET request to the SWA API as shown in the Java
code below.

String urlPath = System.getProperty(Configuration.SETTINGS_SWA_USERNAME) +

"/report/behaviorPageViews?from=" + getOldDate(14) +"&to=" + getOldDate(0) +

"&timeAccuracy=hour";

URL url = new URL(urlPath);
HttpsURLConnection uc = (HttpsURLConnection) url.openConnection();

uc.setRequestMethod("GET");

String userPassword = System.getProperty(Configuration.SETTINGS_SWA_USERNAME) + ":" +

System.getProperty(Configuration.SETTINGS_SWA_PASSWORD);

uc.setRequestProperty("Authorization", "Basic " +

Base64.encodeBase64String(userPassword.getBytes(userPassword));

uc.addRequestProperty("User-Agent", Configuration.USER_AGENT);

uc.connect();

The urlPath variable is passed with the GET request and it states the SWA API endpoint, the report
being accessed (i.e. PageViews), the time duration for when the data should be accessed (i.e. all the
PageViews data from 14 days ago up to the current date) and the frequency of data collection (i.e.
hourly). The authorization related variables refer to the SWA username and password for accessing the
API. Table 7 shows the values of these variables and others which can be found inside a configuration
file. The HTTP GET request to the SWA API returns the page views data as a JSON object. This JSON
object is processed in a class called GetPageV iews, which uses the ResponseHelper() function to input
it into an ArrayList.
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Table 6: Description of Packages and classes in Java Project

Package Class and Description Description
*api.prediction.utils HTTPRequestUtil This class executes the HTTP GET re-

quest. It opens the connection, formu-
lates the request and executes it.

*api .prediction.configurations
Configuration File containing the values of the vari-

ables necessary to make the GET Re-
quest and the definition of thresholds
and MAPE levels for detecting anoma-
lies.

ResponseHelper Declares ResponseHelper, used to han-
dle JSON response.

*api.prediction

Main This class calls functions to implement
the entire concept design of this thesis
solution.

GetPageViews This class sets up the GET request with
all its paramters, converts the JSON re-
sponse into an ArrayList

CalculateZScore This class calculates the z-score of the
ArrayList of page views data.

ThresholdDependentAlert This class compares the calculated z-
score with the thresholds setup in the
configuration file and issues an alert ac-
cordingly.

HoltWintersHyperParamters This class uses the ArrayList of page
views data, performs cross-validation
and calculates optimal alpha, beta and
gamma parameters for Holt-Winters.

HoltWinterAlgorithm This class executes the Holt-Winters
algorithm by calculating initial level,
trend, seasonal indices and executing
additive and multiplicative forms. It re-
turns an ArrayList of forecast values.

MAPEDependentAlert This class uses the last value from the
ArrayList of page views data and com-
pares it with the forecast values Ar-
rayList to calculate the MAPE levels.
If MAPE levels specified in the config-
uration file are surpassed, an alert is
issued.

4.3.2 Anomaly Detection Through Thresholds

This ArrayList is then passed to CalculateZScore() function which calculates the distance of the last
data value in standard deviations from the mean of the page views. The calculated z-score is passed to
the ThresholdDependentAler t() function which compares the calculated z-score with the thresholds
stated in the configuration file to determine if an anomaly is detected. If any one of the thresholds are
triggered, an alert is displayed in the command line and the program execution ends.
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Table 7: Configuration File Variables

Configuration Variable Value
USER_AGENT "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"
SETTINGS_SWA_REPORTS "swa_report_api"
DEFAULT_SWA_REPORTS_URL "https://sapwebanalytics.hana.ondemand.com/warp/api/v1"
DEFAULT_HHTP_PROXY_HOST "proxy.wdf.sap.corp"
DEFAULT_HHTP_PROXY_PORT "8080"
DEFAULT_SKIP_SSL_CHECKING "true"
SETTINGS_SWA_USERNAME "THESIS_PREDICTION_USER"
SETTINGS_SWA_PASSWORD "********"
PERIOD 168
M 1
HIGH_ZSCORE_THRESHOLD 3.2
MED_ZSCORE_THRESHOLD 2.8
LOW_ZSCORE_THRESHOLD 2.5
HIGH_MAPE_LEVEL 200
MED_MAPE_LEVEL 150
LOW_MAPE_LEVEL 100

4.3.3 Anomaly Detection Through MAPE Levels

If none of the z-score thresholds are triggered, this thesis solution then implements Holt-Winters predic-
tion algorithm and compares the forecast with the actual value for the last hour to calculate the MAPE
difference.

The ArrayList containing page views data is passed to the Hol tWintersParamters() function where
the optimal hyper-parameters: alpha, beta and gamma are determined using cross-validation, which
is a model validation technique. Although, there are several methods for determining the optimal
hyper-parameters, one possible method is cross-validation, which is well suited to applications which
aim to perform forecasting and is also often used to estimate the accuracy of a forecasting model.
When applied successfully, cross-validation can reduce the negative impact of over-fitting a model
and can deduce how accurately a training model will make forecasts on an unknown data set. In the
CalculateH yperParamters() function, all the possible combinations of the hyper parameters (i.e. all
the alpha, beta and gamma values from 0 to 1, with 0.1 increments) are used to make forecasts, and
the hyper-parameter combination which minimizes the error in forecast is selected. However, testing all
the possible combinations of hyper-parameters negatively impacts the performance of this thesis solution
and slows it down.

Once the hyper-parameters have been determined, Holt-Winters forecasts must be made. There is one
open-source implementation of Holt-Winters algorithm by Nishant Chandra [87] in Java. However, his
implementation only supports the multiplicative form. There is also a need for implementing the additive
form of Holt-Winters because the trend of a time series is prone to changing forms and can change from
multiplicative to additive or vice versa. Therefore, in this thesis solution, the additive form was built
upon Chandra’s multiplicative form implementation.

