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Abstract

Object ranking refers to the problem of learning to order a set of objects, each
object described by an attribute tuple. Label ranking refers to the problem of
learning to order a set of objects, each object only described by a nominal label;
the order depends on a context, which is represented by an attribute tuple. The
present work seeks to unify both approaches through the means of problem
decomposition. To this end, a framework is proposed which allows to split the
original problem into multiple sub-problems, which are then solved and their
solutions aggregated into a solution to the original problem. The decomposition
of the problem is a function of the object features; many different methods of
decomposition are possible within the framework, and several are presented.
The introduced methods are examined and compared to established or more
obvious approaches. Along the way, several properties of the different types of
ranking tasks are discussed.
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Chapter 1

Introduction

Automatic ranking has been an important field of study, and its importance
only grows in a world of ever-increasing choices. Generally, ranking means the
inference of an order on a given set of objects. These objects could be the results
of a search engine query, product recommendations at an online shopping site,
the possible actions of an artificial intelligence agent or messages to be ordered
according to their priority. According to Kendall & Gibbons (1990, p.1),

When objects are arranged in order according to some quality which
they all possess to a varying degree, they are said to be ranked with
respect to that quality. The arrangement as a whole is called a
ranking. The rank of each object indicates its respective position
in the ranking.

In order to clarify the use of the term ranking in this work, we will compare
it to the above definition. In accordance with that definition is the notion
of ranking as the assignment of a position to each object. Each object has a
defined rank, and can thus be considered ranked higher or lower than any other
given object. What cannot be done is the calculation of a meaningful distance
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CHAPTER 1. INTRODUCTION

between two objects. Speaking in terms of scales of measure, the objects lie on
an ordinal scale, but not on an interval scale.

Ranking as defined by Kendall & Gibbons can be used as a method of
observation. For example, in a survey, participants are not asked to rate, i.e.
give a certain amount of points to each individual item, but to rank those items.

In contrast to the above definition, in this work, objects are not ranked
with respect to a single quality, since the ranking is the result of a function of
the multi-dimensional context in which the ranking takes place. The ranking
function is induced by a machine learning algorithm and could be a black box,
that is, difficult to comprehend by a human examiner.

In the general setting of machine learning, a predictive model is built from
a set of training data. That model is then used to make a prediction on an
instance of previously unseen data. In this work, ranking refers to the structure
of the prediction, not to the structure of the training data. Instead, the training
data is given in the form of preferences.

Preferences share with a ranking the characteristic that objects are brought
into a relation with each other, without specifying an exact distance between
them. They differ from a ranking in that not all objects need to be related
to each other. For example, a participant of a survey asked to express her
preferences regarding items A, B and C could say that she prefers A to B and
A to C, but not make a statement about the relationship between B and C.

Observing preferences instead of ratings or rankings has a couple of advan-
tages. Since it is not required to know about the relationship between each pair
of objects, incomplete data can be used for training. Such data may be more
readily available. Further, implicit data can be collected. Imagine a user being
presented with a page listing ten results for a search engine query. If three of
the results are clicked, it can be inferred that those are more relevant to the
query than all others, and preference between those three could be determined
by the order in which they are clicked. In this way, preferences can be collected
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even though there is no explicit rating or distance between the items given.
Finally, according to Kamishima (2003), the method of collecting preferences
inhibits a type of error that can be introduced because not all users share a
universal scale when rating items. The same is true for ranking, and in a similar
manner, (Kendall & Gibbons, 1990, p.2) write about ranking:

However, what the ranking loses in accuracy it gains in generality,
for if we stretch the scale of measurement (and even if we stretch
it differently in different regions) the ranking remains unaltered; in
mathematical language it is invariant under stretching of scale.

In some literature, for instance in Kamishima (2003), the term order is used
instead of ranking. A (strict) total order is a binary relation that is transitive
and trichotomous. Each ranking on a set of objects has a corresponding order
and the terms are used synonymously in the following; ranking is predominantly
used when the focus lies on the numerical rank of objects, and order is used
when the focus lies on the pairwise preferences that make up the elements of a
binary relation.

Object ranking refers to the task of ranking objects that are represented
as a tuple of feature values. Label ranking refers to the task of ranking ob-
jects depending on a context, where the context is represented as a tuple of
feature values. The objective of this work is to unify those scenarios and see
if the unification brings about any benefits. The unified scenario would be a
generalization of the two original scenarios. Each ranking task for the unified
scenario could be transformed into a task for one of the original scenarios by
stripping of certain information. In this way, a comparison between algorithms
that implement either of the scenarios can be made. In chapter 2, each scenario
is defined in a formal way.

Another aim is to devise a method for the decomposition of the unified
ranking task. Decomposition in the data mining context means that a learning

3



CHAPTER 1. INTRODUCTION

task is split into multiple sub-tasks, each of which is solved, and the solutions
are then combined to form a solution to the original task. Decomposition in
this sense is discussed in chapter 4.

Chapter 3 describes various methods that work on the defined scenarios.
These methods have either been studied before or are obvious approaches to
the problem, and they will provide a base for a comparison with the meth-
ods introduced in chapter 5. That chapter proposes a general decomposition
framework through which any unified ranking task can be split into various
sub-tasks. The decomposition is dependent on the features of the objects; as
a matter of fact, the information of object features is exclusively used for the
specification of the decomposition and does not contribute in any other way
to the training information. For this reason, the proposed framework is called
object feature coding. Within the framework, there are many possible methods
of decomposition, and two are subsequently introduced.

The actual implementation of the evaluation environment, ranking methods
and decomposition framework is briefly described in Appendix A.

Chapter 6 discusses the evaluation of the different methods. On the one
hand, properties like algorithmic complexity are examined on a theoretical level.
On the other hand, the premises for experimental evaluation are discussed, such
as data sets to be used for testing and measures of prediction performance.

In chapter 7, the results of the conducted experiments are presented and
interpreted; chapter 8 summarizes the work and draws a conclusion, and sec-
tion 8.1 lists questions that have yet to be answered.
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Chapter 2

Ranking Scenarios

This chapter describes and formalizes the scenarios or learning tasks to be
treated in the course of this work. The definitions for Label Ranking and
Object Ranking are taken from Fürnkranz & Hüllermeier (2010b); newly in-
troduced notation is kept in accordance. For our purposes, it is being assumed
that contexts and objects are represented as feature vectors, although that
constraint is not made by Fürnkranz & Hüllermeier.

2.1 Label Ranking

Label ranking denotes a setting in which a finite number of labels is given, and
the task is to order these labels depending on a context. The context is given
by a tuple of attribute values.

Assuming m context attributes, let the ith attribute be in Xi, then the
context space X is denoted by

X = X1 ×X2 × . . .×Xm.
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CHAPTER 2. RANKING SCENARIOS

Let the finite set of labels be

Y = {y1, y2, . . . , yp}.

The training data T consists of a set of instances {x`|` = 1, 2, . . . , t} ⊆ X ,
each such instance with an associated binary preference relation or set of binary
preferences {yi �x`

yj, . . .}.
From this data, a function

f : X → SY

is learned which maps any x ∈ X to a ranking or total order of Y . The set of all
total orders or permutations is denoted by SY following the common notation
for the symmetric group SA on set A.

In the following, x will be called the context, as it represents the general
circumstances on which the order of the labels depends on. Note that X can
possibly be infinite or will usually at least be very large due to the combinations,
while Y is finite and will usually be sufficiently small. As Y is not structured
in any way, every y ∈ Y must occur in the training data, or no prediction can
be made about its rank.

The label ranking scenario finds its application wherever there is a large
set of contexts to which features can be attributed, and a finite set of labels.
One such application is an online shopping recommendation system, where a
context is provided by the customer’s attributes, and training data is provided
by the choices that the customer made while browsing the site.

2.2 Object Ranking

In the object ranking scenario, a set of objects is given. Unlike the labels from
the previous section, these objects are not merely nominal items taken from a
finite set, but are described by attributes.

6



2.3. UNIFIED OBJECT AND LABEL RANKING

Assuming n object attributes, let the ith attribute be in Zi, then the object
space or set of objects Z is denoted by

Z = Z1 ×Z2 × . . .×Zn

The training data T consists of a binary relation on Z, or in other terms a
set of binary preferences.

