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Abstract

The development of advanced driver assistance systems (ADAS) has been in the focus of many
car manufacturers (OEMs) and technology suppliers for the last couple of years. One of the
most popular assistance systems are lane keeping assists or lane departure warning systems
which have already found their way into mid- to high-level serial cars.
Current systems mainly rely on external features, like distance to lane marking or time to lane
crossing (TTC), and do not take the driver’s intention into account. Therefore these systems are
only able to generate a warning or perform an intervention very shortly before the car is crossing
the lane marking, which leads to a short advance warning time for the driver and substantial
intervention forces in case of active systems.
In order to maximize the advance warning time and minimize potential interventions, the uti-
lization of machine learning techniques to predict lane change maneuvers has moved into focus
of many researchers and is also investigated in this work.
It evaluates the application of a Hidden-Markov-Model for the prediction of lane change ma-
neuver based on the inference of the driver’s intention and examines the impact of combining
external features and control inputs with observations of the driver’s behavior.
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1 Introduction

1.1 Motivation

Increasing road safety has always been one of the most important goals since the mass distri-
bution of cars. In the last decades, a lot of progress has been achieved and safety systems like
airbags, anti-lock braking systems (ABS) or electronic stability control (ESC) have become inte-
gral parts of the automobile.
In recent years, the focus moved to advanced driver assistance systems (ADAS) which are sup-
posed to furtherly increase the vehicle safety by perceiving the driving context and support the
driver in critical situations. Depending on the system, the provided assistance is either limited to
a warning in case of a critical situation or includes active manipulation of the vehicle’s controls.
Prominent examples for current ADAS are lane departure warning (LDW) sytems, lane keeping
assistance systems (LKAS) or adaptive cruise control (ACC).
While current serial systems solely focus on the vehicle’s dynamics, environment and control
inputs, the recent focus of many researchers has been the incorporation of the driver’s behav-
ior into such systems. Monitoring the driver’s actions and inferring the driving intention is a
promising approach for the development of predictive assistance systems, especially in the area
of LDW/LKAS.
By inferring the driver’s lane change intention, such systems have the ability to predict certain
driving maneuvers before they are actually executed and therefore are capable of generating
warnings or adapting the vehicle dynamics at a much earlier point in time than current systems.
As a result, the driver’s ahead warning time can be significantly extended and the magnitude of
possibly crucial control inputs stays relatively small.
Well performing predictive systems therefore have a high potential for increasing highway safety
and reducing the amount of lane-change related accidents.
A promising approach for the development of such types of predictive systems is the utilization
of machine learning techniques which can be used to recognize patterns in driving data and
predict future maneuvers based on these patterns. In contrast to rule-based approaches, they
are able to extract the required information directly from data and therefore require less human
assumptions. Additionally to that, they might be able to recognize certain patterns that a human
developer would never have found.
In this work, the widely used Hidden-Markov-Model is utilized for inferring the driver’s lane
change intention and predicting lane change maneuvers. The model is trained and evaluated
on a substantial set of simulator data, containing a total of 23 hours of driving time, collected
from a diverse selection of drivers.
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1.2 Goals of this Work

The main goal of this thesis is the development and evaluation of a lane change prediction
system, based on a Hidden-Markov-Model and the driver’s lane change intention. This includes
the following milestones:

• Finding a reasonable intention indicator and developing an automated labeling process.

• Determining a suitable feature selection and model configuration for the intention infer-
ence.

• Finding a meaningful evaluation method to assess the model’s performance.

• Analyzing the influence of individual features and feature classes on the model’s perfor-
mance.

1.3 Structure of the Thesis

This thesis starts with a general introduction into machine learning and the theory behind the
utilized models and methods in Chapter 2. After that, the experimental setup and the data set
is described in Chapter 3, followed by an overview of related work in Chapter 4.
Now that the theory and application domain is introduced, the model creation process is pre-
sented in Chapter 5 followed by a description of the software, which has been developed to
execute the described process, in Chapter 6.
Chapters 7,8 and 9 provide a detailed evaluation of the individual steps of the model creation,
evaluate the influence of particular features and assess the performance of the final model.
In the end, Chapter 10 recapitulates the discoveries of this work and provides some impulses
for possible future activies.
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2 Theoretical Background

Since this work heavily utilizes models and techniques from the area of machine learning, a brief
introduction into the used models and learning methods is given in this chapter. It starts with
a brief general introduction into supervised machine learning and afterwards gives a detailed
explanation of the specific model and learning methods, utilized in this work.

2.1 Machine Learning

The term machine learning is associated with a huge variety of models and approaches. In gen-
eral, they can be classified into three main areas, known as supervised learning, unsupervised
learning and reinforcement learning.
According to [19] the corresponding learning tasks are defined as follows:
In supervised learning, the available data set consists of N samples of input/output pairs
(x1, y1), (x2, y2), ..., (xN , yN ) where each y j is generated by the unknown function y = f (x)
and a function h (hypothesis) has to be found which approximates the true function f .
It is called supervised since the associated output value of the true function y j = f (x) is given
for each available input value x j and can therefore be used in the training process.
An unsupervised learning task is somewhat similar , the training data, however, only consists
of the training samples x1, x2, ...xN and the correct output values y1, y2, ..., yN are unknown.
The training process therefore can’t resort to the output values and needs to focus on finding
patterns in the input data exclusively.
A prominent example for unsupervised learning are clustering algorithms that obtain informa-
tion about the data by identifying concentrations of input values.
Reinforcement Learning is an iterative learning process that usually starts with a coarse demon-
stration (e.g. of a desired action) and successively refines this demonstration by iteratively
adapting the systems behavior based on the outcome of a reward function which is used to
evaluate the changes, made in an iteration.
A prominent example for this approach can be found in the area of robotics. E.g. a certain
action can be trained to a robot by iteratively refining a coarse, kinesthetically taught trajectory.

2.1.1 Supervised Learning

In this work, the task of predicting upcoming lane changes is formulated as a supervised learn-
ing problem. Certain aspects from these types of models are therefore furtherly introduced in
this section.

Regression & Classification
Supervised learning can generally be categorized a into regression and classification tasks,

depending on the valuation of the output value y .
In a regression task, the output typically has numerical valuation while a classification task is
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based on a finite set of discrete categorizations/classifications.
E.g. a classical regression task would be predicting the progression of the stock market, where
future values of certain company shares are supposed to be predicted based on current and past
stock prices. A typical classification example would be the determination of a person’s gender
given a portrait photograph.

Generative vs. Discriminative Models
Another discrimination can be made by the type of probability distribution which is defined by

a model. While generative models define a joint probability distribution p(x , y) = p(y | x)p(x)
over the inputs (x) and outputs (y), discriminative models only define the conditional probabil-
ity distribution p(y | x) [19].
Due to the definition of p(x , y), generative models have the ability to generate artificial samples
which can be used for evaluating the performance of other models. The advantage of discrimi-
native models is the lack of prior probabilities p(x) which do not need to be modeled.
In general, discriminative models are therefore better suited for small training sets as certain de-
pendencies do not need to be modeled. To reduce the model’s complexity and therefore amount
of required training data generative models often define certain independence assumptions that
simplify the joint probability distribution.

2.1.2 Model Parameter Estimation

Fitting a particular model to a given set of training data x usually requires finding a suitable
assignment of the model’s parameters θ and the choice of the model’s complexity. This section
introduces the most common parameter estimation techniques and discusses the general aspects
of a model’s complexity.

Statistical Learning Methods

Statistical learning methods come into play when it comes to finding a parameter estimation
for a particular model. They determine a suitable assignment θ through maximization of the
model’s likelihood function f (x | θ ) for a given x with respect to θ .

Maximum-a-posteriori (MAP) and Maximum-Likelihood (ML)
The paramter estimation process for models with observable parameters is usually based on

the determination of the maximum-a-posteriori or maximum-likelihood estimate.
In cases where prior knowledge about the model’s parameters exists in form of a probability
distribution g(θ ), the maximum-a-posteriori estimate can be determined by:

θ̂MAP = argmax
θ

f (xθ )g(θ )

The maximum-likelihood estimate is strongly related to the MAP estimate. It is used in cases
where no prior knowledge is available and is defined as:

θ̂M L = argmax
θ

f (x | θ )
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Expectation Maximization (EM)
As denoted in [3], a powerful way of finding maximum-likelihood-solutions, in cases of in-

complete data or latent variables, is the Expectation-Maximization(EM)-algorithm [6]. It is an
iterative approach starting with an initial estimation of the model’s parameters and alternates
between two consecutive steps (E step and M step) until convergence. In the E step (expecta-
tion step), the current parameter estimate is used to evaluate the model’s log likelihood function.
The M step (maximization step) computes a new parameter estimate which maximizes the log
likelihood function.
Let {X,Z} be the complete data set of observed data and latent variables. θ is considered as the
set of model parameters. The log likelihood function for a model with discrete latent variables
is given by:

ln p(X | θ ) = ln
∑

Z

p(X,Z | θ )

In practice, the latent variables Z cannot be observed and their values are only given by the
posterior distribution p(Z |X,θ ). Therefore, the complete-data log likelihood cannot be used and
the expected value under the posterior distribution of the latent variable is considered instead in
the E step of the algorithm. It takes the current parameter estimate θ old and uses the posterior
distribution of the latent variable to define the Q-function:

Q(θ ,θ old) =
∑

Z

p(Z |X,θ ) ln p(X,Z | θ )

The M step maximizes this function with respect to θ to compute a new parameter estimate
which is then used in the next iteration of the algorithm:

θ new = argmax
θ

Q(θ ,θ old)

Generally, the proceeding of the EM algorithm can be summarized as follows:

1. Initialize parameter estimate θ old

2. E step: Evaluate p(Z |X,θ old)

3. M step: Evaluate θ new = arg maxθ Q(θ ,θ old)

4. Check if log likelihood or parameter values have converged,
otherwise set θ old = θ new and return to 2.

When a prior p(θ ) is defined over the model parameters, the EM algorithm can also be used
to find MAP solutions by evaluating θ new = arg maxθ Q(θ ,θ old) + ln p(θ ) in the M step.
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Choosing the Model’s Complexity

The impacting factor on the model’s complexity differs between different model types (number
of states, order of polynomial, number of basis functions, etc.). However, there are certain rules
for choosing a model’s complexity that hold true for any type of model.
An important general heuristic principle which has to considered and is also used in many other
scientific applications, is Occam’s razor 1. Principally, it states that if there are multiple equally
likely solutions to a problem, the simplest should be preferred.
In the area of machine learning, preferring models with low complexity reduces the probability
of running into overfitting problems which are described below.

Overfitting
The meaning of overfitting could best be explained using a simple example: Consider the task

of finding a polynomial that approximates the set of points shown in Figure 2.1(a),(b).

(a) (b) (c) (d)

Figure 2.1.: Principle of overfitting

In 2.1(a) the points are approximated by a first order polynomial while in 2.1(b) a 9th order
polynomial is used. As one can see, the approximation error for the given points is essentially
smaller when using a high-order polynomial.
The problematic of using more complex models becomes clear, when a new set of point is ob-
served after fitting the polynomials (Figure 2.1(c),(d)). While the first-order polynomial still
provides a good approximation of these points, the 9th order polynomial does not even closely
match the newly added points. It is said, that the 9th order polynomial overfits the training data
and does not generalize well.
This principle holds true for almost all kinds of models used in machine learning and in many ap-
plications a tradeoff between a small training set approximation error and a good generalization
needs to be found.

2.1.3 Feature Selection

A crucial factor for the model’s prediction performance is the utilized feature set. It is therefore
indispensable to perform a suitable feature selection process, before the training of the model.
According to [8] there are basically three groups of feature selection processes that would be
feasible to apply in this work:

1 http://www.math.ucr.edu/home/baez/physics/General/occam.html (02/29/16)
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Filter Methods: The feature selection is performed in a pre-processing step. It uses certain
heuristics to assess the individual features to produce a general, model independent feature
selection. However, the influence of a feature on an actual model can therefore hardly be
determined by this type of approaches.

