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1 Introduction

1.1 What is outlier detection

As it is formally defined by Hawkins [1], in data mining, Outlier Detection is the
task of finding data points that deviate so much from the remaining data points. It
is also known as Anomalies or abnormalities detection [2]

Outlier detection is often used to discover unusual events or properties from a
data set. These unusual characteristics may be caused by changes or malfunction in
the system. Outlier detection, on account of that, is applied in many areas such
as credit card fraud detection, medical diagnosis, environment monitoring and intru-
sion detection systems. Applications in these areas generate a lot of data in a long
time, however most of them represent the normal behaviors (of users, environment
or hardware system). Therefore, outlying data are usually more interesting since they
represent the abnormal behavior of the actuators (user, environment or hardware sys-
tem) that affects the data generation process. Such abnormal behaviors can be merely
a new event or still sometimes cause serious damages to the system. For that reason,
they need to be reported to and reviewed by human for appropriate actions.

Figure 1.1.: Example of outliers in a 2-dimensional Gaussian distribution. Three outlying
data points are marked with red circles

Figure 1.1 shows an example of outliers where data are generated from a 2-
dimensional distribution with zero-mean and unit variance. The red data points
lie significantly far away from the center (0,0) so it is in doubt whether they are
generated by the same distribution. Those data points are considered to be outliers.

Depending on the type of application and whether there are already samples of
outliers, the problem of detecting outlier could be solve by supervised method or
unsupervised one.
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In case of supervised method we assume that there are already some domain
knowledge about the data and outliers available. The system that we build should
detect outliers based on that knowledge. On the contrary to supervised methods, in
unsupervised outlier detection, a statistical approach will be applied to find outliers.

For illustration, let’s take a look at an example of credit card fraud detection, in
which we are trying to find abnormal behavior from a list of payments (this illustra-
tion is taken from [2]):

2, 4,9, 98,3, 8,10, 12,4, 5,97, 88,102, 79 (1.1)

Unsupervised methods may find payments with amount of 98$ and 97$ suspicious
because they noticeably deviate from the recent payments. However payments or
transactions with a large amount of money are in reality not so seldom, user may
sometimes make a big purchase. Knowing that, supervised methods don’t see these
payments/transactions as outliers. They only pay attention to a continuous sequence
of these payments or transactions, which is not frequent behavior and may imply
something abnormal. Thus, 88, 102 and 79 are seen by supervised methods as out-
liers.

1.2 Classification of Outlier Detection Problems

While anomaly detection is applied in many areas with different type of data, in this
work, we will focus on temporal data.

According to the survey from Gupta et al. [3], temporal data can be divided into
five main categories:

1. Time Series Data

2. Data Streams

3. Distributed Data

4. Spatio-Temporal Data

5. Network Data

For the first type of data (time series data), application is given a set of time series
and tries to find which time series or which subsequences of a time series are out-
liers. This is the simplest form of finding outliers because the algorithm can visit a
time series or a sequence of a time series multiple times. The runtime of the algo-
rithm for this type of data is not critical. Methods for finding outliers in time series
data set are usually off-line.

A time series, which has an infinite length, is called streaming data. To process
this kind of data, an application must be able to adapt to drifts in each stream.
Drifts could be new value range, new behaviors or a new established/disappeared
correlation across different streams. Approaches for this type of data usually make
use of a model that can be simply updated to capture the characteristics of new
data and slowly forget the impact of the old data. In comparison to the first type
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of data, algorithms for dealing with streaming data can be seen as online methods.
Outliers in streaming data are usually data points since windows based approaches
mostly are used in offline task [3]

Outlier detection methods used for the last three types of temporal data (Dis-
tributed Data, Spatio-Temporal Data and Network Data) are specialized for different
aspects. They are more systems-oriented than the first two. Distributed data focus
on the scenario where the data are collected in different nodes (for example of a
wireless sensor network). The challenge is how to detect outliers without transmit-
ting much data between nodes [4, 5]. Spatio-temporal data takes into account the
additional information of the location where the data points are also recorded. In
network data, each data point is a graph of the network. Which means, each data
point is basically a set of nodes and vertices. The problem is now to find outlying
graphs in the given streams of graphs.

1.3 Problem Statement

Nowadays we are using more and more artificial satellites. They are orbiting the
earth and provide us a lot of information that facilitates everyday life activities, re-
searches, military and a lot of different purposes.

One of the most important task of operating satellites is to keep track of the satel-
lites and make sure they are healthy and working properly. In order to do that, a
lot of sensors are installed in each satellite to monitor the environment, state of on
board devices as well as of the whole system.

Satellites will continuously send these sensor measurements to ground stations.
Here the measurements will be scanned by experts and they will decide if it is
about a strange behavior, and maybe some appropriate actions should be taken to
bring them back to normal state.

Scanning the sensor measurements could be very stressful, since each satellite con-
sists of thousands sensors which generate a large amount of data every few seconds.
On the other hand, strange behaviors or malfunctioning of on board devices occur
rarely, which means most of the time we observe the data from normal behaviors.

Since we are interested in the abnormal behaviors which are reflected in unusual
sensors’ measurements, so one can think of using the computational power of com-
puter and outlier detection techniques to help and reduce the works for the monitor-
ing experts.

1.4 Organization of the thesis

The remainder content of this thesis is structured as follows. In chapter 2 we will get
to know the Solenix’s data set that is used in this works. Furthermore, the general
characteristics of the data set are also analysed so that we can better understand it.
We also address the difficulties and problems of finding outlier in this data set.

In chapter 3 we will take a look at the background literatures in the field of time
series analysis and outlier detection. The techniques and approaches which are either
related to this work or used in the data processing pipeline are also described in this
chapter.
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Our proposed approach and its implementation details are explained in chapter
4. Here we will show how the algorithm deals with multiple dimension streaming
data and how it finds outliers. Afterwards, we will describe how the data processing
pipeline can be configured so that it can be applied on different data set.

Chapter 5 presents an evaluation of the algorithm and reviews the outliers that are
found in the Solenix data set. The performance of the algorithm and set up of each
experiment are also discussed in this chapter.

Chapter 6 provides the summarization and a conclusion for the thesis. We will also
discuss about possible directions of future works
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2 Characteristics of Data Set
Since the goal of this thesis is mining time series data to detect outliers, so we
should firstly get to know the data. In this chapter, we will examine the general
characteristics of the Solenix’s data set which is mainly used in this work.

This data set consists of measurements from a satellite. They were recorded in
about 12 days and stored in form of multiple time series. Each time series in this
data set is a sequence of measurements and their recorded time stamp generated by
a sensor or an on-board device.

In total, the data set consists of 1288 time series with 43,918,229 data points (on
average there are 3̃4098 data points per time series). However, this is still considered
as a small data set since the number of time series could be much bigger (up to
40,000 time series). So it is required that the outlier detection algorithm can be
scaled up to deal with larger number of time series.

2.1 Value Range and Sample Rate

2.1.1 Value Range

One notable thing in the data set is that the values of each time series fluctuate
widely. The minimum and maximum values of a time series can be very small from
4.2× 10−4 to 5.2× 10−4 or large from 0 to 1012. This also implies that the other
statistical characteristics of each time series such as variance, mean and range are
also distributed in a wide domain. By computing the variances of 1288 time series
we can see that the smallest variance is about 10−15 and the maximum variance
is greater than 1017. In figure 2.1, the variances are plotted in increasing order
(Note that because of the variation is too big, we have plotted the variances using
logarithmic scale on the y-axis). Still, the extreme variances are found in a small
number of time series, most of the them (about 84%) has variance smaller than
1000 (see table 2.1).

This characteristic is caused by many reasons, one of them is the difference in
measurement’s units. Each time series represents a sensor which measures different
type of data like temperature, coordination, voltage, light or gyroscope. . . . The units
of these data type are incomparable thus it causes the huge different between time
series.

The enormous difference in scale of time series could effect the performance of
algorithms in data mining. Thus, it is one of the problems that we have to deal
with in later part of this work.
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Figure 2.1.: Variance of 1288 time series from Solenix data set. Y-axis is set to logarithmic
scale

Variance Number of TS Percentage
0-1 636 51.58%
1-1000 402 32.60%
>1000 195 15.82%

Table 2.1.: Variance of Time series

2.1.2 Sample Rate and Synchronization

Despite all time series are recorded from the same satellite, they have different sam-
ple rates and not synchronized. The time series with highest sample rate has 259,199
data points (it is four data points every second) and the one with lowest sample rate
contains only 6 data points. However most of them have high sample rate, 1192 out
of 1288 time series (about 92.55%) have more than 8,000 data points (see table
2.2). As the most approaches for outlier detection in streaming data [6, 7, 8], we
also don’t want do deal with flexible arrival rate. Since processing and finding out-
liers in multiple time series in such case is stressful and not effective. Solutions for

Data points per TS Number of TS Percentage
>100.000 29 2.25%

>50.000 332 25.78%
>20.000 688 53.42%

>8.000 1192 92.55%
>5 1288 100.00%

Table 2.2.: Distribution of the sample rates within 1288 time series. The first column is the
constraint for the number of data points. The second column shows how many
time series fulfill that constraint. Third column show the result in percentage
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dealing with such time series is usually to try to bring all them to the same level of
sample rate (by doing up/down-resampling).

