
Online Enhancement of
existing Nash Equilibrium
Poker Agents
Online Verbesserung bestehender Nash-Equilibrium Pokeragenten
Master-Thesis von Suiteng Lu
Tag der Einreichung:

1. Gutachten: Prof. Dr. Johannes Fürnkranz
2. Gutachten: Dr. Eneldo Loza Mencía
3. Gutachten: Christian Wirth

Fachbereich Informatik
Fachgebiet Knowledge Engineering
Prof. Dr. Johannes Fürnkranz

Online Enhancement of existing Nash Equilibrium Poker Agents
Online Verbesserung bestehender Nash-Equilibrium Pokeragenten

Vorgelegte Master-Thesis von Suiteng Lu

1. Gutachten: Prof. Dr. Johannes Fürnkranz
2. Gutachten: Dr. Eneldo Loza Mencía
3. Gutachten: Christian Wirth

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345
URL: http://tuprints.ulb.tu-darmstadt.de/1234

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-

gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen

entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den December 18, 2016

(Suiteng Lu)

Contents

1 Introduction 1

2 Poker 3
2.1 No-Limit Texas Hold’em . 3
2.2 Kuhn Poker . 5

3 Background and Related Work 6
3.1 Extensive-form Games . 6
3.2 Finding Nash Equilibrium . 9

3.2.1 LP Approach . 9
3.2.2 Counterfactual Regret Minimization . 12

3.3 Abstraction . 14
3.3.1 Isomorphism . 15
3.3.2 Card Abstraction . 15
3.3.3 Action Abstraction . 18
3.3.4 Action Translation . 19

3.4 Opponent Exploitation . 20
3.4.1 Game Theoretic Responses . 21
3.4.2 Implicit Modeling . 23

4 Enhancements of existing Nash Agents I: Endgame Solving 24
4.1 Theoretical Background of Endgame Solving . 25
4.2 Endgame Solver Implementation . 28

4.2.1 Joint Hand Distribution Computation . 28
4.2.2 Card Abstraction Computation . 29
4.2.3 Action Abstraction Computation . 30
4.2.4 Linear Program Generation . 32

4.3 Evaluation . 38
4.3.1 Experimental Setup . 38
4.3.2 Experimental Results . 39

5 Enhancements of existing Nash Agents II: Endgame Exploitation 42
5.1 Endgame Exploitation Implementation . 43

5.1.1 Extracting Player Tendencies from Observations . 43
5.1.2 Adjustment of prior Hand Distribution according to the statistics distance 45

5.2 Evaluation . 47

6 Enhancements of existing Nash Agents III: Asymmetric Action Abstraction 50
6.1 Exploitability Calculation . 51
6.2 Experimental Setup . 52
6.3 Empirical Results . 53

ii

7 Conclusion 56

References 58

Appendices 61

A Pseudocode 61

iii

1 Introduction

Since the beginning of artificial intelligence research, games have been a benchmark environment for
artificial intelligence techniques due to their well-defined set of rules and distinguishable objectives.
Although game domains are typically finite, finding a robust strategy is a non-trivial task. Defeating
world class human experts is comparably more difficult as most games are quite complex in nature and
exhibit a vast state space. Game-playing agents have already been developed for numerous games such
as chess, backgammon, Go and poker. Whereas chess and backgammon AI have already surpassed the
skill level of world class human players more than a decade ago, Go and poker are still being actively
studied by many researchers. However, there are also recent breakthroughs in both games [34, 35]. The
game of poker presents a challenging task because it is a complex large scale imperfect information
game. Games, such as chess or backgammon belong to the class of perfect information games, where
the players always have access to all information that define the exact state of the game. In poker, some
key information is hidden from the players (for instance the private cards of the opponents), which
makes poker more difficult to solve.

The no-limit Texas hold’em variant of poker is particularly popular as well as in the AI community.
It is a particularly challenging domain as it has on the order of 10164 game states [22]. The state of
the art techniques for developing robust strategies for poker are based on the concept of finding Nash
equilibria. Unfortunately, state of the art equilibrium finding algorithms can only scale up to games
with approximately 1014 game states[22]. Therefore, significant abstraction and approximation are
necessary to apply a game theoretic approach. The results are approximations of equilibrium strategies
within the given abstraction. Often, the approximation error is quite significant and the computed
strategies are still highly exploitable. The results of the recent first human versus computer no-limit Texas
hold’em competition, organized by Carnegie Mellon University [8] shows that the human supremacy
is still preserved in the domain of no-Limit Texas hold’em and there remains plenty room for further
improvements for the state of the art agents.

However, a heuristic technique called endgame solving has proven to be fairly effective during the
competition. It can be incorporated into existing Nash equilibrium agents and seems to combat some
of the biggest weaknesses all the state of the art Nash equilibrium agents have in common. In this
thesis, we investigate endgame solving in no-Limit hold’em and provide a detailed instruction for its
implementation which has not been fully covered in the original work [9]. Therefore, compared to
[9], this work is enhanced by providing further implementation details and explanations. This includes
highlighting the strengths and weaknesses of the original approach, providing possible implementation
alternatives as well as a guide for the final essential implementation step of endgame solving which
was not further discussed in the original work. Furthermore, we introduce a novel heuristic technique
to combine the endgame solver with opponent models to exploit opponents, which we call endgame
exploitation. Additionally, this technique is capable of online opponent exploitation based on only a
few opponent observations. In conclusion, we examine asymmetric action abstractions in no-limit
Texas hold’em. So far very little research has been devoted to this topic. Most prior works focused on
card abstractions and none of them have conducted experiments on the impact of asymmetric action
abstractions on the solution quality. In this work, we empirically evaluate the impact of asymmetric
action abstraction on agent performance by comparing the performances of agents with different action
abstraction designs and granularity, therefore providing guidance for general action abstraction design
choices.

1

This thesis is organized as follows: Chapter 2 gives an overview of the rules and terms of no-limit Texas
hold’em, which is our main application domain. Chapter 3 introduces general background knowledge
for developing poker agents. It includes surveys of various prior works related to different areas of
poker AI that are essential for the understanding of this thesis. Chapter 4 provides an explanation for
the use of endgame solving and a description of how to implement endgame solver into existing poker
agents. Chapter 5 introduces the endgame exploitation technique and compares the empirical results
before and after applying endgame exploitation. Chapter 6 presents our analysis of asymmetric action
abstractions. The last chapter 7 briefly summarizes the contributions of this thesis and suggests areas for
future research.

2

2 Poker

Poker is a challenging card game that exhibits many interesting features. It is a stochastic game with
imperfect information in a multi-agent environment. There are numerous variants of poker, but they
all share a similar set of rules. Before the start of the game, the card deck is shuffled, and cards are
randomly dealt to each player. Typically, first dealt cards are considered private information and are
only seen by the player holding the respective cards. In the course of the game, more and more cards
are dealt, therefore the strength of players’ holdings may vary from each round to the next. Due to the
stochastic nature of the game, even if a player is holding the best hand at some point during the game,
he might still lose at the end due to bad luck.

Since the private cards of other players are hidden, a poker player can only estimate his expected
payoff of each action he chooses. This imperfect information property of the game enables deceptive
plays such as bluffs (pretending to have a stronger hand by aggressive plays) or slowplay (pretending
to have a weaker hand by passive plays). In fact, these deceptive plays are essential for a successful
strategy.

In this chapter, the rules and terms of no-limit Texas hold’em are introduced. The rules and terms have
been obtained from [33]. Subsequently, a toy game called Kuhn poker will be presented, which was used
in later experiments.

2.1 No-Limit Texas Hold’em

The most popular variant of poker today is called no-Limit Texas hold’em (NLH). The game is usually
played with two to ten players at a table. This thesis will focus on the two-player variant called Heads
Up (HU). A standard deck of 52 cards is used, where the Ace has the highest rank followed by King,
Queen, Jack and Ten down to Two. Each player is assigned a position, which shifts after each game.
The positions in a Heads Up game are the small blind (SB) and the big blind (BB). Before the start
of the first betting round, each player is obliged to put a certain amount of poker-chips into the pot.
These investments are called blinds, with the big blind being twice the size of the small blind. The pot is
the sum of all investments made by each player within a single game. After each game, all chips in the
pot belong to the winner of the game. Due to the blinds in the pot, each player is forced to gamble to
avoid going bankrupt by simply paying the blinds in every game, which makes poker a complex game.
Otherwise, without these forced investments, the optimal strategy would be trivial, where all players
would be able to simply wait for the best possible hand to play. Each player has a finite amount of poker-
chips, called a stack. The stack size defines the maximum amount a player can wager in each game. On
a player’s turn, if a player is not faced with a prior bet (or blind), then that player may either:

• check - pass the turn to the opponent without investing any chips.

• bet - place an amount of chips into the pot. In no-Limit Texas hold’em players are allowed to
make unlimited number of arbitrary bets up to his stack size. A bet of the size of a player’s stack is
referred to as an all-in.

When faced with a bet (or blind), a player typically has three options:

• fold - forfeit the pot. In this case, the player has surrendered and the opponent immediately wins
the pot.

3

Hand Definition Example Tiebreaker

Straight Flush Five cards with the same suit
and consecutive rank

A♣ K♣ Q♣ J♣ T♣ High Card

Four of a Kind Four cards with the same rank A♣ A♦ A♠ A♥ K♣ Rank of Four of the kind; if
equal, rank of fifth card

Full House Three cards with the same
rank and a pair

A♣ A♦ A♠ K♥ K♣ Rank of trips; if equal, rank of
pair

Flush Five cards with the same suit A♣ Q♣ T♣ 8♣ 2♣ High card

Straight Five cards with consecutive
rank

A♣ K♦ Q♠ J♥ T♣ High card

Three of a Kind Three cards with the same
rank, other cards are of differ-
ent ranks

A♣ A♦ A♠ K♥ Q♣ Rank of trips; if equal, rank of
highest other card

Two Pair Two pairs, fifth card of differ-
ent rank

A♣ A♦ K♠ K♥ Q♣ Rank of trips; if equal, Rank
of high pair; if equal, rank of
low pair; if equal, rank of fifth
card

Pair Two cards of same rank, other
cards are of different ranks

A♣ A♦ T♠ 9♥ 2♣ Rank of trips; Rank of pair;
if equal, rank of highest other
card

High Card No other hand conditions sat-
isfied

A♣ Q♦ T♠ 9♥ 2♣ Rank of trips; if equal, Rank
of highest card; if equal, re-
peat with next highest card

Table 1: Hand ranks in descending order

• call - match the last bet by investing the equal amount of chips as the opponent. In case a player
has less chips than the opponent’s total investment, he can call by placing all his remaining chips
into the pot.

• raise - increase the previous bet by placing additional chips into the pot after matching the differ-
ence in investments. The raise size is also capped by the stack size.

All actions are public information and can be performed in each betting round. There are four betting
rounds, also called streets.

• Preflop - first betting round. Each player is dealt two private cards, which are also called hole
cards. The hole cards can later be combined with the board cards to form a hand. Both players
are forced to play their blinds. The player in the small blind position is acting first.

• Flop - second betting round. Three public cards are revealed before the players start. Contrast to
the preflop, the betting order is inverted for all subsequent betting rounds. Now, the player in the
big blind position is always acting first.

• Turn - third betting round. Another public card is revealed.

4

• River - final betting round. Again similar to turn, one public card is revealed.

A betting round ends, when every player except the last player to raise has either called the outstanding
bet or folded. At the end of the last betting round, all players who did not fold enter the showdown
and reveal their hole cards. The winner of the game is determined at the showdown by comparing the
strengths of each player’s hand. A draw is also possible, when both players have equal hand strength. In
this case, each player gets his prior investment back, which is also referred to as split pot. In any other
case, the winner takes the entire pot. The hand strength is determined by the best possible five card
combination chosen from the two hole cards and the five board cards. The ranking of hands is depicted
in Table 1.

2.2 Kuhn Poker

Kuhn poker [20] is a small toy poker game, where game theoretic solutions can be easily computed. It
is a two-player zero-sum imperfect information game as well. The deck consists of merely three cards:
King, Queen and Jack. Each player starts with two chips and receives one card from the deck at the start
of the game. Prior to any betting, both players must first pay a blind of one chip. Thus, both players
have only one chip left for the betting round. There is only one betting round. Players are allowed to
either check or to bet. If the betting round ends and none of the players folded, then both players enter
the showdown, where the player with higher card wins.

5

3 Background and Related Work

In this chapter, we start by giving a summary of the fundamentals of game theory and poker specific
terminology essential for the thesis. Here, we focus on extensive-form games and two-player no-limit
Texas hold’em in particular. Then, we introduce and investigate prior research on techniques for creating
strategies in extensive-form games, which we build on in this work. We also describe abstraction tech-
niques for reducing large scale extensive-form games to tractable sizes. Lastly, we present background
work on opponent modeling and exploitation techniques which are worth mentioning.

3.1 Extensive-form Games

An extensive-form game represents a game with sequences of actions taken in turn by multiple agents.
In each turn, a single player chooses an action that leads the game into a new state. Intuitively, an
extensive-form game can be viewed as a rooted game tree. Figure 1 illustrates a sequential presentation
of the well known game Rock-Paper-Scissors. Instead of making decisions simultaneously, the first player
chooses his move hidden from the second player. Then, the second player also chooses his move and
both show their choices at the end. A node of the game tree represents either a chance event (dice roll,
hand deal, etc) or a game state. An arc represents the outcome of a chance event or the action taken in
a game state. The root node represents the start of the game and the leaves (terminal nodes) represent
the end of the game.

Each node can be reached by a particular sequence of actions. Let N = {1..n} denote the set of players.
A history h is a particular sequence of actions that may occur during the game, starting from the root,
and denote H the set of all sequences, that also include the empty history ;. An action sequence from
the root to a leaf is called a terminal history z ∈ Z ⊆ H. Each terminal history is associated with a
utility (payoff or reward) ui(z), where ui : Z → R is an utility function of playeri. In case of two-player
zero-sum game, for all z ∈ Z, u1(z) = −u2(z). A history h′ is a prefix of h, if h starts with h′. A direct
successor of h can be written as ha that represents the history h after taken action a. Thus if h = h′a,
then h′ is the prefix of h, and h is a successor of h′ which is denoted with h′ v h [5, p.5].

At each non-terminal history, let A(h) denote the set of possible actions the acting player P(h) can
choose from. The function P : H/Z →N ∪{c} is a player function that determines whose turn it is to act
at a particular history. Besides all players ni ∈ N , P(h) = c indicates that chance is on the turn, where
chance selects action a according to a known fixed probability [5, p.5].

P1

P2

01-1

R P S

P2

-101

R P S

P2

1-10

R P S

R
P

S

Figure 1: Rock-Paper-Scissors represented as a tree. Leaves represent utility of player1. Blue and red
bounding boxes represent information sets of player1 and player2 respectively.

6

An information set I ∈ Ii is a set of histories that cannot be distinguished by the playeri due to the
imperfect information of the opponents. Thus, each game state within the same information set is treated
equally by the acting player. In perfect information games, all information sets consist exclusively of one
particular history, since the players can observe all information. However, in imperfect information
games, multiple histories are grouped into the same information set. For any two histories h,h′ in the
same information set, A(h) must equal A(h′). Thus, the actions available at an information set is simply
denoted as A(I). Also P(I) means P(h) such that h ∈ I [5, p.5-6]. For instance, in Figure.1, there are two
information sets, one is the empty history belonging to player1, and one containing {R, P, S} belonging
to player2.

A two-player extensive-form game has perfect recall if players do not forget any moves that were
made by all players including chance during the course of the game. Hence, there is only a single path
to every node. Formally, let X i(h) = ((I , a), (I ′, a′)...) denote the sequence of playeri ’s information set
action pair that were encountered and taken to reach h in the same order as they were during game-play.
A two-player extensive-form game has perfect recall if ∀I ∈ Ii : h, h′ ∈ I ⇒ X i(h) = X i(h′) [13, p.11].
Otherwise, it is called imperfect recall, where several paths can lead to the same node and a player
can forget previous actions or chance events. A practical example of perfect and imperfect recall can be
found later in chapter 3.3.2.

A behavioral strategy is a function that assigns a distribution over actions to each information set.
During the course of a game, each player selects actions according to his strategy. More precisely, a strat-
egy σi for playeri is a probability distribution over all possible actions a ∈ Ai at a particular information
set [5, p.6]. For example, if Ai = {Rock, Paper, Scissor}, a valid probability distribution could be

σi(a) =











0.5, if a = Rock

0.3, if a = Paper

0.2, if a = Scissor

(1)

Note that strategies are only assigned to information sets, which means that all game states within the
same information set follow the same strategy. A strategy profile σ = (σ1...σ|N |) is a collection of
strategies, one for each player.

There are two types of strategies, pure strategies and mixed strategies. A pure strategy always
selects a single action at a choice node, whereas a mixed strategy defines a probability distribution over
possible actions [13, p.10]. For example, (1) is a mixed strategy and (2) is a pure strategy that only
plays rock.

σi(a) =

(

1, if a = Rock

0, otherwise
(2)

Assume a two-player game, where a strategy profile σ = (σ1,σ2) is used. The sequence probability
πσ(h) of a given history h is the probability of reaching h if all players acted according to σ. Formally,
the sequence probability is defined as

πσ(h) =
∏

h′avh

σP(h′)(a|h′)

where πσ(h) is the product of probabilities of each player taking his actions in the sequence h according
to σ [5, p.6]. For example, in Figure 2, the marked edges constitute a terminal history z with the utility

7

Chance

P c
1

Pd
2

-25

1 0

P c
2

Pd
1

-210

0.8 0.2

-1

1 0

0.3 0.7

Pa
1

P b
2

-83

1 0

Pa
2

P b
1

15-9

0.2 0.8

7

0 1

0.5 0.5

0.9 0.1

Figure 2: A random two-player extensive-form game. Player2 plays a pure strategy and player1 plays a
mixed strategy. Terminal nodes represents the payoffs for player1.

u1(z) = −9. The labels on the edges represent the probability distribution induced by σ. Thus, the
sequence probability πσ(z) = 0.9 · 0.5 · 1 · 0.2= 0.09.

The product can be decomposed into individual sequence probability for each player and chance:
πσ1 (h), π

σ
2 (h) and πσc (h). In other words,

πσ(h) = πσ1 (h) ·π
σ
2 (h) ·π

σ
c (h)

In Figure 2, the decomposed sequence probabilities of the terminal history z are πσ1 (z) = 0.5 ·0.2= 0.01,
πσ2 (z) = 1 and πσc (z) = 0.9. The expected utility for playeri under strategy profile σ can be computed
by a game tree traversal that computes the sum

ui(σ) = ui(σi,σ−i) =
∑

z∈Z

πσ(z)ui(z)

where σ−i denote the strategies in strategy profile σ excluding σi. In our example, u1(σ) = (0.09 ·−9)+
(0.36 · 15) + (0.45 · 3) + (0.03 · −1) + (0.07 · 5) = 6.26.