Wrapper Methods: The feature selection is performed by using an actual model in form of a
black box to evaluate a large number of possible feature subsets based on the model’s
prediction performance.

Embedded Methods: The feature selection is embedded into the model’s learning process, re-
sulting in a highly model specific selection.

As this work utilizes a variation of wrapper methods to determine a suitable feature selection,
the remainder of this section provides a general introduction to these types of methods.
More detailed information about filter- and embedded methods can be found in [8].

Wrapper Methods

Figure 2.2.: Proceeding of a Feature Selection using the wrapper method. [20]

As Figure 2.2 illustrates, the selection process of a wrapper method iterates over three con-
secutive steps:

Feature Search: Determines the feature selections that are passed to the evaluation.

Feature Evaluation: Evaluates the performance of the current set of feature selections using
the outcome of the classifier and a performance measure.

Classifier: An actual model which is trained on the current set of feature selection, extracted
from the training set.

The process starts with a training set consisting of multiple features that are supposed to be
reduced to a reasonable subset. As a first step, the feature search determines a set of feature
selections (e.g. each feature by itself) that are passed on to the evaluation process. The feature
evaluation trains a classification model on the current set of feature selections and evaluates the
model’s performance on each selection. The results are passed back to the feature search which
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determines a new set of feature combination based on the model’s performance estimation.
This process repeats until the feature search does not add any new features to the current selec-
tion or every feature, contained in the training set, has been selected.
The final feature selection can now be used to train the actual classification model which is
afterwards evaluated on a separate test set to assess its generalization abilities.

2.2 Hidden-Markov-Models

Hidden Markov Models (HMMs) are widely used generative predictive models, especially suited
for handling sequential data. They model a stochastic process consisting of a latent (hidden)
temporal series of discrete system states (S(t)) and corresponding observable emissions (E(t)),
generated by these states. Figure 2.3 shows the graphical model of a HMM.

Figure 2.3.: Graphical model of a Hidden-Markov-Model [3]

The structure of HMMs is based on two major independence assumptions regarding the sys-
tem’s states and emissions:

Markov-Assumption: Each state is only dependent on its immediate predecessor, or: given its
predecessor, a state is conditionally independent of every other state. The temporal process
of the states is therefore modeled as a first-order Markov process.

Sensor-Markov-Assumption: Each emission is exclusively dependent on its generating state,
or: given the corresponding state, an emission is conditionally independent of every other
emission or state.

2.2.1 Model Parameters

The introduced assumptions allow to define a HMM by the 3-tuple of parameters θ = (π, A, B),
whereby π, A and B are stationary probability distributions:

π: p(s0) - the initial distribution at the beginning of the Markov chain.

A: p(st |st−1) - the transition probabilities between the system’s states

B: p(et |st) - the emission probabilities given a state

While π and A are discrete distributions, B might as well be defined by a continuous distri-
bution, depending on the nature of the observed features. A popular way to model continuous
observations is the Gaussian distribution, which is also utilized in this work.

12



Given θ , the joint-probability distribution for each time step of a HMM can be formulated as:

p(S,E | θ ) = p(s0 |π)
T
∏

i=1

p(si|si−1, A)p(ei|si, B) (2.1)

where S= {s0, ..., sT} and E= {e1, ...,eT}

2.2.2 Parameter Estimation

Given a time series of observed emissions E = {e1, ...,eT} the parameters of a Hidden-Markov-
Model can be determined by using maximum likelihood. Since the model contains latent
variables, the maximum likelihood solution cannot be analytically computed and therefore a
variation of the previously introduced EM-algorithm is a popular way of finding a maximum-
likelihood estimate for a HMM.
As explained in sec:learningMethods, the estimation process consists of the subsequent alterna-
tion of an E- and M Step until the model’s likelihood estimate converges or a maximum number
of iterations is reached.
According to [3], the function Q(θ ,θ old), evaluated in the E step of the HMM based variation,
is based on the marginal posterior distribution of the latent states γ(st) = p(st | E,θ old) and
the joint posterior distribution of two successive states ξ(st−1, st) = p(st−1, st | E,θ old). These
two quantities can be efficiently evaluated using the Forward-Backward algorithm [18] which is
described later in this section. The M-Step maximizes Q(θ ,θ old) w.r.t. θ to determine the new
parameter estimate which is used in the next iteration of the algorithm.

As the EM-Algorithm is not guaranteed to find a globally optimal solution, it has to be ini-
tialized with reasonable values to avoid converging to a local minimum. Therefore the initial
mean values of the Gaussian distributions are determined by applying the k-means clustering
algorithm [3] and the prior distribution and transition matrix are initialized with normalized,
randomly chosen, non-zero values.
More detailed explanations about the proceeding of the EM algorithm on Hidden-Markov-
Models can be found in [3].

The Forward-Backward Algorithm

The Forward-Backward algorithm provides the basis for the efficient evaluation of the Q function
quantities γ(st) and ξ(st−1, st) for a given time-series of observed emissions E = {e1, ...,eT}. It
consists of two separate procedures that are described below according to the explanations
in [2].

Forward Procedure
The forward procedure determines αi = p(si | {e1, ...,et},θ ) which denotes the probabilities

of observing the partial time-series {e1, ...,et} of emissions and ending up in state si ∈ s at time
t given the the model parameters θ . The computation is performed iteratively starting at t = 1
as follows:
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1. αi(1) = πi bi(e1)

2. α j(t + 1) = [
N
∑

i=1
αi(t)ai j]b j(et+1)

Backward Procedure
The backward procedure determines βi = p(si | {et, ...,eT},θ ) which denotes the probability

of the ending partial time-series starting in state si ∈ s at time t given the partial time-series
{et, ...,eT} and the model parameters θ . It is also performed iteratively, this time starting at
t = T as follows:

1. βi(T ) = 1

2. β j(t) =
N
∑

i=1
ai j b j(et+1)β j(t + 1)

The marginal posterior distribution of the latent states γ(st) and the joint posterior distribu-
tion of two successive states ξ(st−1, st), required in the Q function, can now be evaluated using
α and β as described in [2].

2.3 Measuring a Model’s Performance

To be able to evaluate the quality of a model or a certain parameter selection, a performance
measure needs to be defined which determines the accordance of the model’s outcome and the
labels assigned to a data set. To produce a reasonable performance evaluation, the assessed
model should be trained and evaluated on strictly separated data sets. If this principle is not
applied, no statement about the generalization abilities of a model can be made: The evaluation
only measures the in-sample error which may lead to the selection of complex models and an
overfitting of the given data.
The separation has to be performed on a very early stage to minimize the risk of unintended
data-snooping.

Holdout
A common way of separating a given data set into a training- and test set is splitting it into

two differently sized parts, where the larger part is used for the training process and the smaller
part is used for testing the model’s performance.
The usual splitting ratio, which is also applied in this work, is using 2/3 of the data for the
training set and 1/3 of the data for the test set.
As the data, used in this work, consists of a series of time-coherent data, it is important to
preserve the temporal dependencies when splitting the data. Especially because a HMM is used
which is a model that incorporates these dependencies into its parameters.
The data is therefore split by using the first 2/3 of the data set for training and the remaining
1/3 for testing.
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2.3.1 Precision, Recall & F1

The main performance measure, used in this work, is a variation of the F1 score which is defined
by the harmonic mean of precision and recall.
As introduced in [10], the models inference outcome is classified as follows:

True Predictions (tp): The predicted maneuver matches the assigned label. Only the correct
prediction of a lane change maneuver is counted as a true prediction, correctly predicted
lane keeping maneuvers are left out of this measure. The reason for that is the dominance
of the lane keeping maneuver. When driving on a highway, over 90 % of the time lane
keeping would be the correct prediction. If these were counted as true predictions, a
model which does not predict any lane change maneuvers would therefore already have
an exceptionally high score even though it does not detect any of the relevant maneuvers.

False Predictions (fp): The predicted maneuver is the opposite of the assigned label. Again,
lane keeping is left out here and only lane change maneuvers are counted.

False Positive Predictions (fpp): The model predicts a lane change maneuver while the as-
signed label is lane keeping.

Missed Predictions (mp): The model predicts the lane keeping maneuver while the assigned
label is one of the lane change maneuvers.

Based on these definitions precision, recall and F1 are defined as:

Pr =
t p

tp+ f p+ f pp
; Re =

t p
tp+ f p+mp

; F1=
2 · Pr · Re
Pr + Re

The precision score weights the model’s true predictions against all of its lane change maneu-
ver predictions. It is a measure of how many of the model’s predictions are correct. Recall, on
the other hand, weights the model’s true predictions against all cases where the labels are set to
a lane change maneuver. It is therefore a measure of how many of the labeled maneuvers are
correctly predicted by the model.
Each of these scores for itself is not a good measure of the model’s performance. E.g. a model
that misses many lane change maneuvers would still get a high precision score as long as its
predictions are correct. On the other hand, a model with a high number of false positive predic-
tions would get a high recall score as long as it matches the labeled lane change maneuvers.

Therefore these scores are combined to the F1 measure which forms a tradeoff between these
two measures by computing their harmonic mean.

2.4 Baseline HMM

In order to efficiently perform the feature selection process and to evaluate the performance
of the utilized model, a baseline model is introduced that offers the properties of a Hidden-
Markov-Model and provides the ability of being trained in a very efficient way. The baseline
model is defined as a basic Hidden-Markov-Model, consisting of three states using multivariate
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Gaussian distributions to model the emission probabilities. Each state represents one of the la-
beled maneuver intentions which are supposed to be inferred given the driving data. The model
therefore consists of single individual states for right lane changes, driving straight and left lane
changes.
As the model’s states are identical to the labeled intentions, the usually latent initial- and transi-
tion distributions become observable and the training of the model does not require running the
EM-algorithm. Instead, the training process basically requires counting label frequencies and a
one time fitting of the Gaussian distribution:
Considering a temporal series of observations X = {x1, ...xT}, the corresponding labels Y =
{y1, ..., yT} and the described baseline HMM.
The model’s initial distribution is determined by counting the frequency of the different labels
in Y and the transition probabilities are identified by counting the transitions between different
labels in Y and normalizing.
Finally, the Gaussian distribution of each state needs to be fitted to the corresponding obser-
vations. For this purpose, the corresponding observations for each state are extracted from X
according to the labels in Y and the Gaussian distribution is fitted on that data.
The baseline HMM is therefore the simplest possible configuration of a Hidden-Markov-Model
that can be used for solving the task of inferring the driver’s lane change intention in this par-
ticular problem specification. Hence it provides a good baseline for the assessment of the more
complex driver intention model which is presented later in this work. In addition to that it sim-
plifies the evaluation of feature influences since it has a similar structure as the complex model
while providing a highly efficient training process.
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3 Experimental Setup and Data Set

The development of a HMM based lane change intent classifier requires a considerable amount
of data containing information about the driver’s behavior, vehicle dynamics, vehicle environ-
ment, et cetera.
In this work an extensive data set is used that has been captured in a simulator study in 2014.
This chapter describes the experimental setup of that study and provides detailed information
about the available data.

3.1 The Driving Simulator

As Figure 3.1 illustrates, the simulator setup consists of a modified car body, statically placed
in front of a large curved screen showing the simulated environment. In order to allow the
driver to monitor the area behind the car, the mirrors have been replaced by similarly shaped
displays, showing a simulated rear view. The car’s control units (steering wheel, pedals, etc.)
are connected to the simulator software and can be used in the usual manner.
To capture the driver’s behavior, the interior of the car is equipped with driver facing infrared
cameras, supported by infrared LEDs which are illuminating the scene without distracting the
driver. Additionally to that, an accelerometer is attached to the driver’s right arm.
Exterior Features like distance to lane center or time to collision are provided by the simulation
environment.