Another important characteristic of the dataset is that most of the time series are
stationary. By simple plotting out the each time series we can observe that they
often contain six repeated periods (Figure 2.2). This observation is used later on
when we want to determine how long the algorithm should wait before starting to
find outliers. The waiting time is needed for some parameters to converge.

Figure 2.2.: Most of time series consists of repeated pattern

2.2 Correlation between Time Series

Because the time series are recorded from sensors in the same satellite, they reflect
the same state or behaviors of the satellite and are usually correlated. For exam-
ple two temperature sensors in the same part of the satellite should produce similar
measurements and therefore they are positively correlated. Contrariwise, the measure-
ments of two temperature sensors placed in opposite side of a satellite are usually
negatively correlated (When one side is facing the sun, its temperature will increase
and temperature on the other side will decrease).

By plotting each time series from the data set we can obverse this characteristic
in a more intuitive way. In figure 2.3 we show two examples of positive correlation
(figure 2.3a) and negative correlation (figure 2.3b).

(a) Two positively correlated time series (b) Two negatively correlated time series

Figure 2.3.: Examples of correlated time series from Solenix’s data set
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In this work we will exploit the correlation to compress the enormous number of
input time series into fewer linearly uncorrelated time series and try tracking the
correlation to find outliers.
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3 Theoretical Backgrounds

3.1 Feature Scaling

3.1.1 Why scaling?

Feature scaling is one of the well-known techniques that is commonly used in data
pre-processing. It is used to bring different features to the same scale, whereas the
scale could be interpreted as range of possible values, mean, variance or length (in
case of scaling vectors). The different in scale of features may have negative impacts
on many algorithms in machine learning and data mining, thus it is considered as a
requirement for those algorithms [9].

For example clustering methods like k-means suffers from unequal variance of fea-
ture. That is because k-mean is isotropy and when the variances of some features
are much bigger than the others’, k-mean is more likely to split the clusters along
those features and ignore the features with small variance. In the case of gradient
descent, unequal variance of features makes the convergence process become slower.

The importance of normalization in neural network is reported by Sola et al. in
[10]. Also, the roles of feature scaling in support vector machine are reported in
[11] by Hsu et al. In general, to equalize the effect of each feature has on the
results, rescaling should be used on the numeric features [12].

Based on the statistical properties of the features, there are different scaling meth-
ods. In the following sections we will introduce briefly two conventional re-scaling
methods: the Min-Max Normalization and Z-Score Standardization. There are more
scaling techniques of different fields in literatures like Decimal scaling [12], Bi-Normal
Separation (BNS) feature scaling [13], Rank normalization [14] or Transformation to
Uniform random variable [15]

3.1.2 Min-Max Normalization

Min-Max Normalization is the simplest form of feature scaling and usually denoted
shortly as ’normalization’. Min-Max Normalization re-scales features in the mean of
range of possible values. After normalizing all features will lie in the same range.

The common ranges are [0, 1] and [−1,1]. Another range could also be used and
can be derived from results of normalizing into [0, 1]. Min-Max Normalization of a
random variable x is based on its minimum and maximum values and is given by
form 3.1. In general, the minimum and maximum values are taken from the training
set to normalize the new data (in test set).

x̄ t =
x t −min(x)

max(x)−min(x)
(3.1)
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3.1.3 Z-Score Standardization

Z-Score Standardization is a method for re-scaling a feature in the mean of variance
and mean value. It aims to transform all features so that they have the same vari-
ance and mean. Usually the features are re-scaled to zero-mean and unit variance.
In such case, Z-score standardization of a random variable x is given by following
form:

x̄ t =
x t −µ
σ

(3.2)

Where µ and σ are the mean and standard deviation of x . Z-Score is often used
when the features are measured in different metrics or varies from each others.

For example, a feature represents room’s temperature in Celsius which may vary
from and 0◦ to 40◦ and another feature represents light intensity in luminous flux
(lux), which may vary from 0 lux (complete darkness) to 100000 lux (direct sun-
light). An clustering algorithm may split this data set just according to the light
feature since it has the most variance.

3.2 Moving Average

Moving average is a method used in time series analysis to cancel the temporary
changes or noise and highlight the main trend.

Simple Moving Average

In the simplest from of moving average the value of current data point is computed
as the average value of the last n data points.

SMA(x t) =
x t + x t−1+ . . .+ x t−(n−1)

n
(3.3)

For simple moving average, we need to remember the last n value of each time
series. It can also be implemented more efficiently using the incremental update
form:

SMA(x t+1) = SMA(x t)−
x t−(n−1)

n
+

x t+1

n
(3.4)

Weighted Moving Average

Weighted moving average also computing the average of recent data points but it
places different factors on data points. The weight of each data point usually a fixed
function of its relative position to the current data point. The purpose of this method
is often to put higher weight on recent values and therefore the current value is up
to date.

W MA(t) =
α1x t +α2x t−1+ ...+αnx t−n+1

∑n
i=1αi

(3.5)
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We choose αi, i = 1...n so that α1 ≥ α2 ≥ . . .≥ αn.
Exponential moving average is a special case of weighted moving average where

n→∞ and αi = αi with α is a value in range (0,1)[16]. The weight of a data point
exponentially decreases to its relative position from the current data point

EMA(t) =
x t +α1x t−1+α2x t−2+ ...+αi x t−i...

∑∞
i=0α

i
(3.6)

≈ (1−α)x t +α× EMA(t − 1) (3.7)

One of the advantages of exponential moving average is that the computation process
is very simple. According to equation 3.7, it needs to remember the last EMA value
(at time = t − 1).

3.3 Dimension Reduction

3.3.1 Principal Component Analysis

In machine learning, Principal Component Analysis (PCA) is a well-known technique
for reducing the dimension of data. It can capture the linear correlation between
variables (or features) and transforms them into fewer linearly uncorrelated hidden
variables. When dealing with multi-dimensional data we may try to use PCA to re-
duce the number of dimension first and then we apply our learning methods on the
reduced data. The number of dimension needed for capturing the major characteris-
tics of a given high-dimension data set is usually much smaller than in the original
data. In the worst case, it can only reach the number of dimension of original data.

The idea of PCA is to find out, on which subspace of the feature space, the data
could be best represented. For example if we have two correlated random variables
(see Figure 3.1). We project this 2-dimensional data set on vector ~u1 so that each
data point can be now represented as α ~u1. This representation will capture the most
significant information of the data set and the reconstruction error is minimal. The
best direction to project the data on is the direction with the most variation of the
data.

Formally, let x be a M-dimensional random variables and we have N samples of x:
{x1, x2, ..., xN} where x i ∈ RM , i = 1...N
Let y1 is the projection of x on u1 so y1 is the product of x and u1 (y1 = x × u1).
The first principal components is the vector u1 so that the projection of x on u1 has
maximum variance:

u1 = argmax
u1
(v ar(y1)) (3.8)

= argmax
u1

N
∑

i=1

1

N
(y1,i − ȳ1)

2 = argmax
u1

1

N

N
∑

i=1

(x iu1− x̄u1)
2 (3.9)

= argmax
u1

1

N

N
∑

i=1

uT
1 (x i − x̄)(x i − x̄)T u1 = argmax

u1
uT

1Σu1 (3.10)
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Figure 3.1.: Example of PCA on 2 dimensional data space

with the normalization constraint that




u1





= 1 (or u′1u1 = 1) and Σ is the covariance
matrix of x:

Σ = E[(x − x̄)(x − x̄)T] (3.11)

This is a constrained maximization problem so we can use Lagrange multiplier to
transform it to dual problem of maximizing [17]:

L(u1) = uT
1Σu1−λ(uT

1 u1− 1) (3.12)

solve it by derivative with respect to u1 we have

Σu1−λu1 = 0 (3.13)

when u1 and λ fulfill this equation, they are the eigenvector and eigenvalue of Σ.
The eigenvalue λ is also the variation of the data set along the principal direction
u1. Therefore the first principal direction is the eigenvector with greatest eigenvalue
λ.

To sum up, for doing PCA on a data set x we have to:

1. Compute the covariance matrix Σ from the data set x . The complexity of this
operation is O(M2N)

2. Compute the eigenvalue and its eigenvector of Σ. This take O(M3)

Additionally in the case of streaming data we have to access the past data points for
computing Σ.
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3.3.2 SPIRIT

In this section we present an alternative approach, called SPIRIT, proposed by Pa-
padimitriou et al.[18] The name of this method (SPIRIT) stands for Streaming Pattern
Discovery in Multiple Time-Series. What is can do is similar to PCA but it is special-
ized to multiple time series and more importantly, it works in an online manner and
therefore is suitable for dealing with streaming data.