In game theory, there are generally two basic strategy types: best response and nash equilibrium.
In two-player zero-sum game, a best response for player1 is a strategy that yields the greatest possible
payoff against the strategy of the player2. The expected utility of a best response for player1 is thus
defined as

b1(σ2) = maxσ′1∈
∑

1
u1(σ

′
1,σ2)

where
∑

i denotes the set of all possible strategies of playeri. Nash equilibrium is a special case of
best response, where the strategies for both players represent best responses to each other at the same
time, which means that no player would gain more by deviating from his current strategy. Therefore, if

8

player1 deviates from his Nash equilibrium strategy, as a result, he would lose ε expected utility. Formally,
minσ′2∈

∑

2
u1(σ1,σ′2) + ε = b1(σ2). In other words, player1 has become exploitable by an amount ε. A

strategy profile which can be exploited by an amount ε at most is called ε-Nash equilibrium, which
means that the strategy profile σ would lose ε playing against a worst-case opponent averaged over
all strategies in σ. Formally for two-player zero-sum game, it is εσ = (b2(σ1) + b1(σ2)/2. Since Nash
equilibria have an exploitability of zero, computing nash equilibria is also referred to as solving the game
[5, p.7].

3.2 Finding Nash Equilibrium

A Nash equilibrium is a robust, static strategy which provides a guarantee about its expected utility
against a worst-case opponent. Usually, a set of strategies is referred to as "in equilibrium", if neither of
the strategies could improve its expected utility by deviating from it. Thus, an agent who plays according
to a Nash equilibrium would never lose on expected utility and would be safe from any exploitation
attempts by its opponent. Moreover, if the opponent were to deviate from a Nash equilibrium, the player
might in fact win money [29]. For that reason, finding Nash equilibria represents the main part of
Game-AI development.

In this section, we describe different approaches to computing Nash equilibria. First, we introduce a
traditional technique which is based on solving linear optimization problems. This approach computes
an exact equilibrium given the LP formulation of the game. Then, we describe a entirely different
approach that approximates a Nash equilibrium by repeatedly modifying strategies over time. The idea
is to incrementally improve the current solution until it converges to a Nash equilibrium. The best-known
and successful ε-Nash equilibrium approximation algorithm is the Counterfactual Regret Minimization,
which we will focus on in the last subsection.

3.2.1 LP Approach

Extensive-form games can be converted into a system of linear equations called Linear Programming
(LP), which can be solved in polynomial time using conventional LP-algorithms [19]. Linear programs
are problems that can be expressed in canonical form as

minimize
x

cTx

subject to Ax≥ b

x ≥ 0

(3)

where x represents the vector of variables that needs to be determined, c and b are vectors of known
coefficients, and A is a known matrix of coefficients. The goal is to find values for x that maximize or
minimize the objective function (cTx in (3)) under some linear constraints (such as the inequities Ax≥ b
and x≥ 0 in (3)) [26, p.41].

Every linear program can be expressed in two ways, as the primal or the dual problem (duality
principle). The dual problem to (3) can be formulated as

maximize
y

bTy

subject to ATy≤ c

y ≤ 0

(4)

9

The solution to the dual problem provides a lower bound to the solution of the primal problem. For
convex optimization problems, the solutions to the primal and the dual problem are equal, if the strong
duality condition is satisfied [26, p.51]. In the case of two-player zero-sum games, the primal solu-
tions correspond to strategies for one player while the dual solutions correspond to the strategies of his
opposition.

Traditionally, for solving any extensive-form game, a normal form of the game is constructed first,
where all possible pure strategy pairs of the players are tabulated, along with the expected payoff for
each player when such a strategy pair is played. Nevertheless, this method results in an exponential
increase in the size of the problem. Prior work introduced an alternative LP representation, called
sequence form, which avoids the exponential increase associated with the normal-form [19].

The sequence-form is based on a different representation of the strategic variables. Playeri ’s strategy
σi is encoded using a realization plan, βi ∈ Bi ⊆ R

∑

I∈Ii
|A(I)|, that stores the strategy’s realization

weights [5, p.10]. Due to perfect recall, each information set I ∈ Ii uniquely identifies a sequence of
all previous information sets of playeri and the corresponding actions taken by playeri to reach I . Given
some strategy σi, let σi(a|I) be the probability of taking action a at I . A realization plan is defined as

βi(I , a) = σi(a|I)πσi (h), h ∈ I

In other words, the realization weight of a sequence of playeri is the product of all action probabilities
within the sequence according to the player’s current strategy ignoring the chance and the other player’s
moves. For example, considering the information set at P b

1 in Figure 2, the realization weight for the
blue marked action is β1(P b

1 , le f t) = 0.2 · 0.5= 0.1.
The objective is to find an optimal realization plan (a vector containing all realization weights). A

valid realization plan must satisfy the following three constraints:

βi(I , a)≥ 0 (non-negative weights)

∑

a∈A(I)

βi(I , a) = β(I ′, a′) (chidren sum to parent)

βi(;) = 1 (root has weight 1)

where (I ′, a′) is a parent of (I , a) or ; if it has no parent. The second constraint indicates that the sum of
all realization weight of sequences coming out from a certain information set is equal to the realization
weight of the parent sequence that led to this information set [5, p.10].

A strategy can be extracted from every valid realization plan by normalizing the realization weight of
a information set action pair by the realization weight of the parent. Formally, it is accomplished by

σi(a|I) =
βi(I , a)
βi(I ′, a′)

=
βi(I , a)

∑

a′∈A(I) βi(I , a′)

[5, p.10]. For example, in Figure 2:

β1(P
b
i , le f t) = 0.5 · 0.2= 0.1

β1(P
b
i , ri ght) = 0.5 · 0.8= 0.4

β1(P
a
i , le f t) = 1 · 0.5= 0.5

σi(le f t|P b
i) =

0.01
0.1+ 0.4

= 0.2

10

For a two-player zero-sum game, assume x and y are the realization plans β1 and β2 for player1 and
player2 in vector notation. A denotes the payoff matrix of player1 and B= −A denotes the payoff matrix
of player2. The Nash equilibrium profile (x,y) can be obtained by solving the optimization problem:

maxx∈B1
miny∈B2

xTAy= miny∈B2
maxx∈B1

xTAy

under the constraints for valid x and y derived from above [5, p.11].
A linear program can be created from this optimization problem by taking the dual of the inner mini-

mization/maximization. The inner optimization taken in isolation computes a best response. For exam-
ple, the maximization problem:

maximize
x

xT(Ay)

subject to Ex= e

x ≥ 0

(5)

computes a best response x for player1 to y of player2. Let Ci denote the set of all choices of playeri
⋃

I∈Ii
A(I). E represents the constraint matrix of player1, which has the size of (|I1| + 1) × (|C1| + 1).

Therefore, x has |C1| + 1 variables that represent the realization weight of each sequence including
the empty sequence ;. The constraint matrix ensures that the two constraints for realization plans are
satisfied (chidren sum to parent, root has weight 1). The payoff matrix A has the size of (|C1|+1)×(|C2|+1)
and has at most |Z | non-zero entries which represents the number of terminal histories. E and A are both
sparse, thus keeping the linear program in linear size of the game tree.

The dual of (5) is defined as follows:

minimize
p

eTp

subject to ETp≥ Ay
(6)

Each equation in the constraints is expanded with a new unconstrained variable, yielding a vector p with
the dimension of |I1| + 1. As a result, combined with the outer optimization problem, the following
linear program (7) can be formed, whose solution is a part of a Nash equilibrium in the given zero-sum
game [19, p.5].

minimize
y,p

eTp

subject to ETp−Ay≥ 0
Fy = f
y≥ 0

(7)

The dual of (7) is defined as:

maximize
x,q

fTq

subject to FTq−ATx≤ 0
Ex = e

x≥ 0

(8)

The solution to (8) is the other part of the same Nash equilibrium. Optimal solutions (y,p) and (x,q) to
(7) and (8) fulfill eTp= fTq by strong duality and are therefore equilibrium strategies of the game [19,

11

p.5]. However, only the primal variables x and y are needed that represent the optimal realization plans
for each player.

There are several existing algorithms for solving LPs. The most common one is the Simplex Algorithm
[26, p.61-92]. It solves the LP by constructing a feasible solution at a vertex of a polytope that defines the
feasible region of the LP. It has been proven that an optimal solution must be located at one of the vertices.
The simplex algorithm then follows a path on the edges of the polytope to vertices with non-decreasing
values of the objective function until an optimum is reached. In practice, the simplex algorithm is quite
efficient despite its exponential worst-case behavior. Another noteworthy algorithm for solving LP is the
interior point algorithm [26, p.97-114]. In contrast to the simplex algorithm, it moves through the
interior of the feasible region rather than on the edges. One of the current most commercially successful
implementation of the above mentioned LP-algorithms is the Gurobi Optimizer [16]. It is capable
of using both algorithms for solving by dynamically switching from one to another during runtime to
achieve maximum efficiency. However, the memory required to solve such sequence-form LPs makes
them rather impractical for large games such as two-player no-limit Texas hold’em.

Despite the memory limitation, LP techniques have been successfully applied in smaller games or
abstractions of larger games. Prior works [14, 7] used the LP-Approach on a strongly abstracted game
of limit Texas hold’em. Recently, Ganzfried et al.(2013)[9] applied LP on endgames of no-limit Texas
hold’em, which will be investigated further in chapter 4.

3.2.2 Counterfactual Regret Minimization

Despite the fact that the sequence-form allows much larger games to be solved compared to the tradi-
tional normal-form, it still fails in representing and solving large-scale games such as full-scale Texas
hold’em owing to the enormous memory requirements. Prior work indicated that the LP approach only
scales to games with around 108 nodes in their game tree [14], while newer approximation techniques
scale to games with around 1013 nodes.

The leading state of the art algorithm for computing ε-Nash equilibrium in two-player zero-sum games
is Counterfactual Regret Minimization (CFR)[40]. It only requires a memory linear in the size of the
information sets instead of game states. Instead of storing the entire extensive-form game tree in the
memory, it solely stores an information set tree for each player. Each node in an information set tree
corresponds to a complete information set within the extensive-form game tree. During the computation
of the strategy, the algorithm is only required to traverse the extensive-form game tree, while the strategy
itself is stored in the information set trees.

The CFR algorithm is a regret minimizing algorithm. The regret for playeri is defined as

RT
i = max

σ∗∈
∑

i

T
∑

t=1

(ui(σ
∗,σt

−i)− ui(σ
t
i ,σ

t
−i))

RT
i measures the amount of utility playeri could have gained by following the best strategy in hindsight

instead of following σi. The average regret is defined as RT
i /T . An algorithm is regret minimizing if the

overall average regret converges to zero over time (lim
T→∞

RT
i

T = 0) [5, p.13]. The difference between

max
σ∗i ∈

∑

i

(ui(σ
∗
i ,σ−i)− ui(σ))

quantifies playeri ’s regret for playing his current strategy compared to the strategy with the highest
expected utility.

12

However, the CFR algorithm does not minimize one overall regret value, but rather disperses regret
values into separate information sets while minimizing individual regret values. Each individual regret
is associated with an information set and is therefore weighted by the probability of reaching this par-
ticular information set. The dispersed regrets are referred to as counterfactual regrets. Formally, a
counterfactual regret is defined as

r(I , a) = ui(σI→a, I)− ui(σ, I)

ui(σ, I) is called counterfactual utility and represents the expected utility, given information set I is
reached and all players play according to σ. ui(σI→a, I) denote the utility of playing according to σ,
except the playeri who uses a pure strategy of always choosing action a given a ∈ A(I). Thus, r(I , a)
describes the degree to which playeri desires having played action a instead of following the current
strategy σ. A high regret value would therefore indicate that the player should pick action a more
often. Therefore, he should adjust his current strategy in favor of action a. The adjusted strategy has
a probability distribution proportional to the accumulated positive value of the regret. If a particular
action had a high regret in the current iteration, it would be assigned a higher probability, hence the
action would be used more often in the next iteration. As the number of iterations increases, the average
counterfactual regret at each information set approaches zero as well.

The sum of counterfactual regret from each information set provides a bound on the overall regret,
which when minimized gives a strategy that approaches a Nash equilibrium [40]. Hence, the strategy
profile associated with the average overall regret, called average strategy, converges to a Nash equi-
librium profile. It has been proven that CFR converges to a Nash equilibrium in two-player zero-sum
perfect recall games [40]. However, CFR has also been successfully applied in multiplayer games [30]
and imperfect recall games [37] as well.

Figure 3 depicts a part of Figure 2 and illustrates how counterfactual regrets are calculated at a single
node in an extensive-form game tree. At P b

1 , player1’s current strategy is (le f t, ri ght) = (0.2,0.8). The
expected value for player1 given his current strategy is

0.2 · (−9) + 0.8 · 15= 10.2

For each action a at this node, player1’s regret for not taking action a is the difference between the
expected value for taking this action and the expected value given player1’s current strategy:

le f t : −9− 10.2= −19.2

ri ght : 15− 10.2= 4.8

The results indicate that player1 regrets not taking the ri ght action more often than the le f t action.
Then, the values need to be weighted by the probability of actually reaching P b

1 (multiply all probabilities
on the red edges):

weight : 0.9 · 0.5 · 1= 0.45

le f t : −19.2 · 0.45= −8.64

ri ght : 4.8 · 0.45= 2.16

13

Chance

...Pa
1

...Pa
2

P b
1

15-9

0.2 0.8

7

0 1

0.5 0.5

0.9 0.1

counterfactual regret
left: -8.64
right: 2.16

Figure 3: A game tree highlighting the regret calculation at the blue marked node.

Now, player1 will adjust his strategy proportional to the positive values of the regrets. The adjusted
strategy is now a pure strategy that will always pick the ri ght action.

le f t :
max(0,−8.64)

max(0,−8.64) +max(0, 2.16)
= 0

ri ght :
max(0,2.16)

max(0,−8.64) +max(0, 2.16)
= 1

3.3 Abstraction

Two-player no-Limit Texas hold’em, played with a stack size of 200 big blinds, a big blind of the size of
100 chips and with only integral bet sizes allowed, is a game with about 6.31× 10164 game states and
6.37× 10161 information sets [22]. Solving this game using a standard CFR implementation with a loss-
free compression technique (which will be described in the following section) would require 1.094 ×
10138 yottabytes of RAM [22], which is far too large to be solved in its complete form on modern
hardware. Hence, the game and information set trees must be scaled down to a tractable size. The most
common approach for this matter is to abstract the state space. In the domain of poker, we consider card
abstraction and action abstraction, which will be explained later.

The abstracted version of the game is solved with an equilibrium finding algorithm. Then, the solution
is mapped back to the original game by translating the actions of the abstracted game solution back into
the real game. This process is illustrated in Figure 4. Typically, the state space abstraction is carried out
prior to computing a strategy.

Although there are techniques such as card isomorphism which guarantee loss-free state space re-
duction [38], in order to produce a tractable abstracted game, at least some loss of information is
unavoidable. The quality of the solution in the real game depends on the size of the abstracted game
and the abstraction techniques used to produce it. Only if the strategical properties of the real game are
preserved in the abstracted game, the solution will produce a good approximation for the full game.

14

Usually, increasing the size of the abstracted game would reduce the loss of information, but also
increases the time and memory requirements for the strategy computation. In most cases, solving larger
abstracted games results in less exploitable strategies. However, Waugh et al.(2009)[36] established that
this is not always the case and provided examples in toy games, where increased abstraction size even
made the resulting strategy more exploitable.

Figure 4: state of the art approach for solving large-scale games [10, p. 3]

3.3.1 Isomorphism

In Texas hold’em and as well as in many other card games, certain card combinations are strategically
equivalent to each other. This is the case, when only the rank of a card and not its suit determines its
strength. Hands that are strategically equivalent and only differ by a rotation of their suits are called
isomorphic [38]. In the first betting round for instance, the hole cards A♣K♣, A♦K♦, A♥K♥ and
A♠K♠, in other words all Ace-King combinations with both cards of the same suit, are isomorphic to
each other. One of those four combinations can be arbitrarily chosen as representative of the set. This
representative is called canonical. An equilibrium-finding algorithm therefore simply needs to find the
strategy for the canonical hand. Since every non-canonical hand is isomorphic to a canonical hand, the
strategy of the canonical hand can later be used for all hands in the set of isomorphic hands. This reduces
the state space by a factor of up to 4!, which, however, is not yet sufficient to be able to solve a game as
large as no-Limit Texas hold’em.

Isomorphism is a loss-free abstraction technique. Since the merged states are strategically equivalent,
this reduction will not lead to a worse result compared to the solution obtained from the full game tree.

3.3.2 Card Abstraction

A well-known technique for state space reduction is bucketing [23, p.23-24]. In each betting round, the
cards of each player are mapped down to a certain number of buckets, with the intention of grouping

15

hands with similar strategic properties into the same bucket. Similar to card-isomorphism, bucketing
can be regarded as a many-to-one mapping from the information sets of the full game to information
sets in the abstracted game as well with the difference that bucketing also merges strategically similar
(not necessarily equivalent) card combinations.

In order to group the cards, it is necessary to first extract distinguishing features from the cards to
represent the cards as points in a feature space, as cards themself lack a metric to measure the strategic
distance between poker hands. The features are the measurable attributes of the card combinations .
They should measure the strength of a player’s hand given the current state and as well as how likely
it would be to win with this particular hand in the given situation. One possibility of grouping hands
is by their expected hand strength (E[HS]) [7], thus hands with a high probability of winning will
be grouped with other strong hands and hands with a low probability of winning will be grouped with
other weak hands. The hand strength (HS) measures the probability of winning with a given card
combination against an opponent, where ties are counted as half a win. The opponent usually could
hold a range of hands. Since the exact hand range of the opponent is unknown, it is usually assumed
that the opponent plays all private card combinations with equal probability. In other words, a uniform
distribution over the opponent’s private cards is assumed. E[HS] is computed by averaging wins per
hand against this uniform distribution over hole cards and adding the average number of ties divided
by two to take split pots into account. For instance, the combination A♣K♣ wins in about 66.22% and
ties in about 0.83% of all games against a uniform distribution of opponent card holdings. Thus, the
corresponding E[HS] value is 0.6704.

However, E[HS] value ignores the potential of a hand to possibly develop into a stronger hand due to
future chance events, which is an important property of a hand. In other words, drawing hands such as
7♣8♣ may have low E[HS] in the first betting round, but future community cards may turn the hand
into a flush or a straight with high E[HS]. Hence, a strong drawing hand should be considered to be
comparably strong as hands with medium or even high E[HS] values. Expected hand strength squared
(E[HS2]) takes the hand potential into account [23, p.25]. In order to calculate E[HS2], the HS values
of all river card combinations are computed and subsequently these HS values are squared, summed
and averaged. Accordingly, this method assigns higher values to hands that exhibit a high variance in
winning, as for instance a Flush or Straight Draws.

In order to capture the hand potential more precisely, histograms can be used to represent a hand
strength distribution instead of summarizing it into a single expected value [21]. Figure 5 depicts
the distribution of hand strengths over the final round of four Texas hold’em poker hands in the first
round of the game. Each distribution is discretized into a histogram with values ranging from 0 (a
guaranteed loss) to 1 (a guaranteed win). The height of each bar indicates the probability of receiving
the corresponding hand strength in the future, and the vertical black line and label shows E[HS] [21,
p.5].