From this data, a function

f : Z → SZ (Z ⊆ Z)

is learned, which orders any subset of objects given at ranking time. Note
that, in contrast to label ranking, new objects which have not been part of the
training data, can be ranked. The set of possible objects Z can be infinite;
even with discrete-valued attributes, the set will usually be large due to the
combinations of the n attributes.

As an example application, consider the task of ranking search engine re-
sults. By choosing some of the results to a query, but not others, a user
implicitly expresses his or her preferences. These preferences can be used as
training information to an object ranking algorithm, which learns how to rank
the results of future queries.

2.3 Unified Object and Label Ranking

In contrast to label ranking, object ranking accounts for the features of the
items to rank. On the other hand, it ranks the objects without regard for
differences in context. A unifying approach would generalize from the two
scenarios, so that each label ranking and object ranking problem would be
a special case and processable by an implementation of the unified ranking.
Of special interest is the question whether such an approach would achieve
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better results; specifically, whether label ranking, with the labels substituted
by objects with features, could see an improvement (or decline) in prediction
performance.

Let
X = X1 ×X2 × . . .×Xm

denote the context space and
the set of objects. Training data T consists of a set of contexts {x`|` =

1, 2, . . . , t} ⊆ X , each context x` associated with a binary preference relation
�x`

= {zi �x`
zj, . . .} on the set of objects.

From this data, a function

f : X × Z → SZ (Z ⊆ Z)

is to be learned which takes as input any context x ∈ X and subset Z of
the objects and returns a total order of Z.

As the main goal of this work is a comparison with label ranking, the focus
is on a special case of the unified scenario. In that special case, the constraint
applies that every object z ∈ Z that is to be ranked must be “known”, that is,
must have appeared in the training data T .

For brevity, in the following the described unified object and label ranking
scenario will also be called the unified scenario.

2.4 Approaches

In chapters 3 and 5, several ranking methods will be introduced. In order to
provide a base for the discussion of these methods, two different elementary
ways of approaching the problem will be pointed out here.

According to Fürnkranz & Hüllermeier (2010b), four general approaches can
be identified when examining known techniques for object or label ranking. The
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2.4. APPROACHES

two which are most relevant in the context of this work will be introduced in
the following.

2.4.1 Utility Function

In this approach, a utility function is learned, which assigns an abstract degree
of utility to each object or label. For example, in the label ranking case, for
each label yi, 1 ≤ i ≤ p, a utility function

fi : X → R

assigns a degree of utility dependent on the context. A variation of this learning
of multiple models would be to learn a single function

f : X × Y → R

which maps any combination of a context and a label to a degree of utility.

After the utility of each label has been established, the labels can be ranked
accordingly.

Generally speaking, the specific form of the input data used for learning
imposes a certain set of constraints on the utility function. Therefore, in many
cases, several utility functions are valid within those constraints and can possi-
bly used for the learning task. The choice of one of these functions introduces
an additional parameter that influences the outcome.

In practice, the described approach reduces the problem to one (in the
single model variant) or many (in the multi-model variant) regression problems.
Alternatively, if the utility scale is not numerical, but ordinal, the resulting
problem is not one of regression, but of ordinal classification.
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2.4.2 Preference Relations

In preference relation learning, the model to be learned operates on the notion
of a binary preference relation. This means that for each pair of objects or
labels, e.g. (yi, yj), a predicate Q(yi, yj) is learned, which decides whether yi is
to be ranked higher than yj or vice versa. It is easy to see that this approach
adopts more naturally to training data given in the form of binary preferences.

As it has been hinted on by chapter 1 and defined in the preceding sections of
this chapter, the present work is chiefly concerned with learning from preference
data. Therefore, the preference relations approach is the one that will be most
relevant to the further discussion.

Each ranking can be viewed as a binary preference relation which satisfies
the conditions of transitivity and trichotomy, dubbed a strict total order. A
measure between the similarity of arbitrary binary relations, including strict
total orders, is developed in section 6.2.

All of the methods introduced throughout chapters 3 and 5 utilize the pref-
erence relation learning approach.
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Chapter 3

Ranking Methods

In this chapter, several methods are introduced that implement the unified
object and label ranking scenario. In one way or another, they reduce the
ranking task to one of the standard machine learning problems of classification
or regression. Classification and regression problems are common, extensively
described in literature, well-understood, and there is a plethora of algorithms
and implementations.

3.1 Baseline Ranking

The baseline ranking method transforms the ranking task into a single binary
classification task. Each instance of that binary classification set represents the
comparison of two objects in a specific context. A classifierM learns whether
one object is to be preferred over another object in a given context. At ranking
time, all members of the set of objects to be ranked Z are compared pairwise
byM, and the number of decisions in favor of any one object is the basis for
the ranking.

The method is labeled Baseline ranking, since it seems to be a very obvious

11
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implementation of the task.

3.1.1 Training

Each instance in the original training data T comprises a context x` and an
associated preference relation �x`

. For each preference p ∈ �x`
, where p =

(zp1 , zp2), let tp,1 = (x`, zp1 , zp2 , >) and tp,2 = (x`, zp2 , zp1 , <) be training
instances for M. zp2 , zp1 represent the object feature vectors, so if there are
n object features and m context features, thenM learns on 2n + m features.
The class is {<,>}, and the concept to learn is whether the object represented
by the first n features is to be ranked higher (">") or lower ("<") than the
object represented by the second n features.

The following case illustrates the use of the method. Given the set of objects
{z1, z2, z3} in four-dimensional feature space

Z1 Z2 Z3 Z4

z1 = ( 0 1 0 1 )
z2 = ( 1 0 1 0 )
z3 = ( 0 0 1 0 )

the set of contexts {x1,x2,x3} in two-dimensional feature space X

X1 X2

x1 = ( 2 0 )
x2 = ( 0 2 )
x3 = ( -2 0 )

12



3.1. BASELINE RANKING

and the training data T = {t1, t2, t3}

t1 = (x1, {z1 � z2,
z2 � z3})

t2 = (x2, {z2 � z1,
z3 � z1})

t3 = (x3, {z2 � z3,
z3 � z1})

indicating that in context x1, object z1 is preferred over object z2 and object
z2 is preferred over object z3, etc.

For baseline ranking, the training data T is transformed into training data
TM for a binary classification problem. For example, the first preference z1 �
z2 for context x1 yields

x1︷ ︸︸ ︷ z1︷ ︸︸ ︷ z2︷ ︸︸ ︷
X1 X2 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 C

( 2 0 0 1 0 1 1 0 1 0 > )

and, by inversion of the two objects,

x1︷ ︸︸ ︷ z2︷ ︸︸ ︷ z1︷ ︸︸ ︷
X1 X2 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 C

( 2 0 1 0 1 0 0 1 0 1 < )

The rest of the training data is generated analogously, and the classifierM
is trained on it.

13
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3.1.2 Prediction

To predict a ranking for a new context and a set of objects Z, all of the
objects are mutually compared, resulting in 1

2
|Z|(|Z| − 1) comparisons. Each

comparison involves a transformation into an instance of the learned problem
and a subsequent classification throughM.

For example, let

x4 = ( 0 -1 )

be a new context and

z4 = ( 1 0 0 1 )
z5 = ( 0 1 1 0 )

be two new objects to be compared. M will classify the instance
x4︷ ︸︸ ︷ z4︷ ︸︸ ︷ z5︷ ︸︸ ︷

X1 X2 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4

( 0 -1 1 0 0 1 0 1 1 0 ) .

M decides either ’>’, predicting that z4 �x4 z5, or ’<’, predicting that
z5 �x4 z4. Points are given for the winner of each comparison, and after
all comparisons, the objects are ranked according to their score.

3.2 Label Ranking

The label ranking method should not be confused with the label ranking sce-
nario described in section 2.1. The label ranking method is still a method for
the unified scenario. It carries its name as it functions by viewing any unified
ranking task essentially as a label ranking task. That is, the features of the

14



3.3. DEFAULT RANKING

objects Z = Z1 ×Z2 × . . .×Zn are being hidden from the learning algorithm.
Each unique object z ∈ Z is being mapped to a unique label y ∈ Y , thus
transforming the unified scenario into a label ranking scenario.

After this transformation, the method works similarly to the baseline method
just described in section 3.1, in that it reduces the problem to a classification
task learned by a single classifierM with each instance representing a pairwise
comparison or preference.