For the additive form, the calculation of the initial level is shown in the code below, where period of
the data is one week, i.e. 168 data values. The initial level is stored in a Double variable.

for (int i = 0; i < period ; i++){
sumofpageviewsArrayList =+ pageviewsArrayList.get(i);

}
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initiallevel = sumofpageviewsArrayList/period;

For the additive form, the calculation of the initial trend is shown in the code below, which is stored
in a Double variable.

for (int i = 0; i < period; i++) {
sumofpageviewsArrayList += (pageviewsArrayList.get(period + i) -

pageviewsArrayList.get(i));

}

initialtrend = sumofpageviewsArrayList / (period * period);

For the additive form, the calculation of the initial seasonal indices is shown in the code below. The
Double variable called L represents the lag operator. The seasonal indices are stored in an ArrayList of
Doubles.

for (int i = 0; i < period; i++) {
seasonalIndices[i] = seasonalIndices[i] - L ;

}

Finally, the code below displays the implementation of the formulae for additive Holt-Winters forecast-
ing. The seasonal values are represented as St, the trend values as Bt and the level values as I t. The
forecasts, F t are thereafter calculated.

// Overall smoothing calculations

if ((i - period) >= 0) {
St[i] = alpha * (y.get(i) - It[i - period]) + (1.0 - alpha)* (St[i - 1] + Bt[i - 1]);

} else {
St[i] = alpha * y.get(i) + (1.0 - alpha) * (St[i - 1] + Bt[i - 1]);

}

// Trend smoothing calculations

Bt[i] = gamma * (St[i] - St[i - 1]) + (1 - gamma) * Bt[i - 1];

// Seasonal smoothing calculations

if ((i - period) >= 0) {
It[i] = beta * (y.get(i) - It[i - period]) + (1.0 - beta) * It[i - period];

}

// Forecast calculations

if (((i + m) >= period)) {
Ft.set((i+m), (St[i] + (m * Bt[i]) + It[i - period + m]));

}

This function outputs the forecast in a Double ArrayList. The forecast made can be compared with the
actual value to deduce the MAPE, and if it surpassed the levels specified in the Conf iguration file, then
an alert was issued on the command line. A screenshot of the output of the implementation of this thesis
solution in Java is displayed in Figure 36.

The screenshot 36 displays the predicted value and the actual value and calculated that neither the
z-score dependent thresholds, nor the MAPE levels were surpassed. Therefore, no alerts are issued.
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Figure 36: Java Implementation Output Screenshot

4.3.4 Thesis Solution Architecture

In conclusion, the Figure 37 displays the architecture of this thesis solution. Each box represents a class
implemented in the Java implementation.

Figure 37: Thesis Solution Architecture
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5 Evaluation of Thesis Solution

The previous chapter discussed the use of SWA as an example of a web analytics software to obtain real
web analytics data and to test integration of the developed concept. R was used as the programming
language and development environment for the initial concept development because it already had both
ARIMA and Holt-Winters algorithms in its default forecast package, and was user friendly and fast while
generating graphs which aided in the analysis of results. The auto.arima and HoltWinters functions
were discussed, as well as the methods for automating the identification of optimal hyper-parameters of
these algorithms. Implementation of the final thesis concept in Java was done because SWA’s backend
is in Java and whose backend is written Java and it identifies Java as the preferred language for any
"extensions" to be added to SWA to allow easy integration with the existing web application stack. The
Java implementation was explained which included the REST calls to the API to obtain data, processing
of that data, calculation of z-score and implementation of Chebyshev inspired thresholds, calculation of
the Holt-Winters hyper-parameters through cross-validation, implementation of the additive and mul-
tiplicative forms and calculation of the initial level, trend and seasonal indices. Thereafter, the MAPE
was calculated by comparing the Holt-Winters forecast with the actual data value and MAPE levels were
determined to identify anomalies. These were integrated with the Chebyshev inspired thresholds to form
the final thesis solution - an automated anomaly detection system which issues timely and efficient alerts.
An architecture diagram of the Java implementation was also displayed.

In this chapter, the R implementation is evaluated, which used page views data collected from tracking
an internal SAP web page. The reason the R implementation was used for evaluation is because there is
some scope for improvement in the precision of the Java implementation, such as the hyper-parameter
generation function which only tests hyper-parameter values at 0.1 increment intervals. Therefore,
the final hyper-parameter selection in the Java solution is not as precise as the ones that R calculates
automatically as it checks hyper-parameter values in higher precision. Moreover, the R implementation
is faster in executing and generating graphs and figures easily.

The specific web page whose page views are tracked is selected for evaluation in comparison to others
because it displays diverse naturally occurring data patterns in the page views. This solution was first
tested on nine random data points from the page views collected from one website spanning 8 months
of tracked page views data. This thesis solution calculates the z-scores for detecting anomalies through
Chebyshev inspired thresholds, and uses two weeks of each data points historical data to train Holt-
Winters prediction algorithm. The accuracy rate of the final solution on these nine data points is then
calculated. Thereafter, the impact of the amount of historical data used to train the prediction algorithm
on the accuracy of the forecast is explored by training the prediction algorithm for the same nine data
points with four, six and eight weeks of historical data as well. A MAPE comparison is then made of
the accuracy of the forecasts when different lengths of historical data are used for training Holt-Winters.
Finally, the impact of anomalies in training data is explored and a comparison is made between the MAPE
of forecasts made with anomalies and without anomalies. Finally, limitations of this thesis solution will
be discussed.

5.1 Evaluation Method

The season of this data remains weekly and the data granularity is hourly, i.e. the shortest data sample
had a length of 336 data points, i.e. 2 seasons of hourly data. The actual value of the 337th data point
was manually inspected to determine whether it is an anomaly. Nine specifically chosen samples of data
were collected from SWA. These samples were chosen to emphasize the importance of simultaneously
using both the MAPE and Chebyshev inspired, z-score dependent thresholds as judgement criterion for
issuing alerts.
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The forecast value of page views for the next hour was compared to the actual page views value of the
next hour to determine whether it was correctly identified, i.e. if the dataset was of two seasons (336
data points), then the actual value of the 337th data point was manually determined to be an anomaly or
not and thereafter was compared with the alert made with this thesis solution for the 337th data point.
Correct or incorrect identification of anomalies by this thesis solutions classified the alerting output as a
true positive, true negative, false positive or false negative.

The minimum amount of training data required for Holt-Winters to begin making forecasts is two
weeks (336 data points). It is important to first test the accuracy of forecasts on the shortest time length
of a dataset so that one is aware of the performance of this solution in the ‘worst case’ scenario of having
the least amount of training data. Therefore the nine datasets were collected over a time period of two
weeks.