Instead of computing the eigenvector and eigenvalue from the dataset, SPIRIT
learns the eigenvector incrementally from the data set. It firstly initiates some dummy
eigenvectors as unit vectors

u1 =











1
0

. . .
0











, u2 =











0
1

. . .
0











, . . . , uk =











0
0

. . .
1











For each new incoming data point, the eigenvectors are updated according to the
error that it makes when using current eigenvectors to project the new data point.
The first principal direction will be updated first and the process continues in the
order of decreasing eigenvalues. Error of a data point that cannot be captured by
the first principal direction is left as input for updating the next principal directions.
The i-th eigenvector is updated as follows:

• Project input data point to the i-th eigenvector: yi,t = uT
i x̂ i,t

• Compute the error that it made by using i-th eigenvector: ei = x̂ i,t − yi,tui

• Estimate energy of all data points along i-th eigenvector: di = λdi + y2
i,t

• Update the principal component based on the error, projection and learning rate:
ui = ui +

1
di

yi,t ei

• Error that cannot be captured by the first i principal components is left as input
for updating next eigenvectors x̂ i+1 = x̂ i − yiui

Using this update process is actually applying gradient descent to minimize the
squared error e2

i with a dynamic learning rate di. Therefore, ui will eventually con-
verge to the true i-th principal direction. We can show it formally by deriving the
squared error function as follows:
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Ei =
1

2
e2

i

=
1

2
( x̂ i − yiui)

2
(squared error function)

∇Ei =
1

2
2( x̂ i − yiui)(−yi)

=−ei yi

(take the derivation of squared error with respect
to ui)

ui = ui − γ∇Ei(ui)
= ui − γ(−ei yi)

= ui +
1

di
ei yi

(using the gradient descent update form with the
learning rate γ= 1/di)

As we see that the learning rate The way di is computed makes it proportional to
the variation of the past data point a long ui. The learning rate is set dynamically
to 1

di
means that if the variation of the past data points a long the i-th principal

component is great, then gradient descent will make a small step. If the variation is
small, so gradient descent will make a big step. In general it is desirable to have
adaptive learning rate that makes a big step when it is far from the optimal value
and slows down when it gets closer to the optimal value.

Another advantage of SPIRIT over conventional PCA is that SPIRIT can automat-
ically detect the number of needed hidden variables on the fly. SPIRIT tracks the
number of hidden variables by comparing the energy of the original time series (E)
and of the hidden variables (Ẽ). The algorithm will adjust the number of hidden
variables to keep ratio of Ẽ/E in a certain window. In [18], the window is set to
[0.95, 0.98]. This condition could be formulated as:

0.95E ≤ Ẽ ≤ 0.98E (3.14)

When Ẽ is greater than 0.98E, it means that we do not need that many principal
components to capture the significant information of the data set. Therefore SPIRIT
will decrease the number of hidden variables. If Ẽ is smaller than 0.95, it means
that the original time series are poorly represented by current principal components
and thus SPIRIT will increase the number of hidden.

However the way SPIRIT detects number of principal components does not always
work because the contribution of each time series to the total energy is different.
In general, it requires that the input time series have the same energy level. We
consider it as an additional requirement for SPIRIT and will discuss about this in
detail on section 4.2.

3.3.3 Autoencoder

Autoencoders are also known as autoassociators or Diabolo networks [19, 20, 21].
They are trained to compress a set of data so that we could have a better represen-
tation in a lower dimensional space.
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An autoencoder is a special neural network in which its input-layer and output-
layer have the same size (N-dimensions) and there is at least a hidden layer in
the middle that connect two parts. The hidden layer’s size is smaller (K-dimensions,
K < N) than input and output layer. The middle-hidden-layer is also called the code-
layer since it is the new representation of compressing the input data. A simplest
form of autoencoders with one hidden layer is show in figure 3.2. The first part
of the network (from the input to code-layer) is called encoder since it encodes the
input. The second part (from the code-layer to output) is called decoder because it
reconstruct the input from the code-layer.

Figure 3.2.: An autoencoder with one hidden layer consists of 2 nodes. The input/output
layer have 4 nodes. This autoencoder can be used to compress 4 dimensional
data to 2 dimensional data

If we use the simplest form of autoencoder (one hidden linear layer) and the mean
squared error for training it, then K units from the code layer span the same sub-
space as the first K principal components by PCA [22]. However the principal com-
ponents from PCA are not equal to the hidden units of code-layer. The principal
components are orthogonal and are picked so that the i-th component contains the
most variance which is not covered by the first i−1 components. Whereas the hidden
units of an autoencoder are not orthogonal and tend to be equal.

As we can see that the difference between an autoencoder and a normal neural
network for other task is that, the size of input and output layer is equal. Further-
more, The training process of autoencoders aims to find the optimal weights, so that
the output is as close as possibly to the input. If it is successful to do such job,
that means the autoencoder can compress the input from N dimensions to K dimen-
sions (as the size of hidden layer). And from this K-dimensions data, it can also
reconstruct back the original data in N dimensions without losing much information.

From the approach of one-hidden-layer autoencoders, we can generalize it by
adding extra hidden non-linear layers to the architecture and form a deep autoen-
coder (see Figure 3.3). With these additional hidden layers, deep autoencoders can
capture the non-linear correlation of the data and therefore provide a better result in
data compression and representation. However a deep neural network is hard to op-
timize. In recent researches in deep learning, Hinton et al. have successfully trained
deep autoencoders for image and text document data [23]. In this publication, the
deep autoencoders are pre-trained layer-by-layer using restricted Boltzmann machine.
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Afterwards, all pre-trained layers are assembled (unrolling) and then backpropagation
is used to train the whole deep network. The results of deep autoencoders in repre-
sentation and reconstruction are much better than by using PCA. However because

Figure 3.3.: Structure of a deep autoencoder

of the complex structure of deep autoencoders, it is hard to track the correlation be-
tween time series and to explain the outliers. This could be considered as a drawback
of deep autoencoders.

3.4 Alternative Approaches

In this section we will review two alternative approaches in the context of detecting
outliers in streaming data.

3.4.1 AnyOut

Most of approaches for detecting outliers in streaming data assume that the data
streams are synchronized and have a fixed sample rate. Recently, Assent et al. intro-
duced an algorithm called Anyout [24](Anytime Outlier Detection), which also deals
with flexible arrival rate of streaming data. It finds outliers without assumption about
sample rate.

The approach of Anyout is based on hierarchical clustering algorithm (here ClusTree
from Kranen et al.[25] is used). The clusters are ordered in a tree structure in which
the children nodes are clusters that contain more fine grained information than the
parent node. As a data point arrived, Anyout will traverse the tree to determine two
outlier scores:
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• Mean Outlier Score

• Density Outlier Score

By this approach, Anyout also takes into account available time to process a data
point. As long as the there is no new data point arrived, the current data point is
still processed and the algorithm is able to go to deeper level of the clustering tree,
therefore, result of outlier score is more accurate.

3.4.2 SmartSifter

SmartSifter was presented by Yamanishi et al. in [26, 27]. It is an unsupervised
algorithm which use online sequential discounting approach and can incrementally
learn the probabilistic mixture model from the time series data.

To encounter concept drift, SmartSifter also includes a forgetting factor which make
the algorithm gradually forget the effect of past data points.

Furthermore, SmartSifter consists of two algorithms for dealing with categorical
variables and continuous variables.

With categorical variables, the Sequentially Discounting Laplace Estimation (SDLE)
algorithms is used. It divides the feature space in to cells. The probability that a
data point x lies in a cell is simply the ratio of total number of data points in that
cell divided by the total number of data points with Laplace smoothing applied on
top it.

To deal with continuous variables, SmartSifter used two models, one independent
model for the data distribution and one model for time series.

For the data model, they proposed two algorithms for learning mixture parametric
models and non-parametric model

• Sequentially Discounting Expectation and Maximizing (SDEM) for learning the
Gaussian mixture model (parametric)

• Sequentially Discounting Prototype Updating for learning Kernel mixture model
(non-parametric)

For time series model, the Sequentially Discounting AutoRegressive (SDAR) algorithm
is used that learns AR model from the time series with decay factor.
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4 Approach and Implementation

4.1 Approach

As we see in section 3.3.2, the SPIRIT method introduced by Papadimitriou et al.
provides a fast and incremental way to find the principal directions. On that we
can reduce the number of time series to hidden variables and reconstruct them back.
When the input time series are correlated with each other, this method works effec-
tively and can compress the inputs into a few output time series. Based on this, we
approach the problem of finding outlier in multiple correlated time series, which is
caused by one (or some) time series suddenly break the correlation. This type of
outlier could be interpreted as a disturbance of some sensors or malfunction in a
part of the system.

Assume that we have a set S of k correlated time series x1, x2, . . . , xk. Further,
assume that from time tick t to t + p, the i-th time series (x i) suddenly changes
and breaks the correlation (outlying data points). At the beginning of these outlying
data points (time tick t), the old principle directions are used for projecting and
reconstructing. Since outlier in x i breaks the correlation, the old principle directions
cannot capture these outlying data points. Therefore the reconstruction error at this
point will be significantly higher than at normal data points. As the time tick increase
from t+1 to t+ p, SPIRIT will slowly adapt to the change by adjusting the principal
directions and possibly also by adjusting the number of hidden variables if the error
is too high. However the adjusting process also takes into account the past data
point, so it is quite slow and therefore the reconstruction error are still higher at
these time ticks.