For example, with the context

x1 = ( 2 0 )

and the preference
(x1, {z1 � z2})

in the training data,M would learn

x1︷ ︸︸ ︷
X1 X2 Y1 Y2

( 2 0 y1 y2 > )

The features of z1 and z2 do not matter. They are ignored and the classifier
only sees the labels y1, y2 as values for two nominal attributes.

At prediction time, just as in baseline ranking, the order of the objects
is determined through pairwise comparison. As a consequence of the label
ranking-like approach, the restriction applies that only objects which appeared
in the training data can be ranked, but not new or unseen objects.

3.3 Default Ranking

The default ranking method is more of a measure for evaluation than it is
a method to be considered for an actual ranking task. It is analogous to the
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default classifier that asserts default accuracy in the standard machine learning
classification scenario. Please see section 6.3 for a more detailed description.
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Chapter 4

Decomposition

Decomposition of a data mining task refers to the practice of dividing a given
problem into many sub-problems. In order to solve the original problem, the
sub-problems are solved first, and then these solutions are combined to form a
solution to the original problem. This approach shares with ensemble methods
such as bagging and boosting the similarity that the predictions of multiple
models are combined. The difference is that ensemble methods generally learn
the original problem multiple times, while in decomposition, the sub-problems
are different from and are usually less complex than the original problem.

4.1 Advantages

Maimon & Rokach (2005, pp.125–128) assert the following advantages of de-
composing a data mining problem:

Prediction performance or accuracy can be improved; this is arguably
the most important advantage. The most frequent cause for this effect
is a more optimal bias-variance tradeoff. As the problem is decomposed
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into smaller sub-problems on each of which a model is learned, the in-
stance space becomes less complex, and enables many algorithms to find
a better-suited function.

Large datasets can become more tractable by only processing a reduced por-
tion of the data at a time.

Comprehensibility can be increased if the smaller problems have a smaller
and more defined scope than the original problem.

Modularity as a property of the decomposed task makes it possible to rebuild
only parts of the model when new data affects only a portion of the built
sub-models.

Parallel processing of the sub-problems is another important advantage.
Especially at a time where the single-processor paradigm increasingly
reaches its limits, the possibility of processing different parts of a problem
in parallel becomes interesting, whether the computation be distributed
over a network or multiple processors in one machine. Of course, to
facilitate such a distribution, the decomposed sub-problems must be in-
dependent of each other.

Flexibility in techniques arises from the possibility of learning each sub-
problem utilizing a different (or differently parametrized) algorithm.

The two advantages that seem to be the most promising for the problem
at hand are increased prediction performance and the ability to process the
decomposed sub-problems in parallel.

The former will be examined in chapter 7, where the prediction perfor-
mance of methods that utilize decomposition techniques will be experimentally
compared to methods that do not utilize decomposition.
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4.2. TAXONOMY OF DECOMPOSITION METHODS

Figure 4.1: Taxonomy of decomposition methods according to Maimon &
Rokach (2005)

The latter will be subject of chapter 6, where the implications of decompo-
sition on computation complexity will be discussed.

4.2 Taxonomy of Decomposition Methods

A taxonomy of decomposition methods is introduced by Maimon & Rokach
(2005, pp.128–135). Although it was written with the decomposition of classi-
fication tasks in mind, it will be described briefly in order to discuss its appli-
cability to the ranking decomposition presented later on.

Figure 4.1 shows a tree view of the taxonomy. The first division is between
those methods that learn the original concept, that is, the same concept that
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is learned for the original problem, and those methods that learn intermediate
concepts.

Intermediate concept decomposition splits into concept aggregation and
function decomposition. In concept aggregation, the target attribute y is re-
placed with a function so that the domain of the new target attribute y∗ is
smaller than the domain of the original attribute:

f(y) : dom(y) 7→ dom(y∗) (|dom(y∗)| < |dom(y)|)

As examples, Maimon & Rokach cite Buntine (1996), which is concerned with
text classification. Instead of classifying the text into a topic immediately, it
is first classified into a broader group of topics, and in a second step classified
within that group. The other example given is the error-correcting output cod-
ing (ECOC) approach introduced by Dietterich & Bakiri (1995). This approach
decomposes a multi-class classification problem into several binary classifica-
tion problems and is of some relevance to the present work; it will be discussed
in more detail later.

Function decomposition looks for intermediate concepts, which are then
used as features for further classification, so that a hierarchy of concepts is
constructed.

Original concept decomposition learns the original concept and is in that
somewhat similar to ensemble methods, but uses always only a sub-sample of
the original training data. Sampling can happen across the attributes, meaning
each of the sub-samples has only a portion of the original attributes, or across
the instances, called tuple decomposition. Tuples can in turn either be decom-
posed with regard to their position in space or without regard to their position,
called sample decomposition.

chapter 5 proposes a method that decomposes the ranking task into a num-
ber of binary classification tasks. According to the above taxonomy, this can
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be viewed as a concept aggregation approach for the function

f : X × Z → SZ (Z ⊆ Z)

introduced in section 2.3.

4.3 Classification

To illustrate the application of problem decomposition in machine learning
and to introduce two techniques which will have some relevance to the further
discussion, the work of Dietterich & Bakiri (1995) and Allwein et al. (2001)
will be described briefly.

The former is the ECOC technique, which was already mentioned above
and is given by Maimon & Rokach as an example for concept aggregation. One
original multiclass classification problem is reduced to l binary problems. This
is achieved by encoding each class by means of a binary code word of length l, in
which each entry decides if an example with the respective class is a positive or
negative training example for a particular binary classifier. The coding words
make up a coding matrix of binary entries.

At prediction time, each of the binary classifiers predicts a binary value,
and all of the values make up a binary vector of length l, which can then be
decoded into one of the class values by comparison to the code words.

Allwein et al. generalize the approach by allowing the entries of the code
words and thus the coding matrix to take on three values. Additional to a
value signifiying a positive class value for the decomposed classifiers and one
signifying a negative class value, there is a value signifying that the particular
examples should be ignored.

A more detailed description of the approach will be given in chapter 5,
where it will be transferred to the ranking scenario.
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4.4 Pairwise Label Ranking

Pairwise label ranking (Hüllermeier et al. , 2008) can serve as an example for
problem decomposition applied to ranking.

In this method, a binary classifier is learned for each pair of labels. As-
suming p labels, the approach learns 1

2
· p · (p − 1) binary classifiers, one for

each unordered pair or 2-combination of labels. A classifier for any given pair
of labels yi, yj takes as positive examples all context instances x` with the
associated preference yi �x`

yj, and as negative examples all context instances
x` with the associated preference yj �x`

yi.
To make a prediction, all of the binary classifiers are queried and either

make a positive or negative prediction for their associated pair of labels. A
positive prediction would indicate that the first object is ranked higher than
the second object, and a negative prediction would indicate the opposite. From
the single predictions, a rank of all labels can be aggregated.

Pairwise label ranking is brought up again in subsection 5.1.4, where it
serves as an example to illustrate the use of a coding matrix for ranking.

22



Chapter 5

Object Feature Coding

As described above in section 4.3, Allwein et al. (2001) introduce a frame-
work for multiclass classification by reduction to multiple binary classification
problems, unifying and generalizing from previous approaches such as one-
against-all classification or error-correcting output codes.

A coding matrix
M ∈ {−1, 0,+1}k×l

commands the decomposition of the multiclass learning problem into multiple
binary problems and the aggregation of these results to an answer to the original
problem. The number of rows k of the matrix equals the number of classes;
l is the number of columns and equals the number of binary classifiers Ms

that are trained for the problem, each of which is learning a function fs. l

and the entries of the matrix, taken from {−1, 0, 1} are chosen arbitrarily and
determine the specific decomposition approach within the framework.

At training time, for each binary classifierMs, (s ∈ {1 . . . l}) the associated
column s is inspected. For row r, a 1 entry means the class associated with r
marks positive training examples forMs; −1 marks negative training examples,
and 0 means that each example of class r is to be ignored and not among the
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training data for classifier fs.
To classify a new example x, the predictions of the classifiersMs make up

a vector
f(x) = (f1(x), . . . , fl(x)).

This vector is then compared to each row r of the coding matrix. Let
M(r) denote row r of the matrix, then a distance function d(f(x),M (r)) is
minimized over r. The class associated with the row that is closest to f(x) is
predicted.