However, it is also critical to understand the impact of the dataset length on forecasting accuracy and
to determine whether the shortest dataset length is actually the ‘worst case’ situation compared to longer
dataset lengths, because these two answers allows the identification of situations that this solution is best
suited to and its limitations. Therefore, the same nine data point forecasts which were made with only
two weeks of historical data, were tested with four, six and eight weeks of historical data. The MAPE
of these forecasts was compared with the MAPE of the forecasts made with two week long datasets to
understand the impact of dataset length on forecasting accuracy and which dataset length is best for
highest accuracy.

5.2 Acceptable Accuracy Rate, False Positives Rate and False Negatives Rate

Efficiency of the alerting system is critical for the success of this thesis concept. There is a fine balance
which needs to be achieved between the sensitivity of the thresholds and the frequency of alerts. Overly
sensitive thresholds can cause false positive identification of anomalies [88]. The consequent alerts will
have to be manually investigated and therefore, will cause a significant increase in operational costs.
On the other hand, if the thresholds are set to be very coarse, they may miss out on identifying actual
anomalies or slight anomalies which could potentially upgrade to severe anomalies.

For SWA, SAP’s performance requirements are:

1. Accuracy rate ≥ 99%

2. False negatives rate ≤ 0.05%

3. False positives rate ≤ 0.50%

5.3 Sample Datasets Collected Over Two Weeks

The nine datasets collected over the minimum possible time period of two weeks, to be used for testing
the accuracy of this thesis solution, are displayed below. The 337th data point within each dataset is
encircled in red. The encircled data point is the actual value which will be compared to a forecast value
made for the same data point using this thesis solution.

5.3.1 Dataset 1

Dataset 1, shown in Figure 38, is from the first few weeks of data collection of this web page, which was
when this web page was first introduced on the SAP website. Just by observing Figure 38, there is clear
instability in the data pattern, varying trend over two seasons and anomalies (in the form of spikes) on
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Figure 38: Sample Datasets Collected Over Two Weeks- Dataset 1

the 30th of December 2016. This irregularity in the pattern of page views is only natural as this web page
is newly introduced on the website, and the trend coincides with its popularity. The anomalous spikes on
the 30th of December coincide with a link that was posted on the SAP homepage which directly connects
to this web page. Hence, the increased traffic over this day. The Chebyshev inspired, z-score dependent
thresholds are triggered which satisfy one of the conditions for issuing an alert. Therefore this data point
is recognized as a high alert anomaly despite the MAPE being under 100%.

Table 8: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 1

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 1 511.8099 278
Normal

Behaviour
High Alert True Positive 45.68296

This thesis solution makes a forecast for the 337th data point, which highly deviates from the actual
value for that data point. Therefore, it is identified as an anomaly and an high alert is issued. The
calculations are shown in Table 8. Due to the instability of the training data and that fact that this data
point is part of a season where there is a steep increasing trend compared to its previous season, this
data point has been correctly identified as an anomaly by this thesis solution. In this situation, when
the page views pattern is changing so much, it is clearly difficult to accurately forecast the value of page
views for the next hour.
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5.3.2 Dataset 2

Figure 39: Sample Datasets Collected Over Two Weeks- Dataset 2

Dataset 2, shown in Figure 39 displays two weeks of data in the month of May 2016 and there is a
clear distinction between the two seasons displayed on the graph. Each weekday displays high traffic and
Saturday and Sunday display negligible amounts of traffic, which makes sense as this is SAP’s internal
web page and is usually accessed during working days, i.e. weekdays. Comparing the first days of both
seasons shows that there is a drop in the traffic on the first day of the second season, i.e. on the 5th of
May 2016. This is because this was a public holiday in Germany, where most of the traffic originates
from. This explains the drop of page views to almost half. However, this thesis solution accepts this
drop in traffic as ‘normal’ due to the inherent assumption that the training data used is always clean and
free of anomalies and abnormal behaviour. Hence, neither the Chebyshev inspired, z-score dependent
thresholds are triggered and nor is the MAPE over 100%. Therefore this data point is not recognized as
an anomaly.

Table 9: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 2

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 2 91.29641 140
Normal

Behaviour
No Alert True Negative 53.34667
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The forecast is made for a data point on the 22nd of May, which is a Sunday. The page views for this
data point are low when compared to the others because this data point occurs during the weekend. This
thesis solution correctly identifies this data point as ‘normal’ behaviour and does not raise any alerts. The
MAPE is high despite this data point not being an anomaly because the absolute value of the data point
is quite low (in comparison to the other data point values in this dataset). So even a slight difference in
the page views of the actual value from the predicted will highly impact the MAPE. The calculations are
shown in Table 9.

5.3.3 Dataset 3

Figure 40: Sample Datasets Collected Over Two Weeks- Dataset 3

Dataset 3, shown in Figure 40, displays two weeks of data in the month of June 2016. When the first
season is observed, the fourth day of the season, i.e. Thursday, is clearly higher than the peaks of the
rest of the working days within this season. As this is part of the training data, which is assumed to be
clean, this value is also assumed to be clean. When this thesis solution makes a forecast for the page
views for this data point in the next season, the value for the Thursday is expected to be higher than the
values for the rest of the working days. This is why the forecast made is higher than the actual number of
page views. The resulting ‘low alert’ can mean either of two things- first, that the Thursday values from
the first season are actually anomalies and were incorrectly fed into the training data as normal, which
caused an incorrect alert to be issued. Second, that a slight rise in page views every Thursday is normal
and expected and because this rise did not occur in the second season, this data point has correctly been
identified as a low level alert. For the purposes of consistency within this thesis, it is assumed that the
training set is clean and that there is supposed to be a rise in page views every Thursday compared to
other working days. Therefore, this thesis solution correctly issues an alert. The calculations are shown
in Table 10.
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Table 10: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 3

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 3 1784.597 1733 Anomaly Low Alert True Positive 2.891226

Figure 41: Sample Datasets Collected Over Two Weeks- Dataset 4

5.3.4 Dataset 4

Dataset 4, shown in Figure 41, displays two weeks of data between the months of April and May 2016.
Observing just this two-week window of data, there appears to be a slight decreasing trend from one sea-
son to the next. The encircled data point in red is a very clear anomaly. Along with the two neighbouring
data points, these spikes are not a part of the regular page views pattern according to the training data
fed into the prediction algorithm. This data point is correctly identified as a high alert anomaly which
can also be seen through the very large MAPE. The calculations are shown in Table 11.