For illustration, we apply SPIRIT on five correlated time series which are generated
by sinus function with Gaussian noise. The generated time series have zero mean
and variance of 0.5. We choose one time series from those and put an outlier into it
by setting the values of a small window to zeros (here we used index from 800 to
815, see Figure 4.1). Note that, zero is in the range of sinus function [−1, 1] and
not a new value of the time series.

Because all the input time series are correlated so they can be compressed into one
hidden variable. From this one, input time series that do not contains outliers can
be reconstructed with relatively small errors. For time series with the outlier from
t = 800 to 815, the break in correlation results in a high peak in its reconstruction
error. By running a simple extreme value analysis on the reconstruction error we can
find the outlier.

As we have explored the characteristics of the time series data recorded from a
satellite in chapter 2 and see that there are many correlated time series. The problem
of detecting outliers in this data set can be approached by using SPIRIT and the
reconstruction error as described above.
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Figure 4.1.: Detecting outliers in time series data which are generated by sinus function

4.2 Requirements for SPIRIT

As mentioned in Section 3.3.2, a very desirable property of SPIRIT is that it can
adjust the number of hidden variable on the fly. This could be considered as an
advantage of SPIRIT over PCA and autoencoder since we can start with any num-
ber of principal components and it will automatically find out how many principal
components are needed.

The criterion for finding the number of hidden variables is to use energy thresholds.
Where the total energy of original time series and of the reconstructed time series at
time t (Et and eEt) are defined as the average of square values of each data point
[18]:
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Here x i,τ is the data point of i-th in put time series at time tick τ; y_,τ is the
projections on principal directions at time τ and x̃ i,τ is the reconstruction of x i,τ
from the projections.

The algorithm adjusts number of hidden variables so that the total energy of hidden
variables retain in the range from 95% to 98% the total energy of original time
series:

0.95× Et ≤ eEt ≤ 0.98× Et (4.3)
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Figure 4.2.: High and low-energy time series with their reconstruction. Data are taken from
chlorine dataset[28]

As it is proven in [18], this criterion is equivalent to keep the relative reconstruction
error of all time series in the range from 2% (1-0.98) to 5% (1-0.95):
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However as we have examined the data set in chapter 2, time series in our data set
have very different scales. Thus, their energy is varying, it could lead to a problem
that the algorithm treats each time series unequally.

With that concern, we run a test on the chlorine data set1 which is one of the data
sets used for evaluating SPIRIT [28]. On this test, the algorithm also discovered two
hidden variables from 166 input time series (the same result as reported in [18]).
When we plot the reconstructions and compare it with the original time series, only
time series with high energy could be well reconstructed. The reconstructions of
low-energy time series do not approximate very well their original time series. An
illustration is showed in figure 4.2, where the plots represent two original time series
(blue lines) with very different energy levels. The contribution to total energy of the
first time series is about 681 times more than the contribution of the second one.
The reconstructions of each time series are showed in red lines. We can see that the
the time series with high energy and its reconstruction are quite alike (they are well
reconstructed), while the one with lower energy and its reconstruction are not.

1 Sensor measurements of chlorine concentration of drinking water in the distribution network
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Figure 4.3.: Original time series and reconstructed time series from chlorine dataset [28]

This could be explained that if we apply the algorithm on time series with differ-
ent scales, they will contribute differently to the total energy. The contribution of
time series with higher energy dominates the lower ones, thus the number of hidden
variables are regulated by the higher-energy time series. As a result, the projections
are more sensitive to high-energy time series rather than of the low-energy ones.

To deal with this problem, one could think of using a different criterion for deter-
mining the number of hidden variable or trying to rescale each time series so that
they all have a same energy level, and thereby equalize the role of each time series.

We run the second experiment on the same chlorine data set[28], but before
putting the data into SPIRIT, all time series are re-scaled using Z-Score standardiza-
tion using the formal 3.2. For standardization, the mean (µ) and standard deviation
(σ) of each time series are computed directly from the data set. After this prepro-
cessing step, all time series are standardized and have zero mean and unit variance.
The other parameters needed for running SPIRIT are kept the same as in the first
experiment.

The result of second experiment shows that the algorithm now needs 14 hidden
variables for compressing 166 input time series (instead of just two as in the first
experiment). However not only time series, which originally have high-energy, are
well reconstructed but also low-energy time series. In figure 4.3 we can compares
the result of reconstruction before applying standardization (figure 4.3b) and after
standardization (figure 4.3a).

So by normalizing the energy, the algorithm treats all time series equally. It takes
into account the low-energy time series, therefore new hidden variables are needed
to be able to capture all time series into hidden variables.
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4.3 Data Processing Pipeline

This section gives you, firstly, an overview of how the system work. We will then
briefly describe the functionality of all steps in the data processing pipeline as well
as how they are connected to the others. In the following subsections, each step of
the pipeline is also discussed in details.

The first phase is preprocessing. In this phase, the incoming data points from each
data stream is smoothed out by applying triangular moving average. As we have
discussed in 4.2, we need to make sure the all time series are treated equally so
the data points are rescaled by using z-score standardization. Output of this step are
rescaled data streams with approximately same mean and variance.

In second phase, the standardized data streams are put into SPIRIT. The input
streams are projected to the principal directions and the weight matrix are updated
for each new data point. Outputs of this phase are streams of hidden variables,
reconstructed data stream and the weight matrix. In the third phase, the re-

Figure 4.4.: Three phases in the data processing pipline

construction error is used to determine whether there is outlier or not. If it was
detected that there is an potential outlier, the index of time series which are causing
this outlier are thrown as the output. System could then use this and raise a warn-
ing so that experts can review them and decide if that was an actual outlier. Also in
this step, a list of time series, which have the similar shape as the one with outliers,
are also thrown out as additional output. This extra information could be used as
an explanation for the outlier. Details about finding similar time series when outlier
occurs is discussed in section 4.4

4.3.1 Preprocessing

We already see in section 4.2 that standardization should be applied to each time
series before running SPIRIT. Together with standardization, we also use other pre-
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(a) Original function (b) Resampled data points

Figure 4.5.: Down-resampling of a continues function to 11 data points

processing techniques in the data processing pipeline. In this section we will dis-
cuss about the each preprocessing steps, how they can be implemented to deal with
streaming data and and their effects to the results.

Resampling

As we have described in section 2.1, data points of each time series are recorded at
different rate, so the first thing to do is to re-sample them so that they are synchro-
nized. This process makes sure that there is a new data point in each time series
after every time tick t. In the mean of stream processing, the value of a time series
at time tick t is the last value that the system received since the last time tick. In
other words, the last value in time interval (t − 1, t]. In case there is no data point
arrived within (t − 1, t], we simply take the resampled data point at time t − 1.

When the time series has higher frequency than the resample rate, it is called
upsampling. An example of downsampling is showed in figure 4.6, in which, the
original is a continuous function (figure 4.6a) and on the right side, figure 4.6b
shows the its resampled time series with 11 data points.

An other case is when the number of data points in original time series is lower
than the resampling rate, so it is called upsampling. The example in figure 4.6a is
the original time series with 5 data points. Using last-known value to resample it we
get a new time series with 11 data points (see figure 4.6b).

This resampling method is simple to implement and it does not require much com-
putational resource and for each time series it only has to remember the last known
value. The complexity and storage requirement are both O(n), where n is the number
of time series.

The disadvantage of this method is that information is getting lost by resampling.
However, after resampling, we can ignore the time stamp and do not have to deal
missing value. Furthermore, the representation of time series data after resampling is
matched to the input form of SPIRIT.
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(a) Original function (b) Resampled data points

Figure 4.6.: Up-resampling from a function with 5 data points to 11 data points, using last
known value if value for current time tick is missing

Moving Average Smoothing

As the second preprocessing step, triangular moving average is applied on each time
series to remove the temporary trends or noise and make the main trends clearer to
notice.

Using moving average does not require much resource since it just compute the
average value of the recent history data point. With window size of w, we have to
store the last w data points for each time series (w is usually smaller than 100).

Standardization

As we have showed in section 4.2, before feeding data to SPIRIT, all time series
should be rescaled so that they have the same amount of energy. The z-score stan-
dardization which is used in section 4.2 is an appropriate approach. However, this
method requires that the mean and variance of each time series are known and the
application that we aim to build must deal with streaming data. It means that the
true mean and variance of each time series are unknown. So what we can do is to
estimate the mean and variance from the history data points and use them as true
mean and variance to standardize the new data point. Computing the mean and vari-
ance from history data point can be implemented very efficiently in an incremental
manner. Since the standard deviation of a time series could be formulated as:

Var(X ) = E
�

(X − E[X ])2
�

= E[X 2]− (E[X ])2

so the only two variables that need to be stored are the sum of history values
(sum) and the sum of squared history values (square_sum). For an incoming value
x t at time t, the estimated mean and variance are updated as follow:
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sum= sum+ x t

square_sum= square_sum+ x t
2

est imated_mean= sum/t

est imated_v ar = square_sum/t − est imated_mean2

There are other method for incrementally estimating mean and variance which are
claimed to be more robust[29, 30]. However all methods provide the same empirical
result when applying on our dataset, the mean and variance converge after few data
points.