5.1 Coding Matrix for Ranking

The idea of using a coding matrix can be transferred to the scenario of ranking
by associating each row of the coding matrix M not with a class, but with a
binary preference between two objects.

To clarify the use of the terms binary preference and pairwise compari-
son, consider that a pairwise comparison of objects z1 and z2 can have two
outcomes: z1 � z2 and z2 � z1. Each of these outcomes is called a binary
preference. This means that there are twice as many binary preferences as pair-
wise comparisons. On a given set of objects Z of size p, the number of pairwise
comparisons equals the number of 2-combinations, which are unordered sub-
sets of size 2. There are

(
p
2

)
= 1

2
· p · (p − 1) pairwise comparisons on Z. The

number of pairwise preferences is the number of unordered 2-variations, which
is p · (p− 1).

When we say there is a row for each binary preference, this means there is
one row for z1 � z2, and another row for z2 � z1. The total number of rows
is k = p · (p− 1). In the terms of ECOC, there is a code word assigned to each
binary preference. In this respect, the binary preferences assume the place of
the classes in the original approach.
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It might deserve some consideration whether it wouldn’t suffice to introduce
a row for each pairwise comparison only, thus cutting in half the number of
rows. This would be a welcome optimization, but as we will see below, the
chosen approach allows to state the algorithm in an elegant manner; thus, the
pairwise comparison version is given no consideration here.1

The number of columns l is arbitrarily chosen and depends on the particular
method within the framework. Below, examples of various methods will be
given.

5.1.1 Training

Each column of the matrix is associated with a binary classifier. Each row of
the matrix is associated with a binary preference. Assume a training example
with the binary preference zi � zj. The row r associated with zi � zj is
inspected. For each column s, the matrix entry M r,s decides if the example is
positive (an entry of 1), negative (an entry of −1), or to be ignored (an entry of
0) by the classifierMs. The relation that the classifiers work on is the context
relation, as will be expanded upon below.

In this way, the original training data set is converted into l sets of training
data for the single classifiers.

5.1.2 Prediction

Each of the l functions classifies a new instance x. The single classifications
must then be aggregated to gain a prediction for the original problem.

1An inversion of sign of each entry of the row could render unnecessary the storage of a
complementary row, but this would not decrease the number of distance calculations that
need to be performed. Enough consideration.
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5.1.3 Aggregation

The classification vector f(x) of the l functions is compared to the rowsM(r), (r ∈
{1 . . . k}), and the distance to each is measured using an apt distance function.
A high distance means that the row is very far from the prediction vector, and
thus that the binary preference for which the row stands is unlikely for context
x. Assume, row r is associated with the preference zi � zj. A high distance
of r to f(x) means that in context x, zi should not be ranked higher than zj.

By comparing the prediction vector to each row, a score can be accumulated
for each object. Here, too, different functions can be used for scoring.

Two of these will be shown as examples. They build on the rank of the
rows, which in turn is derived from the distance of each row to the classification
vector: The rows are ranked depending on their distance to f(x), such that the
row closest to f(x) is ranked first and the row most distant to f(x) is ranked
last.

The row ranked first adds p− 1 points to the score of the preferred object
it represents, the row ranked second adds p − 2 points and so on. The score
awarded to object zi can be expressed as

scoreA(zi) =
∑
j 6=i

p− rank(zi � zj).

This is the function used for the experiments described in chapter 7.
Another way of score calculation only considers the top-ranked half of binary

preferences and counts the occurrence of decisions in favor of zi.

scoreB(zi) =
∑

j 6=i,rank(zi�zj)<
k
2

1.

The idea behind this way of scoring is that if e.g. preference z1 � z2 is in
the top half, it is reasonable to assume that its inversion, z2 � z1 would be in
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the bottom half. If this assumption holds true, for each pairwise comparison,
one object will “win” and be given one point.

After a score is calculated for each object, the objects can be ordered ac-
cording to that score. This order or ranking of the objects is the prediction for
x.

Note that ranking rows and calculating scores is a particular way of deriving
a final order of the objects. The general idea is that for each binary preference,
a distance can be calculated to any given context. From this information, an
order of the objects can be found, and there is certainly room for optimization
in finding a good mapping function.

5.1.4 Example: Pairwise Label Ranking

Employing the described scheme, a coding matrix can be utilized for the de-
composition of ranking tasks. Note that the pairwise comparisons that make
up the rows are 2-permutations on an established, finite set of objects; for now,
assume that no unseen objects will be ranked. The ranking of unseen objects
will be discussed in the further course of this chapter.

The relation on which the single decomposed classifiers learn is supposed to
be the context relation. The instances which the classifiers see for training and
classification are context instances. The features of the objects are not part of
that relation; rather, the object features will used exclusively to determine the
decomposition; this will be expanded on in section 5.2.

To give an example of which kinds of decomposition can be modelled with
the help of a coding matrix, and to illustrate the approach discussed above,
pairwise label ranking (Hüllermeier et al. , 2008), already introduced in sec-
tion 4.4. To reiterate, in this method, for p labels, 1

2
·p ·(p−1) binary classifiers

are learned, one for each unordered pair or 2-combination of labels. A classi-
fierMi,j for labels yi, yj learns a function fi,j and takes as positive examples
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all context instances x` which have the preference yi �x`
yj, and as negative

examples all context instances x` which have the preference yj �x`
yi.

Since there are no object features involved in label ranking, it is important to
note that we are not talking about object feature coding yet. The object feature
coding method uses a coding matrix and builds it from the object features;
but the general approach of using a coding matrix for ranking encompasses a
broader range of applications, such as this one.

As an example, consider the set of objects Z = {z1, z2, z3}. Since (pairwise)
label ranking views objects only as labels, object features are disregarded and
each distinct object is assigned a label. The coding matrix for pairwise label
ranking would be

M1,2 M1,3 M2,3

1 � 2 1 0 0
1 � 3 0 1 0
2 � 1 -1 0 0
2 � 3 0 0 1
3 � 1 0 -1 0
3 � 2 0 0 -1

Three classifiers are trained;M1,2 for example is associated with the first col-
umn and takes for positive training instances all contexts with the preference
z1 � z2, for negative instances all contexts with the associated preference
z2 � z1, while ignoring all other context instances.
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Assume the training data T = {t1, t2, t3}

t1 = (x1, {z1 � z2,
z2 � z3})

t2 = (x2, {z2 � z1,
z3 � z1})

t3 = (x3, {z2 � z3,
z3 � z1})

The first preference z1 � z2 of t1 is associated with the first row of the
matrix. The entry forM1,2 is 1, thus, x1 is used as a positive training example
by M1,2. The entries for M1,3 and M2,3 are both 0, which means that t1 is
neither a positive nor a negative training example for those classifiers.

The second preference z2 � z3 of t1 is associated with the fourth row of
the matrix. In this row, the first two entries are empty, signifying that x1 is
neither a positive nor a negative example for the first two classifiers M1,2 or
M1,3. The entry in the third column is 1; therefore, x1 is used as a positive
example byM2,3.

t2 provides a negative example to M1,2: The first preference z2 � z1 is
associated with row three. Here, the entry in the first row is −1, meaning x2

will be a negative example toM1,2.
It becomes apparent how this specific matrix leads to the decomposition

method introduced above as pairwise label ranking. Applying the matrix to
each example yields the following training data for the single decomposed clas-
sifiers:
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+ −
M1,2 x1 x2

M1,3 x3

M2,3 x1,x3 x2

For a prediction example, assume that an order for a new context x4 is to
be calculated. Each of the learned functions gives a classification. Assume that
M1,2 classifies x4 as −1,M1,3 yields −1(note thatM1,3 only has a negative and
no positive example in the table above, so it is likely to only predict negatively),
andM2,3 yields 1. Thus, the classification vector is

f(x4) = ( -1 -1 1 ).

Assuming a euclidean distance function, and using the scoring method scoreB
that only considers the top half of binary preferences, we get

dist. score
1 � 2 2.4 inc. score(z1) by 1

1 � 3 2.4 inc. score(z1) by 1

3 � 2 2.4 inc. score(z3) by 1

2 � 1 1.4 –
2 � 3 1.4 –
3 � 1 1.4 –

The scores are 2 for z1, 1 for z3 and 0 for z2. Thus, the order

z1 � z3 � z2

will be predicted for the context x4.