5.3.5 Dataset 5

Dataset 5, shown in Figure 42, displays two weeks of data between the months of January and February
2016. Observing just this two-week window of data, the data values every season for the second day, i.e.
Tuesday, are lower on average and display a decreasing trend. Therefore, the predicted value is much
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Table 11: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 4

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 4 8.538859 4071 Anomaly High Alert True Positive 47576.16

Figure 42: Sample Datasets Collected Over Two Weeks- Dataset 5

lower than the actual value and this data point is correctly identified as an anomaly with a high alert.The
calculations are shown in Table 12.

Table 12: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 5

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 5 1344.746 1699 Anomaly high level True Positive 26.34353
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Figure 43: Sample Datasets Collected Over Two Weeks- Dataset 6

5.3.6 Dataset 6

Dataset 6, shown in Figure 43, displays two weeks of data for the month of July 2016. Only visually
observing this data graph would make it difficult to identify any anomalous behaviour with a brief glance.
However, this dataset is a perfect example of why there is a need to automate this anomaly detection and
alerting process. On careful inspection, it can be observed that within every season, the data values for
the second day of the season are lower than the first. For the data point that was forecast, the prediction
was made so that it would also be lower than the values of the first day of its season. However, the actual
value was higher. So despite the low MAPE of around 10%, this data point is correctly identified as a
medium level anomaly. The calculations are shown in Table 13.

Table 13: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 6

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 6 2154.387 2378 Anomaly Medium Alert True Positive 10.37943

5.3.7 Dataset 7

Dataset 7, shown in Figure 44, displays two weeks of data for the months of May and June 2016.
Observing the graph shows several data points which could be anomalies. However, keeping with the
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Figure 44: Sample Datasets Collected Over Two Weeks- Dataset 7

assumption that the training data is clean, these data points are also assumed to be clean and normal.
The prediction made for the data point keeps with the page views pattern within this two week window.
The forecast value is very close to the actual value and therefore, the data point is not identified as an
anomaly. The calculations are shown in Table 14.

Table 14: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 7

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 7 539.0523 563
Normal

Behaviour
No Alert True Negative 4.442555

5.3.8 Dataset 8

Dataset 8, shown in Figure 45, displays two weeks of data for the months of March and April 2016.
There is an obvious decrease in the number of page views on 28th March 2016, Monday of the first
season, because it was another public holiday. However, the prediction made for the last day of the
season, Sunday, is not influenced by this change in page views pattern because the prediction being
made is for a data point on Sunday.

This is a very important example as it displays the need for this thesis solution to use both Chebyshev
inspired, z-score dependent thresholds and MAPE calculations to make an alert. For this exact dataset,
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Figure 45: Sample Datasets Collected Over Two Weeks- Dataset 8

when only standard deviation is used to identify whether this data point is an anomaly or not, this data
point is not identified as a anomaly! This is because despite the fact that the data points value is more
than it should be for a Sunday afternoon, it falls well within the distribution of 3 standard deviations
from the mean. So it is not recognized as a value that should raise any alarm. However, since this data
is a times series in which the data point values are highly dependent on the time of their occurrence,
it is important to address that at this time on the time series, the value for this data point should be
lower. Therefore, when using only z-score dependent thresholds would have failed to recognize this
data point as an anomaly, using the MAPE allowed the correct identification of this point as an anomaly.
The calculations are shown in Table 15.

Table 15: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 8

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 8 117.5493 282
Normal

Behaviour
Low Alert True Positive 139.8994

5.3.9 Dataset 9

Dataset 9, shown in Figure 46, displays two weeks of data for the months of June and July 2016. It can
be observed from the graph that clearly the season for which the data value is forecast is higher than the
values of the previous seasons. Therefore, the prediction made on the basis of the two weeks of historical
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Figure 46: Sample Datasets Collected Over Two Weeks- Dataset 9

data is lower than the actual value of the data point. Despite the MAPE being below the 100% which
is required to trigger an alert, the other condition for issuing an alert is met. The Chebyshev inspired,
z-score dependent thresholds are triggered and this data point is recognized as a medium alert anomaly.
The calculations are shown in Table 16.

Table 16: Forecasting And Alerting Accuracy with Two Weeks Data- Dataset 9

Predicted
Value of

Page views
for the

Next Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset 9 945.2566 1173 Anomaly Medium Alert True Positive 24.09329

5.4 Forecasting Accuracy for Datasets Collected Over Two Weeks

The testing of this thesis solution on nine different datasets of length two weeks showed good results.
Seven of the datasets were true positives and identified anomalies correctly, and two of the datasets were
true negatives and identified normal behaviour correctly. Despite these promising forecasting accuracy
results of using only two weeks of training data, it is critical to understand the impact of the dataset
length on forecasting accuracy and explore different lengths of datasets. Moreover, it is also essential to
determine the best length of training data to achieve highest possible forecasting accuracy.

To address these two requirements, the same nine data point forecasts which were made with only two
weeks of historical data, were tested with four, six and eight weeks of historical data. The graphs showing
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the data points marked against (up to) eight weeks of historical data are shown in the Appendices. The
MAPE of each forecast was compared with the MAPE of the forecasts made with only two week long
training data to understand the impact of dataset length on forecasting accuracy and which dataset
length is best for highest accuracy.

Detailed results discussed for each dataset can be found in Figure 19 in the Appendix. The false
negatives rate, false positives rate and accuracy rate are calculated below.

The false negatives rate is calculated below.

False Negatives Rate=
0

6+ 3+ 0+ 0
× 100= 0%

The false positives rate is calculated below.

False Positives Rate=
0

6+ 3+ 0+ 0
× 100= 0%

The accuracy rate is calculated below.

Accuracy Rate=
6+ 3

6+ 3+ 0+ 0
× 100= 100%

The accuracy rate is 100%, the false positives rate is 0% and the false negatives rate is 0%. Thus, SAP’s
requirements for accuracy rate, false positives rate and false negatives rate are met.

5.5 Forecasting Accuracy for Datasets Collected Over Four Weeks

As Dataset 1 and Dataset 5 were collected in the initial weeks of data collection for this web page, it was
not possible to get four weeks worth of historical data for them.

Out of the seven data points, only five data points were correctly identified. The remaining two data
points issued alerts incorrectly not because of the thresholds, but because the MAPE was over 100% in
both cases and hence, the second condition necessary for triggering alerts was met. They were both False
Positives.