A drawback of using incrementally updated mean and variance for z-score standard-
ization is that it cannot deal with constant time series or time series which begins as
a constant. As long as the values are constant, the estimated variance will be zero
and z-score standardization cannot be applied (division by zero). This observation is
important because such time series also exist on the data set from Solenix. A simple
solution for this problem is to use a constant instead of z-score standardization when
the variance is zero. With that, the standardized value of time series x at time t
with the estimated variance (est_v ar) and estimated mean (est_mean) is computed
as follow:

i f ( e s t _va r < eps )
s tandardized_x ( t ) = 0;

else
s tandardized_x ( t ) = ( x ( t ) − est_mean )/ sqrt ( e s t _va r ) ;

end

Listing 4.1: Standardization with estimated mean and variance

Results of Incremental Standardization

The results of incremental standardization will eventually converge to the normal
standardization. Because as the time t increases, the number of sample data points
also increases and therefore incremental mean and variance get closer to the true
mean and variance.

So the question is how good is the convergence of incremental standardization and
how good the convergence need to be. The second question is that how quick is the
convergence process.

To answer the first question, we apply the incremental standardization to 100 time
series from Solenix data set. In these time series, ratio between the greatest and
smallest variance is more than 600 (see histogram a of Figure 4.7). Since we are es-
timating the variance and mean from the past data points to standardize the current
data point, the variances of time series after standardization are still not equal to one
but they are distributed in a small area around one(see histogram b of Figure 4.7).
The distribution of variances is much narrower than in original time series. In fact,
the greatest ratio between variances is now about 10.
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Figure 4.7.: Histogram of energy distribution before and after preprocessing

We are doing standardization because of the huge different in time series scales
(one time series could have more than 600 times the energy of the others). The
practical result shows that rescaling is not importance if the difference between vari-
ances is small. We set apply SPIRIT on 100 time series, which are rescaled with
incremental standardization. By comparing the rescaled time series with its recon-
struction we will see that SPIRIT is able to reconstruct well the time series with
smallest variance (see Figure 4.8).

Figure 4.8.: The reconstruction of the lowest energy versus greatest energy time series after
applying standardization. The maximal energy time series in the used data set
is 10 times bigger than this time series

Since most of time series in Solenix dataset is periodic (its shape repeats itself
after one period), the incrementally standardized time series gets close to the normal
standardized time series after a period (see Figure 4.9a).
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There are also some extreme case in the data set where the first half is constant
see Figure 4.9b). At t ≈ 30000, the time series starts to changes, therefore, result of
the standardization process deviates from desired time series.

Figure 4.9.: Comparing results of incremental standardization with z-score standardization
with pre-computed mean and variance

4.3.2 Putting data to SPIRIT

On this phase, we simply put the preprocessed data streams into SPIRIT. The follow-
ing steps will be applied for each new data point x t :

1. Project x t to each principal direction, update the weight matrix W based on the
error that the old weight matrix make with x t

2. Orthonormalising the weight matrix by using Gram-Schmidt process.

3. Update the energy of input streams and of the reconstructed streams. Adapt the
number of hidden variables (increase/decrease or keep)

As results of this step we will get hidden variables - yt , reconstructed data stream
- x̃ t and a weight matrix - W. These information is passed to the third phase for
finding outliers.

4.3.3 Finding Outliers

In this last step of the processing pipeline, we make use of information provided by
SPIRIT to find out which time series contains contains outliers. We will describe how
to interpret this information and make use of it for tracking the break of correla-
tion in each individual time series and therewith find the actual time series causing
outliers.
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Reconstruction Error

The reconstruction error of a time series contains information about how well can
it be reconstructed from the hidden variables. For detecting when the reconstruction
error indicates that there is an outlier we need to specify a threshold. Whenever
the error is higher than this threshold it can be said there are changes in the data
streams so that the old weight vector can no longer compress the input streams
into hidden variables without losing significant information. Finding an appropriate
threshold can be done in three different ways:

• Static fixed threshold

• Dynamic threshold

• A mixed version of static and dynamic threshold

Fixed Threshold

Using a fixed threshold is the easiest way to finding outlier. The advantage of this
method is that no computation is needed except comparing current error with the
predefined threshold. Because input time series are already standardized in the pre-
processing step which mean their variances are expected to stay close to 1. Therefore
one can think about using the same fixed threshold for all data stream. Applying on
the data set from Solenix with a threshold from 0.7 to 1 can discover very inter-
esting unusual data points. Note that this window for threshold (form 0.7 to 1) is
drawn from empirical results where the standard deviation of the reconstruction error
is about x. For other dataset, a different threshold may be used if the reconstruction
error is bigger (or even smaller).

Dynamic Threshold

The idea of dynamic thresholding is to determine the error threshold based on the
mean and standard deviation of the errors. Since the standard deviation of recon-
struction error is different for each data stream, we can make use of the incremental
process (section 4.3.1) to continuously updating the variance and then the threshold.

Assume that error is a normal distribution with mean µ and standard deviation σ.
A traditional approach for detecting outlying points in such data set is to use the
three-sigma rule. For each data point x i the quantity zi is computed as:

zi =
x i −µ
σ

(4.5)

Any data point x i with
�

�zi

�

� > 3 lies outside the interval three standard deviation
of the mean [µ− 3 ∗ σ,µ+ 3 ∗ σ]. For a normal distribution, such a data point is
considered to be potential outliers [31].
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In statistical point of view, the interval [µ − 3 ∗ σ,µ + 3 ∗ σ] contains the most
data point of a normal distribution N(µ,σ2). According to the three-sigma rule (or
68/95/99.7 rule), if x i is drawn from N(µ,σ2) then with the probability of 99.7

P(µ− 3σ ≤ x ≤ µ+ 3σ)≈ 0.997 (4.6)

So the probability that
�

�zi

�

� > 3 is about 0.3% and it is significantly small enough to
be suspected as an outlier.

Figure 4.10.: Histogram of reconstruction error and a Gaussian distribution with the same
mean and variance

However we should use the threshold of three standard deviations around the mean
only if we are sure that the data is drawn from a normal distribution. If the error
has a different distribution, this test may perform poorly when used for detecting
outlying data points [2].

By creating a histogram of the reconstruction error and comparing it to the nor-
mal distribution (with same mean and standard deviation as the errors), we can see
that distribution of reconstruction error is more slender with very high peak at the
mean and two long tails (see Figure 4.10). So the reconstruction error is not really
a Gaussian distribution. By counting for this particular reconstruction error (see Fig-
ure 4.10), the three-sigma interval of the mean contains about 98.65% the number
of data points. To archive the same ratio as three-sigma interval has in a normal
distribution (which is 99.7%), the window must be expanded to 6.5 times standard
deviation around the mean:

P(er ror ∈ [µ− 6.5σ,µ+ 6.5σ]) = 99.71%

In this frame work, we use α-sigma interval for detecting outlier where α is con-
figurable and should be in range of [6, 10]. We will discuss about how to tune this
parameter in Section 4.5.

In Figure 4.11 we can see a illustration of using dynamic thresholds on the recon-
struction error for detecting outliers. At t = 46000 and t = 57000, the reconstruction
error jumps out of the lower- and upper-bound. Two points are potential outliers.
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Figure 4.11.: Reconstruction error and dynamic thresholds

Mixed Threshold

Dynamic threshold of a time series can be very small if the past data points are
really well reconstructed. In this case a small spike in reconstruction error could be
greater than the dynamic threshold and therefore it will trigger the outlier alarm.
For example a reconstruction error of 0.1 is relatively small in compare to other time
series but it is still considered as outlier if the history errors are even smaller.

We want to encounter that problem by combining fixed threshold (Th f i xed) with
dynamic threshold (Thd ynamic), Whereas Th f i xed is set to a small value and used as
the lower-bound for Thd ynamic.

A data point at time t of i-th time series is considered as an outlier if its recon-
struction error is greater than both thresholds:

ei,t ≥ max(Th f i xed , Thd ynamic) (4.7)

Number of Output Time Series

Since the number of hidden variables is adjusted on the fly to keep the ratio of
energy of hidden variables and original time series in a sufficient level. When outliers
occur in one or more time series at time t, the correlations are broken and the
energy ratio may drop out of the accepted range. It will make the algorithm increase
number of hidden variables.

So in general, the number of hidden variables also provides information about out-
liers in all time series. However, from this information we cannot find out which
time series actually contains outliers.
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4.4 Explaining The Outliers

After found the outliers, one more thing that we could do is to explain it. This can
be done by finding the correlated time series and showing them together with the
one contains outlier. We will then see the correlation in the past data points and
how it breaks at the current data points.