5.2 Object Feature Coding

The previous section of this chapter introduced an approach to ranking by
means of a coding matrix. An example given for pairwise label ranking showed
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how the approach can be applied to the label ranking scenario described in
section 2.1.

This section introduces object feature coding, a method that assumes the
unified ranking scenario introduced in section 2.3. It constructs a coding matrix

M ∈ {−1, 0,+1}k×l

from the features of the objects to be ranked.
k is given through the number of objects p by k = p(p− 1). l is the number

of classifiers. It must be chosen and defines, together with the construction of
the matrix entries, the method of decomposition.

A function

v : Z × Z → El

maps each combination of objects zi, zj ∈ Z to an l-dimensional vector that
is the matrix row associated with the preference zi � zj.

E is the domain of the matrix entries. In the examples given until now,
and in the experiments in chapter 7, it is E = {−1, 0, 1} but other domains are
possible. For example, a continuous value could express the level of confidence
of the classification.

Recall that the objects are given by feature vectors:

Z = Z1 ×Z2 × . . .×Zn

and thus, v(·) can be expressed in terms of the domains for the single features

v : Z1 ×Z2 × . . .×Zn ×Z1 ×Z2 × . . .×Zn → El.

It becomes apparent that the coding matrix is a function on the object
features; thus the name of the approach, object feature coding.
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5.2.1 Per Attribute

In the following, a method that utilizes one classifier per object attribute is
described. As discussed above, each row of the coding matrix represents a
binary preference. For two objects zi, zj, let

v(zi, zj) = δi,j = zi − zj

be the difference between the object feature vectors, and the coding matrix

M =



δ1,2

δ1,3
...
δ2,1
...
δ3,1
...

δp,p−1


for all δi,j for which i 6= j.

As an example, consider the objects in four-dimensional feature space

z1 = ( 0 1 0 1 )
z2 = ( 1 0 1 0 )
z3 = ( 0 0 1 0 )

Given the following contexts

x1 = ( 2 0 )
x2 = ( 0 2 )
x3 = ( -2 0 )
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and the training data T = {t1, t2, t3}

t1 = (x1, {z1 � z2,
z2 � z3})

t2 = (x2, {z2 � z1,
z3 � z1})

t3 = (x3, {z2 � z3,
z3 � z1}),

δij = zi − zj yields the following coding matrix M :

M1 M2 M3 M4

δ12 = ( -1 1 -1 1 )
δ13 = ( 0 1 -1 1 )
δ21 = ( 1 -1 1 -1 )
δ23 = ( 1 0 0 0 )
δ31 = ( 0 -1 1 -1 )
δ32 = ( -1 0 0 0 )

Applying the algorithm described above, for each of the four object at-
tributes or columns of the coding matrix, a binary function fs is learned by
Ms. It uses x as a positive instance if there is an example (x, zi � zj) and
there is a matrix entry M rs = 1 for which row r is associated with the com-
parison zi � zj. Analogous, for M rs = −1, x would be a negative example.
Entries M rs = 0 are ignored.

For the given example, this yields:
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+ −
M1 x2(t2),x1(t1),x3(t3) x1(t1)

M2 x1(t1) x2(t2),x2(t2),x3(t3)

M3 x2(t2),x2(t2),x3(t3) x1(t1)

M4 x1(t1) x2(t2),x2(t2),x3(t3)

For a new context, x4 = (1, 1), let the classifications by f1 to f4 be +1, −1,
+1, −1. The resulting vector (+1−1+1−1) is compared with the rows ofM ,
using an apt distance function. A low difference means that the corresponding
preference can be predicted with a high confidence. For example, the resulting
vector is equal to row 3 of M , meaning that y2 is likely to be ranked higher
than y1. All comparisons are aggregated to determine an order of the objects.

In the training data above, note that x1 is both a positive and a negative
example forM1. This can be resolved by assigning each instance to the class in
which it occurs most frequently. For the case at hand, x1 occurs once positive
and once negative, thus it would not be used forM1 at all. The result is the
final training data

+ −
M1 x2(t2),x3(t3)

M2 x1(t1) x2(t2),x2(t2),x3(t3)

M3 x2(t2),x2(t2),x3(t3) x1(t1)

M4 x1(t1) x2(t2),x2(t2),x3(t3)

This means that M1 has no negative examples and would likely always
predict +.

The example uses binary attributes which take their values from 0, 1. The
difference of two such values then is in {−1, 0, 1} and can be used in the coding
matrix in the same fashion as by Allwein et al. (2001). If the object attributes
are not binary, there are several possible solutions.
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First, transform the non-binary object attributes to binary object attributes.
Usually, the number of new binary attributes should be higher to convey the
same amount of information.

Secondly, the entries of the coding matrix can be transformed to be in
{−1, 0, 1}.

Thirdly, learn l functions not with a binary codomain, but with a real-
valued codomain. This decomposes the problem not into l classification tasks,
but into l numeric prediction or regression tasks.

In the experiments listed in chapter 7, the second option has been chosen.
The matrix entries are simply the sign of the differences of the real-valued
object attributes. This is a rather simplistic approach, as information that lies
in the magnitude of the values is discarded. More sophisticated approaches
might increase the quality of prediction.

Finally, we can take a look at the semantics of the per-attribute decompo-
sition, that is, we can try to describe in words the predicate that the single
classifiers learn.

There is one classifier per attribute. The classifier for attribute s learns
the class + for the preference zi � zj if attribute s is greater in zi than in
zj. Thus, it learns to rank if a high value for attribute s contributes to a
higher rating or conversely to a lower rating. To give an even a more concrete
example, consider the sushi dataset. Here, for instance, a classifier could learn
if a person with certain attributes likes an oily sushi item or, conversely, will
give such an item a low rating.

There are two problems with this approach: First, the underlying utility
function might not be monotone. A sushi item might be rated high if it is just
oily enough, but not if it is either not oily at all or too oily.

Secondly, it might not be sufficient to consider the object attributes inde-
pendently. For example, a certain type of person might like sushi that is just
oily or sushi that is just made with seafood, but not sushi that is both oily and
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made with seafood.

The second problem provides the motivation for the following method.

5.2.2 Cross Attribute

This method uses the difference between each pair of distinct attributes of an
object pair, and is thus called cross-attribute. Let zi(q) denote the value of
the qth attribute for object zi, p the number of objects and n the number of
object attributes. Then the coding matrix can be defined as

object attribute pairs︷ ︸︸ ︷

M =



z1(1)− z2(2) z1(1)− z2(3) . . . z1(2)− z2(1) . . . z1(3)− z2(1) . . . z1(n)− z2(n− 1)

z1(1)− z3(2) z1(1)− z3(3) . . . z1(2)− z3(1) . . . z1(3)− z3(1) . . . z1(n)− z3(n− 1)

...
...

. . .
...

. . .
...

. . .
...

z2(1)− z1(2) z2(1)− z1(3) . . . z2(2)− z1(1) . . . z2(3)− z1(1) . . . z2(n)− z1(n− 1)

...
...

. . .
...

. . .
...

. . .
...

z3(1)− z1(2) z3(1)− z1(3) . . . z3(2)− z1(1) . . . z3(3)− z1(1) . . . z3(n)− z1(n− 1)

...
...

. . .
...

. . .
...

. . .
...

zp(1)− zp−1(2) zp(1)− zp−1(3) . . . zp(2)− zp−1(1) . . . zp(3)− zp−1(1) . . . zp(n)− zp−1(n− 1)



This means that there are n(n − 1) classifiers trained, one for each pair of
attributes. A matrix entry for any pair of objects is the difference of the first
attribute of the first object and the second attribute of the second object.

The motivation for this method is, as mentioned above, the ability to learn
predicates across attributes, so that dependent attributes can be taken into
consideration.

The matrix construction works differently; in all other respects, the method
works just as the one described above.
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5.2.3 Unseen objects

Although the focus of this work lies on a scenario where the set of objects is
fixed an known at training time, it should be noted that the object feature
coding approach can rank unseen objects.

Recall the function that is learned in the unified ranking scenario from
section 2.3:

f : X × Z → SZ (Z ⊆ Z)

The function ranks any subset Z of the object space Z. According to the
definition, there is no requirement that any of the objects in Z have been in
the training data.