All card features discussed so far are based on hand strength and hand strength squared values, which
primarily are measures of the quality of a player’s hand that consists of players private cards and the
given community cards. The public information of board texture may only be indirectly inferred by these
features, since public cards affect player’s hand strength. However, knowledge about the board texture
is crucial for an agent to distinguish between important situations. For example, a monotone connected
board such as 7♣8♣9♣ requires entirely different consideration than a paired rainbow board such as
K♣K♠2♥ which exhibits no draws. In order to add explicit knowledge of the board texture, either public
card features should be added to the feature set, or public buckets are implemented where public cards

16

Figure 5: Hand Strength histograms for four poker hands on Preflop [21, p. 4]

are grouped separately. Public buckets can be used for a bucketing technique called nested bucketing,
where only hands are partitioned that are consistent with given information [23, p.26]. For example,
one could first partition only based on public information into M buckets, then partition the hands within
each of M buckets into N buckets based on E[HS] values, for a total of M × N buckets.

In each betting round, a player’s hand is assigned a different bucket due to additional community
cards in each new betting round. The bucket sequence is the sequence of buckets to which the cards of
a player were mapped in each respective round [30]. Assuming that the buckets are sorted by strength,
if a player holds a weak hand in the first betting round improving in combination with the community
cards of the second round, the bucket sequence could for instance be: bucket1 preflop→ bucket9 flop. A
player’s strategy is not defined for a hand, but for a bucket sequence. In an abstracted game, hands with
the same bucket sequence will be merged. Here we distinguish two types of card abstractions: perfect
recall abstractions and imperfect recall abstractions [13, p.11-12]. In a perfect recall abstraction,
no information about buckets in earlier betting rounds is ever lost. Nested bucketing is usually used
to create perfect recall abstraction by conditioning on all previous revealed information, in other words
the current bucket sequence. In imperfect recall abstractions, information about earlier betting rounds
can be completely or partially forgotten. Perfect recall abstractions therefore consider the whole bucket
sequence, while imperfect recall abstractions only consider a part of the bucket sequence. Hands with
the following bucket sequences: bucket2 → bucket8 and bucket5 → bucket8 would be treated differently
by a perfect recall abstraction, even though they have the same bucket on the current betting round. An
imperfect recall abstraction would merge both hands thus forgetting the bucket of the first round.

Since perfect recall abstractions do not forget past information but use nested bucketing, the bucket
sequence forms a tree. An abstraction with 10 buckets in the first round and a split in 10 additional
buckets in each subsequent round would result in a total of 10000 bucket sequences. The number of
buckets in earlier rounds therefore has a significant impact on the size of the whole abstraction.

17

R

2

21

1

21

Perfect recall

R

2

43

1

21

Imperfect recall

Root

Preflop

Flop

Figure 6: Perfect and imperfect recall games

In an imperfect recall abstraction, the number of buckets in earlier rounds does not affect the number
of buckets in later rounds. Bucket sequences are not perceived as a tree, but rather as an acyclic graph.
Cards, which were assigned to different buckets in previous rounds, can later be merged into the same
bucket. Imperfect recall abstractions ignore past information in favor of a finer granulated abstraction in
the current round. So instead of using nested bucketing with past betting sequence as split feature, one
can discard all information about past rounds that are no longer strategically important and partition
the current round separately only based on relevant features (e.g finer-grained E[HS]).

In order to better illustrate the difference between perfect and imperfect recall abstractions, let us
take Figure 6 into consideration. On preflop, the card abstraction partitions all hands into two buckets,
1 or 2, indicating that a hand is in the top or bottom half of all possible hands. At this point, both
variants still have the same buckets. Continuing with the flop, in the perfect recall abstraction, the agent
must remember its bucket sequence. A nested bucketing is used by conditioning the bucket number in the
preflop round. Hence, each bucket on preflop is also partitioned further into either the top or bottom half,
resulting in a total of four flop buckets. These four buckets may have overlapping ranges according to
metrics such as E[HS]. For example, a weak hand which is assigned to bucket1 on preflop can improve
to a strong hand, and a strong hand in bucket1 on preflop can turn into a weak hand on the flop.
Hence, bucket1→2 and bucket2→1 for instance could both have hands ranges from 0.5 to 1 E[HS]-values.
Imperfect recall, on the other hand, discards all prior bucket information and is able to partition all flop
hands into four non-overlapping buckets resulting the same total flop bucket size as perfect recall. The
partition of E[HS] values is twice as fine. Since E[HS] is more important than past bucket information,
a finer partitioning according to E[HS] is better than a nested bucketing conditioned on all previous
bucket information. Even though imperfect recall abstractions lose the guarantee of convergence to a
Nash equilibrium, empirical tests demonstrate that imperfect recall abstractions usually lead to better
results than perfect recall abstractions of equal size [37].

3.3.3 Action Abstraction

Another option of abstracting a game such as no-Limit Texas hold’em is to reduce the number of possi-
ble actions, as player actions contribute significantly to the size of the game [23, p.23]. Unlike typical
card abstraction techniques, which group information sets into buckets, action abstraction usually re-
moves player actions entirely. In case a removed action is actually played in the real game, it will be
mapped to one of the remaining actions in the abstracted game using one of the various action translation
techniques, which will be discussed in the following section.

18

Usually, folding and calling are not removed in an action abstraction. These actions are allowed in
all situations of the abstracted game where they are also legal actions of the full game. The abstraction
usually focuses on reducing the number of raise sizes. A widely used approach is to define certain
allowed raise sizes relative to the current size of the pot, which are usually chosen by hand. A popular
and simple action abstraction is the FCPA-abstraction (fold, call, pot size bet, all-in) [32].

An action abstraction can define more or fewer allowed raise sizes depending on the situation [17].
More actions might be allowed in a state, which occurs more frequently, as it will determine the outcome
more strongly. Therefore, the agent will benefit from a finer abstraction in that state. For example, the
initial raise in each betting round has the most allowed raise size variations. As the number of raises
increases, the number of allowed sizes decreases in order to limit the number of bets a player can make.

A poorly chosen abstraction, or an abstraction which is not sufficiently accurate, can lead to many
problems. An agent could misjudge the size of the pot as well as his opponent’s hand distribution. For
instance, a raise falsely mapped to a significantly larger size can lead to the agent folding reasonably
strong hands, as he will think that he would have to invest a lot of chips for a call as his opponent has
indicated a very strong hand. Several techniques have been proposed to improve action abstractions as
well as the action translations. An action abstraction can, for instance, change the size of the agent’s bet
thus the pot size in the real game will be closer to a size defined in the abstracted game [32]. Action
translations may be designed in a way, that they will minimize the agent’s exploitability resulting from
its abstracted action space [32].

3.3.4 Action Translation

An Action Translation is a reverse mapping from an action sequence performed in the real game to one of
the action sequences defined in the abstracted game. We can distinguish between hard translations and
soft translations [32]. A hard translation is a function, which deterministically maps an action sequence
of the full game to a most similar action sequence of the abstracted game, while a soft translation is a
probabilistic mapping. The biggest drawback of hard translations is their deterministic nature, which
makes them predictable and exploitable. In many cases, soft translations also take the most similar
action, but they additionally mix in certain probabilities for the second most similar action. For example,
if an abstracted game only has the bet sizes, 1 or 2 units and the opponent actually made a bet of 1.55
units. A hard translation would map it to 2 units every time, since 1.55 is closer to 2 than to 1. However,
a soft translation for instance could map it to 2 55% of the time and 45% of the time to 1.

There are various similarity metrics to measure the similarity between action sequences. In the fol-
lowing, a few popular similarity metrics will be listed.

Arithmetic
Let A and B be neighboring bet sizes defined in the abstracted game with B > A. Let x be the observed
bet size in the real game, with a size between A and B. Then, if x < A+B

2 , x is mapped to A, otherwise
x is mapped to B. In other words, the bet size is always mapped to the nearest bet size defined in the
abstracted game. This approach can be improved by adding randomness. In that case, the probability of
the bet size x being mapped to the abstracted bet size A is fA,B(x) =

B−x
B−A [11].

Geometric
Instead of looking at the distance of the bet x to the abstracted bet sizes A and B, the geometric mapping
looks at the ratio of x , A and B. If A

x >
x
B , the bet will be mapped to A, otherwise it will be mapped to

19

B. Therefore, the threshold between a bet being mapped to the bigger abstracted bet size B is x∗ =
p

AB
instead of A+B

2 in the arithmetic mapping [11].

Pseudo Harmonic
All aforementioned mappings are heuristic mappings without game theoretical justification. The Pseudo
Harmonic mapping attempts to generalize the game theoretical solution of a simplified poker game, the
Clairvoyance Game, to the full game of no-limit hold’em [11].

In the clairvoyance game, player1’s distribution is made of 50% winning hands and 50% losing hands,
while player2 always holds a hand, which will beat player1’s losing hands, but will lose against his
winning hands. Both players have a stack size of n and both have to pay a blind of 0.5 for an initial pot
of 1. Player1 is allowed to check or bet any amount x up to the size of his stack, player2 is allowed to
call or fold to player1’s bet, he is not allowed to raise. Player2 has to check if player1 checked.

This game can be solved analytically, and the solution is as follows:

• P1 bets n with probability 1 with a winning hand

• P1 bets n with probability n
n+1 with a losing hand (and checks otherwise)

• P2 calls a bet of size x with probability 1
x+1

The Pseudo Harmonic mapping is the solution to fA,B(x) ·
1

1+A+ (1− fA,B(x)) ·
1

1+B =
1

1+x , which results in
fA,B(x) =

(B−x)(1+A)
(B−A)(1+x) . This is the only mapping consistent with the solution of the Clairvoyance Game of

player2 calling a bet of size x with probability 1
1+x . It also has a lower exploitability than the previous

mappings, in the toy games such as Kuhn Poker [20] and Leduc Poker, which suggests that the solution
of the Clairvoyance Game can improve an agent in more complex poker games.

3.4 Opponent Exploitation

Nash equilibrium solutions are static and robust strategies that provide a worst-case performance guar-
antee. They make the pessimistic assumption that the opponent always plays perfectly against them. In
a two-player zero-sum game, where Nash equilibrium solutions have zero exploitability, an agent playing
according to a true Nash equilibrium strategy will never lose to any opponent in the long run. However,
human players or even the best computer poker agents have significant weaknesses that can be exploited
to obtain higher payoffs than the optimal Nash equilibrium strategy would have, since Nash equilibrium
strategies do not take advantage of any kind of weaknesses. In order to capture these weaknesses, op-
ponent modeling is required. A perfect opponent model describes the exact behavior of the opponent.
Opponent models can be derived from prior observation of the opponent. Based on the opponent model,
a counter strategy can be computed that maximizes its payoff against the given opponent model. The
strategy with the highest payoff against a given opponent model is called best response (3.1).

However, it is almost impossible to construct a 100% accurate opponent model due to estimation errors
and noisy observations. The opponent further might change his behavior dynamically, which is also
common among advanced human players. Thus, playing according to a tailored counter strategy tends
to be risky, since it deviates from the Nash equilibrium. This deviation exposes the agent to potential
counter-exploitation. For instance, consider the game of Rock-Paper-Scissors, where the opponent plays a
rock only strategy. In this case, the best response strategy is obviously to always play paper. However, the
only paper strategy is as brittle as the opponent’s only rock strategy and can be easily counter exploited by

20

any scissor dominating strategy. Therefore, besides the challenge of opponent modeling, another crucial
part of opponent exploitation is to compute robust response strategies that limit their own exploitability
while still being able to exploit the opponent. Such responses balance the two extremes, best response
and nash equilibrium, and are referred to as safe exploits [5, p.13-16].

In this section, we first describe several response computation techniques that are widely used in state
of the art poker agents. They are primarily game theoretic counter strategies that are computed offline.
Subsequently, we will discuss the differences between two general approaches of opponent exploitation
systems, explicit modeling and implicit modeling. The latter one also has the ability to perform online
exploitation and dynamically adapt to various opponent types.

3.4.1 Game Theoretic Responses

Best Response
Despite the vulnerability against potential counter-exploits best response remains the most efficient ex-
ploitation technique with regard to weak static opposition. Additionally, best responses are also used
in agent evaluations to determine the worst-case exploitability of agents. Computing a best response
to a strategy in large-scale extensive games is challenging. It was even impossible to compute best re-
sponse for limit Texas hold’em for a long period of time. Instead, it was necessary to compute the best
response to a strategy σopp inside of the same abstracted game that σopp uses. This abstracted best
response exploits σopp to a maximum extent in the abstracted game and provides a lower bound of the
real exploitability of σopp.

However, Johanson et al.(2011)[39] proposed an implementation of an accelerated best response
calculation that employs a public state tree for traversal instead of the conventional extensive game tree,
which in turn allows more opportunities for caching and reusing information. Moreover, they reduced
the size of the game tree by using game-specific isomorphisms and employed parallel computation to
solve subtrees independently. These improvements allow at least efficient best response computation for
limit Texas hold’em. Unfortunately, best response computation for the no-limit variant of Texas hold’em
is still not feasible due to the vast action space. Therefore, one must revert to the abstracted best response
for the no-limit variant.

The core principle behind best response is simple. The algorithm traverses over all information sets
of the best response player br(opp). For each game state in the information set, the probability of σopp

reaching every terminal node descending from that game state, and the associated utility of both players
reaching that terminal node are computed. Then, the expected utility for each action is determined, and
the single action for the σbr(opp) that maximizes this utility is selected [23, p.55]. The resulting σbr(opp)

is a pure strategy that always selects the action with the highest expected payoff at each information set.

Frequentist Best Response
Frequentist best response (FBR) [23] is an exploitation technique that involves two steps. First, it builds
an offline opponent model (called frequentist model) for a particular opponent by using fully observed
game histories of the opponent (including hole cards) and then computes an abstracted game best re-
sponse to this model.

In preparation for the model creation, a default policy and an abstraction are defined. The default
policy is employed in situations where no observations of opponent have been made. The opponent
model is constructed by mapping observations of played hands to frequency counts in the chosen ab-
straction. The quantity of observations is essential for the accuracy of the model. Johanson(2008)[23]

21

reported that one million observed games are required to generate an appropriate opponent model in
a five bucket abstraction. In practice, it is impossible to collect observations of this size from a human
player, notwithstanding the missing information on hole cards in non-showdown games. Another draw-
back of this technique is its poor performance against other opponents that the model is not designed for,
which appears obvious, as standard best response strategies are always brittle. Nevertheless, frequentist
best response showed good results against static computer agents.

Restricted Nash Response

The Restricted Nash Response (RNR) [23] is a technique that compromises the advantages and draw-
backs of best response and Nash equilibrium. While best response strategies are tailored to maximally
exploit a specific type of opponent, they can perform very poorly against other types of opponents. Un-
less the computed opponent model is very likely to be accurate and static, best response should rather
not be employed. Unlike best response, RNR has the ability to exploit a given opponent while remaining
as robust as possible to counter-exploitations.

The RNR algorithm balances best response and Nash equilibrium computations by restricting the oppo-
nent’s strategy. In Nash equilibrium computations, the opponent is free to change his strategy constantly
in order to approach the equilibrium. In best response computations, the opponent plays a fixed strat-
egy and only the best response player adapts his strategy to exploit the fixed strategy. RNR combines
both by forcing the opponent to play the fixed strategy with probability p, and leaving him to play an
unrestricted strategy with probability 1 − p. In other words, any equilibrium finding algorithm can be
used with the modification that the opponent plays a given fixed strategy p percent of the time. The
other unrestricted player is always free to choose his actions. As a result, the strategy of the unrestricted
player is a counter strategy that exploits the known fixed strategy, while still preserving the robustness
of a Nash equilibrium strategy.

In order to determine the opponent’s fixed strategy, frequentist model technique can be utilized. The
degree of trade-off between best response and Nash equilibrium is controlled by the choice of p. p can
vary between 0 and 1, increasing it results in increase of exploitative power and brittleness. If p = 0,
the produced strategies would be Nash equilibrium strategies, whereas when p = 1 the result is a best
response to the fixed strategy.

Although RNR does not fully exploit its opponents like FBR does, the exploitability of RNR is vastly
reduced compared to FBR [23]. However, the sacrifice of exploitative power is not nearly as high as
the decrease of exploitability, which reflects the overall effectiveness of RNR. Although RNR provides
substantially more robust responses, empirical results demonstrated [24] that RNR can perform poorly
when the fixed strategy is estimated from observations of the opponent rather than the opponent’s real
strategy. Data biased response (in the next paragraph) addresses this problem and is more suited for
estimated agent models.

Data Biased Response

As mentioned in the previous section, data biased response (DBR) [24] is a similar approach to RNR
with the difference that DBR is capable of dealing with estimated opponent models. DBR also uses the
p value to restrict the opponent. While RNR uses a constant value of p for all information sets, DBR
assigns individual pcon f values to each information set that defines the probability the opponent has to
play according to the fixed strategy at the given information set.

22

The problem of using a global p value for all information sets (as RNR does) is that the opponent
model is not equally accurate at all information sets. Depending on how frequently an information set is
observed, the opponent model’s accuracy can vary immensely. In an extreme case, where no observations
have been made in a particular information set, the opponent is still forced to use the default policy p
percentage of the time, which is clearly not optimal. Reversely, the algorithm should put more faith in
the opponent model at information sets that have already been observed numerous times. DBR uses
pcon f as a confidence measure that reflects ones belief in the opponent model. pcon f is a function of the
number of times the corresponding information set was observed. The more observations, the higher
is pcon f . Information sets with zero observations also receive zero pcon f , allowing the opponent to play
an unrestricted strategy. Thus, a default policy is no longer necessary. By tuning pcon f , DBR adjusts
the trade-off between exploitation and exploitability. Johanson et al.(2009)[24] deployed an additional
pmax value as the upper bound of exploitation which pcon f cannot exceed. Thus, pmax sets the final
trade-off between best response and Nash equilibrium.

There is another benefit of DBR as both strategies resulting from the solution of the modified game
are useful. The strategy of the unrestricted player is the robust response strategy. The strategy of the
restricted player is a mimic of the opponent that incorporates the opponent’s behavior derived from the
observations while being robust to the other player’s strategy. These mimic strategies can be quite useful.
For example, Bard et al.(2016)[5] used mimic strategies for various agent evaluations.

3.4.2 Implicit Modeling

Each of the aforementioned techniques attempts to model a single opponent explicitly. In real life do-
mains, it is often impossible to model every single parameter of opponent’s strategy correctly as this
would usually require a large number of opponent observations. Even if there is already a given model,
computing an appropriate response is still too time consuming to be accomplished online. Furthermore,
there is a wide range of different opponent types that cannot be covered by a single opponent model.

Bard et al.(2014)[4] proposed an implicit modeling approach, where the agent may choose from a
portfolio of precomputed responses during game-play. All the agent has to do is to estimate the utility of
each response in the portfolio and selects the one with the highest estimated utility against the current
opposition. This approach allows agents to adapt efficiently to a broad range of different opponents in
real time. The quality and selection of the portfolio strategies are crucial. Each strategy in the portfolio
is computed offline. Hence, there is enough time to build more sophisticated responses for the portfolio.
The portfolio should be able to exploit a variety of opponents. Typically, responses are computed for the
two to three most common player types by using one of the robust response computation techniques
such as RNR or DBR. Robust responses are capable of exploiting without being completely vulnerable to
counter-exploits at the same time. With the right portfolio computed offline, the online adaption task
becomes a utility estimation problem. The selection of responses is accomplished by using multi-armed
bandit algorithms augmented by variance reduction techniques. A complete illustration of an implicit
modeling process is provided in Figure 7.