Figure 3.1.: Birdseye view on the simulator setup.1
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3.2 The Data Set

This section gives an introduction into the captured data set, determines a first coarse pre-
selection of suitable features and discusses important properties of the data that have been
discovered during the course of this work.
The overall data set consists of 34 individual records of different drivers, each containing around
40 minutes of driving data and approximately 30 lane change maneuvers in each direction.
Figure 3.2 shows the simulated scenario that corresponds to a drive on a multi-lane highway.

Figure 3.2.: The driving scenario.

3.2.1 Coarse Feature Pre-Selection

As each record contains the huge number of 403 captured features, a first coarse pre-selection is
performed to extract potential candidates for the inference of lane change intentions according
to their denomination and description in the signal reference list which came with the data set.
The resulting list of candidate features is shown in Table 3.1.

1 Car illustration: http://www.the-blueprints.com (02/18/2016)
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Feature Description
Head Features
Gaze Heading Horizontal orientation of the driver’s gaze direction
Gaze Intersection Discrete mapping of driver’s gaze to certain world ob-

jects (windshield, mirrors, etc.)
Head Heading Horizontal orientation of the driver’s head
Exterior Features
Psi Difference between vehicle’s yaw angle and lane tan-

gential angle
Lateral Distance Lateral distance between center of car and center of

lane
Distance Next Longitudinal distance to the next vehicle on the current

lane
Control Inputs
Accelerator Pedal Position of accelerator pedal
Brake Pedal Position of brake pedal
Steering Wheel Angle of the steering wheel
Steering Wheel-v Rotational velocity of the steering wheel
Steering Moment Applied torque to the steering wheel
Vehicle Dynamics
v-yaw The vehicle’s yaw rate
a-y The vehicle’s lateral acceleration
v-y Lateral velocity of the vehicle
Arm Movement
Sensor A - AccX Acceleration in x-direction
Sensor A - AccY Acceleration in y-direction
Sensor A - GyroZ Orientation w.r.t z-axis
Sensor A - LinAccX Acceleration in x-direction
Sensor A - LinAccY Acceleration in y-direction
Sensor B - AccX Acceleration in x-direction
Sensor B - AccY Acceleration in y-direction
Sensor B - GyroZ Orientation w.r.t z-axis
Sensor B - LinAccX Acceleration in x-direction
Sensor B - LinAccY Acceleration in y-direction

Table 3.1.: Coarse pre-selection of candidate features
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3.2.2 Coordinate Systems

The features utilized in this work are measured with respect to two different coordinate systems:
The car coordinate system, responsible for external features and the head coordinate system
responsible for the utilized head features.

Car Coordinates
The car coordinate system, illustrated in Figure 3.3, complies with the automotive convention

and is originated in the center of the front axle. It is a right-handed system oriented in the way
that the x-axis is pointing in driving direction, the y-axis is pointing to the left and the z-axis is
pointing upwards.

Figure 3.3.: Illustration of the car coordinate system. 2

Head Coordinates
The head coordinate system, illustrated in Figure 3.4 is defined to be originated in the middle

of the driver’s head with the x-axis pointing to the left, the y-axis pointing upwards and the
z-axis pointing in driving direction. As the driver’s head does not remain on a static position,
the actual origin is estimated by the camera system which is monitoring the driver.

Figure 3.4.: Illustration of the head coordinate system

2 Car illustration: http://www.the-blueprints.com (02/18/2016)
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3.2.3 Driver Variance

The evaluation of different driving records shows that there is a huge variance in the behavior
of different drivers.
A prominent example for this behavioral difference between drivers is the nature of head move-
ment which is illustrated in Figure 3.5.

As one can easily see, the amount and magnitude of head movement significantly differs be-
tween the two drivers. While driver 33’s head is constantly moving throughout the course of
the record, driver 34 mainly shows head activity in close proximity to lane change maneuvers.

Driver 33

Driver 34

Figure 3.5.: Illustration of variance in head movement between driver 33 and 34.
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3.2.4 Anomalies

Since the data has been recorded in a driving simulator, the overall quality is on a very high
level. However, inspecting the data reveals several anomalies that may impact the performance
of the applied machine learning approaches.
The remainder of this section furtherly examines the discovered anomalies and provides an
assessment of their potential influence on the learning and evaluation process which is presented
later in this work.

Lateral Distance at Highway Exits
The first anomaly regards the Lateral Distance feature which is provided by the simulator

software and measures the deviation between the vehicle’s center and the center of the current
lane in lateral direction. The correlation between the value of this feature and lane change
maneuvers is very high, since it does show a significant gain when such a maneuver is executed
and only shows little activity when driving straight. In addition to that, it shows a significant
"jump" when the vehicle crosses the lane marking which will play an important role in the
labeling process which is presented later in this work.
The observed anomaly arises when the vehicle passes a highway exit. As Figure 3.6 illustrates,
the feature shows a behavior which is similar to a lane change maneuver, even though the
vehicle is driving straight.
The reason for that anomaly is the way, a lane is defined in the simulator software. It seems
like the outer lane marking follows the highway exit, which leads to a deviation between the
vehicle’s center and the lane center in the opposite direction.

Figure 3.6.: Illustration of the lateral distance anomaly. Box 1 shows the usual behavior of lateral
listance at lane change maneuvers. Box 2 shows the described anomaly, followed by
an actual lane change maneuver.

When using this feature in the machine learning process, this may cause false positive predic-
tions at highway exits and also could reduce the overall prediction precision. However, since
the number of highway exits on the simulated route is relatively small the negative influence of
this anomaly should also be very limited.
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The Driver’s Activity

Another discovered anomaly concerns the driver’s activity over the course of the drive.
Every driver shows a significant reduction of head activity after approximately 30 minutes of
driving. As Figure 3.7 shows, there is almost no head movement at lane changes in the last
third of the record while the first 30 minutes show a distinct correlation between lane changes
and head movement.

Figure 3.7.: Illustration of the head heading anomaly. The head activity drastically decreases
after 30 minutes of driving. Even at lane change maneuvers, there is no significant
head movement in the last third of the record.

As it turned out, after 30 minutes of driving, the participants of the study were told to stop
checking the car’s environment before lane changes.
Since this does not corresponds to a natural human behavior, the last 15 minutes of each record
are discarded and not used for any of the processes described in 5.
To examine the influence of such drastic behavioral changes on the model’s performance, the
final model is however evaluated on cropped records as well as on entire records.

3.3 Real World Feasibility

Even though the data has been captured in a driving simulator, the model is designed with a
real world application in mind. All exterior feature candidates are yet available in many mid- to
high-level serial cars, as they are already used by current ADAS applications.
Table 3.2 shows all short-listed exterior features and provides information about their required
sensor technology as well as current ADAS applications based on these features.
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Feature Description ADAS Sensor Tech-
nology

Lateral Distance Lateral distance between center
of car and center of lane

ACC, LKAS,
LDW

Camera

Psi Angle between car and lane ACC, LKAS,
LDW

Camera

Distance Ahead Longitudinal distance to ahead
car on same lane

ACC, Traffic
Jam Assist,
Emergency
Braking
Assist

RADAR1, LI-
DAR2, Camera

Table 3.2.: Utilization of exterior features in real world applications.

1 Radio Detection And Ranging
2 Light Detection And Ranging
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4 Related Work

The application of machine learning methods in the automotive environment is in focus of many
recent publications which show a wide variety in the utilized machine learning methods and ap-
plications.
As this work focuses on inferring the driver’s lane change intention, the related work, presented
in this chapter, is limited to publications with a similar area of application.

The approach, presented in [12] utilizes a probabilistic variation of a multiclass Support Vec-
tor Machine (SVM) [4] in combination with Bayesian Filtering to predict lane changes, solely
based on lane information, vehicle speed and steering angle. They distinguish between three
maneuver classes (right lane change, left lane change and lane keeping) which are inferred from
real-world driving data.
The presented approach acquires probabilistic output from the SVM by using a generalized
Bradley-Terry model [13] and feeds it into a Bayesian Filter that recursively determines the
maneuver probabilities by combining the SVM output with the maneuver probabilities of the
previous time step.
The presented results show that the average prediction time is only 1 sec which might not be
sufficient for an efficient prevention of accidents.
Due to the findings of this work, I suspect that this time could very likely be improved by adding
head motion to the utilized feature set.

In [15] a system is presented that infers the driver’s intention based on lane positional in-
formation, vehicle parameters and the driver’s head motion using Sparse Bayesian Learning
(SBL) [21]. SBL is a discriminative approach that has the property of automatically pruning
irrelevant features and creating a sparse representation by applying independent Gaussian prior
distribution to the weighting parameters of the underlying set of basis functions. The variance of
the Gaussian distribution is estimated from data by using Evidence Maximization and is forced
to be zero if the corresponding feature is deemed irrelevant which leads to the automatic prun-
ing of unnecessary features. As an additional step, a quantile filter is applied to smooth the
inference results.
The evaluation of this approach shows, that the utilization of head features significantly im-
proves the model’s performance, which is in accordance to the findings of this work.

In [14] a driver specific, sophisticated variation of a Hidden-Markov-Model (HMM) is used to
detect unintentional lane departures at an early stage. It differentiates three control strategies
(lane change right, lane keeping, lane change left) and trains a separate HMM for each control
strategy in a first step, whereby the number of states for each HMM is determined using the
Bayesian information criterion (BIC). Afterwards these HMMs are combined to a global driver
model to determine the most likely control strategy at the current point in time, given the his-
tory of driving situations. Subsequently, the most likely strategy is used to predict the future
driving inputs using Gaussian Mixture Regression (GMR) [5] and a nonlinear bicycle vehicle
model.
This approach is again solely based on lane information and vehicle dynamics and therefore
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might be enhanced by including head features into the process.
As the combination of three control strategies to a global driver model seem to be a promising
enhancement of HMMs, the model presented in this work adopts several aspects of this ap-
proach.

A variation of HMMs, called AIO-HMM (Autoregressive Input-Output HMM), is used in [10]
for the anticipation of lane change maneuvers on highways and turns at lane intersections. The
standard HMM is extended by an additional input-Layer, modeling external features and condi-
tioning the hidden states as well as the output-layer which models internal features. In addition
to that, a temporal dependency between successive outputs is introduced.
In this approach a separate AIO-HMM is trained for each maneuver and the current maneuver
is determined using the maneuver that best explains the past T seconds of driving context and
a threshold that is supposed limit the prediction fluctuation.

In [11] the combination of Recurrent Neural Networks (RNNs) [17] and Long Short-Term
Memory (LSTM) [9] is proposed for the anticipation of lane change maneuvers on highways, as
well as turns at lane intersections. LSTM cells allow maintaining their state over time are used
in the RNN to remember long-term context dependencies.

Another widely related application is presented in [1]. It describes a context aware driver
behavior detection system that is supposed to assess the driver’s behavior and, if necessary,
warn other vehicles using a vehicular ad-hoc network (VANET).
A probabilistic model, based on a dynamic Bayesian network (DBN) is used to infer different
types of driving behavior (normal, drunk, reckless and fatigue) based on internal and external
features including gaze direction, the vehicle’s velocities and accelerations, lane information,
information about other traffic participants, etc..
Including a lane change intention classifier into such a connected environment would have a
high potential of increasing the benefit of both systems: The lane change classifier would be
able to incorporate more detailed information of other traffic participants into the classification
process and the information about intended lane changes could be transmitted to surrounding
vehicle’s, so that they can react before potential dangerous situations occur.
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5 Methodology

This chapter introduces the process, carried out to train a Hidden-Markov-Model that allows the
inference of lane change intention on the available data set.
It starts with a detailed introduction into the developed labeling algorithm and afterwards de-
scribes the individual steps which are required to find a suitable feature selection and parameter
estimation for the final driver intention model.