The increase in MAPE is due to the inaccuracy of the forecast. In the first case, Dataset 2, observing
the four week graph clearly shows that three very large anomalies are included in the second season of
the dataset. These anomalies are accepted as normal data under the assumption of a clean training set
and highly influence the forecast being made, thus explaining the inaccurate prediction. Similarly, in
the second case, Dataset 8, there is also an anomaly in the second season which is accepted as normal
data under the inherent assumption of a clean training dataset. Therefore, this comparison highlights
the importance of a clean training set and its obvious negative impact on forecasting. Having extra
false positives would require manual investigation of these anomalies, which would use resources and
increase operation costs unnecessarily.

It is interesting to observe that Dataset 3 is identified as Medium Alert and has a greater MAPE when
the historical data used is four weeks instead of being identified as low alert when the historical data
was two weeks. Similarly, Dataset 9 issued a low alert with four weeks of historical data in comparison
to the Medium alert which was issued with two weeks of historical data despite close MAPE’s.

Detailed results discussed for each dataset can be found in Figure 20 in the Appendix. The false
negatives rate, false positives rate and accuracy rate are calculated below.
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The false negatives rate is calculated below.

False Negatives Rate=
0

4+ 1+ 2+ 0
× 100= 0%

The false positives rate is calculated below.

False Positives Rate=
2

4+ 1+ 2+ 0
× 100= 28.57%

The accuracy rate is calculated below.

Accuracy Rate=
4+ 1

4+ 1+ 2+ 0
× 100= 71.43%

The accuracy rate is 71.43%, the false positives rate is 28.57% and the false negatives rate is 0%. SAP’s
requirements for accuracy rate and false positives rate are not met. However, the requirements for false
negatives rate are met.

5.6 Forecasting Accuracy for Datasets Collected Over Six Weeks

As Dataset 1 and Dataset 5 were collected in the initial weeks of data collection for this web page, it was
not possible to get six weeks worth of historical data for them.

Out of the seven data points, only four data points were correctly identified. The accuracy of forecast-
ing is worse than using two weeks or four weeks of historical data to make forecasts. However, what
is particularly worrying is the lack of an alert for Dataset 9, i.e. a false negative. Over-alerting can be
costly, but under-alerting might let serious anomalies pass which could cause problems and also defeat
the purpose of this entire thesis.

Referencing the explanation in the previous section, the first and second case of inaccurate anomaly
identification, i.e. Dataset 2 and Dataset 8 respectively, are attributed to the anomalies in the training
dataset which negatively impact the forecasts made. Similarly, in the third case of Dataset 9, observing
the graph displays large anomalies in the second season of the training dataset. Again, these anomalies
clearly have a large negative influence on the forecast made.

Using six weeks of historical data clearly shows poor accuracy as the larger the historical dataset
becomes, the more important it is to ensure that it is clean. The presence of anomalies highly impacts
the forecasts made.

Detailed results discussed for each dataset can be found in Figure 21 in the Appendix. The false
negatives rate, false positives rate and accuracy rate are calculated below.

The false negatives rate is calculated below.

False Negatives Rate=
1

3+ 1+ 2+ 1
× 100= 14.29%

The false positives rate is calculated below.

False Positives Rate=
2

3+ 1+ 2+ 1
× 100= 28.57%

The accuracy rate is calculated below.

Accuracy Rate=
3+ 1

3+ 1+ 2+ 1
× 100= 57.14%

The accuracy rate is 57.14%, the false positives rate is 28.57% and the false negatives rate is 14.29%.
SAP’s requirements for accuracy rate, false positives rate and false negatives rate are not met.
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5.7 Forecasting Accuracy for Datasets Collected Over Eight Weeks

As Dataset 1 and Dataset 5 were collected in the initial weeks of data collection for this web page, it was
not possible to get eight weeks worth of historical data for them.

Out of the seven data points, five data points were correctly identified. The accuracy of forecasting is
worse than using two weeks of historical data to make forecasts but better than using four weeks or six
weeks of historical data. The false positive identification of an anomaly in Dataset 2 will require manual
investigation and hence, will utilize unnecessary resources and increase operation costs. However, even
more worrying is the lack of an alert for Dataset 9, i.e. a false negative. Allowing an actual anomaly to
pass could lead to problems and also defeat the purpose of this entire thesis.

Referencing the explanation in the previous sections, the first case of inaccurate anomaly identification,
i.e. Dataset 2, is attributed to the anomalies in the training dataset which negatively impact the forecasts
made. Similarly, in the second case, i.e. Dataset 9, observing the graph displays large anomalies in the
second season of the training dataset. Clearly the presence of anomalies within the training set has a
large negative influence on the forecast being made.

Detailed results discussed for each dataset can be found in Figure 22 in the Appendix. The false
negatives rate, false positives rate and accuracy rate are calculated below.

The false negatives rate is calculated below.

False Negatives Rate=
1

3+ 2+ 1+ 1
× 100= 14.29%

The false positives rate is calculated below.

False Positives Rate=
1

3+ 2+ 1+ 1
× 100= 14.29%

The accuracy rate is calculated below.

Accuracy Rate=
3+ 2

3+ 2+ 1+ 1
× 100= 71.43%

The accuracy rate is 71.43%, the false positives rate is 14.29% and the false negatives rate is 14.29%.
SAP’s requirements for accuracy rate, false positives rate and false negatives rate are not met.

5.8 MAPE Comparison of Forecasting Accuracy

Out of the nine specifically chosen datasets that this evaluation is performed on, only three of the datasets
are used to make a forecast for a non-anomalous data point. Hence, these are the datasets whose MAPE
needs to be discussed to understand the accuracy of forecasting made when the data point to be predict
is a ‘normal’ value.

The table below shows the MAPE vales of Datasets 2, 7 and 8, which were the non-anomalous datasets.
The average MAPE is calculated for each dataset and then the error in forecasts made with diverse lengths
of historical data is compared.

Clearly, the best average MAPE is from the datasets which only used two weeks of historical data to
train the prediction algorithm before making a forecast. However, a very important point to note is that
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Table 17: MAPE Comparison of Data Collected for Different Time Lengths With Anomalies in the Training Data

MAPE in Forecast
2 Weeks 4 Weeks 6 Weeks 8 Weeks

Dataset 2 53.3467 1560.834 421.6488 143.6615
Dataset 7 4.4426 49.3441 61.7258 254.6147
Dataset 8 139.899 163.1127 104.2188 52.4256

Average MAPE 65.8962 591.0969 195.8645 150.2339

in all three of these datasets, when only two weeks of training data is used, there are no anomalies
included in that window. In contrast, the four, six and eight weeks of historical data include anomalies
in the training data while making forecasts.