23

Figure 7: An example of implicit modeling process [4, p.5]

4 Enhancements of existing Nash Agents I: Endgame Solving

Endgame solving is not a new concept. It has already been successfully implemented in perfect informa-
tion games such as chess or checkers [6]. In large imperfect information games, the common approach
for creating Nash equilibrium agents is to compute an ε-Nash equilibrium strategy of an abstracted ver-
sion of the full game offline. Due to the immense size of most popular games such as Texas hold’em
poker even reasonable abstractions of the original game are too large to be solved exactly by the state
of the art equilibrium-finding algorithms such as linear programming. Therefore instead of an exact
computation approximate equilibrium-finding algorithms such as CFR are usually used for the offline
computation. During actual game-play, the agent can simply consult the offline computed strategy and
performs its actions accordingly.

In two-player no-limit Texas hold’em, the total number of game states with 200 big blinds starting
stacks is about 10165 [22]. However, this size clearly does not scale to the capacity of modern hardware,
which is why the number of game states must be abstracted down to only 1012 at least. The dramatic
reduction of game states consequently has a negative impact on the quality of the solution. Game
states with different strategic properties may be abstracted down to one state, even though they should
be processed differently. Assuming that the same abstraction technique is being used, the solution of a
bigger abstracted game with more game states often outperforms the solution of a smaller one. However,
solving larger abstracted games comes at the expense of computation time and memory space. So it is
a trade-off between accuracy of the abstraction and time/memory efficiency. Endgame solving partially
addresses this trade-off problem by resolving the endgame to a greater degree of accuracy in real time,
since it is only required to solve a small portion of the game that is actually reached during game-play.
Additionally, there is sufficient time for small size computation in real-time application scenarios such as
online poker games where the time limit for one action is 10 to 20 seconds.

The endgame solving approach uses an existing Nash equilibrium strategy for the initial portion of
the game called the trunk, but then discards the strategy for the final portion called the endgame, and
solves it separately using finer granulated abstractions [9, p.1]. In the example of a poker game, the first

24

three betting rounds proceed as usual by performing table lookups in the precomputed Nash equilibrium
strategy. When the last public board card is revealed, the endgame solving starts and solves the last
betting round in real-time. The new computed endgame strategy can then be used until the end of the
round. An illustration of endgame solving is provided in Figure 8.

Figure 8: G is the entire game tree of the offline strategy. T is the trunk. Blue dashed line is a path
that has been taken during actual game-play. Red dashed line represents the end of the trunk,
where the endgames start. E is the endgame to be solved [10, figure 2].

Ganzfried et al.(2015)[9] first introduced endgame solving in large imperfect-information games.
Their experiments on no-limit Texas hold’em showed that endgame solving can improve the performance
of Nash equilibrium agents against other computer poker agents. In the first human vs computer no-
limit Texas hold’em competition, endgame solving was also implemented in the computer agent which
competed against four world class human poker players. Although the computer agent lost to humans
in the competition, the professional poker players regard the endgame component as the strongest part
of the AI [10, p.4]. In this chapter, we will first review the endgame solving algorithm proposed in [9]
and highlight the strengths and weaknesses of endgame solving. However, one key component of the
implementation was left out by the authors of [9], which is essential for a reproduction of the endgame
solver. The missing part is an explanation for the formulation of the linear program, which is used to
describe the entire extensive game that needs to be solved. Our main contribution in this chapter aims to
provide a comprehensive instruction for the implementation of an endgame solver in the domain of no-
limit Texas hold’em. Besides reviewing the techniques used in the original work, we will present certain
alternatives, and as well as a sample implementation for the LP generation. For reasons of simplicity,
we will refer to the authors of the orginal work [9] on endgame solving as the authors for the following
chapter.

4.1 Theoretical Background of Endgame Solving

In order to understand the endgame solving approach, it is important to first define what an endgame
is. The authors define an endgame as follows [9, definition.1]:

E is an endgame of game G if the following properties hold:

• The set of E’s nodes is a subset of the set of G’s nodes.

• If s′ is a child of s in G and s is a node in E, then s′ is also a node in E.

25

• If s is in the same information set as s′ in G and s is a node in E, then s′ is also a node in E.

In other words, G can be viewed as a rooted tree and E as a subtree of G whose root is a node of G and
all descendants of that root are also included in E. Hence, E is the final strategic portion of G. The size
of E can range from as large as G itself to as small as a single terminal node. The size of E determines the
quality and the required amount of computational resources of the resulting endgame strategy. Hence,
choosing an adequate endgame size is essential. Obviously, it makes no sense to choose E as large as G
itself, otherwise it would the same as to solve the entire game at once which would represent the same
approach as any regular Nash equilibrium computation. Choosing a too small size for E can also be
problematic. The produced equilibrium strategy of E may fail to be a real Nash equilibrium strategy in
the full game when combined with the equilibrium strategy of the trunk. This can be illustrated in an
example of Kuhn poker.

Consider the last decision of the player1 in Kuhn poker (Figure 9), whether to call or to fold to a bet
of player2 while holding a Queen, as an endgame E. The correct Nash equilibrium solution here would
be to call 1/3 and fold 2/3 of the time [20]. The private hand distribution of the equilibrium strategy of
player2 is: 1/4 Jack, 3/4 King and zero Queen. However, a pure strategy of always call or always fold
has the same expected outcome of −1 as the real equilibrium strategy, which means that the endgame
solver might just as well output a pure strategy, which would not represent an equilibrium strategy in
the full game.

P2

P1,Q

−1−1

f old cal l

bet
J : 1/4
K : 3/4

Figure 9: Endgame example in Kuhn poker: player1 (holding a Queen) is facing a bet of player2. Player1

is indifferent of folding or calling, since both options have the same expected utility.

However, the authors have proven that endgame solving produces strategies with low exploitability
in games, where the endgame is a significant strategic portion of the full game. In other words, if the
opponent can exploit our strategy by adapting his strategy just within the endgame, the endgame solving
will lead to reasonable results. This property can be summarized in the following proposition.

[9, Proposition 2]. If every strategy that has exploitability strictly more than ε in the full game has
exploitability of strictly more than δ within the endgame, then the strategy output by a solver that computes
a δ-equilibrium in the endgame induced by a trunk strategy t would constitute an delta-equilibrium of the
full game when paired with t.

Proof. Suppose a strategy is a δ-equilibrium in the endgame induced by t, but not an ε-equilibrium
in the full game when paired with t. Then by assumption, it has exploitability of strictly more than δ
within the endgame, which leads to a contradiction. �

However, it remains difficult to measure the importance of the trunk for the endgames. In general,
the bigger the endgames, the lower the end exploitability when paired with the trunk. In the domain

26

of Texas hold’em poker, the betting rounds form an intrinsic division of the full game. The final betting
round (river) has the most money in the pot, thus each river decision has a stronger impact on the
outcome than in other previous rounds. At the same time, with no more cards to come, the river is small
enough to be solved efficiently. Hence, the final betting round appears to be an obvious choice for the
endgame.

Despite the theoretical limitation of possibly producing highly exploitable strategies, the authors have
reported several potential benefits of endgame solving in large-scale imperfect information games. The
main benefit of endgame solving is the reduction of the problem complexity by decomposition. The
endgame solving approach breaks the full game down into two separate entities, namely the trunk
portion and the endgame. Since each endgame is solved separately from the main part of the game
tree, the memory and scalability constraints are much lower. While the full game may be too large
to fit in the memory, each endgame can easily fit into memory, and thus can be solved individually.
Equilibrium finding algorithms will also more likely scale to endgames. The authors proposed to use
LP algorithms for endgames that produce exact equilibrium solutions, unlike conventional approximate
equilibrium-finding algorithms that are often confronted with large approximation errors. The current
best general-purpose LP algorithms scale to games with up to 108 game states [14]. The scale of a
reasonable abstraction of full game poker usually exceeds the computational limit of LP algorithms.
However, LP algorithms do scale to abstracted endgames, since 108 nodes are enough for a reasonable
endgame abstraction, for instance the river in Texas hold’em.

In no-limit Texas hold’em, the final betting round contains the most information sets of all betting
rounds. Therefore, more information sets must be compressed into buckets than in previous betting
rounds. By solving the endgame separately, much finer granulated card abstractions can be computed
in real time. Additionally, the card abstractions can be computed in consideration of a more realistic
private hand distribution of the opponents. Instead of grouping information sets together that perform
similarly against a uniform distribution of the opponent’s private information like standard approaches,
hands which perform similarly against the relevant distribution of hands the opponent actually might
have can be grouped together. For example, if the opponent has called large bets in previous rounds, it is
considered unlikely that he is holding a weak hand, thus the hand distribution is shifted towards strong
hands. Advanced human players also consider the opponent’s hand distribution given the action history
while making decisions. Action abstraction can be fine tuned as well. Endgame solving allows the user
to adjust the granularity of the action abstraction dynamically for each endgame in real time.

Action abstraction reduces the number of actions by leaving a small number of discrete actions to
represent the entire action space. Usually, the discretizing process is performed by simply removing
actions from the action space. During actual game-play, the opponent may take an action that is not
allowed in the abstraction. In order to interpret this action, it needs to be translated by mapping it
to a known action of the action abstraction. It will be mapped to either the next bigger size or the
next smaller size in the action abstraction. Usually, soft translation (see 3.3.4) is used. The difference
between the interpreted bet size and the actual bet size could be very large, thus resulting in unwanted
agent behaviors. For example, suppose the pot value is 100 and the remaining stacks have a value of
200. Besides call and fold, the action abstraction only allows bets of size 10 and 100. Suppose the
opponent bets 70 in an actual game, which happened to be mapped to 10. Now, the agent would assume
that the opponent has made a bet of 10. If the agent calls the bet, it will assume that the pot size is 120
and the remaining stack is 190. In reality, the pot size is 240 and the remaining stack size is 130, which
is a completely different situation with a significantly bigger pot to stack ratio. By overestimating the

27

opponent’s bet size, one could falsely assume a stronger hand distribution of the opponent, thus folding
more hands which would have been called otherwise, if the correct bet size would have been assumed.
This is what the authors refer to as the off-tree problem. Endgame solving corrects the pot/stack size
gaps by constructing an abstracted endgame using the actual pot/ stack sizes. Therefore, the off-tree
problem is solved at the beginning of the endgame. However, the off-tree problem still can be an issue
within an endgame, since the action space is still abstracted.

4.2 Endgame Solver Implementation

In this section, we provide a deep insight into the endgame solver implementation. Firstly, we will review
and explain the implementation provided by the authors. It includes the computation of the distribution
of the players’ private information leading into the endgames from the precomputed trunk strategies, the
computation of the strategy-biased card abstraction and the action abstraction computation. Addition-
ally, we will also add our own implementation details to complete a more comprehensive instruction.
We also provide alternatives for the card and action abstraction computation. Finally, we describe the
required steps to formulate the corresponding LP to the endgame.

4.2.1 Joint Hand Distribution Computation

One of the major benefits of endgame solving is being able to compute strategy-biased and history-aware
card abstractions. More concretely, this means that instead of assuming a uniform random distribution
for the opponent’s hand distribution, the endgame solver uses a more realistic opponent hand distribu-
tion deriving from the precomputed Nash equilibrium strategy given the current betting history and the
board cards. In other words, the basic assumption is that the opponent acts according to the base Nash
equilibrium agent, which is comparably more reasonable than assuming a uniform distribution. Hence,
the necessary first step is to compute the joint private hand distribution which reflects the probabilities
of each private hand combinations for both players entering the given endgame. In case of the last bet-
ting round in Texas hold’em (river), there are

�52−5
2

�

= 1081 possible hands. The joint hand distribution
can be represented as a 1081× 1081 matrix D, where the rows represent the possible private hands of
player1 and the columns the private hands of player2. Therefore, an index function ((Algorithm 2)) is
required to assign a unique number between 0 and 1080 to each hand. An entry in D is the probability
of both players holding respective private hands according to the base Nash equilibrium strategy in the
given endgame.

In order to reduce the computation time of D, which usually requires 10812 lookups in the base strat-
egy table for all possible private hand combinations, the authors proposed an idea to make a simplifying
assumption that the hand distributions of both players are independent. This implies that it would only
be necessary to iterate once through the 1081 hands and look up the probabilities for each player sepa-
rately in the base strategy table, therefore resulting in two probability vectors d1 and d2 for each player
respectively. According to the independence property, the joint probability of two independent variables
can be calculated by simply multiplying their probabilities. In our case, the probabilities from d1 and d2

are multiplied to achieve the corresponding joint probability in D. Note that the hands of each player
cannot share a common card, otherwise the corresponding joint probability is set to zero. In order to
avoid additional computation in real-time, the authors computed a table of the shared common cards
between each pair of private hands prior to any real-time computation. Since this table is designed for
all endgames, it has the size of 1326× 1326 dimensions including all possible two cards combinations

28

(
�52

2

�

= 1326). A corresponding index function for two cards combinations is given in Algorithm 3. This
card conflict table can be implemented as a boolean matrix, in which entries are set to true if the cor-
responding hand indices share a card in common, otherwise the entry is set to false. After each entry
of D is set, it is normalized, thus all entries sum up to one. The pseudo-code for the entire joint hand
distribution computation can be found in Algorithm 4.

4.2.2 Card Abstraction Computation

In the previous section, we have seen the computation of the joint distribution of private hands induced
by the base Nash equilibrium strategy. Now, by using the joint hand distribution, the equity arrays e1

and e2 that contain the equities for each possible private hand of player1 against player2’s private hand
distribution, and vice versa. These equity arrays will be used to group the private hands into buckets
according to their equities against the opponent’s private hand distribution instead of a uniform random
hand distribution.

Both equity arrays have the number of possible private hands (1081 on the river) many entries and
are initialized with zeros. Then, for each pair of private hands h1 and h2, the entry D[h1][h2] is added
to e1[h1] if the rank of h1 is higher than h2, and D[h1][h2]

2 is added if both hands have the same rank.
Analogously, D[h2][h1] or D[h2][h1]

2 is added to e2[h1] on the same hand rank conditions. The rank of
a hand indicates the strength of a hand. As the board is complete on the last betting round, the ranks
of the hands are also fixed. Finally, each entry is normalized so that all equities are between zero and
one. Some of the entries, of which the indices correspond to private hands with zero probability of
being played according to the base Nash equilibrium strategy, are irrelevant and are thus set to −1.
Pseudo-code of this part is given in Algorithm 5.

Now, card abstractions can be computed by grouping e1 and e2 into card buckets. The number of card
buckets should be chosen in a way that ensures a reasonable computation time of the endgame solving.
The size of the abstracted endgame should not exceed a certain threshold in order to guarantee fast
computation. The abstracted game size can be measured by the number of information sets, which in
turn can be estimated by the product of the number of card buckets and the number of action sequences.
The number of action sequences depends on the action abstraction, which will be addressed in the
following section. The number of card buckets for playeri ki can be calculated by ki = b

T
bi
c, where

T denotes the number of information sets of playeri and bi denotes the number of playeri ’s action
sequences.

The card bucketing can be realized by using various clustering algorithms. These have the same
objective, namely to assign hands that are strategically similar to each other into the same bucket. The
feature space is one-dimensional with the equity against the opponent’s hand distribution as the only
feature. In the following, we will look at a couple of clustering techniques that we have implemented.

k-Means Algorithm
k-Means algorithm [18] is a simple iterative clustering algorithm that partitions data into k clusters by
assigning each single data point to its closest cluster center. The initial cluster centers can be computed
by the k-means++ Initialization [2] that spreads out the initial cluster centers to achieve better cluster
solutions in the main algorithm. e1 and e2 are clustered separately for each player. Each entry in
e represents a data point in the data space. The distance between two data points is measured by the
difference of their corresponding equity values. k-Means is only capable of finding local optima given the
initial clusters means. In order to improve the quality of the clustering, the algorithm can be repeated

29

multiple times with different initial cluster means and select the clustering with the lowest average
distance to the mean.

However, the authors pointed out that k-means could produce sub-optimal clustering in some settings.
Suppose there are many hands with an equity of 0.855, and also many hands with an equity of 0.859. In
this case, k-means would likely create separate clusters for these two equity values, and possibly assign
very different equities, for instance 0.1 and 0.2, into the same cluster if there are only few hands with
those equities. Nonetheless, k-means clustering still produces reasonable results in general.

Percentile Hand Strength
The authors introduced a clustering technique called percentile hand strength, which addresses the
concerns of potentially putting different equities into the same bucket. This technique clustering groups
hands in the same hand strength range together by using simple hashing method [23, p.26]. Concretely,
the equity interval [0, 1] is divided into k regions of equal length, where k denotes the number of card
buckets. The bucket index of a private hand h can be calculated by calculating the hash function be[h]c·k.
To ensure that the absolute top strength hands are grouped together, the first bucket is reserved just for
hands with equities higher than a predefined threshold a. Then, the remaining equity interval [0, a]
is divided according to the hash function be[h]·(k−1)

a c. This approach often produces significantly fewer
buckets than k, since there may be zero hands that fall into certain regions. In this case, the number
of card buckets is reduced accordingly. In the end, the resulting card abstraction may contain a very
different number of buckets for each player, which is not very surprising, since both players could be
in possession of completely different hand distributions. Pseudo-code of this clustering algorithm is
provided in Algorithm 6.

Although this clustering technique does not have the problem of grouping completely different equities
together as k-means does, it may create too few clusters if the majority of hands have similar yet different
equities. Consider the following scenario: suppose we want to create five clusters, and all hands have
equities between 0.6 and 0.8. The five evenly divided equity regions are [0,0.2], [0.2, 0.4], [0.4, 0.6],
[0.6, 0.8] and [0.8, 1]. Therefore, all hands are assigned to cluster [0.6, 0.8] which is clearly not optimal,
as we have enough capacity to create five buckets.

Percentile Hand Strength with Equally Sized Buckets
The percentile hand strength method can be modified to create buckets containing equal number of
hands. Instead of using the hash function to assign hands into buckets, all hands are sorted in ascending
order according to their respective equities and the bottom 100

k percent of hands are assigned to the
lowest bucket. The next 100

k percent of hands are assigned to the next higher bucket, and so on. The
pseudo-code is given in Algorithm 7. This method ensures that all buckets are equally sized and the avail-
able abstraction capacity is fully used. The drawback of this approach is that it may create unnecessarily
many buckets when for instance all hands have the same equity.