5.1 Labeling the Driver’s Intention

One of the most crucial parts of this work is the labeling of the driver’s intention. It builds the
basis for almost every other part of the proposed approach as it is used for the feature selection,
the training of the Hidden-Markov-Model as well as its performance evaluation.
The critical point is, that it is nearly impossible to find a "Ground Truth" of the driver’s actual
intention. Even for a human observer, it is hard to tell, when intention starts and how it is
shown. It gets even harder if the same criteria are supposed to work for different drivers due to
the huge variance in their behavior, described in 3.2.3. In addition to that, even a single driver
shows varying behavior in different situations.
In order to avoid false positive labels and to render possible an automated labeling method, an
algorithm is developed that focuses on actually performed lane change maneuvers and defines
a certain time window before the crossing of the lane marking. The data points inside that
window are labeled as intention for the corresponding maneuver (right/left lane change) and
all remaining data points in the data set are labeled as lane keeping.
The end point of each window is determined using the distance between vehicle and lane center
that, as Figure 5.1 illustrates, shows a significant "jump" when the vehicle crosses the lane
marking, caused by a change of the reference system to the center of the new lane.

Figure 5.1.: Lateral Distance at lane crossings.

To set the beginning of the time window, a feature needs to be determined, which indicates
the drivers intention of performing a lane change. A simple solution, that is used in many publi-
cations, is defining a certain fixed time interval and use it throughout all records. However, this
does not map the actual intention very well, since its duration is highly situation and driver de-
pendent. Hence, in this work a more sophisticated labeling approach is used which dynamically
incorporates the drivers behavior to find a suitable window size.
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The visual inspection of the recorded driving data, described in 5.3.1, revealed a high correla-
tion between lane change maneuvers and the driver’s head movement (see Figure 5.2). This
arises from the fact that a driver usually assures that a lane change maneuver can be safely
carried out before it is actually executed. Therefore the increase of the driver’s head motion in
close temporal proximity to a lane change can be considered as a good approximation for the
beginning of the lane change intention.

Figure 5.2.: Lateral Distance and Head Heading at lane crossings.

To determine the start of the increased activity, a sector of 5 seconds before crossing the lane
marking is searched for peaks in the driver’s head heading. As Figure
reffig:labelingAlgo illustrates, the peak which is the furthest away from the lane crossing is
set as beginning and all points in between are marked as intention for a lane change in the
corresponding direction. In cases of no, or only little head activity, a minimum sector of 2
seconds before the crossing of the lane marking is labeled as intention.

Figure 5.3.: Illustration of the labeling method. Box 1 defines the 5 second search window which
is used to find the start of the labels by finding peaks in the driver’s head movement.
Box 2 marks the area which is actually labeled as a lane change intention, starting at
the first peak of head movement inside the search window.

5.2 Feature Pre-processing

One of the advantages of using a driving simulator is the quality of the provided features.
Hence, most of them do not require a pre-processing step and can be used in their original
form. However, this does not hold true for every feature and therefore the remainder of this
section presents those features that need to undergo a pre-processing step and describes the
applied modifications.
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Head- and Gaze Features
As described in 3.1, the features providing information about the driver’s head movement and

gaze direction captured by a camera system. The quality of these features is therefore not on
the same high level as those which are provided by the simulator software.
The largest abbreviations between those features and reality are caused by the occlusion of the
driver’s face, mostly induced by his hand. To assess the validity of the provided values, the
utilized computer vision toolchain therefore provides a separate signal, rating the quality of its
outcome.
Whenever this quality signal falls below 50 % the value of the corresponding feature is replaced
by its last valid predecessor. Figure 5.5 shows an excerpt of head heading values before and
after replacing low quality values.

(a) (b)

Figure 5.4.: Excerpt of head heading values. (a) shows the original values, (b) shows the values
after replacing low quality values.

Distance to the Next Vehicle Ahead (Distance Next)
Even though this feature is provided by the simulation environment, it needs to undergo a

pre-processing step to make it usable for the proposed model.
As Figure 5.5(a) shows, the distance to the next vehicle ahead (Distance Next) is artificially set
to 0, if no vehicle is closer than 900 m. This causes several problems if Gaussian distributions
are used to model the observations.
First of all, it is disadvantageous that being in close proximity to a car ahead and the complete
absence of a car are mapped to numbers of similar magnitude. Considering a Gaussian HMM
with two states, whereby state A models the proximity to a car and a state B models the absence
of a car. The mean of the fitted Gaussian distributions would be somewhere around 0 for both
states. If a new data point is observed which also has a value close to 0, the Gaussian probability
density function of both states also evaluates to value of similar magnitude which leads to a high
probability of misclassifications.
Another problem arising with the artificial 0 is the fact, that many data points have the exact
same value. If a HMM with multiple states is used, there is the possibility that one of these states
is supposed to map data points with 0 value only. This leads to the problem, that the Gaussian
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distribution collapses to a single point which results to a variance of zero and a corresponding
density function that goes to infinity at that point.
To overcome the explained problems, the zero valued data points are set to a better suited value
by sampling a Gaussian distribution centered right above the highest value of valid observations
(1000 m). This establishes reasonable distance between the values of close proximity and no
car ahead as well as eliminates the issue of a collapsing Gaussian distribution while preserving
the feature’s properties. The result of this modification is shown in Figure 5.5.

(a) (b)

Figure 5.5.: Distance to vehicle ahead. (a) shows the original values, (b) shows the values after
applying the described modifications.

5.3 Feature Selection

Another crucial factor for the system’s prediction performance is the selection of the utilized
features. Ideally, a feature should have a distinctive correlation to the driver’s lane-change
intention while containing a low amount of peaks when driving straight. Additionally to that,
the feasibility of capturing the features in a real-world scenario, and the amount of noise are
also important criteria. In order to extract an appropriate feature subset, a substantial signal
analysis has been carried out, including manual pre-selection and an automated evaluation of
the candidate features. To prevent any kind of unintended data-snooping, the selection process
is limited to the records 1 to 25 while the remaining records are set aside for the evaluation of
the final driver intention model.

5.3.1 Pre-Selection

The pre-selection process starts with the coarse selection presented in 3.2.1. These candidate
features are furtherly evaluated by a manual visual inspection of the augmented temporal pro-
gression of the feature’s values which is illustrated in Figure 5.6. To allow a reliable assessment
of the feature’s correlation to lane change intentions, the previously introduces labeling al-
gorithm is used to highlight the feature values in the labeled areas. In addition to that, the

30



visualization provides a short video clip of the corresponding driving context when clicking on
a certain point in the plot.

Figure 5.6.: Illustration of the visualization plot showing the angle between vehicle and lane over
time. The values which are labeled as a lane change intention are highlighted in blue
and magenta.

The visual inspection has been carried out on three randomly chosen records which have been
evaluated using the following criteria:

1. Overall signal quality: Is it stable, are there many outliers, how does the corresponding
quality signal behave, etc.

2. Correlation to the labeled lane change intention: Is there a distinct behavior in the
labeled areas, how many peaks occur in unlabeled areas,etc.

The assessment of the inspected features can be found in Appendix A in Table A.1.

5.3.2 Final Selection

For the final feature selection, a variation of the wrapper method, introduced in 2.1.3, is used
starting with 11 candidate features that returned from the pre-selection.
The following configuration of the wrapper method is used for the selection process:

Feature Search: Generates every possible subset of the pre-selected signal, resulting in a total
of 2047 evaluated combinations. It starts with each feature individually, then uses each
pairwise combination, each triple, et cetera.

Feature Evaluation: Evaluates the F1 measures of every feature combination, using records
1-13 for the training of the classifier and performing the inference and performance eval-
uation on each of the records 15-25 individually.

Classifier: The baseline HMM.

Alternative Feature Search Method
As the number of feature subsets, which are generated by the described feature search

method, grows exponentially with the amount of candidate features, it can only be used with
the fairly small pre-selection which requires much manual human assessment. Besides that, the
pre-selection is only performed on three randomly chosen records which might not be entirely
representative for the remainder of the records.
Hence, to validate the described feature selection, an alternative selection process is carried
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out, which involves less manual assessment and includes the entire coarse feature pre-selection
containing 24 candidate features.
In order to evaluate these features, the feature search method is replaced by an iterative, greedy
process that generates only a fraction of combinations of the original method. At each iteration,
the combination of the previously selected features and each individual remaining candidate
feature is evaluated and the feature which leads to the highest evaluation score is added to the
set of selected features. The process terminates when either selecting an additional feature does
not increase the evaluation score by at least 1 % or all candidate features have been selected.

After performing both of the processes, final selection is determined by analyzing the fre-
quency of feature occurrences in the best performing feature selections of each evaluated record.
The results of that process are presented in 5.3.

5.4 The Driver Intention Model

As stated in 1, this work utilizes a Hidden-Markov-Model for the prediction of lane change ma-
neuvers based on the driver’s intention. The model’s design is adapted from [14] and hence
consists of three separately trained maneuver HMMs which are afterwards combined to the
driver intention model. As their name indicates, the maneuver models represent the labeled
maneuver intentions and therefore correspond to right lane change intention, lane keeping and
left lane change intention. The global driver intention model combines these maneuver models
into a single HMM which is finally used to infer the driver’s lane change intention.

5.4.1 Training the Model

The process of training the driver intention model follows multiple consecutive steps, illustrated
in Figure 5.7, which are described in the remainder of this section.

Feature Extraction and Labeling
As a first step, the features that are supposed to be used in the training and execution of

the model need to be extracted from the records used for the training process. In addition to
that, the labeling algorithm, described in 5.1 is executed on the extracted data set to create the
required ground truth for the training process.
Based on these labels, the data set is divided into a separate maneuver training sets which are
used for the subsequent creation of maneuver models.

Training separate Maneuver Models
Given the separated training set, individual maneuver models can be trained on the corre-

sponding data using the EM-algorithm.
This separate training process allows choosing an arbitrary number of states for each of the ma-
neuver HMMs. That allows a fine-grained modeling of the observed features and their temporal
dependencies which enhances the accuracy of the mapping between the model’s emissions and
the observed features, especially when using Gaussian distributions.
E.g. considering a model uses multivariate Gaussian probability distributions to model the emis-
sion probabilities of two features and a given data set of observations, shown in Figure 5.8 (a).
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Figure 5.7.: Overall process of training the driver intention model. Starting with a set of records,
the desired features are extracted and the data set is split into three subsets accord-
ing to the assigned labels(LCL = Lane Change Left, LK = Lane Keeping, LCR = Lane
Change Right). After that, an individual maneuver HMM is trained on each subset
and finally combined to the driver intention model. It is trained on the combined
data set in a way that reuses certain key aspects of the maneuver HMMs.

Figure 5.8 (b) and (c) show the result of training a model with one and two states on these
observations. As one can see, using two states increases the model’s ability of capturing the
structure of the observations and therefore results in a more precise model. However, it has has
to be considered that increasing the number of states also increases the model’s complexity and
may lead to an overfitting of the observed data.

The separate maneuver HMMs could already be used to predict the driver’s intention by
choosing the most probable maneuver for a given sequence of observations. However, this does
not fully utilize the model’s capability of modeling sequential data.
Therefore these HMMs are finally combined to the driver intention model which incorporates
the probabilities of transitioning between the individual maneuvers into a global HMM.

Training the Driver Intention Model
As a final step, the separate maneuver models are combined to the driver intention model

which again requires the execution of the EM-algorithm. Fortunately the final training process
can be initialized using the results of the maneuver training. Certain aspects, like the emission
probabilities can even be completely inherited.
Training the final model therefore requires the following steps:

1. Determine the prior probabilities of the maneuver models by counting the number of data
points in each part of the training set and normalizing

2. Determine the transition probabilities between these models by counting the transitions in
the labeled training set and normalizing

3. Initialize the global transition matrix using the results of 1., 2. and the maneuver transition
matrices. Inherit the emission probabilities from the maneuver models.
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(a) (b) (c)

Figure 5.8.: Illustration of the Gaussian emission probabilities of two different models, fitted
on the observations shown in (a). (b) and (c) show the corresponding Gaussian
probability density functions of a model using a single state (b) and a model using
two states (c). It can be seen that a model, using two states (c) provides a more
precise mapping of the observations than a model using a single state (b).