As output of SPIRIT, at time tick t we have k output time series as well as a
matrix of weight vectors W ∈ Rn×k where wi, j (1 ≤ i ≤ n, 1 ≤ j ≤ k) tells us how
much the reconstruction of i-th data stream depends on the j-th hidden variable. So
each row of the weights matrix W contains the information of how to reconstruct the
a input data stream from k hidden variables. The j-th row Wj,_ in W corresponds to
j-th time series.

x =W ∗ y (4.8)

x i =Wi,_ ∗ y (4.9)

=Wi,1 ∗ y1+Wi,2 ∗ y2+ . . .+Wi,k ∗ yk (4.10)

We can prove that if two time series xm and xn are linearly correlated, then Wm,_
and Wn,_ are parallel (they either have same or opposite direction). Because of the
linear correlation between xn and xm, we can represent one as a linear function of
the other with some noise added.

xm = αxn+ β + ε (4.11)

By assuming that two time series is perfectly correlated so we can get rid of the
noise term (ε = 0). Furthermore, because xm and xn are already standardized to
zero-mean, the constant β is also zero. The hidden variables yi is linearly uncorre-
lated therefore equation 4.11 is equal to

Wm, j = αWn, j, 1≤ j ≤ k (4.12)

With that we have proven that if xm is correlated with xn then Wm,_ is parallel
to Wn,_. However, in practice, time series are not perfectly correlated thus the row
vectors are not truly parallel, but the angle between them should be close to 0 or
180 grad. An example of three row vectors of correlated time series are show in fig-
ure 4.12. Using this observation, we can find the correlated time series by computing
the angle between their weight vectors θ = ∠(Wm,_,Wn,_).

cos(θ) =
Wm,_×Wn,_





Wm,_





×




Wn,_







(4.13)

The value of cos(θ) lies in the range [−1,1], where 0 means two vector are perpen-
dicular and two time series are uncorrelated, 1 and −1 means they are parallel and
two time series are correlated. The closer it gets to 1 (or -1) the more correlated
two time series are.

Finding the correlated time series with the one that contains outliers is useful in-
formation for explaining the outliers. Since the outliers imply that the correlation is
going to be broken, showing the correlated time series will point out which correla-
tion is broken.
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Figure 4.12.: Row vectors of three correlated time series. Although the row vectors are in
high dimension, the plot only shows the 2-D hyperplane that contains these 3
vectors

4.5 Parameters Configuration

As mentioned in the previous parts, there are some parameters that can be configured
before putting the system to work. In this section we will discuss about the meaning
of those parameters and how they can be changed to adapt to a new dataset.

Exponential Forgetting Factor

The first parameter that is configurable is the exponential forgetting factor λ. It is
used in SPIRIT to specify how a data point in the history will affect the update
process of SPIRIT. The value range of λ is [0,1], where 0 means not taking the
history data point into account and 1 means using all history data points. Normally
λ should be set close to 1 (typically from 0.96 to 0.98[32]) so that the algorithm
can deal with trends drifting. However in our data set, the time series have very high
sample rate and mostly periodic (each time series consists of 6 periods) therefore we
set the value for λ even closer to 1. For the most experiments we used λ≥ 0.999.

Energy Levels

The energy levels are used to tracking the number of hidden variables. There are two
energy levels: the lower-bound fE and the upper-bound FE. Because fE and FE is the
percentage of how good the variances that retain in hidden variables, it is actually
not critical to change these parameters when we apply the pipeline to a new data
set. However fE should be greater than 0.95 whereas FE must be smaller than 1. In
this work we used fE = 0.97 and FE = 0.99.
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Smoothed Error

For detecting outliers of a time series, the reconstruction error is a good starting
point. It is the difference between the original time series and the reconstructed
time series. A high reconstruction error at time t indicates that there is an potential
outlier at time t. We also may want to detect it if when the reconstruction error
is significant high at some consecutive time stamp rather than just a single time
stamp. One way to deal it is to make use of moving average. it is interesting to
examine the reconstruction error at not only a particular time stamp but also the,a
the exponentially weighted error is used. It is computed from the reconstruction error
with the following formal [33]:

ex pE0 = e0 (4.14)

ex pEt = et +α ∗ ex pEt−1 (4.15)

= et +α ∗ et−1+α
2 ∗ et−2+ ...+αt−1 ∗ e1+α

t ∗ e0 (4.16)

Where et is the reconstruction error and ex pEt is exponentially weighted error at
time t. Despite the exponential weighted error at time t is computed from the entire
history errors, the equation 4.15 is a nice update rule which results the same expo-
nential weighted error and we just have to store the last computed error (ex pEt−1).

The parameter α can be configured in range of [0, 1). A special case when λ is
equal to 0 then the exponentially weighted error is the reconstruction error (ex pEt =
et)

Outlier Thresholds

As we already mentioned in section 4.3.3, the dynamic thresholds are set propor-
tional to the standard deviation of history errors : α×σ. The parameter α indicates
expected deviation of reconstruction error as a window around the mean. The recon-
struction error of a normal data point will most likely fall inside of this window. α
can be interpreted as the sensitivity of the algorithm with outliers and noises.

This parameter can be adjusted on the fly by users. In case of too many suspicious
data points are found but they are not actual outliers but noises, we should increase
λ. The algorithm will then become less sensitive and do not recognize noise as
outlier. However choosing a too high value for α may make the algorithm also ignore
the actual outliers and therefore abnormal data points would remains undiscovered.

From the empirical results by applying on the full data set, we found that λ should
be set in the range from 5 to 11.
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5 Evaluation and Review Outliers
In this chapter we evaluate the performance of the proposed data processing pipeline
on different data sets. The data set of each experiment and the set up parameters
are described in detail. We will then review some of the outliers that are found by
the data processing pipeline.

5.1 General set-up

As described in above sections, data processing pipeline are initiated with some
dummy values (principal directions, estimated means and variances...). Eventually,
these values will then converge but at the beginning, they may be varied and not
stable. It means that the algorithm needs some time to find those parameters and
during this time it should not be used to detect outliers.

Figure 5.1.: Time series are divided into two parts. Detecting outliers are apply to the part
2 of the time series

In the following experiments, we divide each time series into two parts as show in
Figure 5.1. We run the data processing pipeline on the whole time series but try to
find outliers on the second part of the time series. The first part is meant for finding
and converging principal directions and other parameters.

The policy of how to split the data set into two parts is set based on the char-
acteristic of the data set itself. When the time series are periodic, their means and
variances converge after about one period. As we have seen in section 2, the time
series from Solenix usually consists of 6 periods. Therefore in the experiments with
this data sets, the length of first part is set to 20000 data points, which will cover
more than 1 period of each time series. A detail information about how each data
set is split can be found in table 5.1.

Data set Number of TS Length Length of Part 1

Generated data set 5 1000 300
Small Solenix data set 200 64650 20000
Full Solenix data set 1200 64650 20000

Table 5.1.: General information about data sets
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Parameter Value Description

λ 0.99 Exponential forgetting factor
fE, FE 0.97,0.99 Range for excepted energy of projection time series

in comparison to original time series
α 0.6 Exponential moving average factor is set to a small

value because we want to find outlier in a small
window

Table 5.2.: Parameters configuration for the generated data set

For detecting outliers, the dynamic threshold method is used with the factor of
10 times of standard deviation (σ). So a data point is considered as outlier if its
reconstruction error is greater than 10×σ.

The exponential forgetting factor needed for running SPIRIT is chosen according to
section 4.5 and will be discussed in each experiment in following sections.

5.2 Results for generated data set

We have already seen the generated data set in section 4.1 as an illustration to show
how the algorithm works. This data set consists of 5 time series and one outlier. The
snippet of Matlab code for generating this data set can be found in Listing 5.1.

% gene ra t e a normal t ime s e r i e s with Gauss ian n o i s e
data = sin ((1:1000)* pi /100) ’ + randn (1000 ,1)/20;

% gene ra t e a t ime s e r i e s with o u t l i e r
d a t a _ o u t l i e r = sin ((1:1000)* pi /100) ’ + randn (1000 ,1)/20;
d a t a _ o u t l i e r (800:815) = 0;

Listing 5.1: Matlab code for generating data

The configurable parameters of this experiment are set to match the length of gen-
erated data set. A table of configurable parameters that were used in this experiment
together with a short description:

Because the low sample rate in all time series (200 data points per period), the
forgetting factors λ and exp. moving average factor α are smaller than in next ex-
periments.

This data set is the optimal case where all time series are correlated. The outlier
causes a high peak in the reconstruction error and is detected.

5.3 Results for a part Solenix’s data set with artificial outliers

We set up the second with 200 time series of the data set from Solenix. In this
experiment, we run the algorithm two time. On the first time on the original 200
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time series. On the second time, before feeding data to the pipeline, we pick some
time series that has a repeated pattern and modify them at some small intervals
(called artificial outliers). The purpose of this experiment is to find out how the
algorithm performs on a real data set and if it is capable of discovering the artificial
outliers.