To make a fair MAPE comparison, Datasets 2, 7 and 8 would have to be cleaned of anomalies and then
used to make forecasts with four, six and eight weeks of historical data.

5.9 MAPE Comparison of Forecasting Accuracy After Removing Anomalies in the Training Data

As highlighted in the previous section, making a fair MAPE comparison requires that all the datasets are
clean and anomaly-free. In this section, the anomalies will be removed from Datasets 2, 7 and 8 and
replaced with their predicted values (generated from using two weeks worth of data points before them
as training data).

The MAPE results for this fair comparison are shown below.

Table 18: MAPE Comparison of Data Collected for Different Time Lengths Without Anomalies in the Training Data

MAPE in Forecast
2 Weeks 4 Weeks 6 Weeks 8 Weeks

Dataset 2 53.34667 562.8047 904.4592 199.0241
Dataset 7 4.4426 49.3441 68.0024 154.3929
Dataset 8 139.8994 132.9365 109.3309 61.0886

Average MAPE 65.8962 248.3617 360.5975 138.1686

5.9.1 Influence of Time Length of Collection Data On MAPE

After removing the anomalies from the data used for training the prediction algorithm, the best accuracy
of forecasting is still from using only two weeks of historical data to train the prediction algorithm. When
forecasts were made for datasets 2, 7 and 9 using four weeks of anomaly-free historical data, the MAPE
was 248.36%, almost half of the MAPE when the four weeks of training data had anomalies. Similarly,
eight weeks of historical data also showed more than 10% MAPE improvement when the anomalies
were removed from the dataset. However, for six weeks of training data, the MAPE increased by over
150% when the anomalies were removed from the dataset. Because of the different impact of removing
anomalies in the datasets, it becomes impossible to generalize whether removing anomalies from the
dataset is advantageous or not.

The highest MAPE accuracy is when only two weeks of training data is used compared to longer
historical training datasets, and one possible explanation could be that the popularity of a web page
seldom remains constant. There are several situations that influence the page views patterns of a web

62



page such as new advertising campaigns, web page mention by a celebrity or the release of a competitor
web page. Since such actions reflect immediately in the page views, using very old historical data for
training prediction algorithms can be more of a hindrance than help to the prediction accuracy. Through
this evaluation chapter and the extensive comparisons made, it is obvious that for this use case, the best
forecasting results are obtained when the most recent data is used for training the prediction algorithm,
i.e. only two weeks of historical data.

5.10 Limitations of this Thesis Solution

The quality of training data directly limits the performance of any machine learning algorithm or sta-
tistical tool. Therefore, the first limitation of this thesis solution is the inherent assumption that only
clean data, i.e. data that is free of any anomalies or irregular behaviour, is used to train the prediction
algorithm. Evaluation results suggest that if the data used for training the prediction algorithm has
anomalies, the accuracy of the forecasts made is negatively impacted. The extent of this impact was
beyond the scope of this thesis.

There is a minimum Holt-Winters training period. The algorithm requires a minimum of two seasons
of historical training data to make a forecast and this is a limitation for the final thesis solution which
cannot be executed completely until two seasons have passed so that Holt-Winters can make predictions.
Until these two seasons of historic data is collected, the anomaly detection system needs to solely rely on
the z-score, which can be disadvantageous in situations where an data point is not distant enough from
the mean in standard deviations to trigger thresholds, but is in fact an anomaly.

While diverse page views datasets were used for the concept development, testing and evaluation of
this thesis solution, another limitation is that all the page views data is from a single web page. Therefore,
all the generalized conclusions that were drawn through the different data points in the evaluation are
limited by the fact that their data comes from the same source.
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6 Conclusion and Future Work

This aim of this thesis was to develop an automated method of anomaly detection in typical web analytics
data that is able to accurately and efficiently detect anomalies, report them through alerts in a timely
manner and be easily incorporated in typical web analytics solutions.

Out of the various features within web analytics data, some are considered to be universally impor-
tant and interesting to common users. One such feature is the number of ‘page views’ that a web page
receives, and was selected as the feature to illustrate the concept of this thesis. Because the data col-
lected about page views is time series, several different methods of detecting anomalies within time
series and the advantages and disadvantages of each were explored during the literature survey. As
the page views data displays non-Gaussian distribution and page views is not an independent feature,
Chebyshev’s inequality theorem was concluded to be best suited for anomaly detection for this type of
data. Chebyshev’s inequality theorem calculates the standard deviation of the data and puts bounds
on the percentage of data points which can exist within a certain number of standard deviations from
the mean. In this thesis solution, thresholds were initially configured to match Chebyshev’s inequality
theorem, but can be manually configured to suit the SWA use case and prevent over or under alerting.
Low level anomalies were identified as data points which were a distance of over 2.5 standard deviations
from the mean. Medium level anomalies were identified as data points which were a distance of over
2.8 standard deviations from the mean. High level anomalies were identified as data points which were
a distance of over 3.2 standard deviations from the mean.

However, as the data point values for page views are strongly correlated to the time when they occur,
relying just on standard deviation to identify anomalies can become an inaccurate solution. Consider
the following situation - if the web page being tracked has extremely low number of page views during
weekends, even if one of these values is twofold or threefold it would still be less than the number of
page views during weekdays. Therefore, it is possible that this data point would fall within an acceptable
number of standard deviations from the mean and be considered a non-anomalous value. However, this
would be misidentification because if the value is twofold or threefold the expectation for that data point,
then it is obviously not displaying normal behaviour and should be recognized as an anomaly.

To handle such situations, it was concluded that the MAPE between the expected number of page
views and the actual number of page views could be used as a contributing factor in anomaly detection.
The expected number of page views is calculated using a prediction algorithm and during the literature
survey, several prediction algorithms and the advantages and disadvantages of each were discussed. As
the univariate time series data displays both trend and seasonality, and the forecast being made was for
a short term, i.e. one period or less, Holt-Winters algorithm showed the best prediction accuracy while
forecasting page views for the next hour for different pattern types of datasets. The forecast made for
the next hour was then compared with the actual value that occurred in that hour to calculate the MAPE.
If the actual value of a data point varied from the forecast by an average MAPE of over 100% then the
actual data point was identified as a low level. Similarly if the average MAPE was over 150% then the
data point was identified as a medium level anomaly or if the average MAPE was over 200%, then the
data point was identified as a high level anomaly. These MAPE levels are the default values and work
well with the current data from SWA, but these can be configured by users to suit their specific use case.