4. Train the initialized global model on the entire training set using the EM-algorithm while
leaving the emission probabilities untouched

5.4.2 State Selection

As mentioned before, training individual maneuver HMMs provides the possibility of arbitrarily
choosing the number of states for each model which leads to a finer grained mapping of the
features properties and temporal dependencies.
However, the number of states needs to be chosen carefully to find a good tradeoff between the
model’s complexity and generalization ability. A common way of choosing the number of states
is evaluating the Bayesian Information Criterion (BIC) [3] on a large number of combinations
and choosing the combination that results in the lowest score, as performed in [14]. However,
this approach is solely based on the model’s likelihood an a given training set and only allows a
vague estimation of the model’s generalization abilities.
Hence, in this work the state selection process includes the evaluation of the model’s perfor-
mance on a separate test set which ensures a model with good generalization abilities and
therefore implicitly limits the model’s complexity.
To find a well performing, driver independent state combination, a process is performed which
is somewhat similar to the wrapper method, described in 2.1.3.
As Listing 1 illustrates, the process iterates over a set of state configurations, trains and eval-
uates a model for each of them and selects the configuration that results in the best average
performance. Again the model is trained on records 1-13 and evaluated on each record 15-25
individually.

Since the training process of the driver intention model is significantly slower than training
the baseline model, the evaluated variations need to be limited to a reasonable number.
Experiments that have been performed in advance of the selection process showed that the
model does not require a huge number of states to achieve good prediction results. This is
especially true for the lane change maneuvers, since the amount of observed data for these
maneuvers is considerably smaller than the data set for lane keeping.
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Data: Records 1-25
Result: A driver independent state selection
initialization;
foreach Combination of States do

train driver intention model on records 1-13;
foreach Record 15-25 do

evaluate the model’s performance using F1-measure;
end

end
choose combination resulting in best average F1-score;

Algorithm 1: State selection process.

The limits for the generation of state combinations are therefore to that observations an set to
the values, shown in Table 5.1, resulting in a total of 360 different state combinations that are
evaluated in the selection process.

Lane Change Right Lane Keeping Lane Change Left
States 1 - 6 1 - 10 1 - 6

Table 5.1.: Search space of the state selection process.

5.4.3 Applied Model Variations

The family of Hidden-Markov-Models comprise a large variety of distinctive configurations. E.g.
as described in 2.2, the emissions of a HMM can be modeled by different types of probability dis-
tributions. Besides that, there exist several HMM extension which add extra model-parameters
and dependencies to increase the model’s capability of mapping certain structures of the world.
During the progress of this work, two variations of HMMs have been applied whose properties
are described in this section.

Gaussian Observations

A commonly used variant of HMMs utilizes Gaussian probability distributions to model emis-
sions with continuous valuation. In this work a single multivariate Gaussian distribution is
used to model the emission probabilities of a hidden state, whereby each of the selected fea-
tures is incorporated as a separate dimension of the distribution. In the inference process,
the d-dimensional probability density function of the state’s Gaussian distribution is used to
determine the probability of a state given an emission:

y = f (x,µ,Σ) =
1
p

|Σ|(2π)d
e−

1
2 (x−µ)

′Σ−1(x−µ)

where x is a d-dimensional input data, µ is a d-dimensional vector denoting the mean of the
Gaussian distribution and Σ is a d-by-d symmetric positive definite matrix denoting the covari-
ance of the Gaussian distribution.
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Even though Gaussians are a very popular and convenient way to model continuously valuated
features, there a certain issues one has to consider when using this approach: Depending on the
nature of a feature, a Gaussian distribution might not be a good mapping of the feature’s be-
havior or even infeasible to apply. As shown in Figure 5.8(b), in some situations, increasing the
number of states is a possible way to overcome the issue of a bad mapping, but is also increasing
the model’s complexity.

Combination of Gaussian and Discrete Observations

The data records contain several features with discrete valuations which cannot be sufficiently
modeled by a Gaussian distribution. Especially one of them seems to be a promising candidate
for the inference of the driver’s intention. It determines the intersection of the driver’s gaze and
real world objects and maps it to a predefined set of areas of interest. These areas are defined
as shown in Table 5.2.

Value Area of Intersection
0 Windshield
1 Left Outer Mirror
2 Internal Rear Mirror
3 Right Outer Mirror
4 Speed Indicator
5 Display (placed at the center of the dashboard)
6 Middle Console
65535 Unknown

Table 5.2.: Discrete Gaze Intersection areas

In the remainder of this work, this feature is referred to as Gaze Intersection.
In order to evaluate its contribution to the prediction quality, the model needs to be enabled to
simultaneously handle continuous and discrete features.
This is achieved by adding an additional parameter to the HMM, denoting the emission proba-
bilities for the discrete observations.
Therefore the Gaussian/Discrete HMM is defined by the parameter 4-tuple
θ = (π, A, Bgauss, Bdiscrete) and a weighted combination of both distributions is used in the train-
ing and inference processes.

5.5 Inferring the Lane Change Intention

After training the driver intention model, it can now be used for the prediction of lane change
maneuvers, working on a stream of driving data consisting of the same set of features which
have been used in the training process.
The inference is performed using the forward procedure of the Forward-Backward algorithm,
described in 2.2.2, which iteratively determines the probabilities of being in each of the model’s
hidden states for every newly observed feature vector.
Since each of the maneuvers is modeled by multiple hidden states, the probabilities of each
maneuver’s states are accumulated to form the final maneuver probabilities and the maneuver
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with the highest probability is chosen as the current maneuver.
Since the forward procedure is only dependent on the outcome of its prior iteration, the perfor-
mance of the inference process does not depend on the duration of execution.
It might have been noticed, that the process which is described here, is purely based on infer-
ring the driver’s intention using current observations. The predictive nature of this process is
achieved through the applied labeling of the maneuvers which starts several seconds before the
lane marking is crossed.
One could also use the descibed process to compute actual predictions of future state proba-
bilities by running the forward procedure without adding new observations and solely using
the transition probabilities to determine the successing state probabilities. However the quality
of these predictions is known to decrease rapidly and the algorithm converges to a stationary
distribution shortly [19].

5.6 Visualization of Results

In order to allow an assessment of the model’s performance which is more intuitive than the
numerical F1 score, two variants of graphical outputs are introduced that allow a detailed visual
inspection of the inference results.

Variant 1: Plot

The first visualization variant is a plot that creates an overlay of predicted maneuvers and
corresponding labels for each data point in the data set which is used for the evaluation of a
model.
This rather simple visualization already enables an extensive evaluation of the prediction re-
sults. In contrast to the general F1 score it allows the inspection of particular areas as well as
an overall assessment of the model’s performance.
This visualization also allows an experienced observer to estimate precision and recall and there-
fore the F1 score.
Figure 5.9 shows an excerpt of the described visualization variant. The best possible result
would be an exact match of the predictions (blue) and the corresponding labels (green). Devia-
tions between these lines represent discrepancies between prediction and label and can be used
to estimate precision and recall of the visualized prediction.

Variant 2: Video Overlay

An even more demonstrative visualization can be generated by adding information about the
maneuver predictions and associated labels to the corresponding video of a record as shown in
Figure 5.10. That allows a real time assessment of the model’s classifications and the evaluation
of particular feature influences onto the model’s performance.
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Figure 5.9.: Excerpt of the model’s predictions (blue) plotted against the assigned labels (green)
over time. The x-axis shows the elapsed time in hundredth of a second, the y-axis
shows the corresponding maneuver (1 = right lane change, 2 = lane keeping, 3 = left
lane change)

Figure 5.10.: Frame of a driving video with overlay in the bottom left corner. The lefthand side of
the box shows the current maneuver prediction and current label in form of a large
and a small arrow. The righthand side contains the probabilities of each maneuver
in form of a bar chart and corresponding numerical values.
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6 Software/Implementation

The realization of the described process is implemented in MATLAB1 as it provides an extensive
set of tools and functionality for the processing of large data sets and the fast development of
demonstrator software. Besides that, the recorded data is provided in a proprietary MATLAB
format which can be comfortably used in the MATLAB-Environment.

6.1 Probabilistic Modeling Toolkit

As basis for the implementation of the Hidden-Markov-Model, the open source Probabilistic
Modeling Toolkit for Matlab (PMTK3)2 is used. It has been originated by the former UBC3

professor Kevin P. Murphy as a companiment to his Machine Learning textbook [16] and has
been under active development ever since.
In this work, the implementation of HMMs included in the toolbox is used as a basis for the
implementation of the presented models. That significantly reduces the implementation and
testing effort and allows a more comprehensive model evaluation within the time available.

6.2 Architecture

Since the evaluation of feature influence, number of states, etc. requires the efficient execution
of a huge number of model configurations, a simple software architecture, illustrated in Figure
6.1, is developed that encapsulates the fundamental steps which are required to train and eval-
uate a model and allows a flexible execution of different model configurations. The remainder
of this section describes the individual parts of the architecture and how the software can be
used to train and evaluate a model.

Figure 6.1.: Schematic illustration of the software architecture.

1 http://www.mathworks.com/products/matlab/(19.02.2016)
2 https://github.com/probml (19.02.2016)
3 University of British Columbia (Vancouver, Canada)
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As Figure 6.1 shows, the architecture mirrors the structure of the overall concept and can also
be divided into a data processing and model creation part. In addition to that, it provides the
functionality of running and evaluating a trained model.

Model Configurations
In order to keep track of different model configurations and utilized feature sets, a model

configuration can be defined using the createConfig script, that creates and stores a new con-
figuration object defining the model’s parameter configuration, the feature selection, etc.. The
attributes, contained in such a configuration object are listed in Table 6.1.

6.2.1 Data Processing

The data processing package encapsulates the preparation of data sets for the training and
evaluation of a model. It provides the functionality of extracting a desired feature selection
from a given set of records and performing the maneuver labeling. This allows the comfortable
execution of the model creation process on multiple records using different variations of feature
selections.

6.2.2 Model Training

The model package contains the functionality of training and evaluating different types of mod-
els and model configurations on pre-processed data sets. It provides a single entry-point for
training a model based on the model type which is defined in the config file.

6.2.3 Evaluation

The implemented evaluation methods are combined in the evaluation package. It provides the
possibility to evaluate a trained model on a test data set and to visualize the results.

6.2.4 Executables

This package provides the entry points for training and evaluating arbitrary model configura-
tions on the simulator data set. As Figure 6.1 illustrates, the contained scripts are based on the
functionality provided by the other packages. It provides:

Training and Evaluation of Driver Specific Models (fitAndEvaluateIndividualModel)
Trains and evaluates a driver specific model on each of the defined records using the specified

configuration. Each record is split into a training and a test set using the holdout method
described in 2.3.

Training of a Model (runModelFitting)
Trains a single model on the defined records using the specified configuration.
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Execution/Evaluation of a Driver Independent Model (runInference)
Executes a previously trained model on each of the defined records individually and evaluates

the prediction performance.
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Attribute Description Possible Values
id Identifier of the configuration Any integer value
modelType The type of the model that is supposed

to be executed.
gauss, baelineGauss, gauss-
Disc, baselineGaussDisc

statesRight Number of states utilized to model
right lane changes (ignored when us-
ing baseline models)

Any positive integer value. In-
creasing this number also in-
creases the model’s complex-
ity and the runtime of train-
ing/evaluating the model.

statesStraight Number of states utilized to model
driving straight (ignored when using
baseline models)

Any positive integer value. In-
creasing this number also in-
creases the model’s complex-
ity and the runtime of train-
ing/evaluating the model.

statesLeft Number of states utilized to model
left lane changes (ignored when using
baseline models)

Any positive integer value. In-
creasing this number also in-
creases the model’s complex-
ity and the runtime of train-
ing/evaluating the model.

desiredGaussSignals The feature selection that is supposed
to be modeled by a Gaussian distribu-
tion.