Such a set of unknown objects can be ranked by generating the correspond-
ing rows of the matrix at prediction time. Recall how the rankings are gener-
ated: Each row of the matrix is rated by its difference to the prediction, and
then, the objects that appear in the rows’ preferences are ranked accordingly.
A row with a preference that contains an irrelevant object, that is, an object
that is not in Z, can be discarded.

The conclusion of this reflection is that, in the general case, matrix gener-
ation for learning and matrix generation for prediction are two different steps.
This differentiation has not been made so far, because the scenario of unseen
objects has not been a primary concern.

5.3 Generality

In this chapter, it has been demonstrated how a coding matrix can be used
for ranking tasks. Within this general approach, several parameters determine
the specific ranking method. In this final section of the chapter, the particular
choices that have been made will be highlighted, in order to distinguish what is
specific and what is generic, and to reiterate the underlying general approach.
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At the base is the idea that for each possible preference between objects, a
vector is assigned. This vector – in the terms used above, a row of the matrix –
can be arbitrarily chosen, and could in fact be random. Each component of the
vector is learned to be predicted by a single machine learning algorithm. The
first choice is from which domain the values of the vector are taken. Depending
on this is the choice for the predicting functions and the algorithms that learn
them. The focus in the above chapter was on binary values, but real values or
some measure of confidence for a binary classification are possible.

The next generic condition is the existence of a distance function between
the prediction vector and the original vectors, which is another parameter to
be chosen. Independently from that, a function can be chosen that aggregates
the difference value of each row to an order of the objects. This must be done
because each row is associated with a binary preference, not an object.

On this base, the approach dubbed object feature coding by this work is
built. The construction of the matrix, and thus the single vectors for each
preference, is done via the object features that are available in the unified
scenario, which is the focus of this work. Nevertheless, object features are not
a prerequisite for the use of a coding matrix, as has been shown in the pairwise
label ranking example.

Finally, there is the choice within the object feature coding framework of a
function that maps the feature vectors of a 2-variation of objects to the vector of
the associated preference, determining the specific decomposition method. Two
such methods have been introduced above, per-attribute ranking and cross-
attribute ranking.

The motivation for this emphasis of the general possibilities of the frame-
work is the belief that, although two specific methods have been described,
there might still be potential in finding other methods that conform to more
strictly defined optimality criteria.
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Chapter 6

Evaluation

On the one hand, this chapter discusses the premises for experimental eval-
uation of the introduced scenario and methods, which will be performed in
chapter 7. On the other hand, algorithmic complexity is discussed on a theo-
retical level.

6.1 Test Data

To assess the quality of the different methods experimentally, apt testing data
is needed. While there are numerous data sets available for standard data
mining tasks such as classification, and to a smaller degree label or object
ranking, little data is available for the scenario presented here. For this reason,
and in order to better highlight different properties of the various algorithms,
generated data is employed in addition to real-world data.
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6.1.1 Sushi Dataset

The sushi data,1 used in Kamishima (2003) and extended in Kamishima et al.
(2005) is based on a Japanese survey of preference between types of sushi. It
consists of two different datasets.2

For the first, called Sushi A in the following, participants were asked to
order ten different types of sushi according to their preferences. These ten
items were the same for each participant.

For the second, called Sushi B, participants werde asked to order ten differ-
ent types of sushi, but these ten items were chosen randomly from a larger set
of a hundred sushi types. Thus, each context (user) is associated with a partial
order on the complete set of a hundred objects Z.

Both datasets record 11 features of the users, shown in Table 6.1. The sushi
items have 9 features, shown in Table 6.2.

6.1.2 Generated Data

The generated data set consists of a hundred context items and ten object
items. Contexts and attributes have each ten features, with randomly generated
values. For each context, an order of objects is established by rating each object
and then ordering objects according to their rating.

The rating function r(x, z) for an object z in context x

r(x, z) = ν ·Nx,z + (ν − 1) ·
m∑
i=1

n∑
j=1

Mi,j · x(i) · z(j)

1http://www.kamishima.net/sushi/
2Strictly speaking, it consists of three: The original paper’s point was to highlight the

differences between rating and ordering, so the participants were asked to first rate, then
order the different items. For the purposes of this work, however, the rating data is not used.
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user attributes
id
gender
age
writing speed
childhood prefecture
childhood region
childhood coast (east/west)
current prefecture
current region
current coast (east/west)
childhood / current equal?

Table 6.1: User attributes of the sushi dataset

item attributes
id
name
style (maki/other)
major group (seafood/other)
minor group
oiliness
eating frequency
normalized price
sale frequency

Table 6.2: Item attributes of the sushi dataset
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uses an m×n matrixM of random values; m is the number of context features,
n is the number of object features (as mentioned above, both variables have a
value of 10 for the data used in the experiments). Mi,j determines the influence
of the ith context feature x(i) and the jth object feature z(j) on the overall
rating of object z. N is a matrix with random entries, supposed to introduce
noise. Nx,z is the matrix entry for the combination of context x and object z;
ν ∈ [0, 1] determines the strength of the noise.

After the objects have been ordered by their rating value, 40 preferences of
the form z1 � z2 are chosen randomly for each context and made visible in the
training data.

For the experiment described in section 7.2, the original object features
that determine the ranking have been replaced with random feature values not
correlated to the ranking. This is explained in detail in the description of the
experiment.

6.2 Prediction Performance

To compare the quality of prediction that the different algorithms deliver, a
measure of performance is needed. This section reviews two measures com-
monly employed in connection with ranking, Spearman’s rank coefficient and
Kendall’s tau coefficient, and discusses their applicability to the scenario at
hand.

As a third measure, Kendall’s tau is generalized to be able to handle arbi-
trary binary relations instead of just total orders.

The measure introduced has a similar function to prediction accuracy in
classification problems. Since the term accuracy has that very specific meaning
in classification, it will not be used. In order to avoid confusion, the term
prediction performance will be used instead.
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6.2.1 Spearman’s Rho

Spearman’s rank coefficient, also known as Spearman’s rho (Salkind, 2006, vol.3,
p.927) is an established rank coefficient that has been introduced in the context
of psychology by Spearman (1904). It is, for instance, used as a measure of
dissimilarity between orders by Kamishima (2003).

Spearman’s rank operates on the difference in rank between two total orders
on the same set. Rank denotes the position of an object in the order, where
the first object of the order has rank 1, the second rank 2 etc. For two orders
�1,�2 on a set of objects |Z|, Spearman’s rank is given by

ρ = 1−
6
∑

z∈Z (rank(�1, z)− rank(�2, z))2

|Z|3 − |Z|
.

To give an example, assume �1 to be

a �1 b �1 c �1 d,

yielding the following rank values

object a b c d

rank 1 2 3 4

and �2 to be
b �2 a �2 c �2 d,

yielding the following rank values

object a b c d

rank 2 1 3 4

For the example, Spearman’s rho is

ρ = 1− 6((1− 2)2 + (2− 1)2 + (3− 3)2 + (4− 4)2)

43 − 4
= 1− 6(1 + 1)

60
= 0.8.

43



CHAPTER 6. EVALUATION

A positive value close to 1 indicates a strong positive correlation between
the orders. When the orders are identical, the sum of squares of the differences
becomes 0, and thus ρ = 1. On the other hand, ρ = −1 if �2 is �1reversed.3

6.2.2 Kendall’s Tau

The Kendall rank correlation coefficient (Kendall & Gibbons, 1990, p.3), also
known as Kendall’s tau, is another measure of similarity between two orders on
the same set of objects. It takes into account the number of different pairwise
preferences between the two orders of the set.

Each total order on a set of objects Z has 1
2
|Z| (|Z| − 1) elements. For

example, the order �1,
a �1 b �1 c �1 d

when viewed as a binary relation or set of pairwise preferences, is

�1= {(a � b), (a � c), (a � d), (b � c), (b � d), (c � d)} .

For a comparison of two orders on the same set Z, the number of different
pairs is counted. To compare a second order �2,

b �2 a �2 c �2 d

to the order above, consider the pairs

�2= {(b � a), (b � c), (b � d), (a � c), (a � d), (c � d)} .

The symmetric difference between the two orders is the set of elements that
are not common to both,

�1 ∆ �2= (�1 ∪ �2) \ (�1 ∩ �2) = {(a � b), (b � a)} .
3See Kendall & Gibbons (1990, pp.8-9) for a proof.
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The size of that set is the symmetric difference distance |�1 ∆ �2|, which is 2
in the example.