4.2.3 Action Abstraction Computation

The action abstraction determines which actions are available at each game state, and thus also deter-
mines the number of possible action sequences for each player. We say an action abstraction is finer
granulated than another action abstraction when it enables more action sequences. As mentioned pre-
viously, the product of the number of action sequences and the number of card buckets determines the
size of the abstracted game. In this equation, there is a clear trade-off between these two kinds of ab-

30

stractions. Without affecting the total abstracted game size, creating a finer granulated card abstraction
clearly implies that the size of the action abstraction has to be reduced, and vice versa. The optimal
balance is application specific. However, there are some rules of thumb which abstraction to favor in
certain situations. For example in endgames with larger pot sizes, the action abstraction should have
more bet sizes available because the game tree cannot grow too large due to the shallower stacks (once
the players are all-in, no additional bets are allowed); and larger pots are more important, since there is
more money at stake and an error caused by an off-tree problem would be more expensive.

By using endgame solving, the granularity of the action abstraction could be adjusted dynamically.
The authors propose to create a set of different action abstractions of varying granularity in advance of
game-play. During game-play, an abstracted game is created for each action abstraction in descending
order of granularity, and thereby, the number of action sequences in each action abstraction can be
determined. If the number of action sequences multiplied with the number of card buckets is below
the predefined maximum abstracted game size, then this action abstraction is utilized. Since the action
abstractions are processed in descending order of granularity, the finest abstraction possible is always
chosen. However, this approach can be time consuming in case of small pots, because the endgames are
bigger due to bigger remaining stacks (more action sequences possible). In the worst-case, the number
of action sequences has to be computed for all available action abstractions just to find out that only the
last (most coarse) one is suitable. In our implementation of this approach, this process could take up to
two seconds for three to four different action abstractions, which is too slow for real-time applications
such as online poker if we take into consideration that this is only a small computation part of the entire
endgame solving.

One alternative approach would be to define fixed pot size ranges for each granularity of action ab-
stractions. Coarser action abstractions are assigned to handle small pot sizes while finer action abstrac-
tions are used for big pot sizes. It should be ensured that each action abstraction still produces feasible
endgame sizes in its application range, which means that all endgame sizes would still remain below the
predefined maximum size. The advantage of this approach is that merely the computation of a single
action abstraction is needed

We can also define one single fixed action abstraction and adjust the size of the card abstraction
dynamically. Similar to adjusting the granularity of the action abstraction, we can use more card buckets
in bigger pots and fewer in smaller pots. The obvious drawback is that we are forced to use a rather
coarse action abstraction even in big pots, which may lead to more translation errors.

The design of the predefined action abstractions is essential for the quality of the endgame strategy.
A good action abstraction should reduce the frequency and severity of action translation errors and at
the same time cause translation errors in the opponent’s strategy. We can distinguish between two major
approaches of action abstraction design, symmetric and asymmetric action abstractions. Symmetric
action abstractions assign identical action abstractions to all players. Asymmetric action abstractions
assign different action abstractions to the agent than to his opponent. For example, we can assign more
bet sizes to the opponent, in order to interpret more types of bets so that the impact of translation errors
is minimized; since more bet sizes are given to the opponent, we have to only assign fewer bet sizes
to the agent if we want to maintain the total abstraction size. In chapter 6, we will discuss these two
approaches in more depth.

31

4.2.4 Linear Program Generation

The final step of endgame solving is to generate a linear program for the given endgame using the
sequence-form formulation (see 3.2.1). The LP generation process can be imagined as the construction
of the game tree. The action abstraction tells us how to connect the nodes. The card abstraction is
responsible for the payoffs in the terminal nodes and the chance events. To better understand the
procedure, we will now use Kuhn poker as an example throughout this section. The complete game tree
of Kuhn poker is depicted in figure 13.

One last preparation has to be made initially before the LP generation. After the card buckets are
computed, we will only use buckets instead of single hands, as hands in the same card bucket are
indistinguishable. Henceforth, card buckets replace the use of individual hands. In order to construct
the game tree later with card buckets, the joint bucket distribution C and the bucket equity table T need
to be computed first, which are used for the chance node of the game tree and for the utility value of
the terminal nodes. In order to compute the joint bucket distribution, we iterate over all pairs of private
hand combinations h1, h2. In each iteration, we look up the buckets c1, c2 that the private hands are
assigned to, and add joint probability D[h1][h2] to the joint bucket probability C[c1][c2] (Algorithm 8).
The bucket equity table is computed in a similar manner, where we count the number of higher ranked
hands in each bucket against other buckets, and normalize at the end of the loop (Algorithm 9). In
the Kuhn poker example, the joint bucket distribution C provide the probabilities of each chance event
(Q|J ,Q|K etc), and the bucket equity table T is used to determine the winner at the showdowns.

C=





J Q K

J 1/6 1/6
Q 1/6 1/6
K 1/6 1/6



 T=





J Q K

J
Q 1
K 1 1





Figure 10: Joint bucket distribution and bucket equity table of Kuhn poker. Zeros are omitted

Recall the two LPs (7) and (8) of which the solutions are the strategies of the Nash equilibrium strategy
profile. The task is now to construct the constraint matrices (E and F) and the payoff matrix (A).
The constraint equations Ex= e and Fy= f cover the latter two constraints for valid realization plans
("chidren sum to parent" and "root has weight 1") for the player1 and player2, respectively. Figure 11

depicts the constraint matrices for Kuhn poker.
For example, consider now the constraint matrix E, which represents the constraints on player1’s

realization plan. It has |I1|+ 1 rows, with each of them being a constraint on the realization weights at
the respective information set, except for the first row, which represents the root constraint. Each column
represents a possible action sequence of player1 including the empty sequence (;) for a total of |C1|+ 1
columns. The first variable of x represent the realization weight of the empty sequence (;). Hence,
we have exactly 1x1 = e1 = 1 that covers the constraint "root has weight 1". The remaining constraints
resulting from Ex= e cover the constraint "chidren sum to parent" for each of player1’s information sets
I ∈ I1. For example, let I1

1 ∈ I1 denote the information set blue labeled as 1 in figure 13. Two action
sequences are available at this information set A(I1

1) = {A1, D1}. The parent sequence of these two is the
empty sequence. The second linear constraint from Ex= e describes exactly this parent child relation by
−x1+x2+x5 = e2 = 0, from which x2 and x5 represent the realization weights on A1 and D1, respectively.

32

F=























; a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3

1
...

...
...

−1
... 1 1

...
...

−1
... 1 1

...
...

−1
...

... 1 1
...

−1
...

... 1 1
...

−1
...

...
... 1 1

−1
...

...
... 1 1























f=























1
0
0
0
0
0
0























E=























; A1 A1B1 A1C1 D1 A2 A2B2 A2C2 D2 A3 A3B3 A3C3 D3

1
...

...
...

−1
... 1 1

...
...

... −1 1 1
...

...
−1

...
... 1 1

...
...

... −1 1 1
...

−1
...

...
... 1 1

...
...

... −1 1 1























e=























1
0
0
0
0
0
0























Figure 11: Constraint matrices and vectors for Kuhn poker in Figure.13. Zeros in the matrices are omitted.

Analogously, Fy= f can be interpreted in the same manner with the exception that they are constraints
for the realization weights of player2.

A is the payoff matrix of player1 (Figure 12). In Kuhn poker and two-player zero-sum games in general,
the payoff matrix of player2 is simply−A. A has |C1|+1 rows representing the action sequences of player1,
and |C2|+1 columns representing the action sequences of player2. An entry of A, of which the combined
action sequences of both players form a terminal history z, contains the utility u1(z) of player1. All other
entries are zeros. For example, a33 shows player1’s utility at the terminal history z = cQ|JA1 b1B1. At z,
player1 has folded to player2’s bet, thus lost the paid blind of one. However, the chance event cQ|J of
z has a probability of 1/6 that needs to be multiplied to the payoff of −1 resulting in a utility value of
−1/6. a32 corresponds to an action sequence cQ|JA1a1B1, which is not a valid action sequence. Thus, the
entry a32 is zero.

33

A=

; a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3




























































































































;
...

...
...

A1
... 1/6

... −1/6
...

A1B1
... −1/6

... −1/6
...

A1C1
... 1/3

... −1/3
...

D1
... 1/6 1/3

... 1/6 −1/3
...

A2
...

... −1/6
... −1/6

A2B2
...

... −1/6
... −1/6

A2C2
...

... −1/3
... −1/3

D2
...

... 1/6 −1/3
... 1/6 −1/3

A3
... 1/6

...
... 1/6

A3B3
... −1/6

...
... −1/6

A3C3
... 1/3

...
... 1/3

D3
... 1/6 1/3

...
... 1/6 1/3

Figure 12: Payoff matrix of Kuhn poker. Non terminal histories are omitted.

34

C
ha

nc
e

P 1

P 2

2
1c 1

d 1

P 2

P 1

2
-1B 3

C 3

1a 1
b 1

A 3
D

3

P 1

P 2

2
1c 3

d 3

P 2

P 1

2
-1B 3

C 3

1a 3
b 3

A 3
D

3

P 1

P 2

-2
1c 3

d 3

P 2

P 1

-2
-1B 2

C 2

-1a 3
b 3

A 2
D

2

P 1

P 2

-2
1c 2

d 2

P 2

P 1

-2
-1B 2

C 2

-1a 2
b 2

A 2
D

2

P 1

P 2

-2
1c 2

d 2

P 2

P 1

-2
-1B 1

C 1

-1a 2
b 2

A 1
D

1

P 1

P 2

2
1c 1

d 1

P 2

P 1

2
-1B 1

C 1

1a 1
b 1

A 1
D

1

Q
|J

Q
|K

J|
K

J|
Q

K
|Q

K
|J

1
3

5

2
4

6
1

2

3

4

5

6

Fi
gu

re
13

:T
he

ga
m

e
tr

ee
of

Ku
hn

po
ke

r.
D

as
he

d
pa

th
sc

on
ne

ct
no

de
si

n
th

e
sa

m
e

in
fo

rm
at

io
n

se
t.

Bl
ue

de
no

te
sp

la
ye

r 1
an

d
re

d
pl

ay
er

2
.T

er
m

in
al

no
de

sa
re

de
no

te
d

w
ith

pa
yo

ff
sf

or
pl

ay
er

1
.

35

i:0
pi:0

i:4
pi:0

i:4
pi:0

i:3
pi:0

f old cal l

i:1
pi:0

i:2
pi:0

i:3
pi:1

i:2
pi:1

f old cal l

i:1
pi:0

check bet

check bet

Figure 14: Public tree of Kuhn poker. Terminal nodes show the total pot size in chips.

However, it is not necessary to create the entire game tree for the LP generation. As can seen, each
subtree from the root possesses the same structure. Further repeating patterns can be found in the
constraint matrices E and F and the payoff matrix A. The dotted lines in figure 11, 12 highlight each
subtree section in the matrices. It will be sufficient to generate a constraint matrix for only one subtree
and subsequently use its pattern to create the full constraint matrix.

A subtree of the root has the same structure as the public tree, which is the tree from the view of an
outside observer, who cannot see the private cards of either player. Thus, the public tree summarizes all
subtrees of the original game tree into one tree. Each node of the public tree represents a set of game
states that cannot be distinguished by the observer. The public tree can be constructed by using only the
action abstraction.

We used the recursive node-to-node representation for the public tree. The tree was created in pre-
order. Each node is labeled with a unique action sequence of playeri, who is currently acting at the node.
Each action sequence is identified with a number, which is assigned to the respective node in the order
of the traversal. Additionally, the index of the parent sequence is also assigned to each node. The public
tree of Kuhn poker is depicted in figure 14, where i represents the index of the action sequence to which
the node is assigned to, and pi represents the corresponding index of the parent action sequence. The
pseudo-code for the public tree generation is given in Algorithm 10.

Having constructed the public tree, we can easily extract the constraint and payoff matrices from it
using the indices stored in the nodes. The indices of the blue nodes correspond to the column numbers
of player1’s constraint matrix and also the row numbers of the payoff matrix. Analogously, the indices of
the red nodes correspond to the column numbers of player2’s constraint matrix and the payoff matrix.
Remember that we are creating the matrices for the public tree, and not for the full game tree. However,
our objective is to use the matrices of the public tree and its patterns to generate the matrices of the
full game tree. The pseudo-code for the extraction of public tree matrices is provided in Algorithm 11.
Note that we utilize two additional matrices, namely showdown matrix SD and terminal pot size matrix
P, instead of one regular payoff matrix. The reason for this is that in a public tree we do not have the
private card information to determine the exact payoffs. Thus, we can only store the pot size and a
boolean for each terminal node, which tell us whether there was a showdown or not. These are also the

36

only observable information at the public tree. An exception is made for terminal nodes where a player
has folded. Here, we can determine the winner at the terminal node, and thus also the payoffs. SD and
P apply to all subtrees of the full game tree root. The only difference among individual subtrees is the
associated chance event.

Everything is now set for the creation of the matrices E, F and A of the full game tree. Algorithm 12

describes the creation of A. This algorithm takes the joint bucket distribution C and the bucket equity
table T as inputs, which have been created in the card abstraction computation. The bucket equity
table is used for calculating the shares of the pot at terminal nodes with showdowns. The joint bucket
distribution stores the probability of each possible chance event. We make use of the repeating patterns
of the subtrees, iterate through all possible bucket constellations and fill in each entry of A. Algorithm

13 computes the full constraint matrix E or F depending on the inputs. It works in a similar manner as
Algorithm 12 and also exploits the repeating pattern in the matrices.

The final step is to solve the linear program. In our implementation, we used the commercial LP-solver
Gurobi optimizer to solve the LPs. During game-play we choose between (7) and (8) to solve depending
on our position. If we are player1, we choose (8), otherwise we choose (7).

37

4.3 Evaluation

In order to evaluate the endgame solver, we compare the performance of a Nash equilibrium agent with
and without the endgame solving component. We call the agent without endgame solver base agent
and the agent with endgame solver endgame agent. First, we have them compete directly against each
other. Then, we will test their performances against other benchmark agents and compare their results.

4.3.1 Experimental Setup

Base Agent

The base agent is a static ε-Nash equilibrium agent trained by Pure CFR [13, p.70] (which belongs to
the family of CFR algorithms) with an imperfect recall abstraction. The trained game is no-limit Texas
hold’em with starting stacks of 25 big blinds. Each big blind has the value of 10$ while each small
blind has the value of 5$. The buckets were calculated according to public card textures and k-means
clustering over a hand strength distribution [15]. The card abstraction uses 169, 1286792, 60000 and
180000 buckets on each round of the game, respectively, with the first two rounds being unabstracted.

The action abstraction is symmetric and always allows fold, call and all-in at every decision node.
The raise action is abstracted down to a number of bets relative to the pot size that include 0.25, 0.5,
0.75, 1, 1.5, 2 or 3 times the pot size. The action abstraction has a commitment threshold which
defines the maximum amount of a bet size. Usually, the stack sizes define the maximum amount of a
bet. Commitment thresholds are less than the stack sizes and prevent players making bets of the sizes
close to their stack sizes. Those kinds of bets leave the players only a short amount of remaining stack,
where players often cannot do anything else but call due to the high pot odds. Thus, removing those
kinds of bets could decrease the size of the abstracted game without overly affecting the end strategy.
Hence, if a bet size were to exceed the commitment threshold, it would be filtered out. The commitment
threshold is set to be 65% of the stack size in the first betting round and 75% for other betting rounds.
Furthermore, a soft action translation with geometric similarity metric is used (see 3.3.4). The resulting
base agent has a size of nearly 20 gigabytes and 100 billion Pure-CFR-iterations were performed.

Endgame Agent

The endgame agent uses the base agent for the trunk part of the strategy. It uses one single predefined
action abstraction for the endgame solving and adjusts the number of endgame card buckets during
game-play accordingly. The action abstraction is symmetric as well, but finer granulated than the base
agent’s action abstraction. It allows more sizes for the initial bet than for raises with the intuition that
initial bets are more common than raises. For initial bets it allows the following ten bet sizes expressed
as fractions of the pot size: 0.1, 0.25, 0.375, 0.5, 0.625, 0.75, 1, 1.5, 2, 3. For raises we allow the
same bet sizes as the base agent with the only difference being that there is no commitment threshold.
This means that more bet sizes are allowed as no bets were filtered out. The endgame card buckets are
created by using the percentile hand strength clustering while the top bucket threshold α is set to 0.98.
The same action translation as base agent was used in the endgame.

Benchmark Agents

• Always-Call-Bot plays naively, always calls as its name suggests.

38

• Always-Raise-Bot plays naively, always raises to 0.5 of the pot size. If there has been an all-in, the
agent then calls.

• Random-River-Bot plays according to our precomputed Nash equilibrium strategy for the first
three rounds and bets randomly generated sizes in endgames in order to cause translation errors
in his opponent.

• ArizonaStu [25] implements a list of expert rules and follows these. Additional opponent statistics
are collected and these are used in the rules. A backup strategy is used if no expert strategy has
been found. The backup strategy plays according to the expected hand strength of the current
holdings.

Match Setup
All test matches are carried out in the form of duplicate games [23, 14]. When we run a match between
two agents, we first play a series of games, with the cards being dealt according to a random number
generator given a certain seed. Afterwards, the players switch their positions, and replay the same
number of games with the same hole cards being dealt. Both players reset their settings (only necessary
for dynamic agents) thus they do not remember the previous match. After both matches are finished,
the total score is calculated. Therefore, both players received the same opportunities and luck. Playing
duplicate games results in a huge decrease of the variance and therefore reduces the required number of
games to determine the stronger agent.

Since the objective of the evaluation is to determine the performance of the endgame solver, we are
only interested in hands where both agents actually reach an endgame. In our experiment, roughly 32%
of hands made it to an endgame by playing according to the trunk strategy. We only count the results
of this 32% of hands and discard other hands where either a player folded or both players went all-in
before an endgame had started. Ganzfried et al.(2015)[9] has proven that this technique is unbiased.

Despite the already mentioned variance reduction techniques, it is still very time-consuming to de-
termine the real performance of endgame solver with statistical significance, since the endgame solver
requires five seconds to compute an endgame on average which is much slower than typical strategy
table lookups. Thus, we can only run a very limited number of hands for the evaluation.

4.3.2 Experimental Results

Base Agent vs Endgame Agent
We managed to run four duplicate matches of 10, 000 hands per match which means a total of 80, 000
hands were played out. Out of these 80,000 hands, roughly 25, 000 made it to an endgame. The duration
of all matches combined was approximately 35 hours. The results of these four duplicate matches are
provided in Table 2 where only hands that made it to an endgame have been considered.

The endgame agent yielded +24, 120$ in 25, 425 reached endgames which results in around 9.49 big
blinds per 100 hands. This win-rate is relatively high and indicates a clear dominance of the endgame
agent over the base agent. One reason for this dominance could be that the action abstraction of the
endgame agent had caused many translation errors in the base agent due to having additional bet sizes,
which happened to be in the exact middle of two bet sizes in base agent’s action abstraction, causing
maximum translation errors and off-tree problems (e.g. 0.375 is in the middle of 0.25 and 0.5).

39

Match Sub Match Result #Endgames

1 1 −3737$ 3257
2 +7976$ 3174

2 1 +3740$ 3169
2 +3278$ 3142

3 1 −1336$ 3229
2 +3389$ 3141

4 1 +8751$ 3128
2 +2059$ 3185

Total +24,120$ 25,425

Table 2: Results by using the endgame agent against the base agent. Each match is a duplicate match
consisting of two sub matches with switched hole cards.