The final solution that was implemented relies on both Chebyshev inspired, z-score dependent thresh-
olds and MAPE to automatically identify a data point as an anomaly and issue an alert. If the standard
deviation of a data point is not far enough from the mean to trigger a threshold, the MAPE for that data
point is calculated by comparing the actual data point value with its forecast value. If the MAPE is higher
than a user defined acceptable percentage, then that data point will be identified as anomaly and an
alert will be issued, otherwise the data point will not be recognized as an anomaly. This solution, when
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implemented in Java and run on a standard laptop (Windows 8 operating system, Intel(R) Core(TM)
i7-4900MQ CPU @ 2.80GHz, 16.0 GM RAM), required 5.85 seconds to complete execution and issue an
anomaly and was easily integrated with SWA, the example web analytics software used to demonstrate
this solution. Although the Java implementation is just a small prototype without much optimization,
the execution time that was already achieved makes it very likely that the solution can be integrated in
a real web analytics application and perform continuous checks of web analytics data in the background
(on a much more powerful server machine), i.e. this thesis solution should in principle enable timely
reactions based on detected events.

This solution was first tested on nine random data points from the page views collected from one
website spanning 8 months of tracked page views data. The page views data was collected from a real
SAP internal web page. Two weeks of each data points historical data was used to train the prediction
algorithm. Two weeks of historical data is the least amount of data which the Holt-Winters prediction
algorithm requires to start making forecasts. Hence, the accuracy of this thesis solution was tested
for potentially the worst case situation, where only two weeks of data would be available. In each
of the nine cases with two weeks of historical data, the outcome was correctly identified, indicating
100% statistical accuracy, which is calculated based on the number of true positives, true negatives,
false positives and false negatives. Out of the nine data points tested, six data points were anomalies.
Some of these anomalies were obvious and could be easily identified just my manual observation of the
graphed data and others appeared more subtle in the graphed data and could potentially have been
missed without careful manual inspection and analysis. Moreover one of the anomalous data points
had a value within the acceptable number of standard deviations from the mean, and therefore did not
trigger any z-score dependent thresholds, but was identified as anomaly due to its large average MAPE
value which surpassed the acceptable percentage.

Thereafter the impact of the amount of historical data used to train the prediction algorithm on the
accuracy of the forecast was explored. Forecasts were made for the same nine aforementioned data
points by expanding the historical data used to train the prediction algorithms to four, six and then eight
weeks. However, two of these data points did not have enough historical data for these tests. Therefore,
comparisons were made between the MAPE for the remaining seven data points when four, six and then
eight weeks of historical data were used for making their forecasts. Surprisingly, the highest accuracy and
lowest MAPE of forecasting was obtained when only two weeks of historical data was used to train the
prediction algorithm with the accuracy rate being 100% and average MAPE being 65.89%. Moreover, the
false positives rate and the false negatives rate were both 0%. Hence, all of the accuracy requirements
were satisfied. When four weeks of historical data was used, the accuracy rate dropped to 71.43% and
there was an extremely high jump in MAPE, rising to an astonishing 591.09%. Even though the false
negatives rate was 0% and met the requirements, the false positives rate was 28.57%. Overall, using four
weeks of historical data did not satisfy the requirements. When six weeks of historical data was used,
the accuracy rate dropped further to 57.14%, but there was a significantly lower MAPE of 195.87% from
the forecasts made with four weeks of historical data. The false negatives rate was 14.29% and the false
positives rate was 28.57%. Overall, using six weeks of historical data did not satisfy the requirements.
When forecasts were made using eight weeks of historical data, the accuracy improved to 71.43% and
the MAPE continued to reduce to 150.24%. The false positives rate and false negatives rate were both
14.29%. However, even though the overall accuracy of forecasts made with eight weeks of historical
data is better than forecasts made with four or six weeks of historical data, SAP’s requirements were
still not met. Therefore, forecasts made with two weeks of historical data fared best. However, the two
weeks of historical data for each data point did not contain anomalies. In contrast, the four, six and eight
weeks of historical data used for the forecasting of the same data points did contain (sometimes several)
anomalies.
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Further tests were conducted to determine whether this discrepancy in MAPE between forecasts made
for two, four, six and eight weeks of data was due to the presence of anomalies in only some of the
training datasets. The anomalies within the historical data of these data points were manually removed.
When forecasts were made after removing the anomalies from historical data of four, six and eight
weeks, the MAPE improved for forecasts made with four and eight weeks of historical data but did not
improve for forecasts made with six weeks of historical data. Since the removal of anomalies in the
training sets improved the MAPE of two datasets but negatively impacted one dataset, these results
prove inconclusive in determining any correlation between the removal of anomalies from the training
datasets and the forecasting accuracy. If anomalies are to be removed from the training dataset, it must
be ensured that such data point values will continue to be anomalies in the future seasons as well, which
is impossible to do. Removing an anomaly that is the first occurrence of a new pattern can be more of a
hindrance than help in bettering forecasting accuracy.

6.1 Future Work

The results obtained through this thesis are promising but there are areas that could be further improved
in this solution.

Firstly, the Java implementation of the Holt-Winters algorithm currently finds the optimal parameters
for Holt-Winters by iteratively checking and then comparing the accuracy of forecasts made with every
possible permutation and combination of the hyper-parameters. This is obviously resource expensive and
slows down the performance of this solution. Moreover, the hyper-parameters values are only checked
in increments of 0.1 and this will negatively impact the precision of optimal hyper-parameter selection.
A possible future work could be to find a better way of deducing the optimal hyper-parameters.

Secondly, the results proved inconclusive in determining the correlation between removal of anoma-
lies from the training datasets and the accuracy of forecasts made using those training datasets. More
research needs to be done to determine the existence and extent of any such correlation.

Moreover, there is an inherent assumption that only clean data, i.e. data that is free of any anomalies
or irregular behaviour, is used to train the prediction algorithm. Although evaluation done in this thesis
suggests that anomalies have a negative impact on the forecasting accuracy, this evaluation was done
only with a few samples of data. Research needs to be done to determine the extent of this impact.