The Kendall rank correlation coefficient τ is the symmetric difference dis-
tance normalized to the interval [−1, 1]. A value of 1 signifies the minimal dis-
tance possible, corresponding to identical orders, in which case | �1 ∆ �2 | = 0.
A value of −1 signifies the maximum distance between �1 and �2.

A total order on Z has
1

2
· |Z| · (|Z| − 1)

elements. For two orders �1, �2 on Z, the maximum of | �1 ∆ �2 | is therefore

|Z| · (|Z| − 1).

Used to normalize | �1 ∆ �2 |, this yields Kendall’s rank correlation coefficient

τ =
1
2
· |Z| · (|Z| − 1)− | �1 ∆ �2 |

1
2
· |Z| · (|Z| − 1)

= 1− 2 · | �1 ∆ �2 |
|Z| · (|Z| − 1)

.

With | �1 ∆ �2 | = 2 and |Z| = 4 for the example, τ = 1 − 2·2
4·3 = 2

3
≈ 0.67.

This positive value close to 1 signifies a relatively strong positive correlation
between the two orders. A more defined interpretation of τ can be expressed in
probabilistic terms (Salkind, 2006, vol.2, p.508): Suppose choosing two random
objects from Z. Let P (S) be the probability that the objects are in the same
order in both O1 and O2, and P (D) the probability that they are in a different
order. Then, τ expressed in those terms is

τ = P (S)− P (D).

6.2.3 Generalization of Kendall’s Tau

Spearman’s rho and Kendall’s tau compare two rankings or total orders on the
same set of objects. For a discussion of their applicability to the unified ranking
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scenario, recall the definition from section 2.3. The task is to learn a function

f : X × Z → SZ (Z ⊆ Z)

from a set of contexts
{x`|l = 1, 2, . . . , n} ⊆ X ,

where each context x` is associated with a binary preference relation

�x`
= {zi �x`

zj, . . .}.

That binary preference relation is not necessarily a total order. For evalu-
ation, a dataset is split in training and test data (see section 6.4). A model is
built on the training portion, which then predicts an order on the test portion.
The predicted order is always total, but the true preference relation, to which
the predicted order is compared, may be partial.

For this reason, both Spearman’s rho and Kendall’s tau cannot be applied
to the unified ranking task without modification. But Kendall’s tau builds on
the notion of similar pairs, and thus can be generalized to fit the purpose at
hand.

Let �1 be a total order on the set of objects Z and �p be a binary relation
on Z. Let Zp ⊆ Z be the subset of objects used by �p, that is, object zi ∈ Zp

iff there is a j for which (zi � zj) ∈�p or (zj � zi) ∈�p.
Let C ⊆�p be the subset of pairs in �p that are consistent with �1, that

is,
C = {(zi � zj) : (zi � zj) ∈�p ∧(zj � zi) /∈�1}.

In the setting of evaluation of unified ranking, the total order �1 is predicted
by the learned function, and the binary relation or partial order �p is given in
the test data for a context.

Note that a partial order is a binary relation that is antisymmetric. In the
definition of the unified scenario in section 2.3, it is not a prerequisite that
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the preference relation attached to a context be antisymmetric.4 With the
definition of C above, if there is a pair of objects zi, zj for which both zi �p zj

and zj �p zi, then only one of the two preferences will be counted as correct.
It could be a another valid approach to define C so that such a pair would be
exempted from the measure altogether – in this case, the learning algorithm
under test would always be given the “benefit of the doubt” and score higher
with inconsistent data.

If C is the subset of true preferences of �p in accordance to the predicted
order �1, then

|C|
| �p |

is the ratio of correctly predicted preferences. It is in the interval [0, 1], and
normalized to [−1, 1] it yields

τp =
2 · |C|
| �p |

− 1.

This measure will be used in the following experiments to determine the
performance of prediction of the various algorithms.

To see that it is a generalization of Kendall’s tau, consider the special case
where �p=�2 is a total order. In this case,

| �p | = | �2 | =
1

2
· |Z| · (|Z| = 1)

and

|C| = 1

2
· |Z| · (|Z| − 1)− 1

2
· | �1 ∆ �2 |

4A partial order is also transitive, which is not a requirement either. The special case of
a partial order is referred to a lot only because it is an illustrative example.
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and by substituting into the formula for τp above,

τp =
2 · (1

2
· |Z| · (|Z| − 1)− 1

2
· | �1 ∆ �2 |)

1
2
· |Z| · (|Z| − 1)

− 1

=
2 · |Z| · (|Z| − 1)

|Z| · (|Z| − 1)
− 2 · | �1 ∆ �2 |
|Z| · (|Z| − 1)

− 1

= 1− 2 · | �1 ∆ �2 |
|Z| · (|Z| − 1)

= τ

it yields Kendall’s tau.
To give an example of the calculation, imagine a predicted order �1

b �1 a �1 c �1 d

and the true preferences to be

�p= {(a � b), (a � c), (a � d), (b � c), (c � d)}.

Of these, 5 are in accordance with �1

C = {(a � c), (a � d), (b � c), (c � d)}.

Then,

τp =
2 · |C|
| �p |

− 1 =
2 · 5

6
− 1 ≈ 0.67.

6.3 Default Prediction Performance

In multi-label classification, default accuracy is the accuracy that is achieved
by always predicting the largest class; that is, for each example in the test
data, the same class is predicted: that which occurred most frequently in the
training data.
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The resulting default accuracy can serve as a benchmark for evaluating
the performance of a classification algorithm. Clearly, any algorithm worth
considering should perform better than this simplistic default classifier.

The target domain in the ranking scenario is not a set of classes, but the
set of all possible orders. It should be clear that simply predicting the most
frequent order will not result in an equivalent default accuracy. In search for
a measure that provides a comparable assessment for the ranking scenario, we
reconsider the idea of default accuracy to be the highest accuracy achievable
by building a predictive model only from the distribution of the dependent
variable.

One approach is counting how often a label is preferred over any other label
in any training context and order the labels accordingly. The resulting order
is the one predicted by the default ranking. This approach was chosen for the
computation of a default prediction performance shown in the experimental
results in chapter 7.

Another approach would be the construction of a total order for each train-
ing context. Given n labels, the greatest label would be awarded n− 1 points
for the context, the second-greatest n− 2 points etc., and the smallest label 0

points. The points would then be added over all contexts, and the resulting
order predicted by the default ranking.

6.4 Cross Validation

For classification problems, a widely-used evaluation method is cross valida-
tion(Witten & Frank, 2005, pp.149-151). In cross validation, the test data is
partitioned into a fixed number of portions or folds. Given n folds, both learn-
ing and classification are performed n times, with the respective fold, one nth
of the data, used for testing, and the remainder, n − 1 nth of the data, used
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for training. The results are averaged over the n runs.
Cross validation for the unified ranking scenario works similar. The set

of contexts is partitioned into n folds, each of which is used as test data for
one run. The remainder of the data is used for training the model. Which
subset of objects is used for the training and the test stage depends only on
the preferences present in the training/test context subsets.

For the experiments conducted in this work, 10-fold cross validation is used.
This choice of n represents a common tradeoff between accuracy of the assess-
ment and computation speed.

6.5 Complexity

In this section, the run-time and memory requirements of the methods intro-
duced in chapter 5 will be discussed. These methods work by decomposition,
that is, by reducing the problem to one or more classification problems. This
has two major implications for the discussion of the computation time and
memory requirements.

First, as the decomposition method relies on an underlying classification
algorithm, the execution time and memory requirements of that classification
algorithm need to be considered. Without identifying the particular classifica-
tion algorithm that does the actual learning, time and space complexity cannot
be definitely determined, but only be stated depending on the time and space
complexity of the classifier.

Secondly, since the decomposed sub-problems can be solved independently,
they can be processed in parallel. This can reduce computation time greatly
and has thus been identified as one of the major advantages of decomposition
in chapter 4.

The two parameters that affect the algorithmic complexity of the object
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feature coding approach are the number of object attributes n and the number
of objects p.