Performance Comparison against Always-Call-Bot
We ran three duplicate matches of 3000 hands per match against Always-Call-Bot for the base agent and
for the endgame agent. Since the callbot never folds, around 90% of hands actually reach an endgame,
resulting in a similar number of played endgames as the previous duplicate matches. The results are
depicted in Table 3.

Match Sub Match #Endgames Base Agent Endgame Agent

1 1 +22,715$ +20,967$
2 +27,718$ +29,102$

2 1 +30,533$ +35,267$
2 +31,645$ +32,755$

3 1 +26,956$ +39,141$
2 +31,320$ +27,387$

Total ∼ 16, 200 +170, 907$ +184,619$

Table 3: Results against Always-Call-Bot. Around 2700 endgames were reached in each sub match, result-
ing around a total of 16,200 endgames.

The endgame agent performed slightly better than the base agent by yielding 13,712$ (∼ 7%) more
profit. The result is less obvious than the direct comparison of both agents. Unlike the direct match-up
against the endgame agent, the base agent is not confronted with any unusual bet sizes, therefore no
off-tree situations occurred during the matches. Since both agents are Nash equilibrium based agents,
their strategies are also very similar facing an always calling opponent. Hence, it is not surprising that
the gap of the result is relatively small.

Performance Comparison against Random-River-Bot
Against Random-River-Bot we ran three duplicate matches of 10,000 hands per match, resulting in
around 20,000 reached endgames (Table 4). As expected, the endgame agent performed better and won

40

13% more against Random-River-Bot than the base agent. Again, the result has proven the importance
of correct bet size interpretation.

Match Sub Match #Endgames Base Agent Endgame Agent

1 1 +14,415$ +20,005$
2 +24,233$ +26,654$

2 1 +29,239$ +22,590$
2 +24,245$ +24,742$

3 1 +26,122$ +33,246$
2 +19,332$ +31,364$

total ∼ 20, 000 +137, 586$ +158,583$

Table 4: Results against Random-River-Bot. Around 3300 endgames were reached in each sub match.

Performance Comparison against ArizonaStu
Against ArizonaStu we also ran three duplicate matches of 10,000 hands per match, resulting in a total
of 25,000 endgames (Table 5). The endgame Agent yielded ∼ 24% more profit than the base agent.

Match Sub Match #Endgames Base Agent Endgame Agent

1 1 +15,715$ +10,067$
2 +27,718$ +39,252$

2 1 +30,533$ +45,267$
2 +25,645$ +29,056$

3 1 +23,112$ +29,141$
2 +23,298$ +39,387$

total ∼ 25, 000 +146, 021$ +192,170$

Table 5: Results against ArizonaStu. Around 4200 endgames were reached in each sub match.

41

5 Enhancements of existing Nash Agents II: Endgame Exploitation

The primary objective of endgame solving is to improve the quality of the existing ε-Nash equilibrium
strategy. It is an attempt to mitigate the negative effects of abstraction and approximate equilibrium
finding. The desired outcome of the endgame solving is still a defensive and robust strategy, which
is ideally less exploitable than the original. However, minimizing its own exploitability is not optimal
against opponents with obvious weaknesses. A deviation from the equilibrium in order to exploit these
weaknesses can achieve greater profits.

The ultimate objective of exploitation is to maximize an agent’s utility against all types of opponents.
The key part hereby is to quickly identify the opponent’s strategy and subsequently develop an appro-
priate counter strategy. However, it is impossible to compute an opponent model and counter strategy
for every opponent in advance. Thus, online opponent modeling and exploitation are essential for real
life applications, where the agent will be facing numerous types of opponents. Sophisticated exploita-
tion techniques such as RNR (3.4.1) and DBR (3.4.1) require large amounts of opponent data and
computation time. Thus, they are computationally infeasible to be used online in real time.

Online opponent exploitation has been investigated in several prior works. Ganzfried et al.(2011)[12]
developed an algorithm for opponent modeling by observing the opponent’s action frequencies and
building an opponent model by combining information from a precomputed equilibrium strategy with
the observations. Afterwards, it computes an abstracted best response to the presumed opponent model.
However, this algorithm was only applied to limit Texas hold’em with small abstractions. The precom-
puted approximate equilibrium strategy and all benchmark agents had only single digit numbers of card
buckets which allows to perform online computation. However, for larger abstractions this algorithm
also became impractical to use in real-time.

Bard et al.(2014)[4] introduced the concept of implicit opponent modeling (3.4.2). Rather than using
observations to estimate a generative model of the other agent’s behavior, implicit modeling summarizes
their behavior through the expected utility of a portfolio of expert strategies. Basically, an agent uses
a portfolio of precomputed strategies and selects the one with the highest expected utility against his
current opponent out of this portfolio during game-play. The agent only has to evaluate the quality of
each portfolio strategy online and does not have to perform any explicit opponent modeling or complex
response calculation. Implicit modeling has proven to be successful in Bard’s experiment and is regarded
as the state of the art of efficient opponent exploitation technique. However, this approach relies on
many components. The quality of each expert strategy in the portfolio and the strategy evaluation also
determine the quality of the whole exploitation system. A lot of precomputation has to be performed
offline before actually using it in real games.

In this section, we introduce an exploitation technique called endgame exploitation that is based on
the idea of endgame solving. It tries to decompose the full game and to separately compute a solution
for the endgame as well. Instead of calculating the exact equilibrium strategy by feeding the inputs,
extracted from the trunk strategy, into the LP-solver, we also take into account the opponent model by
manipulating the hand joint distribution. The result is a robust equilibrium strategy with respect to the
given opponent model. Furthermore, we attempted to adjust the private hand joint distribution online
according to our observations of the opponents. The first challenge herewith is how to quickly identify
opponents’ playing tendencies from the observations. The second challenge is how to correctly interpret
these tendencies and incorporate them into the private hand distribution. We will present our attempts
to overcome these challenges.

42

5.1 Endgame Exploitation Implementation

The basic concept of endgame exploitation is simple, as it is only a minor modification of the endgame
solving algorithm. The difference lies in the computation of joint input distributions of private infor-
mation. Let us briefly recap this aspect of the endgame solver. The first step of the endgame solving
algorithm was to compute the joint input distribution D of private information. For instance, the entry
D[h1][h2] stores the probability of player1 holding hole cards h1 and player2 holding hole cards h2 at
the same time. The joint probability represents the product of probabilities that each player would have
taken the given action sequence (which led to the current endgame) according to the trunk strategy.
Thus, our base assumption is that the opponent plays according to our trunk strategy as well. The joint
hand distribution is then used for the computation of equity arrays, which are in turn used for card
abstraction computation. Now, instead of entirely using the base strategy to compute the joint input
distribution, we use the actual opponent model to determine the actual range of the opponent. The
resulting joint input distribution D reflects the actual joint probabilities of each hole cards combination
reaching the endgame according to the given action sequence.

From this point forward everything remains the same as in the endgame solving: the new card and
action abstractions are computed and the abstracted endgame is solved with an LP-solver. Hence, we still
compute an equilibrium strategy with the difference of having accurate opponent ranges as inputs. We
do not explicitly exploit our opponent, but rather "correct" our initial inputs to match reality. As we still
compute an equilibrium strategy, we make the pessimistic assumption that the opponent plays optimally
in endgames. We expect that the endgame exploiting strategy is a tailored equilibrium strategy which
slightly deviates from the real equilibrium in order to exploit the opponent. As a result, endgame exploit
produces a conservative exploit which is still robust and relatively safe against counter-exploits.

5.1.1 Extracting Player Tendencies from Observations

In practice, the exact opponent model is usually unknown to us, as it would otherwise be more effective
to compute one of the previous mentioned safe responses (e.g DBR) to exploit the opponent. Most of
the time, the only information we have about our opponents are our observations collected from prior
encounters. The number of observations is rather limited in practice. In the example in online poker,
we will likely be facing unknown opponents constantly, thus we would only be able to collect about 100
to 200 hands on average against a particular opponent during the session. It is impossible to create a
perfect opponent model based on such a small sample, not to mention that most of the observations
would be even incomplete due to the hidden private cards of the opponent.

However, some useful information can still be obtained from even small samples. Instead of creating
a detailed opponent model, we only gather general playing statistics of the opponent. This is a common
approach among advanced human poker players at online poker tables, where they use tools (e.g Pok-
ertracker [28]) to track opponent statistics. The statistics are statistical mean values that reflect how on
average an opponent reacts to a certain situation (e.g. how often he raises or calls the preflop) [27].
Human players take the opponent statistics into consideration in their decision-making process, in order
to be able to classify the general opponent type. We will now introduce some of the common statistics
[27] which we also included in our endgame exploitation system:

• VPIP (Voluntary put $ in Pot) - represents the percentage of games a player actively put money
into the pot on the preflop including calling and raising.

43

• PFR (Preflop Raise) - represents the percentage of games a player raised on the preflop.

• Raise Frequency Flop/Turn/River - represent the raise frequency of each betting round respec-
tively.

• Call Frequency Flop/Turn/River - represent the call frequency (including checks) of each betting
round respectively.

These general statistics do not require large sample sizes to converge. Especially VPIP and PFR do not
change much more after only 100 games, as each game starts with the preflop. Hence, both statistics are
being updated almost after each game. The higher the round number the more games are required for
the corresponding statistics to converge, since the frequency of reaching decreases from round to round.
We can use these statistics to estimate the opponent’s player type. For example, a high VPIP indicates
that the opponent plays a wide range of private hands. Conversely, we can assume that a low VPIP player
plays a few but relatively strong private hands, if we consider the opponent to be reasonable.

The idea is to compare the statistics of our Nash equilibrium strategy with the statistics of our oppo-
nent. The difference between the statistics indicates how much the opponent deviates from the Nash
equilibrium. Our objective is now to adjust the joint hand distribution according to this distance. How-
ever, it is not a trivial task to translate the deviation into a meaningful adjustment. The deviation only
tells us whether the opponent has a bigger or smaller range of hands than us, but we still do not know
its distribution. In the following section, we will describe the heuristic method we used to tackle this
problem.

There remain some unanswered questions regarding our statistic comparison approach: which statis-
tics should we use and how to calculate the deviation. Theoretically, we can create any kind of opponent
statistics by conditioning the action frequencies on the exact public information and action history. For
example, we can use statistics as precise as:

Popp(raise|board = A♣2♠2♣K♠T♠, act ion_sequence = (check, raise...))

that would perfectly describe a given situation, and we can directly compare this to our corresponding
statistic. However, such a detailed conditioned statistic requires a large sample to converge, which clearly
does not serve the purpose of online exploitation. Therefore, we have to rely on the more general but less
precise statistics like VPIP, PFR etc. In order to calculate the opponent’s private hand range reaching an
endgame, we made the simplifying assumption that statistics are independent. Then, we simply multiply
all statistics that when put together, best possibly match the current situation. For example, consider the
following actions made by the opponent to reach the river (endgame), which we denote as s :

PREFLOP FLOP TURN

raise check check
call

PFR= Popp(raise|pre f lop) = 0.2

F lop_Call_F req = Popp(cal l, check| f lop) = 0.4

Turn_Call_F req = Popp(cal l, check|turn) = 0.5

Popp(s) = PFR · F lop_Call_F req2 · Turn_Call_F req

0.2 · 0.4 · 0.4 · 0.5= 0.016

44

P(s) is the probability that the opponent plays according to action sequence s. In other words, he could
have 1.6% of his starting hands at this point. Note that these statistics are not conditioned on the board,
which means that they summarize over all possible public boards. Therefore, the same action sequence
on a different board would have the same result. Now, we can compare Popp(s) to Pus(s) to estimate
the magnitude of the deviation. Suppose Pus(s) = 0.008. The probability of the opponent reaching the
given endgame is twice as high as ours. In order to match this deviation, we need to expand our Nash
equilibrium range to twice of its original size by assigning higher probabilities to some of our private
hands. Figure 15 illustrates the difference between two private hand distributions.

hand1 hand2 hand3 hand4 hand5

0

0.2

0.4

0.6

0.8

1

0

0.6

0.4
0.5

0.9
1 1 1 1 1

re
ac

h
pr

ob
ab

ili
ty

Base Agent Always-Call

Figure 15: There are five possible private hands. The bars represent the probability reaching the endgame
while holding the corresponding hand. Base agent needs to increase the reach probabilities of
all hands in order to match Always-call.

5.1.2 Adjustment of prior Hand Distribution according to the statistics distance

So far, we have estimated the difference in reach probabilities between the opponent’s strategy and
our Nash equilibrium strategy. We now know how much probability we have to add (or to remove if
we have a higher probability than the opponent) to our private hand distribution to fit the opponent.
However, we do not know which hand probabilities we should modify. Some kind of assumptions about
the opponent’s behavior must be made. The first assumption we made is that the opponent is at least
somewhat reasonable. This means that he rather plays overall stronger hands than he plays weaker
hands. The second assumption is that the opponent stays as close to the Nash equilibrium as possible.
Ideally, if the Nash equilibrium hand distribution could be expressed as a continuous function from
expected hand strength to probability, we could modify the function parameters to fit the deviation.
For example, in the case of a Gaussian distribution, we could tune the mean and variance parameters.
Unfortunately, the Nash equilibrium cannot be translated into a reasonable function of expected hand
strength (E[HS]) to probability (see Figure 16). One possible reason for that could be that the E[HS]-
feature alone is not sufficient to describe the problem. A multidimensional feature space may be required
to characterize the behavior of the Nash equilibrium strategy. Apart from the challenge of finding the
"right" features, machine learning techniques would also be necessary in order to accurately estimate the

45

relationships between those features. However, further investigations are required and go beyond the
scope of this work.

Figure 16: Example of a Nash equilibrium hand distribution at an endgame. Each point represents a po-
tential private hand. x-axis shows the hand strength of a hand and y-axis shows its probability
being played.

In our experiments, we used a simple method to adjust the hand distribution. In the case of range
expansion, we sort all private hands by their respective reach probabilities (according to the Nash equi-
librium) in descending order, and then greedily keep filling up the probability of each hand until our
range reaches the same size as the range of the opponent. Since we want to stay as close to the Nash
equilibrium as possible we add additional probabilities to hands which already have a higher probabil-
ity of being played. For example, in figure 15, the filling order would be "hand5, hand2, hand4, hand3,
hand1". If our range were still not large enough after filling up the hand with the lowest positive prob-
ability (> 0), we will sort the remaining hands by their averaged E[HS]-value over all prior betting
rounds and again greedily fill up the probability starting with the hand with the highest value. The
E[HS]-value in each betting round prior to endgame has an influence on the reach probability of a hand,
since E[HS] changes with each additional community card. Therefore, we used averaged E[HS]-values
instead of single round E[HS]-values as the hand feature. The idea here is based on the first assumption
that the opponents rather play stronger hands than weaker hands, which is the reason we first fill up
probabilities of hands with higher averaged E[HS]-value. In the case of range reduction, we instead sort
hands in ascending order and keep greedily removing probability until the hand range size equals the
opponent’s hand range size.

But first, we need to collect some data in order to calculate the opponent’s hand range deviation from
the Nash equilibrium. The regular endgame solving approach is used in the first 100 games when facing
an unknown opponent. Then, we measure the size of the deviation by comparing the opponent’s statistics
in those initial games to the statistics of the base agent. We only consider exploiting the opponent, if
the deviation is significant enough, because exploitation can be risky and opens oneself up to potential
counter-exploits. In other words, we only exploit opponents with obvious weaknesses, where we can
gain more by exploiting. Therefore, a threshold is set, which defines the size of the deviation for us to
start exploiting.

46

5.2 Evaluation

In order to evaluate the endgame exploitation, we first integrated exact opponent models into our
endgame solver and let it compete against the same benchmark agents used in our previous experi-
ments. Then, we compared the empirical results before and after incorporating opponent models. We
ran the same amount of duplicate matches against Always-Call-Bot and Always-Raise-Bot. Due to the
lack of exact opponent models, we only used these two bots in this experiment. Both of these benchmark
agents could have any holdings at any time, thus we simply use a uniform distribution to represent their
hand distribution. Table 6, 7 present the results of both match-ups.

Match Sub Match #Endgames Endgame Solving Endgame Exploit

1 1 - +20, 967$ +22, 253$
2 - +29, 102$ +28, 977$

2 1 - +35, 267$ +40, 805$
2 - +32, 755$ +33, 145$

3 1 - +39, 141$ +42, 047$
2 - +27, 387$ +28, 536$

total - ∼ 16, 200 +184,619$ +195,763$

Table 6: Results against Always-Call-Bot.

Match Sub Match #Endgames Endgame Solving Endgame Exploit

1 1 - +208,576$ +209,343$
2 - +200,396$ +208,827$

2 1 - +202,686$ +204,896$
2 - +203,540$ +227,415$

3 1 - +204,102$ +222,038$
2 - +199,897$ +209,564$

total - ∼ 18, 300 +1,219, 197$ +1,282, 083$

Table 7: Results against Always-Raise-Bot.

As expected, integrating opponent models improved the performance. However, it is only a minor im-
provement of approximately 3−6% higher profits, despite the fact that the opponents were only baseline
agents and we used perfect opponent models. The results are likely going to be worse against non-trivial
opponents with estimated opponent models.

Next, we employed the opponent modeling approach from the previous section (5.1.1) in order to
evaluate the endgame exploitation with estimated opponent models. We increased the number of initial
information gathering games from 100 to 1000. The exploitation threshold was set to 1.5x , implying
that we only start exploiting when the opponent’s hand range size is 1.5 times of ours which was always
the case when competing against Always-Call and Always-Raise bots. The results (depicted in Table

8, 9) against these two benchmark agents were nearly identical to the prior experiments with perfect

47

opponent models. Since both benchmark agents always take the same action regardless of the board and
history, the statistics and the deviation from Nash equilibrium could be calculated accurately.

Match Sub Match #Endgames Endgame Solving Endgame Exploit (estimated models)

1 1 - +20,967$ +22, 066$
2 - +29,102$ +29, 177$

2 1 - +35,267$$ +39, 100$
2 - +32,755$ +32, 472$

3 1 - +39,141$ +41, 845$
2 - +27,387$ +30, 026$

total - ∼ 16,200 +184,619$ +194,686$

Table 8: Results against Always-Call-Bot.

Match Sub Match #Endgames Endgame Solving Endgame Exploit (estimated model)

1 1 - +208,576$ +208,110$
2 - +200,396$ +209,021$

2 1 - +202,686$ +205,098$
2 - +203,540$ +225,118$

3 1 - +204,102$ +222,969$
2 - +199,897$ +210,054$

total - ∼ 18, 300 +1, 219,197$ +1,280, 361$

Table 9: Results against Always-Raise-Bot.

However, the results against ArizonaStu (depicted in Table 10) were less satisfactory. Endgame exploit
with estimated opponent model could not yield more profit than the basic endgame solving without any
exploitation. Both yielded nearly the same amount of profit against ArizonaStu. Due to the inaccuracy in
the statistics, the deviations from our Nash equilibrium could not always be calculated accurately which
might probably be one of the reasons why the performance had not improved. Since we are using very
general statistics that are averaged over all possible public boards, the actual hand range on some specific
boards can be very different. For example, the statistic given a draw heavy board (such as 7♠8♠9♠) is
often completely different than given a paired board with nearly no draws (such as A♠2♣2♦). Another
probable reason could be that our hand distribution adjustments were incorrect.