Any subset of continuously
valuated features.

desiredDiscSignals The feature selection that is supposed
to be modeled by a discrete distribu-
tion. (ignored when using gauss or
baselineGauss as modelType)

Any subset of discrete fea-
tures.

predictionThreshold The probability a maneuver needs to
overcome to get selected in the infer-
ence process. (0 by default)

Any real number between 0
and 1

labeling The method used to label the maneu-
vers. The labeling can either be done
dynamically as described in METHOD-
OLOGY or static by simply labeling
a certain time period before the car
crosses a lane marking. (dynamic by
default)

dynamic, static

labelingDuration The labeling duration when using
static labeling. (Ignored when using
dynamic, 2.5 sec by default)

Any positive real number.

Table 6.1.: Attributes of a configuration.
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7 Results of Feature- and State Selection

This chapter presents the findings of the individual steps of the feature- and state selection
processes which are described in 5 and determines the final feature and state selection that is
used for the evaluation of the driver intention model, presented in 9.

7.1 Feature Pre-Selection

As described in 5.3.1, the list of coarse feature pre-selections, presented in 3.2.1, in this step
is furtherly refined by the visual inspection of three randomly chosen records. Several features
from that list are assessed as not relevant for the prediction of lane change maneuvers and are
therefore discarded, resulting in the shortlist of candidates shown in Table 7.1.

Category Features
Head Features Head Heading, Gaze Heading
Exterior Features Psi, Lateral Distance, Distance to Vehicle Ahead
Control Inputs Steering Moment, Steering Wheel, Steering Wheel-v
Vehicle Dynamics y-yaw, a-y, v-y

Table 7.1.: Short-listed Features

The detailed assessment of the inspected features can be found in Appendix A Table A.1.

7.2 Feature Selection

The short-listed features resulting from the prior pre-processing step are furtherly assessed using
the wrapper method as described in 5.3.2.
Looking at the detailed results of this process, shown in AppendixA Table A.2, reveals that the
best performing feature selections for the individually evaluated records as well as the achieved
scores show a significant variance between the evaluated records.
However, as Figure 7.1 illustrates, some features can be identified which appear in a majority of
the individual best performing selections and can therefore be considered as well suited features
for the final model.
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Figure 7.1.: Frequency of feature selections using a Gaussian model.

Discrete Emission

As described in 5.4.3, the discrete Gaze Intersection feature seems to be a a promising candi-
date for the prediction of lane change maneuvers. To evaluate the benefit of that feature and the
described model variation, the wrapper method is performed again using a Gaussian/Discrete
baseline model. The list of candidate features is extended by the Gaze Intersection feature,
leading to a total number of 4094 evaluated combinations.
As Figure 7.2 shows, Gaze Intersection appears in half of the best performing selections, which
makes is a promising candidate for the final selection. However, looking at the detailed results
in Appendix A Table A.3 reveals that it does only marginally increase the score in comparison to
the purely Gaussian model. A more detailed analysis of this feature’s influence can be found in
8.3.
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Figure 7.2.: Frequency of feature selections using a Gaussian/Discrete model.
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Alternative Selection Process

In addition to the combination of visual inspection and wrapper method, the alternative se-
lection process, described in 5.3.2, is performed to validate the selected features. This iterative
process is executed on the same records as before to generate comparable results. Figure 7.3
shows the frequency of the feature occurrence in the driver specific selections. A complete list
of the selected features and their corresponding F1-Score can be found in Appendix A.4 Table
A.4
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Figure 7.3.: Frequency of feature selections using the alternative selection process and a Gaus-
sian model.

Final Selection

The determination of a final driver independent feature selection depends on the way the
features are chosen, given their number of occurences in the best performin selections. As the
results in Appendix A show, choosing an optimal driver independent feature set is hardly possi-
ble, due to the variance between the different records. Therefore a tradeoff needs to be found
which works reasonably well for multiple drivers.
In this work, the features are chosen according to their occurrences in the driver specific selec-
tions shown in Figure 7.1 and 7.3.
The three different feature sets, listed in Table 7.2 are evaluated against each other

Selection Features
Shortlist Head Heading, Gaze Heading, Lateral Distance, Psi, Distance Next,

a-y, v-y, v-yaw, Steering Wheel, Steering Wheel-v, Steering Moment
Liberal Selection Lateral Distance, Psi, Steering Moment, Head Heading, Distance

Next, v-yaw, Steering Wheel
Strict Selection Lateral Distance, Psi, Steering Moment

Table 7.2.: Evaluated feature selections.
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Selection ØF1-Score
Driver-specific 0.6664
Liberal Selection 0.6289
Liberal Selection + Gaze Intersection 0.6282
Strict Selection + Gaze Intersection 0.5701
Strict Selection 0.5540
Shortlist 0.4994

Table 7.3.: Performance of evaluated feature selections.

As Table 7.3 shows, the average results of a liberal feature selection come closest to the results
of driver specific selections. Even though the Gaze Intersection is part of many driver specific
selections, it does not increase the result when added to the liberal selection. Therefore, in the
following processes and for the training of the final driver intention model, the liberal selection
is used.

7.3 State Selection

The remaining model parameter which needs to be chosen, is the number of states used for the
individual maneuvers. As described in 5.4.2, this includes an iterative process that evaluates an
extensive number of state configurations. The feature selection is set to the liberal selection,
presented in 7.2 as it showed the best driver independent performance. Inspecting the detailed
results in Appendix B, Table B.1 reveals that the state selection, leading to the best evaluation,
again varies between different drivers. As presumed in 5.4.2, almost every best performing
selection only chooses a small number of states for lane change maneuvers and a significantly
higher number of states for lane keeping.
This is due to the fact that the training data contains a substantially larger amount of data for
lane keeping than for lane change maneuvers. The variance in the observation when driving
straight is therefore a lot higher than those in the maneuver data.
The final state selection, that results in the best average performance is shown in Table 7.4.
Looking at Table 7.5 reveals that the final driver independent selection performs again worse
than the best performing driver individual selections. However, it is clearly better than the
baseline model.

Lane Change Right Lane Keeping Lane Change Left
States 1 7 1

Table 7.4.: Final state selection.

Selection ØF1-Score
Driver Specific 0.7428
Driver Independent 0.7090
Baseline 0.6289

Table 7.5.: Evaluation of different state selections.
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8 Influence of Features and Feature Categories

In order to get more insight into the selection process and to assess the importance of particular
features and feature categories, the shortlisted features are individually evaluated.
These features can be grouped in four different categories which seem to have differently strong
influence on the model’s performance as they occur in the best performing selections for records
15-25 with varying frequency (see Figure 8.1).
Exterior features and control inputs seem to be of special importance, as they are contained in
every selection that results in the best performance on the evaluated records. Head features
and vehicle dynamics are also frequently selected, however they occur a bit less frequent. In the
remainder of this chapter, the feature utilization is furtherly analyzed and the influence of the
different categories as well as individual features is evaluated.
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Figure 8.1.: Frequency of features from different categories.

8.1 Exterior Features

Looking at the results in Figure 8.1 indicates, that exterior features seem to have a huge influ-
ence in the model’s performance. In particular, Lateral Distance and Psi are of special interest,
as they are part of every single best performing feature selection.
This is comprehensible, considering that the labeling algorithm marks a certain time slot be-
fore actual lane changes as intention. In these marked areas, Lateral Distance and Psi show
a distinct behavior which is unique for the labeled maneuver: the angle between vehicle and
lane increases when the driver starts to pull over and lateral distance raises when the vehicle
approaches the new lane. That makes these features to reliable and strong indicators for lane
change maneuvers.
Distance to vehicle ahead is also an indicator for a lane change maneuver, but it is not as strong
as both of the other exterior features. The reason for that is, that the feature’s behavior, in the

47



areas marked as intention, is not completely unique and can also be observed in areas marked
as lane keeping.
As one can see in Table 8.1, removing all exterior features results in a extremely poor model
performance. Removing Lateral Distance and Psi individually has a similar, but not as drastic ef-
fect. Distance Ahead seems to have the smallest influence on the performance since its removal
only causes a small drop in the evaluation score. These observations reflect prior observations,
and confirm the importance of Lateral Distance and Psi.

Feature Selection ØF1-Score
Shortlist 0.4994
Shortlist w/o Exterior Features + Lateral Distance + Psi 0.4603
Shortlist w/o Exterior Features + Lateral Distance + Distance Next 0.3886
Shortlist w/o Exterior Features + Psi + Distance Next 0.3801
Shortlist w/o Exterior Features + Lateral Distance 0.3430
Shortlist w/o Exterior Features + Psi 0.3340
Shortlist w/o Exterior Features + Distance Next 0.2558
Shortlist w/o Exterior Features 0.2088

Table 8.1.: Influence of Exterior Features.

8.2 Control Inputs

As shown in Figure 8.1, features from the control input category are also part of every driver
specific feature selection. In particular, Steering Moment appears in each of the best performing
selections.
The further analysis of this category, shown in Table 8.2, indicates that the influence of these
features is in fact relatively small. Adding and removing single features only results in marginal
changes of the evaluation score. Steering Moment seems to be the feature with the most pos-
itive influence but can also lead to a small decrease of the performance score when used in
combination with Steering Wheel.
However, due to their small magnitude, it might be that not all of the observed impacts are
statistically relevant.

Feature Selection ØF1-Score
Shortlist w/o Control Inputs + Steering Wheel-v + Steering Moment 0.5485
Shortlist w/o Control Inputs + Steering Moment 0.5328
Shortlist w/o Control Inputs + Steering Wheel-v 0.5280
Shortlist w/o Control Inputs 0.5084
Shortlist 0.4994
Shortlist w/o Control Inputs + Steering Wheel + Steering Moment 0.4903
Shortlist w/o Control Inputs + Steering Wheel + Steering Wheel-v 0.4836
Shortlist w/o Control Inputs + Steering Wheel 0.4740

Table 8.2.: Influence of Control Inputs.
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8.3 Head- and Gaze Features

Features from this category are also present in most of the best performing feature selections.
The dominant feature seems to be Head Heading as it appears much more often than Gaze
Heading. The results in Table 8.3 also show, that Head Heading is in fact the feature that has
the positive influence while Gaze Heading seems to decrease the model’s performance.
As Table 8.4 shows, adding the discrete Gaze Intersection feature does not have a negative in-
fluence but also does not lead to a better result than using Head Heading alone.
This discovery is in accordance with the examination published in [7] which states that the
driver’s head movement is the sufficient feature for the determination of the drivers head activ-
ity in the domain of lane change prediction.
Another explanation for Gaze Heading’s negative influence might be its poor quality in compar-
ison to Head Heading. As Table 8.5 shows, the quality of Gaze Heading is significantly lower
than those of Head Heading, especially in areas marked as a right lane change.

Feature Selection ØF1-Score
Shortlist w/o Head Features + Head Heading 0.5657
Shortlist 0.4994
Shortlist w/o Head Features 0.4966
Shortlist w/o Head Features + Gaze Heading 0.4740

Table 8.3.: Influence of Head Features.

Feature Selection ØF1-Score
Shortlist w/o Head Features + Head Heading + Gaze Intersection 0.5665
Shortlist w/o Head Features + Gaze Intersection 0.5004
Shortlist 0.4994
Shortlist + Gaze Intersection 0.4988
Shortlist w/o Head Features + Gaze Heading + Gaze Intersection 0.4756

Table 8.4.: Influence of Head Features + Gaze Intersection.

Feature Ø Loss
(Overall)

Ø Loss (La-
beled Right)

Ø Loss (La-
beled Left)

Head Heading 2.74 % 3.22 % 3.17 %
Gaze Heading 14.66 % 17.29 % 14.85 %

Table 8.5.: Amount of invalid data in Head Heading and Gaze Heading, determined on records
1-25.
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8.4 Vehicle Dynamics

As Figure 8.1 shows, features representing the vehicle’s dynamics occur least frequently in the
driver specific selections. The further analysis of the individual features of that category, shown
in Figure 8.6, reveal that the feature’s influences are again quite small. A distinct evaluation of
the feature’s influences can therefor hardly be performed as the variations might again be not
statistically relevant.