In one time series, an outlier is created by removing a peak at t = 45000. In fig-
ure 5.2, the plots on the left side show the original time series and its reconstruction
error, on the right side are the modified time series and its reconstruction error. As

Figure 5.2.: Detecting the removed peak from original time series. Reconstruction error is
significantly higher than at other data points

we can see, the reconstruction error of both time series before the artificial outlier
are the same. At the beginning out the outlier interval, the reconstruction error of
the modified time series is getting higher and jumps over the threshold. It indicates
that the injected outlier is found.

In another time series, we create two artificial outliers by removing one peak at
time tick t ≈ 43000 and adding a new peak to another location t ≈ 25000. In
figure 5.3, the outliers are marked with red circles. Despite having visited many
similar peaks in the past data point of this time series, the algorithm still make
a high reconstruction error when it visits the peak that was created at time tick
t = 25000. Similar to the previous artificial outlier, the missing peak at t = 43000
also results a high reconstruction error. Using dynamic threshold with factor of 10
times standard deviation, both outliers are detected.
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Figure 5.3.: Modified time series with two artificial outliers at t = 25000 and t = 43000.
The outliers are marked with red circles

5.4 Results for full Solenix’s data set

In this experiment, the big data set from Solenix is used with 1200 time series. The
time series are resampled so that they are synchronized with time tick of 16 seconds
(there is a new data point every 16 seconds). The data set was recorded in 12 days,
so after resampling, each time series has 64800 data points and in total there are
77’760’000 data points.

The parameters configuration on this experiment are showed in table 5.3.

Parameter Value Description

λ 0.9997 λ was set very close to 1 because the sample rate
is high and we want to remember the recent data
points

[ fE, FE] [0.97,0.99] Energy thresholding. the energy of projections
should lie between 97% and 99% of the input time
series

α 0.9 Exponential moving average factor is greater than
generated data set since we want to detect outlier
in a large window

Table 5.3.: Parameters configuration for full data set
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(a) time series 123 (b) time series 602

Figure 5.4.: Two from 17 time series that contain outliers at time tick 20000. The time series
are placed in the first row. The second row are the reconstruction errors and the
last row are exponential smoothed reconstruction error with outlier thresholds

5.4.1 Performance

The experiment on full data set runs in about 1 hour. In contrast to 12 days, in
which the data set was recorded, performance of the pipeline is suitable for deal
with real time streaming data.

5.4.2 Review Outliers

In following section we will review the outliers that were discovered during the run-
time. Out of 1200, the algorithm found 225 time series which contains outliers.
Note that an outlier could also occur in multiple time series and one time series
could contains multiple outliers.

The first outlier was found at the beginning of part 2 of the data set. It was de-
tected in 17 time series simultaneously. These 17 time series have the same shape as
they are almost constant in the first part of the data set and start to change together
at time tick around t ≈ 20000 (see Figure 5.4). At this point, the algorithm cannot
reconstructed well these time series and we can observe a high peak in the recon-
struction error. However it learns these changes by adapting its principal directions.
So when the same pattern occurs in some latter points, they are not considered as
outliers.

Another similar outlier was found in 16 time series at time tick around 30000.
These time series also start with constant values and only begin to change together
at t = 30000 (see Figure 5.5). However, this type of outliers are quite easy to be cap-
tured, a simple extreme value analysis would also detect these abnormal behaviors.

As we mentioned in the implementation that, along with detecting outliers, the
data pipeline can also explain them. In Figure 5.6, we show another outlier that was
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Figure 5.5.: Time series 561. An outlier is detected at t ≈ 30000 together with 15 other time
series. Only one outlier was found as the time series firstly changes. In the next
appearance of the similar pattern, no outlier was indicated

found on the data set (the outlier is marked with red circle). Two correlated time
series which contain no outliers are also outputed by the pipeline as an explanation
to the outlier in first time series. With that we can see more clearly that there is a
correlation in the past data points and how this correlation is broken. .

Furthermore, the processing pipeline also detects time series that contain multiple
outliers. An example of those is showed in figure 5.7. Here we can see that the
correlation is broken at several areas (marked with red circles), they cause high peaks
in the reconstruction error. in this experiment, the dynamic thresholds are used for
detecting the peaks is set to 10 times standard deviation, however the algorithm
is also able to detect those anomalies with lower thresholds. While changing the
thresholds from 5 to 11, the same outliers are still detected.
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Figure 5.6.: Time series with outlier and its correlated time series. The first time series con-
tains an outlier at t ≈ 46000. Two other time series correlates with the the first
one at all data points but the outliers

Figure 5.7.: Time series with multiple outliers (left) in comparison to its correlated time se-
ries which contains no outlier (right). The blue lines in the reconstruction error
diagrams show dynamic threshold of 11 times of the standard deviation. The
red lines show the dynamic threshold of 5 time of the standard deviation
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6 Conclusion and Future Work

6.1 Conclusion

The goal of this work is to develop an application for helping domain experts in
monitoring the daily routines of artificial satellites. In order to identify potential
problems and report them to experts as early as possible, it is required that the
algorithm is able to process the data stream in real time. Also the algorithm should
be able to deal with high number of data streams as it can be up to 40,000 from a
satellite.

By the observation that time series are highly correlated, we focus on finding the
breaks in these correlations which may indicate new behaviors or changes/malfunction
of on-board devices.

We have examined and compared different methods and then proposed a data pro-
cessing pipeline for detecting outliers. In the pipeline we make use of SPIRIT for
compressing the time series into main trends. The breaks of correlation in time se-
ries are found by scanning the reconstruction error. To summarize, the data process-
ing pipeline consists of three following steps:

• Pre-processing

• SPIRIT

• Finding outliers

In additional, the algorithm also tries to find an explanation for each found outlier.
This is done by outputting not only the outliers but also theirs correlated time series.
Furthermore, we have also proven that the linear correlation of two time series is
captured in the weight vectors (output from SPIRIT). Therefore, the process of find-
ing correlated time series is implemented efficiently by comparing the their weight
vectors.

To evaluate the proposed method above, we carried out two experiments. The first
experiment was to work with a small set of time series, which are extracted from the
given data set. Since there was no sample of outliers available, so we create artificial
outliers by modifying some time series. The data pipeline worked well in small size
data set and all the modified time series got detected. In the second experiment, we
run on the whole data set and verified that the data pipeline is able to cope with
real time data. The outliers found in this experiment were afterwards reviewed and
explained.

Finally, we have provided a guideline for determining needed parameters of the
algorithm. Based on that, users can configure the pipeline to match with a new data
set when it has different characteristics.
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6.2 Future Works

One of the disadvantages of the proposed data pipeline is that it can only capture
the linear correlation between time series. We have also discussed about the ability
of deep autoencoders for dealing with non-linear correlation. It is interesting to know
if there is any non-linear correlation between time series and if deep autoencoders
could be applied to improve the results of PCA in the time series case.

In this work, we have focused on finding the breaks of correlation. There is an
another possible type of outliers, which may occur when the correlated time series
suddenly change together and form new unsual shapes ,however, the correlations are
preserved, this kind of outlier is not reflected in the reconstruction error and there-
fore cannot be detected by proposed method. If there are such outliers in the data
set, the changes in all correlated time series will be reflected in some hidden vari-
ables and therefore could on account that be track down by examining the hidden
variables. This is feasible since the number of hidden variables are much smaller
than the number of original time series.
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A Table of Symbols
List of symbols and descriptions which are used in this thesis.

Symbol Description

x Input time series
x̃ Reconstructed time
y Projection of x on principal directions
W Weight matrix
W_, j weight vector for projecting j-th hidden variables ( j-th prin-

cipal directions)
Wi,_ weight vector for reconstructing i-th time series
α,β ,λ,θ , . . . configurable parameters or constants
t,τ Time ticks
Et Energy of all time series at time t
Ẽt Energy of all reconstructed time series at time t
fE, FE Lower- and Upper-Energy thresholds
ei,t Reconstruction error of i-th time series at time tick t
ex pEi Exponentially smoothed reconstruction error
di Estimated energy of data along i-th principal component
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B Time Series with Outliers
In this appendix we show some more time series which contains outliers and are
found from the full data set. In each figure, from top to bottom: Original time se-
ries, reconstruction error, exponentially smoothed error with outlier thresholds.