In conclusion, we may state that the endgame exploitation approach has proven to be less practical.
In order to model a non-trivial opponent, more information is required instead of completely relying
on certain short-term general statistics and simple opponent assumptions. For instance, the opponent
modeling could be improved by evaluating complete observations which would also include opponent’s
private hand information. However, only games with showdowns are fully observable, therefore more
observations are required in general. In order to make online opponent modeling/exploitation perform
effectively, some prior general opponent models should first be constructed to overcome the challenge of
lacking samples (e.g implicit modeling). Another issue of endgame exploitation is its poor exploitative

48

power (only 3− 6% profit increase) even when competing against naive baseline bots given exact oppo-
nent models, thus making it overall a less attractive choice for exploitation than other prior approaches.

Match Sub Match #Endgames Endgame Solving Endgame Exploit (estimated model)

1 1 - +10, 067$ +19, 432$
2 - +39, 252$ +34, 232$

2 1 - +45, 267$ +49, 910$
2 - +29, 056$ +35, 187$

3 1 - +29, 141$ +20, 544$
2 - +39, 387$ +29, 020$

total - ∼ 25, 000 +192,170$ +188,325$

Table 10: Results against ArizonaStu.

49

6 Enhancements of existing Nash Agents III: Asymmetric Action Abstraction

The standard approach for solving very large extensive-form games is to use abstraction techniques to
reduce the number of game states in order to scale it to the available computational resources. An
ideal abstracted game should retain as much of the information of strategic structure as possible. In
the domain of no-Limit Texas hold’em, using card abstraction alone is not sufficient to make tractable
abstracted games. The main part of the immense size of no-limit games results from the large number
of action options available to the players. Therefore, an adequate action abstraction is always required
to restrict the action options.

The granularity of an abstraction determines the size and also affects the precision of the resulting
abstracted game. Typically, the finest possible granularity is selected given the computation time con-
straints and the computational resources to guarantee a best possible solution. However, each player in
a multi-agent environment needs to be abstracted. Hence, the question arises as to how the computa-
tional resources should be distributed among the agents. For example, in a two-player game the action
abstraction for the agent of interest determines the possible actions our agent could take. The action
abstraction of the opponent player represents what we believe what kind of actions he could take. The
sum of both abstraction sizes is the size of the entire abstracted game. This opens up several different de-
sign variations of the abstraction. We could utilize either a symmetric design where all players share the
same type of abstraction, or an asymmetric design where a finer granulated abstraction is used for the
agent of interest than for other agents and vice versa. Evidently, using finer granulated abstraction for
one side means less fine granulated abstraction for the other side given limited computational resources.
The choice of the design is very important. Most AI developers use symmetric abstractions as default
plan for their agents. One obvious advantage of symmetric abstraction over asymmetric abstraction is
its simplicity. While a symmetric abstraction simply requires a game to be solved once to compute all
players’ strategies, asymmetric abstraction requires a game to be solved twice in the case of two-player
games, once for each arrangement of the players’ abstractions [5, p.41]. For instance, if we would choose
an asymmetric design with two raise sizes for our agent and four raise sizes for the opponent, we would
have to first solve a game, where the small blind has two and the big blind has four raise sizes, and then
solve another game where the small blind has four and the big blind has two raise sizes.

It has been demonstrated in prior works that the abstraction choice clearly affects the performance of
the agent. Bard et al.(2014)[3] investigated asymmetric card abstractions for limit Texas hold’em. They
observed a trade-off in two common performance measures of poker agents, one-on-one performance
against various agent types and exploitability (performance against a worst-case opponent), when us-
ing asymmetric abstraction designs. However, they focused on card abstractions while their empirical
evidence was based on smaller poker games(eg. Leduc Poker, limit Texas hold’em), where unabstracted
actions can be used. It is not obvious that the same properties apply to action abstractions as well.
Although there have been participants in the Annual Computer Poker Competition [1], who already
implemented asymmetric action abstraction in their agents, there has been little to none empirical anal-
ysis on the effect of asymmetric action abstractions on the quality of the resulting behaviors in no-limit
games.

In this chapter, we investigate asymmetric action abstractions in the domain of two-player no-limit
Texas hold’em via empirical analysis. We examine how the abstraction trade-off affects an agent’s perfor-
mance in both one-on-one field performance and its worst-case exploitability. The performance metrics
are based on similar metrics used in [3] with the exception that we compared strategies with different

50

action abstractions rather than card abstractions. However, computation of worst-case exploitability is a
difficult task in no-limit Texas hold’em and presents a more challenging task than in the limit variant of
Texas hold’em (which is normally used for experiments in prior works). Therefore we start this chapter
off with a description of our own exploitability computation method. Then, we present our empirical
results and provide a guidance for future action abstraction choices.

6.1 Exploitability Calculation

Given a poker strategy σopp, the strongest counter-strategy to σopp is the best response b(σopp). The
average utility of the best response against σopp is the worst-case exploitability of σopp. Calculating a
best response to a given strategy is very computationally expensive. A best response has the same size as
an unabstracted solution of the game, which clearly does not fit into the memory of modern computers in
the domain of no-limit Texas hold’em. Instead of calculating the actual best response and exploitability
in the full game, developers compromise by calculating a best response strategy in an abstracted game.
We call the exploitability in an abstracted game abstracted exploitability, which also serves as the lower
bound for the real exploitability.

At every information set, the abstracted game best response chooses the action that maximizes its
utility, given the probability of σopp reaching every terminal node descendant from every game state in
the information set and the utility associated with that terminal node. The pseudo-code of the abstracted
best response is given in Algorithm 1 [23, p.56].
Algorithm 1 describes the standard approach for calculating an exact abstracted best response. However,
this approach has some drawbacks. The algorithm can only produce a best response in the same abstrac-
tion as the opponent strategy. It is not possible to use different abstractions for the best response and its
opponent. In our experiments, we want to create equal testing environments for all benchmark strate-
gies. We want to calculate a best response in the same abstraction for different benchmark strategies
with different abstractions in order to compare their exploitabilities. Thus, the best response algorithm
must be able to handle different abstractions.

Another drawback is that Algorithm 1 is based on the perfect recall assumption. However, most no-limit
game abstractions use imperfect recall abstractions. In imperfect recall abstraction, hands are grouped
differently in each betting round and forget their bucket associations in the past rounds. This means
that an agent may be able to distinguish two information sets early in a game, but not distinguish their
descendant information sets later in the game. They will perceive the game as a directed acyclic graph
instead of a tree. This imperfect recall assumption makes the recursion in the algorithm impossible. In
order to use Algorithm 1, all strategies must use perfect recall buckets, which is rarely used in state of
the art poker agents.

In order to avoid the aforementioned problems, we use an alternative method to compute the ab-
stracted best response. Instead of exactly computing it, we use an iterative approximation approach. For
this purpose, we modify the standard CFR-algorithm. The standard CFR-algorithm is based on self play,
where both players iteratively optimize their strategies until they converge to a Nash equilibrium. In our
modified CFR-algorithm, one of the players (the opponent) is given a predefined strategy, which stays
constant during the whole computation. The strategy of the best response player is iteratively improved
and converges to an abstracted best response strategy against the constant strategy of the opponent. The
opponent can use any abstraction, which does not have to be the same abstraction the best response
player uses. The opponent strategy can be viewed as a black box, which receives the current game state
as input and outputs the corresponding action. The best response player’s abstraction can be chosen

51

Algorithm 1: Abstracted Best Response

1 BestResponse (A, I , S);
Input: An abstraction of the game A

A node I of the information set tree for game A
A strategy σopp being a mapping from information sets to action probabilities
A strategy BR(σopp) being a mapping from information sets to action probabilities
An expected utility u(BR(σopp),σopp) being the expected utility of using BR(σopp) against

σopp

2 if I is a terminal node then
3 Let uI be the utility of reaching information set I ;
4 Let p be the probability of σopp reaching game state g ∈ I ;
5 Let ug be the utility of reaching game state g ∈ I ;
6 uI =

1
∑

g∈I p (
∑

g∈I pug);

7 return uI

8 else if I is a choice node for BR(σopp) then
9 Let I(a) be the information set resulting from taking action a in information set I ;

10 Find the action a that maximizes u(a) = BestResponse(A, I(a),σopp);
11 Set BR(σopp)(I) to select action a;
12 return ua

13 else if I is a choice node for σopp then
14 for each action a available in I do
15 Let I(a) be the information set resulting from taking action a in information set I ;
16 BestResponse(A, I(a),σopp);

freely. Unlike the traditional best response computation in Algorithm 1, our method does not require
both players to use the same abstracted game. Since we are approximating the best response iteratively
through simulation, we no longer have to recursively traverse the game tree, which also allows us to
use imperfect recall buckets. The abstracted exploitability of the opponent strategy is the best response
player’s average utility per hand, which (like the best response strategy itself) converges after a suffi-
cient amount of iterations. This approach can be seen as a concrete implementation of the restricted
Nash response (RNR 3.4.1) with the parameter p set to zero.

6.2 Experimental Setup

Throughout our asymmetric action abstraction experiments, we use the game of no-limit Texas hold’em
with ten big blinds starting stacks as our test environment. Nine approximate Nash equilibrium strategies
were constructed using different pairs of action abstractions for the agent strategy and the opponent’s
response strategy. All strategies use the same card abstraction to highlight the performance difference be-
tween action abstraction variations. In our experiment, we used percentile equal sized bucket clustering
(see 4.2.2) over the expected hand strength (E[HS]) and expected hand strength squared (E[HS2]) card
features except for the first betting round, which is virtually unabstracted, where each of 169 canonical
hands is considered a single bucket (see 3.3.1). Each of the next three betting rounds has 1000 buckets,
respectively. On each betting round, all possible hands are equally distributed into those 1000 buckets

52

according to their E[HS] or E[HS2] values. The abstraction we investigate has the imperfect recall prop-
erty, in which hands are reassigned to a new bucket in each betting round and forget their buckets in all
earlier rounds.

Each strategy uses a unique action abstraction. While all strategies allow fold, call and all-in at every
decision, the number of raise options varies. Each player’s strategy has either 1, 2, 4 or 8 different
bet sizes, which are shown in Table 11. The CFR-algorithm was used to generate a strategy for each
pair of abstractions, which includes three symmetric and six asymmetric abstractions. The benchmark
strategies are relatively small because our card abstraction is rather coarse compared to the finest possible
abstraction that our hardware is able to handle. The small abstraction allows faster computation of the
strategy. We solely spent twelve hours to compute the largest benchmark strategy (symmetric and 8 bet
sizes).

As mentioned previously, we use exploitability and one-on-one field performance to measure the
quality of a strategy. Each strategy’s abstracted exploitability was computed using the modified CFR-
algorithm described in Section 6.1, where the best response player always uses a symmetric action ab-
straction with eight bet sizes and the same card abstraction. In this category, the lower the exploitability
value the better is the strategy. However, lower exploitability does not mean that the strategy is au-
tomatically superior. A better worst-case performance may lead to worse performance against normal
opponents, similar to the trade-off between making oneself unexploitable and exploiting opponent with
the risk of being counter-exploited. Thus, one-on-one field performance measure is also necessary, es-
pecially since worst-case opponents are almost non-existent in practice. The one-on-one performance
between each pair of strategies was measured by playing one million duplicate games of poker (two
millions games total). The results were measured in milli-big-blinds per game.

Action Abstration Bet Sizes (fractions of pot)

1 1

2 0.5, 1

4 0.5, 1, 1.5, 2

8 0.25, 0.5, 0.75, 1, 1.5, 2.5, 3

Table 11: Available bet sizes as fractions of the money in pot.

6.3 Empirical Results

We computed a total of nine strategies with different action abstractions. The results of our experiments
are presented in Table 12. Each strategy has a label "U-O" which indicates which action abstraction was
used for us and for the opponent. For example, "8-1" is a strategy using an asymmetric action abstraction
where our strategy uses 8 different bet sizes and assumes the opponent is using only one bet size.
Accordingly, "8-8" is a strategy using a symmetric action abstraction where both players use the same 8
bet sizes. Column "Avg" shows the average profit of the corresponding strategy against the field. The
"Exploitability" column shows the abstracted exploitabilities where the abstracted best response uses the
8-bet sizes action abstraction.

Our experiments have similar results to those in the prior work [3] about asymmetric card abstrac-
tions in the symmetric abstraction case. By increasing the action abstraction size (from 1-1 to 8-8), the

53

8-8 4-4 1-1 2-1 4-1 8-1 1-2 1-4 1-8 Avg Exploitability Size

8-8 - -3 52 49 31 31 32 47 37 31 1 105 MB

4-4 3 - 45 41 19 23 30 52 48 29 245 15 MB

1-1 -52 -45 - -15 -38 -35 -5 1 10 -20 329 2 MB

2-1 -49 -41 15 - -21 -23 1 11 16 -10 405 4 MB

4-1 -31 -19 38 21 - 0 26 43 41 13 697 5 MB

8-1 -31 -23 35 23 0 - 25 35 35 11 539 14 MB

1-2 -32 -30 5 -1 -26 -25 - 10 13 -10 272 4 MB

1-4 -47 -52 -1 -11 -43 -35 -10 - 4 -22 146 5 MB

1-8 -45 -48 -10 -16 -41 -29 -13 -4 - -23 6 14 MB

Table 12: Cross table of approximate Nash equilibria strategies using the same card abstraction but differ-
ent action abstractions. The row player’s expected value is shown in milli-big-blinds per game,
rounded to the nearest integer.

average utility against the field and exploitability improve as expected. However, the performance im-
provement seems to cap at a certain degree of granularity. While average utility against the field and
exploitability improves significantly in the step from 1-1 to 4-4, the step from 4-4 to 8-8 only improves
the exploitability. 8-8 even loses to 4-4 in direct comparison. This phenomenon confirms the results
in Waugh et al.(2009)[36] on abstraction pathology where they demonstrated that it is not guaranteed
that an increase of abstraction size would lead to a performance improvement, despite the fact that they
only examined card abstractions in their work.

Now, we move on to the asymmetric cases. First, examining the asymmetric abstractions where the op-
ponent’s action abstraction is larger than our agent’s action abstraction, we observe that the exploitabil-
ities of 1-4 and 1-8 are lower than the exploitability of the symmetric 4-4. Even the smallest strategy
of this category 1-2 has an only slightly higher exploitability than 4-4, even though 4-4 is more than
three times of 1-2’s size. However, their average utilities against the field are worse compared to the
symmetric variants. If the primary objective is to minimize the worst-case exploitability, we should use a
larger abstraction for the opponent than for our agent.

As we increase the size of the opponent’s action abstraction, the exploitability improves. Increasing the
opponent’s action abstraction size implies providing the opponent with more betting options to exploit
oneself. In other words, a more pessimistic assumption about the opponent is made. Therefore, the
resulting strategy becomes more defensive and its worst-case performance improves. The one-on-one
performance becomes worse when we increase the opponent’s action abstraction size. There seems to
be a trade-off between exploitability and one-on-one performance. In order to minimize the worst-case
exploitability we have to sacrifice our one-on-one utility.

Continuing with the reversed case where we have a larger action abstraction than our opponent, we
observe a different change of exploitability and one-on-one performance as we increase our abstraction
size. The empirical results are not as obvious and clean as the ones from previous cases. A clear trade-
off between exploitability and one-on-one performance is not directly observable. However, from 2-1
to 4-1 we observe an opposite trend in trade-off where the one-on-one performance improves and the
exploitability gets worse as we increase our action abstraction size. From 4-1 to 8-1, we usually would

54

Total Avg Utility Total Exploitability

U>O 14 1641

U<O -55 424

Table 13: Comparison of both asymmetric variants

expect the trend to continue which however did not occur in our experiment. Surprisingly, the one-on-
one performance slightly worsened and exploitability improved. A possible explanation for this might
be that we have reached a performance cap and experienced the abstraction pathology effect. Another
explanation could be that the used exploitability measure is biased since we used the same 8 bet sizes
for the best response player in the abstracted exploitability computation as our action abstraction in
8-1. Nonetheless, we can conclude that increasing our action abstraction size favors the one-on-one
performance while the exploitability is overall worse than the other asymmetric case which is highlighted
in Table 13.

Overall, our empirical results on varying action abstractions are similar to the results in [3] on asym-
metric card abstractions. We observed a trend of decreasing exploitability and one-on-one field perfor-
mance when increasing the action abstraction granularity of the opponent, and conversely, a opposite
trend when increasing the abstraction granularity of the agent of interest. The symmetric action abstrac-
tion design has overall good results in our experiments. Comparing strategies with the same magnitude,
the one with symmetric action abstraction has the strongest one-on-one field performance. However,
if the best possible worst-case performance were requested, one should choose an asymmetric design
where the opponent uses a larger abstraction. If worst-case opponents are unlikely and the overall com-
petition is weak, one should choose a symmetric design or a design where the one’s own agent gets a
finer granulated action abstraction for more exploitative possibilities.

55

7 Conclusion

In this thesis, we examined the promising approach of endgame solving for improving existing poker
agents. Endgame solving solves the last portion of the game that is actually reached during game-play
to a greater degree of accuracy than the existing base agent strategy. It takes into account the action
history and public information of the endgames and assumes a more realistic opponent private hand
distribution (rather than the standard uniform random hand distribution) for the computation. Beside
a detailed review of the first work [9] about endgame solving we pointed out potential pitfalls and
limitations of the original approach and proposed alternatives regarding the card and action abstraction
computations. Additionally, we provided a detailed description and explanation of the LP generation
process based on an example of a toy poker game. We also provided our own empirical results, which
have confirmed the performance improvement by applying endgame solving. In a direct comparison of
a Nash equilibrium agent with endgame solving implemented against itself without endgame solving,
the one with endgame solving yielded a high winrate of more than 9bb/100. In a series of experiments
against various benchmark agents, the agent with endgame solving also outperformed the base agent.

Then, we proposed a modification to the standard endgame solving, where we integrated opponent
models into endgame solving that allows us to exploit opponents. We named it the endgame exploitation
and evaluated the performance of this modification, which has slightly improved compared to regular
endgame solving against simple benchmark agents. Furthermore, we attempted to create an opponent
modeling technique that we incorporated in the endgame exploitation. This opponent modeling tech-
nique measures the deviation of opponent’s strategy to our base Nash equilibrium strategy based on
statistics evaluation. The statistics provide information about the general opponent behavior in common
situations (e.g. how often does the opponent raise preflop). The utilized statistics are quickly converg-
ing and thus allow us to quickly identify the opponent’s player type. Based on the statistics difference
between the opponent and our base agent, we adjusted the joint hand distribution to match the statistics
of the opponent. We managed to achieve the same results against the simple benchmark agents with
our estimated model as with the exact models. However, the results against a stronger agent did not
improve compared to only using endgame solving. Overall, we conclude that the current endgame ex-
ploiting approach is not really practical, because even under the unrealistic premise of having a perfect
opponent model, endgame exploitation still could not improve much against weak oppositions compared
to normal endgame solving.