Finally, the first condition for issuing alerts is the triggering of thresholds which are z-score dependent.
The default values for these thresholds are defined by Chebyshev’s inequality theorem but there is an
option to manually configure these values as well, as was done for the purpose of this thesis. Manual
configuration involved several tests and an understanding of the use case (in this case SWA). However,
there is research that indicates that thresholds can be automatically optimized using different algorithms
and methods. Kreugel et al. [28] suggest using cross-validation to find optimal thresholds. Ghafouri et al.
[88] introduced an adaptive threshold strategy which first determines an optimal threshold independent
of time. Thereafter a time dependent threshold is calculated using a polynomial time algorithm and it
associates a cost with threshold changes. Laszka et al. [89] also explored different methods of finding
optimal thresholds. Hence, a possible future work could be to explore the current literature relevant to
automating the process of determining optimal thresholds and implementing the method which is found
to be most suitable.
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Appendices

Forecasting Accuracy for Datasets Collected Over Two Weeks - Results

Table 19: Summary of Forecasting And Alerting Accuracy with Two Weeks Data

Predicted
Value of

Page views
for the Next

Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset
1

511.8099 278 Anomaly High Alert True Positive 45.68296

Dataset
2

91.29641 140
Normal

Behaviour
No Alert True Negative 53.34667

Dataset
3

1784.597 1733 Anomaly Low Alert True Positive 2.891226

Dataset
4

8.538859 4071 Anomaly High Alert True Positive 47576.16

Dataset
5

1344.746 1699 Anomaly high level True Positive 26.34353

Dataset
6

2154.387 2378 Anomaly Medium Alert True Positive 10.37943

Dataset
7

539.0523 563
Normal

Behaviour
No Alert True Negative 4.442555

Dataset
8

117.5493 282
Normal

Behaviour
No Alert True Negative 139.8994

Dataset
9

945.2566 1173 Anomaly Medium Alert True Positive 24.09329

Forecasting Accuracy for Datasets Collected Over Four Weeks - Results

Forecasting Accuracy for Datasets Collected Over Six Weeks - Results

Forecasting Accuracy for Datasets Collected Over Eight Weeks - Results

Sample Datasets Collected Over Four, Six and Eight Weeks Out of the nine data points, two are col-
lected in the first few weeks of the introduction of this web page on SAP’s website. These are Dataset 1
and Dataset 5. Therefore there is no more than two weeks of historical data for both of these and they
are not in the graphs below.

The datasets show the seven data points (encircled in red) which were forecast during the Evaluation
chapter. These are Dataset 2, 3, 4, 6, 7, 8 and 9. The graphs below show these data points with their
two, four, six and eight weeks of historical data respectively, marked with arrows at the bottom of each
graph.
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Table 20: Summary of Forecasting And Alerting Accuracy with Four Weeks Data

Predicted
Value of

Page views
for the Next

Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset
1

- 278
Normal

Behaviour
- - -

Dataset
2

8.429499 140
Normal

Behaviour
Medium Alert False Positive 1560.834

Dataset
3

1528.257 1733 Anomaly Medium Alert True Positive 13.39716

Dataset
4

217.6775 4071 Anomaly High Alert True Positive 1770.198

Dataset
5

- 1699 Anomaly - - -

Dataset
6

2134.65 2378 Anomaly Medium Alert True Positive 11.40001

Dataset
7

376.9817 563
Normal

Behaviour
No Alert True Negative 49.34411

Dataset
8

107.1784 282
Normal

Behaviour
Low Alert False Positive 163.1127

Dataset
9

931.6882 1173 Anomaly Low Alert True Positive 25.90049

Figure 47: Sample Datasets Collected Over Eight Weeks- Dataset 2
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Table 21: Summary of Forecasting And Alerting Accuracy with Six Weeks Data

Predicted
Value of

Page views
for the Next

Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset
1

- 278
Normal

Behaviour
- - -

Dataset
2

-43.52573 140
Normal

Behaviour
High Alert False Positive 421.6488

Dataset
3

1454.038 1733 Anomaly Medium Alert True Positive 19.18534

Dataset
4

112.9432 4071 Anomaly High Alert True Positive 3504.66

Dataset
5

- 1699 Anomaly - - -

Dataset
6

1958.479 2378 Anomaly Medium Alert True Positive 21.42078

Dataset
7

348.1202 563
Normal

Behaviour
No Alert True Negative 61.72576

Dataset
8

138.0872 282
Normal

Behaviour
Low Alert False Positive 104.2188

Dataset
9

973.0944 1173 Anomaly No Alert False Negative 20.54328

Figure 48: Sample Datasets Collected Over Eight Weeks- Dataset 3
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Table 22: Summary of Forecasting And Alerting Accuracy with Eight Weeks Data

Predicted
Value of

Page views
for the Next

Hour

Actual
Value of

Page
views for
the Next

Hour

Classification
of Actual Value
as Anomaly or

Normal
Behaviour-
Manually
Identified

Classification
of Actual
Value as

Anomaly or
Normal

Behaviour- As
Per this
Solution

Evaluation of
Forecasting
and Alerting
Accuracy of
this Solution

Absolute
Percentage

Error

Dataset
1

- 278
Normal

Behaviour
- - -

Dataset
2

57.45676 140
Normal

Behaviour
Low Alert False Positive 143.6615

Dataset
3

1559.032 1733 Anomaly Low Alert True Positive 11.15873

Dataset
4

238.1507 4071 Anomaly High Alert True Positive 1609.422

Dataset
5

- 1699 Anomaly - - -

Dataset
6

1938.593 2378 Anomaly Medium Alert True Positive 22.66627

Dataset
7

158.7639 563
Normal

Behaviour
No Alert True Negative 254.6147

Dataset
8

185.0083 282
Normal

Behaviour
No Alert True Negative 52.42561

Dataset
9

1038.739 1173 Anomaly No Alert False Negative 12.9254

Figure 49: Sample Datasets Collected Over Eight Weeks- Dataset 4
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Figure 50: Sample Datasets Collected Over Eight Weeks- Dataset 6

Figure 51: Sample Datasets Collected Over Eight Weeks- Dataset 7

Figure 52: Sample Datasets Collected Over Eight Weeks- Dataset 8
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Figure 53: Sample Datasets Collected Over Eight Weeks- Dataset 9
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