Outlier in time series number 502 Outlier in time series number 645

Outlier in time series number 864 Outlier in time series number 940
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Outlier in time series number 1180 Outlier in time series number 41

Outlier in time series number 227 Outlier in time series number 239

Outlier in time series number 634 Outlier in time series number 937

49



List of Figures
1.1. Example of outliers in a 2-dimensional Gaussian distribution. Three out-

lying data points are marked with red circles . . . . . . . . . . . . . . . . . . 5

2.1. Variance of 1288 time series from Solenix data set. Y-axis is set to
logarithmic scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Most of time series consists of repeated pattern . . . . . . . . . . . . . . . . 11
2.3. Examples of correlated time series from Solenix’s data set . . . . . . . . . 11

3.1. Example of PCA on 2 dimensional data space . . . . . . . . . . . . . . . . . . 16
3.2. An autoencoder with one hidden layer consists of 2 nodes. The in-

put/output layer have 4 nodes. This autoencoder can be used to com-
press 4 dimensional data to 2 dimensional data . . . . . . . . . . . . . . . . 19

3.3. Structure of a deep autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1. Detecting outliers in time series data which are generated by sinus func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2. High and low-energy time series with their reconstruction. Data are
taken from chlorine dataset[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3. Original time series and reconstructed time series from chlorine dataset
[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4. Three phases in the data processing pipline . . . . . . . . . . . . . . . . . . . 26
4.5. Down-resampling of a continues function to 11 data points . . . . . . . . . 27
4.6. Up-resampling from a function with 5 data points to 11 data points,

using last known value if value for current time tick is missing . . . . . . 28
4.7. Histogram of energy distribution before and after preprocessing . . . . . . 30
4.8. The reconstruction of the lowest energy versus greatest energy time se-

ries after applying standardization. The maximal energy time series in
the used data set is 10 times bigger than this time series . . . . . . . . . 30

4.9. Comparing results of incremental standardization with z-score standard-
ization with pre-computed mean and variance . . . . . . . . . . . . . . . . . . 31

4.10.Histogram of reconstruction error and a Gaussian distribution with the
same mean and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.11.Reconstruction error and dynamic thresholds . . . . . . . . . . . . . . . . . . . 34
4.12.Row vectors of three correlated time series. Although the row vectors

are in high dimension, the plot only shows the 2-D hyperplane that
contains these 3 vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1. Time series are divided into two parts. Detecting outliers are apply to
the part 2 of the time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2. Detecting the removed peak from original time series. Reconstruction
error is significantly higher than at other data points . . . . . . . . . . . . . 40

50



5.3. Modified time series with two artificial outliers at t = 25000 and t =
43000. The outliers are marked with red circles . . . . . . . . . . . . . . . . 41

5.4. Two from 17 time series that contain outliers at time tick 20000. The
time series are placed in the first row. The second row are the recon-
struction errors and the last row are exponential smoothed reconstruc-
tion error with outlier thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5. Time series 561. An outlier is detected at t ≈ 30000 together with 15
other time series. Only one outlier was found as the time series firstly
changes. In the next appearance of the similar pattern, no outlier was
indicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6. Time series with outlier and its correlated time series. The first time
series contains an outlier at t ≈ 46000. Two other time series correlates
with the the first one at all data points but the outliers . . . . . . . . . . . 44

5.7. Time series with multiple outliers (left) in comparison to its correlated
time series which contains no outlier (right). The blue lines in the
reconstruction error diagrams show dynamic threshold of 11 times of
the standard deviation. The red lines show the dynamic threshold of 5
time of the standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

51



List of Tables
2.1. Variance of Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Distribution of the sample rates within 1288 time series. The first col-

umn is the constraint for the number of data points. The second col-
umn shows how many time series fulfill that constraint. Third column
show the result in percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1. General information about data sets . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2. Parameters configuration for the generated data set . . . . . . . . . . . . . . 39
5.3. Parameters configuration for full data set . . . . . . . . . . . . . . . . . . . . . 41

52



Bibliography
[1] D. M. Hawkins, Identification of outliers, vol. 11. London: Springer, 1980.

[2] C. C. Aggarwal, Outlier Analysis. New York, NY: Springer New York, 2013.

[3] M. Gupta, Hyderabad, J. Gao, C. Aggarwal, and J. Han, “Outlier Detection for
Temporal Data : A Survey,” vol. 26, no. 9, pp. 2250 – 2267, 2014.

[4] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos,
“Online outlier detection in sensor data using non-parametric models,” Proceed-
ings of the 32nd international conference on Very large data bases, pp. 187–198, 2006.

[5] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques for wire-
less sensor networks: A survey,” Communications Surveys & . . . , vol. 12, no. 2,
pp. 159–170, 2010.

[6] S. Subramaniam and T. Palpanas, “Online outlier detection in sensor data using
non-parametric models,” . . . on Very large data . . . , 2006.

[7] C. Aggarwal, “On Abnormality Detection in Spuriously Populated Data Streams.,”
SDM, pp. 80–91, 2005.

[8] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams of data,”
Proceedings of the sixteenth ACM conference on Conference on information and knowl-
edge management - CIKM ’07, p. 811, 2007.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine Learning in Python,” vol. 12, pp. 2825–2830, Jan. 2012.

[10] J. Sola and J. Sevilla, “Importance of input data normalization for the appli-
cation of neural networks to complex industrial problems,” IEEE Transactions on
Nuclear Science, vol. 44, pp. 1464–1468, June 1997.

[11] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector clas-
sification,” no. 1, pp. 1–16, 2003.

[12] D. T. Larose, Discovering knowledge in data: an introduction to data mining. Hobo-
ken, NJ, USA: John Wiley & Sons, Inc., June 2014.

[13] G. Forman, “BNS feature scaling: an improved representation over tf-idf for svm
text classification,” Proceedings of the 17th ACM conference on . . . , pp. 263–270,
2008.

53



[14] S. Aksoy and R. Haralick, “Feature Normalization and Likelihood-based Similar-
ity Measures for Image Retrieval,” Pattern Recognition Letters, no. October 2000,
2001.

[15] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes.
Tata McGraw-Hill Education, 4 ed., 2002.

[16] J. Hunter, “The exponentially weighted moving average.,” J. QUALITY TECHNOL.,
vol. 18, no. 4, 1986.

[17] C. M. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.

[18] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in mul-
tiple time-series,” Proceedings of the 31st . . . , pp. 697–708, 2005.

[19] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-
propagating errors,” Cognitive modeling, 1988.

[20] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Ma-
chine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[21] G. E. Hinton and S. Z. Richard, “Autoencoders, minimum description length, and
Helmholtz free energy,” Advances in neural information processing systems, 1994.

[22] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and sin-
gular value decomposition,” Biological cybernetics, vol. 294, pp. 291–294, 1988.

[23] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks.,” Science (New York, N.Y.), vol. 313, pp. 504–7, July 2006.

[24] I. Assent, P. Kranen, C. Baldauf, and T. Seidl, “AnyOut: Anytime Outlier Detec-
tion on Streaming Data,” in Database Systems for Advanced Applications, vol. 7238,
pp. 228–242, Springer Berlin Heidelberg, 2012.

[25] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “Self-Adaptive Anytime Stream
Clustering,” 2009 Ninth IEEE International Conference on Data Mining, pp. 249–258,
Dec. 2009.

[26] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting outliers and
change points from non-stationary time series data,” Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, 2002.

[27] K. Yamanishi, J.-i. Takeuchi, G. Williams, and P. Milne, “On-Line Unsupervised
Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms,”
Data Mining and Knowledge Discovery, vol. 8, pp. 275–300, May 2004.

[28] S. Thompson and J. M. VanBriesen, “Chlorine data: generated using EPANET
http://www.cs.cmu.edu/afs/cs/project/spirit-1/www/#Download.”

[29] R. F. Ling, “Comparison of Several Algorithms for Computing Sample Means and
Variances,” Journal of the American Statistical Association, vol. 69, pp. 859–866,
Dec. 1974.

54



[30] T. F. Chan, G. H. Golub, and R. J. Leveque, “Algorithms for Computing the
Sample Variance : Analysis and Recommendations,” vol. 37, no. 3, pp. 242–247,
2014.

[31] Maronna, Ricardo, Douglas Martin and V. Yohai, Robust statistics. Chichester:
John Wiley & Sons, 2006.

[32] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2008.

[33] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving
averages,” International Journal of Forecasting, vol. 20, pp. 5–10, Jan. 2004.

55


	Introduction
	What is outlier detection
	Classification of Outlier Detection Problems
	Problem Statement
	Organization of the thesis

	Characteristics of Data Set
	Value Range and Sample Rate
	Value Range
	Sample Rate and Synchronization

	Correlation between Time Series

	Theoretical Backgrounds
	Feature Scaling
	Why scaling?
	Min-Max Normalization
	Z-Score Standardization

	Moving Average
	Dimension Reduction
	Principal Component Analysis
	SPIRIT
	Autoencoder

	Alternative Approaches
	AnyOut
	SmartSifter


	Approach and Implementation
	Approach
	Requirements for SPIRIT
	Data Processing Pipeline
	Preprocessing
	Putting data to SPIRIT
	Finding Outliers

	Explaining The Outliers
	Parameters Configuration

	Evaluation and Review Outliers
	General set-up
	Results for generated data set
	Results for a part Solenix's data set with artificial outliers
	Results for full Solenix's data set
	Performance
	Review Outliers


	Conclusion and Future Work
	Conclusion
	Future Works

	Table of Symbols
	Time Series with Outliers
	List of Figures
	List of Tables
	Bibliography