Feature Selection ØF1-Score
Shortlist w/o Vehicle Dynamics + v-yaw 0.5512
Shortlist w/o Vehicle Dynamics + v-y + v-yaw 0.5364
Shortlist w/o Vehicle Dynamics 0.5313
Shortlist w/o Vehicle Dynamics + v-y 0.5277
Shortlist w/o Vehicle Dynamics + a-y + v-yaw 0.5231
Shortlist w/o Vehicle Dynamics + a-y 0.5153
Shortlist 0.4994
Shortlist w/o Vehicle Dynamics + a-y + v-y 0.4743

Table 8.6.: Influence of Vehicle Dynamics.
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9 Evaluation of the Driver Intention Model

After evaluating the influence of individual features and finding a driver independent state se-
lection, the final driver intention model is evaluated on the remaining records 26-37 (32 is
missing). These records have not been touched so far and therefore allow an unaffected assess-
ment of the model’s performance and its generalization abilities.

9.1 Diver Intention Model vs. Baseline Model

In this section the performance of the driver intention model is evaluated against the baseline
model to examine if the effort of training three separate models and combining them to a driver
model is justified by the fact that it results in a distinctly better performance.
Both models are trained on records 1-25 using the liberal feature selection and are tested on
each individual record 26-37. The number of states of the driver intention model are further-
more set to the final state selection.
This process allows the assessment of the model’s ability to infer the intention of an unknown
driver after being trained on a data set containing the driving data of multiple drivers.

Figure 9.1.: Performance comparison of the driver intention model and the baseline model.

As Figure 9.1 illustrates, the driver model clearly outperforms the baseline HMM in every
instance and increases the F1 score by around 15 % on average.
It can also be observed, that there is a huge variance in the model’s performance between
different records which can again be explained by the variance between the behavior of different
drivers, described in 3.2.3. Especially record 33 causes a very poor performance and is therefore
furtherly analyzed.

Detailed scores of these models can be found in Appendix C Table C.1 and C.2.

Record 33
Inspecting the course of the driver’s head movement, shown in Figure 9.2, reveals that the

reason for the poor performance lies in the driver’s exceptionally high frequency of head activity,
compared to other drivers. While most of them show a rather moderate frequency of head
movements, this driver constantly shows a high head activity throughout the entire record.
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Here lies one of the essential disadvantages of driver independent models: If the behavior of
the driver, whose intention is supposed to be inferred, fundamentally differs from the behavior
of the drivers used for the training of the model, it results in a poor performance. This leads to
the concept of driver specific models which is discussed in 9.4.

Figure 9.2.: Extraordinary head movement of driver 33.

9.2 Cropped Records vs. Entire Records

As described in 3.2.4, the feature- and state selection processes are performed on cropped ver-
sions of the records where the last 15 minutes of each records are discarded due to the fact that
the drivers were ordered to stop checking the car’s environment in that part of the records.
It is nevertheless interesting to see how that drastic change in behavior influences the perfor-
mance of a driver independent model.
To evaluate that impact, the model which has been trained on the cropped version of the records
is now evaluated on the entire records 26-37.

Figure 9.3.: Performance comparison of the driver intention model on cropped and uncropped
versions of the records.

The results, illustrated in Figure 9.3, show that the performance impact of the reduced activity
is actually relatively small and the model does even achieve slightly better results on some of
the uncropped records. Since the uncropped version contains the same data as the cropped
version plus some extra data in the end, an improvement of the performance means that the
model works exceptionally well on that last 15 minutes of data.
That might first be surprising but can be explained by the way the intention is labeled by the
labeling algorithm.
Since the label duration is based on the driver’s head activity, the labeled lane change maneuvers

52



in the last 15 minutes of the records are quite short (mainly 2 seconds) and therefore contain
distinct values for Psi and Lateral Distance as the car already starts to deviate from the center of
the current lane.
The model is therefore still able to predict lane changes even though there is no head activity.
The prediction time, however, is significantly shorter as in cases where the driver actively checks
the car’s environment.

9.3 Gaussian Model vs. Gaussian/Discrete Model

Even though the feature selection process comes to the conclusion that adding the discrete Gaze
Intersection feature does not noticeably improve the model’s performance it is still evaluated on
the independent test set to support the results of the selection process and to see if they hold
true for the yet unseen data.
As expected, the results in Figure 9.4 show that adding Gaze Intersection to the list of utilized
features does neither considerably increase nor decrease the performance of the Gaussian Model
throughout all records.

Figure 9.4.: Performance comparison of Gaussian and Gaussian/Discrete model.

Detailed scores of these models can be found in Appendix C Table C.2 and C.4.

9.4 Driver Specific Training vs. Driver Independent Training

All evaluation so far are limited to driver independent models that are trained on a broad variety
of drivers and are supposed to work for every unknown driver.
This concept is based on the premise, that different drivers, to some extend, show a similar
behavior when driving on a highway and performing lane change maneuvers. The results, illus-
trated in Figure 9.1, reveal that this does not hold true for every driver and therefore causes the
concept to work differently well for different drivers.
To overcome that issue, one could use individually trained models for each driver which would
be able to adapt to specific characteristics of the driver’s behavior. In contrast to a driver in-
dependent model, such an individual model also requires an individual training process before
it can be used for the inference of the driver’s intention. In a real world application it would
therefore need a certain training time before it could actually be used on a new driver while a
driver independent model could be used instantly, as the training process has been performed
beforehand.
An individual training process however has the advantage that it does not need to cover the
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variety of different drivers and can be fitted on the specific behavior of a single driver.
In order to evaluate that concept, a driver specific model is trained and evaluated on each of the
records 26-37.
Unfortunately the records do not contain enough lane change maneuvers to run an entirely
individual process including feature- and state selection, especially after discarding the last 15
minutes of driving time. Executing the entire selection machinery would require splitting each
record into a training, validation and test part resulting in very small test- and validation sets
containing only 3-5 lane change maneuvers in each direction.
Therefore, the individually trained models are not entirely driver specific as they use the results
of the feature- and state selection, presented in 7.
The actual training process is however performed individually on each record using the holdout
approach described in 2.3.

Figure 9.5.: Performance comparison of driver specific models and driver independent model.

As Figure 9.5 shows, the driver specific models, in most cases, do not perform as well as the
driver independent model. It has to be considered, that these models are trained on a very
small training set, containing only around 20 minutes of driving time and a couple of lane
change maneuvers. The quality of the specific models might therefore not be as high as it could
be if it was trained on a sufficient amount of data. It was even not possible to fit a model with
the same configuration as the driver independent model on record 30 due to insufficient data.
A however promising result is achieved on the critical record 33. Compared to the original
model, the driver specific model works exceptionally well and seems to be able to adapt to the
unusual behavior of that driver.
This indicates, that driver specific models have the ability to work even on exceptional drivers.

Detailed scores of these models can be found in Appendix C Table C.2 and C.3.

9.5 Visualization of Prominent Results

In order to allow the reader to obtain a better understanding of the evaluation results and to
provide a more comprehensible representation, some meaningful results are visualized here.

Best Performance
The best result is achieved using the driver intention model is shown in Figure 9.6. It visu-

alizes the classifications of the Gaussian/Discrete model on record 34 which almost perfectly
match the labeled maneuvers. Inspecting the corresponding head activity of that driver, illus-
trated in Figure 9.7 shows that the driver moves his head in a very controlled way with only
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little activity when driving straight and distinct values when a lane change is executed.
This is also true for other features which also show very little noise throughout the course of the
drive.
The model’s classifications are therefore made on the basis of a high quality test set which leads
to an exceptionally high performance.

Figure 9.6.: Best overall prediction result. Achieved by Gaussian/Discrete model on record 34.

Figure 9.7.: Illustration of head movement of driver 34.

Worst Performance
Inspecting the record that causes the worst classification results shows quite the opposite

feature behavior to the record that caused the best result. As illustrated in Figure 9.9, the
features show a high variance throughout the entire drive, which makes it hard for the model
to detect actual lane change maneuvers.

Figure 9.8.: Worst overall prediction result. Achieved by Gaussian/Discrete model on record 33.
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Figure 9.9.: Illustration of head movement of driver 33.

Average Performance
Figures 9.10 and 9.11 show the visualization of two average results, both achieving a F1 score

of around 65 %.
The key difference between them is that even though the F1 score is nearly identical, precision
and recall are off by almost 10 %.
Looking at the visualizations reveals that these two records show different patterns of false
positive predictions and missed predictions even though they return the same F1 score. This
shows the importance of using such a comprehensible visualization in addition to a numerical
performance measure as it allows a far more detailed assessment of the model’s performance.

Figure 9.10.: Average prediction result. Achieved by Gaussian model on record 28.

Figure 9.11.: Average prediction result. Achieved by Gaussian model on Record 29.
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10 Conclusion and Future Work

This work presents an extensive analysis of different aspects of training and evaluating a Hidden-
Markov-Model on simulated driving data. In this chapter an overall conclusion regarding the
utlilization of Hidden-Markov-Models for the prediction of lane change maneuvers is given and
the key discoveries which have been made during the progress of this work are recapitulated.

10.1 Conclusion

Looking at the results of the previous chapter shows that Hidden-Markov-Models are well suited
for the prediction of lane change maneuvers based on the inference of the driver’s intention.
Their unique temporal structure makes them particularly eligible for handling arbitrary time
sequences of driving data and defines a fast and easy to implement inference algorithm that
does allow the online execution on limited hardware.
The remainder of this section describes the key discoveries of this work, discusses their impact
on the evaluation results and ponders on possible alternate approaches.

Labeling the Intention
One of the most crucial factors that influences almost every subsequent part of the learning

and evaluation process is the labeling of the driver’s intention. As described in 5.1, this work
utilizes a automatic labeling method based on the crossing of lane markings and the driver’s
head movement. One of the drawbacks of this approach is, that it is not able to label lane
change intentions when no actual maneuver is executed afterwards. This might be the case
when a driver intents to perform a lane change but does not actually execute it because of the
current traffic situation. That leads to a false negative labeling of such events which might
decrease the model’s performance.
A possible alternative method of labeling the intention could be using clusters of high head
activity as the indicator for intended lane change maneuvers without taking actual lane changes
into account. This approach should be able to overcome the described problem, but might
instead cause false positive labels.

Driver Variance
Another important discovery, which manifests itself in almost every part of this work, is the

huge variance between the behavior of different drivers. Almost every result, presented in 7,
returns distinctly different outcomes for different drivers. It is therefore nearly impossible to
find a driver independent model configuration that is guaranteed to perform reasonably well
for every possible driver.
That leads to the concept of driver specific models which are individually trained for a certain
driver. As the Figure 9.5 shows, a driver specific model seems to have the ability to also perform
well on exceptional drivers like driver 33. Unfortunately the available amount of data per driver
does not allow a more detailed examination of driver specific models in this work.
That would require a substantially larger data set to be able perform an individual feature-
and state selection process as well as the final evaluation. Optimally that data would consist

57



of several records, captured on different days and times to capture the natural variance in the
driver’s behavior.

Artificial Data
As described in 3, the data basis of this work is provided by a driving simulator. All processes,

presented in this work, are therefore executed on data with superior quality, containing little
noise and very few false measurement (with the exception of Gaze Features). That allows the
training and evaluation of the models on almost unedited and unfiltered data using training and
inference algorithms evaluating individual samples of the utilized features.
When it comes to a real world application, the presented processes would, most likely, require
several additional pre-processing/filtering steps to handle the much poorer data quality of real
world measurements. It might also be reasonable to use window based features to increase the
model’s robustness against outliers.