Our last contribution was to provide the first empirical analysis of asymmetric action abstraction in the
domain of no-limit Texas hold’em. In addition, we proposed a technique to estimate the exploitability of
no-limit Texas hold’em playing agents with imperfect recall abstractions. We modified the standard CFR
algorithm to iteratively approximate the exploitability instead of exactly computing the exploitability
like the commonly used best response. Our results presented a similar trade-off between worse-case and
one-on-one performance to prior observations of asymmetric card abstraction in limit Texas hold’em [3].
The exploitability decreases when we increase the granularity of opponent’s action abstraction. When
we increase the granularity of our action abstraction, the exploitability increases while the one-on-one
performance improves.

There are several areas where we can expand the scope of this work. For endgame solving, it could be
interesting to include the "turn" betting round as additional part of the endgame instead of only using the
"river". It would result in a massive increase of the endgame size, but also likely improve the endgame
strategy. The challenge is then to abstract the endgame down to a tractable size without losing too

56

much relevant information. It would be interesting to utilize different endgame sizes and compare their
performances and computational requirements.

Endgame exploitation can be further modified to use best response instead of Nash equilibrium, which
is more effective against known static opponents. The opponent modeling based on statistics deviations
can also be improved. Apart from a better statistics selection, there has to be a more intelligent way to
adjust the joint hand distribution than greedily filling up/removing the probabilities of hands to match
the opponent.

There are also some unanswered questions regarding asymmetric action abstraction. We have seen
that an increase of action abstraction size does not necessarily improve the performance of the resulting
strategy due to abstraction pathology. However, there has to be a connection between the granularity of
the abstraction and the size of the stack-to-blind ratio. The idea here is that smaller stacks require less
fine-grained abstractions than larger stacks. Further experiments and analyses are required to verify this
theory.

57

References

[1] Annual Computer Poker Competition, "http://www.computerpokercompetition.org/"

[2] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding", in: Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007

[3] N. Bard, M. Johanson and M. Bowling "Asymmetric Abstractions for Adversarial Settings", in:
Proceedings of the 13th International Conference on Autonoumous Agents and Multiagent Systems
(AAAMAS 2014), 2014.

[4] N. Bard, M. Johanson, N. Burch and M. Bowling "Online Implicit Agent Modeling", in: Proceed-
ings of the 12th International Conference on Autonoumous Agents and Multiagent Systems (AAAMAS
2013), 2013.

[5] N. Bard, "Online Agent Modelling in Human-Scale Problems", PhD Thesis, 2016.

[6] R.E Bellman, "On the application of dynamic programming to the determination of optimal play in
chess and checkers", in: National Academy of Sciences of the United States of America, 1965.

[7] D. Billings, N. Burch, A. Davidson, R. Holte, T. Schauenberg and D. Szafron "Approximating Game-
Theoretic Optimal Strategies for Full-scale Poker", in: Proceedings of the 18th International Joint
Conference on on Artificial Intelligence(IJCAI), 2003.

[8] Brains vs. Artificial Intelligence No-limit Hold’em Challenge, "https://www.cs.cmu.edu/brains-vs-
ai"

[9] S. Ganzfried and T. Sandholm, "Endgame Solving in Large Imperfect-Information Games", Carnegie
Mellon University, in: Proceedings of the 14th International Conference on Autonoumous Agents and
Multiagent Systems (AAAMAS 2015), 2015.

[10] S. Ganzfried, "My Reflections on the First Man vs. Machine No-Limit Texas hold’em Competition",
Carnegie Mellon University, 2015.

[11] S. Ganzfried and T. Sandolm, "Action translation in extensive-form games with large action spaces:
Axioms, paradoxes, and the pseudo-harmonic mapping", Carnegie Mellon University, in: Proceed-
ings of the International Joint Conference on Artificial Intelligence(IJCAI), 2013.

[12] S. Ganzfried and T. Sandolm, "Game theory-based Opponent Modeling in Large Imperfect-
Information Games", in: Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems(AAMAS 2011), 2011.

[13] R. Gibson "Regret Minimization in Games and the Development of Champion Multiplayer Computer
Poker-Playing Agents", PhD Thesis, 2014.

[14] A. Gilpin and T. Sandolm, "Lossless abstraction of imperfect information games", in: Journal of the
ACM, 2007.

[15] A. Gilpin, T. Sandholm, and T. B. Sørensen, "Potential-aware automated abstraction of sequential
games, and holistic equilibrium analysis of Texas Hold’em poker", in: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence (AAAI 2007), 2007.

58

[16] Gurobi Optimization Inc, Gurobi optimizer reference manual version 6.5,
"http://www.gurobi.com/documentation/", 2016.

[17] E. Jackson "Slumbot NL: Solving Large Games with Counterfactual Regret Minimization Using
Sampling and Distributed Processing", in: Proceedings of the 12th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2013), 2013

[18] T. Kanungo, D. Mount "An Efficient k-Means Clustering Algorithm: Analysis and Implementation",
2002

[19] D. Koller, N. Meggido and B. von Stengel, "Fast algorithms for finding randomized strategies in
game trees", in: Proceedings of the 26th ACM Symposium on Theory of Computing(STOC), p. 750-
760, 1994.

[20] H. W. Kuhn, "A Simplified Two-Person Poker", in: Contributions to the Theory of Games 1, pp.
97-103, 1950.

[21] M. Johanson, N. Burch, R. Valenzano and M. Bowling, "Evaluating State-Space Abstractions in
Extensive-Form Games", in: Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems(AAMAS 2013), 2013.

[22] M. Johanson, "Measuring the Size of Large No-Limit Poker Games", University of Alberta, 2013.

[23] M. Johanson, "Robust Strategies and Counter-Strategies: Building a Champion Level Computer
Poker Player", MSc. Thesis, University of Alberta, 2007.

[24] M. Johanson and M. Bowling, "Data Biased Robust Counter Strategies", in: Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), 2009.

[25] E. Loza Mencia and J. Prommer "ArizonaStu (KEmpfer)", in: Participants of
Annual Computer Poker Competition: Heads-up No-limit Texas Hold’em 2014,
"http://www.computerpokercompetition.org/", 2014

[26] M. Pfetsch, "Einführung in die Optimierung", 2013

[27] Pokerstrategy, Stats Basics, "https://www.pokerstrategy.com/strategy/various-poker/stats-
basics/1/"

[28] Pokertracker, "https://www.pokertracker.com/"

[29] J. F. Nash, "Non-cooperative games" in:Annuals of Mathematics, 1951

[30] A. Risk and D. Szafron, "Using Counterfactual Regret Minimization to Create Competitive Multi-
player Poker Agents", in: Proceedings of the 9th International Conference on Autonoumous Agents
and Multiagent Systems (AAAMAS 2010), 2010.

[31] J. Rubin and I. Watson, "Computer poker: A review" in: Elsevier Artificial Intelligence(2011), 2011

[32] D. Schnizlein, "State Translation in No-Limit Poker", MSc. Thesis. University of Alberta, 2009.

[33] D. Sklansky "The Theory of Poker", Two Plus Two Publishing, 4th edition, 1999

59

[34] D. Silver A. Huang C.J. Maddison A. Guez L. Sifre and co., "Mastering the game of Go with Deep
Neural Networks and Tree Search", in: Nature 2016, 2016.

[35] O. Tammelin, N. Burch, M. Johanson, and M. Bowling, "Solving Heads-up Limit Texas Hold’em",
in: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[36] K. Waugh, "Abstraction in Large Extensive Games", MSc. Thesis, 2009.

[37] K. Waugh, M. Zinkevich, M. Johanson, M. Kan, D. Schnizlein, and M. Bowling "A practical use
of imperfect recall", in: Proceedings of the Eighth Symposium on Abstraction, Reformulation and
Approximation (SARA), 2009.

[38] K. Waugh, "A Fast and Optimal Hand Isomorphism Algorithm" in: Proceedings of the 12th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), 2013.

[39] K. Waugh, M. Zinkevich, M. Bowling and M. Johanson, "Accelerated Best Response Calculation
in Large Extensive Games", in: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence(IJCAI), 2011.

[40] M. Zinkevich, M. Bowling and M. Johanson, and C. Piccione, "Regret minimization in games with
incomplete information", in: Proceedings of the Annual Conference on Neural Information Processing
Systems(NIPS), 2007.

60

Appendices

A Pseudocode

Algorithm 2: Compute index of 7-card hands on a given board [9, p.5]

1 IndexSeven (h1, h2, B);
Input : Private hole cards h1 and h2, board B consisting of five community cards
Output: An index value between 0 and 1080

2 if h2 < h1 then
3 t ← h1; h1← h2; h2← t;
4 n1← 0; n2← 0;
5 for i = 1 to 5 do
6 for j = 1 to 2 do
7 if B[i]< h j then
8 n j ++;

9 return
�h2−n2

2

�

+
�h1−n1

1

�

Algorithm 3: Compute index of 2-card hands [9, p.5]

1 IndexTwo (h1, h2);
Input : Private hole cards h1 and h2

Output: An index value between 0 and 1325
2 if h2 < h1 then
3 t ← h1; h1← h2; h2← t;

4 return
�h2

2

�

+
�h1

1

�

61

Algorithm 4: Compute joint distribution [9, p.5]
Input: Board B; number of possible private hands H; betting history h; index conflicts array IC;

base strategy s∗

1 D1,D2 ← array of dimension H of zeroes;
2 D← H ×H matrix of zeroes;
3 for p1 = 0 to 50, p1 6∈ B do
4 for p2 = 1 to 51, p2 6∈ B do
5 I ← IndexSeven(p1,p2,B);
6 IndexMap[I]← IndexTwo(p1,p2);
7 P1 ← probability player1 would play according to h with p1,p2 in s∗;
8 P2 ← probability player2 would play according to h with p1,p2 in s∗;
9 D1[I]+ = P1;

10 D2[I]+ = P2

11 Normalize D1 and D2 for i = 0 to H do
12 for j = 1 to H do
13 if !IC[IndexMap[i]][IndexMap[j]] then
14 D[i][j]← D1[i] · D2[j]
15 else
16 D[i][j]← 0

17 Normalize D so all entries sum to 1 return D

Algorithm 5: Compute equity arrays
Input: Joint hands distribution D[][]; number of possible private hands H; hand ranks R[]

1 e1,e2 ← array of dimension H of zeroes;
2 D← H ×H matrix of zeroes;
3 for h1 = 0 to H do
4 r1← R[h1];
5 s1, s2← 0;
6 for h2 = 1 to H do
7 r2← R[h2], s2 += D[h1][h2], s2 += D[h2][h1];
8 if r2 < r1 then
9 e1[h1] += D[h1][h2], e2[h1] += D[h2][h1]

10 else if r2 == r1 then

11 e1[h1] +=
D[h1][h2]

2 , e2[h1] +=
D[h2][h1]

2

12 if s1 > 0 then

13 e1[h1]←
e1[h1]

s1

14 else
15 e1[h1]←−1
16 if s2 > 0 then

17 e2[h1]←
e2[h1]

s2

18 else
19 e2[h1]←−1

62

Algorithm 6: Percentile hand strength clustering
Input: Equity arrays ei; number of possible private hands H; maximum number of buckets per agent

ki; top bucket equity threshold α
1 J ← α

k1
;

2 A1← array of zeroes of size H;
3 U1← array of false of size H;
4 for h= 0 to H do
5 if e1[h]≥ α then
6 b← k1 − 1
7 else

8 b← b e1[h]
J c

9 if U1[b] == FALSE then
10 U1[h]← TRU E

11 M1← array of zeroes of size k1;
12 g ← 0;
13 for i = 0 to k1 do
14 M1[i]← g;
15 if U1[i] == TRU E then
16 g = g + 1

17 for h= 1 to H do
18 if e1[h]< 0 then
19 A1[h] = −1
20 else
21 if e1[h]≥ α then
22 A1[h]← M1[k1 − 1]
23 else

24 A1[h]← M1[b
e1[h]

J c]
25 Compute A2 analogously

63

Algorithm 7: Percentile hand strength clustering
Input: Equity arrays Ei; Hand index array Indices, number of possible private hands H; number of

buckets per agent ki

1 Ai ← array of zeroes of size H;
2 Sort Indices in ascending order according to Ei;
3 HandsPerBucket ← array of b H

ki
c of size ki;

4 for i = 0 to H − ki ·HandsPerBucket[0] do
5 HandsPerBucket[i] ++;
6 h← 0;
7 for i = 0 to ki do
8 for j = 0 to HandsPerBucket[i] do
9 Ai[Indices[h]]← i;

10 h++;

11 Compute A2 analogously

Algorithm 8: Compute buckets joint distribution
Input : Joint hands distribution D[][]; number of possible private hands H; number of player1

buckets N ; number of player2 buckets M ; private hands to bucket mapping for player1

B1[]; private hands to bucket mapping for player2 B2[];
Output: Joint buckets distribution B

1 C ← N ×M of zeroes;
2 for h1 = 0 to H do
3 for h2 = 0 to H do
4 b1← B1[h1];
5 b2← B2[h2];
6 if b1 < 0 or b2 < 0 then
7 continue
8 B[b1][b2]← C[b1][b2] + D[h1][h2]
9 return C

64

Algorithm 9: Compute bucket equities
Input : Joint hands distribution D[][]; hand ranks R[]; number of possible private hands H;

number of player1 buckets N ; number of player2 buckets M ; private hands to bucket
mapping for player1 B1[]; private hands to bucket mapping for player2 B2[];

Output: Bucket equities T
1 T ← N ×M of zeroes;
2 Counters← N ×M of zeroes;
3 for h1 = 0 to H do
4 for h2 = 0 to H do
5 if D[h1][h2]≤ 0 then
6 continue
7 b1← B1[h1];
8 b2← B2[h2];
9 Counters[b1][b2] ++;

10 if R[h1]> R[h2] then
11 T[b1][b2]← T[b1][b2] + 1
12 else if R[h1] = R[h2] then
13 T[b1][b2]← T[b1][b2] + 0.5

14 for b1 = 0 to N do
15 for b2 = 0 to M do
16 if Counters[b1][b2] = 0 then
17 T[b1][b2]← 0
18 else

19 T[b1][b2]←
T[b1][b2]

Counters[b1][b2]

20 return T

65

Algorithm 10: Create the public tree given an action abstraction

1 createPublicTree (s, abs, pi1, pi2, i1, i2);
Input : Game state s

parent sequence index pi1 and pi2
sequence index i1 and i2
global sequence counter numSeq1 and numSeq2

Output: A node
2 if player1 is acting then
3 numSeq1← numSeq1 + 1;
4 else
5 numSeq2← numSeq2 + 1;
6 if s is terminal then
7 if player1 is acting then
8 return node(i1, pi1)
9 else

10 return node(i2, pi2)
11 if player1 is acting then
12 n← node(i1, pi1)
13 else
14 n← node(i2, pi2)
15 for each a in A(s) do
16 s′← doAction(s, a);
17 if player1 is acting then
18 child ← createPublicTree(s′, abs, i0, pi1, numSeq1, numSeq2)
19 else
20 child ← createPublicTree(s′, abs, pi0, i1, numSeq1, numSeq2)
21 n.addChild(child)
22 return n

66

Algorithm 11: Extract matrix information from public tree

1 extractMatrices (n, i);
Input: public tree node n

Parent node index i
Showdown matrix SD[][]
Terminal pot size matrix P[][]
Public tree constraint matrix of player1 E[][]
Public tree constraint matrix of player2 F[][]
Information set node counter c1, c2 = 0

2 if n is a terminal node then
3 if player1 was last to act then
4 if player1 has folded then
5 P[n.index][i]←−pla yer1.spent;
6 else
7 P[n.index][i]← n.pot;
8 SD[n.index][i]← t rue;

9 else
10 if player2 has folded then
11 P[i][n.index]← pla yer2.spent;
12 else
13 P[i][n.index]← n.pot;
14 SD[i][n.index]← t rue;

15 return

16 if player1 is acting then
17 E[c1][n. f irst_child.pi]←−1;
18 for each child of n do
19 E[c1][child.index]← 1;
20 c1← c1 + 1

21 else
22 E[c2][n. f irst_child.pi]←−1;
23 for each child of n do
24 E[c2][child.index]← 1;
25 c2← c2 + 1

26 for each child of n do
27 extractMatrices(child,n.index);

67

Algorithm 12: Create payoff matrix of the game tree

1 createFullPayoffMatrix;
Input: Showdown matrix SD[][]

Terminal pot size matrix P[][]
Joint bucket distribution Pr[][]
Buckts equity table Eq[][]
Number of buckets of each player b1, b2

Number of action sequences in public tree a1, a2

2 totalRows← b1 · a1 + 1;
3 totalCols← b2 · a2 + 1;
4 A← matrix of totalRows × totalCols of zeros;
5 for i← 0; i to b1; do
6 for j← 0; j to b2; do
7 row← a1 · i + 1;
8 col ← a2 · j + 1;
9 pr ← Pr[i][j];

10 eq← Eq[i][j];
11 for k← 0; k to a1; do
12 for l ← 0; l to a2; do
13 if SD[k][l] == t rue then
14 A[row+ k][col + l]← pr · (eq · P[k][l]− P[k][l]

2);
15 else
16 A[row+ k][col + l]← pr · P[k][l];
17 return A

68

Algorithm 13: Create constraint matrix of playeri for the game tree

1 createFullPayoffMatrix;
Input: Constaint matrix of playeri in public tree Ci[][]

Number of buckets of each playeri bi

Number of action sequences of playeri in public tree ai

Number of information sets of playeri in public tree si

2 totalRows← bi · ai + 1;
3 totalCols← bi · si + 1;
4 E← matrix of totalRows × totalCols of zeros;
5 for k← 0; j to bi; do
6 row← si · k+ 1;
7 col ← ai · k+ 1;
8 for l ← 0; l to si; do
9 for m← 0; m to ai + 1; do

10 if m== 0 then
11 E[row+ l][0]← Ci[l][m];
12 else
13 E[row+ l][col +m− 1]← Ci[l][m];
14 return E

69

	Introduction
	Poker
	No-Limit Texas Hold'em
	Kuhn Poker

	Background and Related Work
	Extensive-form Games
	Finding Nash Equilibrium
	LP Approach
	Counterfactual Regret Minimization

	Abstraction
	Isomorphism
	Card Abstraction
	Action Abstraction
	Action Translation

	Opponent Exploitation
	Game Theoretic Responses
	Implicit Modeling

	Enhancements of existing Nash Agents I: Endgame Solving
	Theoretical Background of Endgame Solving
	Endgame Solver Implementation
	Joint Hand Distribution Computation
	Card Abstraction Computation
	Action Abstraction Computation
	Linear Program Generation

	Evaluation
	Experimental Setup
	Experimental Results

	Enhancements of existing Nash Agents II: Endgame Exploitation
	Endgame Exploitation Implementation
	Extracting Player Tendencies from Observations
	Adjustment of prior Hand Distribution according to the statistics distance

	Evaluation

	Enhancements of existing Nash Agents III: Asymmetric Action Abstraction
	Exploitability Calculation
	Experimental Setup
	Empirical Results

	Conclusion
	References
	Appendices
	Pseudocode