Performance Measure
The measure used in this work evaluates the performance of a model in a sample based way,

comparing the outcome of a model and the corresponding label for each individual sample
point. This is a very strict evaluation that does not consider any conceptual errors, which could
be removed in a post-processing step.
E.g. a model that does not cause any false positive predictions and identifies every single inten-
tion, but with a short delay of 0.5 seconds, would lead to a rather low score even though the
model does in fact work quite well.
This is not an essential issue since all evaluations, presented in this work, consistently used this
performance measure and therefore have been assessed equally strict. However, a well perform-
ing model should also result in a reasonably high evaluation score.
An interesting alternative approach is presented in [15], where two different data sets are used
for evaluation. In addition to the regular data set, which contains the lane change maneuvers,
a data set is recorded that solely contains lane keeping data. This lane keeping data is used to
evaluate false positives, as it certainly does not contain any intention. The regular data set is
used to evaluate missed predictions and false predictions but in contrast to the method, utilized
in this work, only evaluates a single data point on a certain point in time (e.g. 2 sec) before a
lane change maneuver.
Using this approach would eliminate the disregard of conceptual errors and would also resolve
the previously described issue of false negative labeling.
Unfortunately the available data set does not contain pure lane keeping records and therefore
this method could not be utilized in this work.
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10.2 Future Work

In addition to the adaptions, described in the previous section, there are several examinations
that would be interesting to carry out.

Until now, all analyses and evaluations have been performed offline on already captured data.
Even though the video overlay allows a quite well inspection of the model’s behavior, it would
be desirable to experience the model in a real-time execution.
The first steps, required to run the model in the driving simulator, have already been executed,
however an actual test run could not be performed during the period of this work.
Even more interesting would be the integration into a real car, however, as mentioned before,
this would very likely require putting a lot more effort in feature pre-processing steps and the
usage of window based features to enable the model to run robustly on incomplete and noisy
real world data.

Another valuable addition would be the investigation of online learning approaches, that are
able to adapt to a particular driver over time.
A possible scenario would be training a general model in the way which is presented in this work
and afterwards iteratively adapt to an individual driver. That would combine the best of both
worlds, as the model could be used instantly for most drivers and is able to adapt to exceptional
drivers over time.

Training a completely individual model would also be a worthwhile examination. This would
include a driver specific feature- and state selection as well as the actual training process. As
stated earlier, that would require substantially more data for an individual driver, preferably
recorded in multiple test drives.

Comparing the performance of the utilized HMM variation to other approaches like AIO-
HMMs [10] or RNNs [11] would also be an interesting thing to do. However, this requires a
considerable amount of effort since certain testing conditions need to be established that allow
an unbiased comparison of different models.
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A Feature Selection

A.1 Pre-Selection

Table A.1.: Manual assessment of coarsly pre-selected features (++ = very good, + = good, o =
OK, - = bad, – = very bad)

Feature Record 02 Record 10 Record 25 Assessment
Gaze Heading + o o Increase of activity in prox-

imity to lane change maneu-
vers noticeable, however also
lots of activity throughout the
record

Gaze Intersection + o o Correlation between gaze sec-
tors and maneuver intention
recognizable, however there
is a high fluctuation through-
out the record

Head Heading ++ ++ ++ Very stable feature with a high
correlation to lane change
maneuvers. Only little activ-
ity in the remainder of the
records.

Psi ++ ++ ++ Very little noise and a distinct
correlation to lane change
maneuvers.

Lateral Distance ++ ++ ++ Very little noise and a distinct
correlation to lane change
maneuvers.

Distance Next + o + Correlation to left lane
changes observable, however
no apparent correlation to
right lane changes

Accelerator Pedal o o o No distinctly different be-
havior in proximity to lane
changes

Brake Pedal - o o No distinctly different be-
havior in proximity to lane
changes

Steering Wheel + o o Little correlation to lane
change maneuvers

Continued on next page
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Table A.1 – Continued from previous page
Feature Record 02 Record 10 Record 25 Assessment
Steering Wheel-v o o + Little correlation to lane

change maneuvers
Steering Moment + o + Slightly increased values in

proximity to lane change ma-
neuvers noticeable.

v-yaw + + + Correlation to lane change
maneuvers observable.

ay + + o Correlation to lane change
maneuvers observable.

v-y o o + Correlation to lane change
maneuvers observable.

Sensor A - AccX - o - Highly active signal, no no-
ticeable correlation

Sensor A - AccY o - - Highly active signal, no no-
ticeable correlation

Sensor A - GyroZ - o - Highly active signal, no no-
ticeable correlation

Sensor A - LinAccX - - - Highly active signal, no no-
ticeable correlation

Sensor A - LinAccY - - – Highly active signal, no no-
ticeable correlation

Sensor B - AccX o o o Highly active signal, no no-
ticeable correlation

Sensor B - AccY - – - Highly active signal, no no-
ticeable correlation

Sensor B - GyroZ – - - Highly active signal, no no-
ticeable correlation

Sensor B - LinAccX – - - Highly active signal, no no-
ticeable correlation

Sensor B - LinAccY - o - Highly active signal, no no-
ticeable correlation
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A.2 Gaussian Model

Table A.2.: Driver-Individual Feature Selection using the extensive search method and Gaussian
Model

Record Feature Selection F1-Score
15 Steering Wheel, Steering Moment, a-y, Lateral Distance, psi, Dis-

tance Next
0.5313

16 Head Heading, Steering Wheel, Steering Moment, v-yaw, Lateral
Distance, psi

0.7354

17 Gaze Heading, Steering Wheel-v, Steering Moment, v-yaw, v-y, a-y,
Lateral Distance , psi, Distance Next

0.6908

18 Steering Moment, Lateral Distance, psi 0.5078
19 Head Heading, Steering Wheel, Steering Wheel-v, Steering Mo-

ment, v-yaw, Lateral Distance, psi, Distance Next
0.5897

20 Head Heading, Steering Wheel, Steering Moment, v-yaw, v-y, Lat-
eral Distance, psi, Distance Next

0.6677

21 Steering Wheel-v, Steering Moment, Lateral Distance, psi, Dis-
tance Next

0.7512

22 Head Heading, Steering Wheel, Steering Wheel-v, Steering Mo-
ment, v-yaw, Lateral Distance, psi, Distance Next

0.7089

23 — —
24 Head Heading, Steering Moment, Lateral Distance, psi 0.6914
25 Head Heading, Steering Moment, Lateral Distance, psi 0.7895
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A.3 Gaussian/Discrete Model

Table A.3.: Feature Selection using the extensive search method and Gaussian/Discrete Model
Record Feature Selection F1-Score
15 Steering Wheel, Steering Moment, a-y, Lateral Distance, psi, Dis-

tance Next, Gaze Intersection
0.5424

16 Head Heading, Steering Wheel, Steering Moment, v-yaw, Lateral
Distance, psi , Gaze Intersection

0.7384

17 Gaze Heading, Steering Wheel-v, Steering Moment, v-yaw, v-y, a-y,
Lateral Distance , psi, Distance Next

0.6907

18 Steering Moment, Lateral Distance, psi, Gaze Intersection 0.5192
19 Head Heading, Steering Wheel, Steering Wheel-v, Steering Mo-

ment, v-yaw, Lateral Distance, psi, Distance Next, Gaze Intersec-
tion

0.5916

20 Head Heading, Steering Wheel, Steering Moment, v-yaw, v-y, Lat-
eral Distance, psi, Distance Next

0.6677

21 Steering Wheel-v, Steering Moment, Lateral Distance, psi, Dis-
tance Next, Gaze Intersection

0.7597

22 Head Heading, Steering Wheel, Steering Wheel-v, Steering Mo-
ment, v-yaw, Lateral Distance, psi, Distance Next

0.7088

23 — —
24 Head Heading, Steering Moment, Lateral Distance, psi, Gaze In-

tersection
0.6915

25 Head Heading, Steering Moment, Lateral Distance, psi 0.7895
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A.4 Alternative Selection process

Table A.4.: Feature Selection using the alternative sequential search method.
Record Feature Selection F1-Score
15 psi, Steering Moment, Lateral Distance, SEB-LinAccX, SEB-GyroZ 0.5578
16 psi Head Heading, Lateral Distance, Steering Moment, Distance

Next
0.6964

17 psi, Lateral Distance, Steering Wheel-v, Steering Moment, Accel-
erator Pedal, Distance Next

0.6964

18 psi, Steering Moment, Lateral Distance, SEB-GyroZ 0.5189
19 psi, Steering Wheel-v, Head Heading, Steering Moment, Lateral

Distance, Steering Wheel, SEB-AccX
0.5890

20 psi, Lateral Distance, Steering Moment, SEA-AccX 0.6468
21 psi, Lateral Distance, Steering Moment, Accelerator Pedal, Dis-

tance Next, Steering Wheel-v
0.7661

22 psi, Lateral Distance, Steering Wheel-v, Steering Moment, Dis-
tance Next

0.6805

23 — —
24 psi, Head Heading, Lateral Distance, Steering Moment, SEA-AccY 0.7125
25 Head Heading 0.7503
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B State Selection

Table B.1.: Results of the State Selection Process
Record State Selection (right, lane keeping, left) F1-Score Baseline

F1-Score
15 1,8,1 0.6344 0.4994
16 1,10,6 0.8309 0.6995
17 1,7,1 0.7658 0.6595
18 1,9,4 0.6031 0.4409
19 1,5,1 0.6499 0.5889
20 1,10,4 0.7772 0.6489
21 1,10,3 0.7968 0.6431
22 1,8,1 0.7669 0.7028
23 — — —
24 3,10,2 0.7346 0.6403
25 1,7,1 0.8680 0.7665
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C Model Variations

C.1 Baseline Model

# Record Precision Recall F1-Score
26 0.5302 0.8768 0.6608
27 0.6509 0.7878 0.7129
28 0.3432 0.7642 0.4736
29 0.2762 0.8623 0.4183
30 0.6690 0.7760 0.7185
31 0.4514 0.9442 0.6108
33 0.1550 0.8854 0.2637
34 0.7520 0.9034 0.8208
35 0.3203 0.7773 0.4537
36 0.5295 0.7768 0.6297
37 0.4268 0.7666 0.5483

Table C.1.: Performance of Baseline-HMM on Different Records

C.2 Gaussian Model

Driver Independent

Record Precision Recall F1-Score
26 0.7414 0.8329 0.7845
27 0.8758 0.7307 0.7967
28 0.6401 0.6625 0.6511
29 0.5469 0.7441 0.6304
30 0.8363 0.7559 0.7941
31 0.7599 0.9281 0.8357
33 0.2688 0.7753 0.3992
34 0.9248 0.8793 0.9014
35 0.6326 0.6365 0.6345
36 0.7702 0.6972 0.7318
37 0.7375 0.6410 0.6859

Table C.2.: Performance of Gaussian-HMM on Different Records
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Driver Specific

Record Precision Recall F1-Score
26 0.7827 0.7886 0.7857
27 0.6573 0.8241 0.7313
28 0.4517 0.4954 0.4725
29 0.4131 0.6940 0.5179
30 0.0 0.0 0.0
31 0.5806 0.9122 0.7096
33 0.6388 0.8042 0.7120
34 0.9247 0.7833 0.8482
35 0.4453 0.5957 0.5096
36 0.8359 0.7470 0.7889
37 0.4634 0.4253 0.4436

Table C.3.: Performance of Gaussian-HMM trained and evaluated on each record individually.

C.3 Gaussian/Discrete Model

Record Precision Recall F1-Score
26 0.7468 0.8384 0.7900
27 0.8634 0.7326 0.7927
28 0.6598 0.6609 0.6604
29 0.5332 0.7351 0.6181
30 0.8325 0.7427 0.7850
31 0.7636 0.9300 0.8386
33 0.2568 0.7674 0.3848
34 0.9120 0.8976 0.9047
35 0.6342 0.6497 0.6418
36 0.7798 0.7105 0.7435
37 0.7202 0.6354 0.6752

Table C.4.: Performance of Gaussian/Discrete-HMM on Different Records
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