It has been described in chapter 5 how a training example is constructed
from each pairwise object comparison for each decomposed learning algorithm;
with the reservation that the example can be ignored (resulting in a 0 entry
in the coding matrix). Thus, the number of objects poses an upper bound of
p(p− 1) on the number of training examples that need to be used for training
by any of the single induction algorithms.

Note that the number of training instances for the decomposed problems
is directly dependent on the number of objects, not on the number of original
training instances. Let tpref be the size of the original training data defined
as the total number of binary preferences given. Then, the number of original
training instances tpref poses an upper bound on the number of objects p such
that

p ≤ 2 · tpref

as each training example can contain two objects. In practice, the number of
objects may be much smaller, as the same object will likely appear multiple
times in the training data.

As it was stated in chapter 2 and chapter 5, the particular scenario that
we are interested in assumes a fixed set of objects that is independent in the
number of training examples. Thus, for the remaining discusion of algorithmic
complexity, the focus lies on the number of object attributes.

The number of object attributes n and the method of coding matrix con-
struction determine the number of single classifiers that have to be learned.

6.5.1 Training Time

In chapter 5, two ranking methods based on object feature coding have been
proposed: per-attribute (subsection 5.2.1) and cross-attribute(subsection 5.2.2).
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Per-attribute learns as many models as there are object attributes. Thus, if
n is the number of object attributes, the time complexity for learning depending
on n is O(n).

However, it needs to be considered that through the decomposition, the sin-
gle problems become smaller on average with respect to the training instances
for each sub-problem. This can shorten training time remarkably, especially in
cases where a learning algorithm is used where the training time grows faster
than linear in the training instances.

Cross-attribute learns n(n−1) functions. This means that computation time
grows quadratic in the number of object attributes. The increase compared to
the the per-attribute approach is considerable, and it is accepted in the hope
that this approach will result in a higher prediction performance.

Again, the sub-problems are smaller in the number of instances, which can
mean a lower training time for each individual learner.

Finally, the sub-problems are independent of each other and can be solved
in parallel. Assuming a high enough number of processing units, such that
there is at least one processing unit per sub-problem, the distributed training
time with respect to the number of object attributes is in O(1).

6.5.2 Prediction Time

When predicting an order, each of the sub-models needs to be consulted, re-
sulting in an asymptotic prediction time in O(n) for per-attribute ranking and
O(n2) for cross-attribute ranking.

The reduction of the problem size in terms of training instances is not
relevant here. Many classification algorithms have a constant time requirement
in the number training instances. If the run-time for prediction depends on the
number of training instances at all, as it is the case e.g. with instance-based
models, it usually grows sub-linearly.
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Especially for per-attribute ranking or other methods within the object
feature coding framework that use a similarly high number of sub-models, the
prediction time can be considerable when the number of object attributes is
high. The expectation is that this is the cost of buying a better prediction.

From these premises, it can be reasoned that the ideal problem for which
the utilization of object feature coding should be considered is one where the
number of object features is relatively small or can be reduced to a small num-
ber, and the prediction quality that has been achieved with different methods
is not satisfactory.

6.5.3 Memory Requirements

After learning, all of the sub-models need to be stored: n in the case of per-
attribute ranking and n(n− 1) in the case of cross-attribute ranking.

This results in an asymptotic memory requirement of O(n) and O(n2),
respectively. The point made in the previous discussion of prediction time is
valid mutatis mutandis, i.e. the higher memory use is expected to provide for
a more accurate prediction.

Again, it is worth pointing out the independence of each decomposed prob-
lem. This means, even if the total amount of memory needed may be huge for
large problems, each individual classification function only needs access to the
data of its own model. This allows for an architecture which can distribute the
problem efficiently among different machines.
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Chapter 7

Experiments

This chapter details the setup and results of the conducted experiments. The
fundamental basis for experimental evaluation has been laid by the previous
chapter 6; in the following there will additionally be more specific introductions
to the particular experiment, as each experiment is supposed to illuminate a
different aspect of the problem and of the ranking methods under test.

Thus, the experiments are grouped into three sections: prediction perfor-
mance on real-world and synthetic data (section 7.1), effects of varying corre-
lation strength between context and object features (section 7.2), and effects
of noisy data (section 7.3).

All of the ranking methods described in this work reduce the ranking task
to one or more standard classification tasks. This means that any classification
algorithm can be substituted to do the actual machine learning. For the exper-
iments described in this chapter, the C4.5 decision tree generator introduced
by Quinlan (1993) has been used.
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7.1 Prediction performance

This experiment measures the accuracy of the ranking algorithms over three
data sets: sushi A, sushi B, and the generated data (see section 6.1 for a detailed
description of these data sets).

The results are depicted in Figure 7.1 and the corresponding Table 7.1.
The figure is a grouped bar chart of the prediction performance of five ranking
methods. Each data set is represented by a group: The group to the left
contains the results for the sushi A data set, the middle group for the sushi B
data set, and the group to the right contains the results for the generated data.
The ranking method is indicated by the pattern and color of the particular bar.

For each group, the two leftmost bars, marked with a grid pattern, repre-
sent the non-decomposed methods of baseline ranking and label ranking. The
two rightmost bars, marked with a stripe pattern, represent the decomposed
methods of cross attribute ranking and classifier-per-attribute ranking. The
solid bar in the middle represents default ranking.

As a first observation it is to be noted that the decomposed methods show
better results than the non-decomposed methods over all three data sets. These
results provide a positive answer to the initially posed question whether decom-
position approaches could increase the quality of prediction.

Of the two decomposed methods, the cross attributes methods beats the
classifier-per-attribute method in two of the three cases. This result is not
unexpected, since the cross-attribute method was introduced as an alternative
to the classifier-per-attribute method and was supposed to fix certain short-
comings of it. The price for this increase in prediction performance has been
pointed out in section 6.5: a higher computational complexity.

Of the non-decomposed methods, baseline ranking achieves better results
in two of the three cases, indicating a positive answer to the initial question
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Figure 7.1: τp across different datasets
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sushi-A 0.21 0.21 0.31 0.27 0.30

sushi-B 0.20 0.16 0.29 0.30 0.27

generated 0.38 0.30 −0.00 0.44 0.41

Table 7.1: τp across different datasets
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whether taking into account the object features – even without decomposition
– could improve prediction accuracy over label ranking.

The results for sushi A and sushi B are relatively similar, while results for
the generated data differ from these. The most noticeable difference between
the generated data and the sushi data is the difference in the default ranking.
The default ranking measures the default prediction performance. As described
in section 6.3, this is a measure for the distribution of preference among the
different objects, independent from a specific context. The employed method
of data generation has distributed preference equally over all objects, while the
experiments show that there are sushi items that are more universally preferred
or put simply, more popular.

Recall that the default ranking, in analogy to default accuracy in classifi-
cation, was introduced as a way of providing a minimum level of predictive
performance that every good ranking method should outdo. Usually, a high
default prediction performance means the dataset should be easier to learn, as
some of the objects are universally (over all contexts) rated higher than others.
In this respect, the results for the sushi data put the quality of the other rank-
ing methods into perspective: While the default ranking is on par with the two
decomposed methods, it outperforms the non-decomposed methods by a clear
margin.

7.2 Number of relevant attributes

Label ranking only represents objects as nominal labels, without being con-
cerned with their features. The decomposed methods introduced in this work,
on the other hand, use the object features as an information to define the way
they decompose the problem. To put it differently, label ranking correlates the
context features only with a label, while the decomposed methods correlate
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context features with object features. What if object features were chosen that
show no correlation to the context features?

Figure 7.2 and Table 7.2 show the results of an according experiment. The
test data is generated as described in section 6.1. Then, attributes are gradually
replaced with new attributes with random values. In other words, for each
instance, each value for the particular attribute is assigned a new random
value unrelated to anything. Is is done for one attribute after another, with
the experiment repeated between each attribute substitution. In the end, all
of the object attributes are completely random without any correlation to the
context attributes. The x-axis of Figure 7.2 shows the number of correlated
or relevant attributes. The curves represent the prediction performance of the
five ranking methods.

As expected, the performance of the decomposed predictors drops. The
drop of the per-attribute method is somewhat less dramatic than the drop of
the cross-attributes method. Here, the more simplistic per-attribute method
seems to be slightly more stable against this kind of noise in the data.

Label ranking is not at all affected by the change in attribute values. When
recalling the way the method works, it is easy to explain why: Label ranking
strips the attributes from the objects so that they seem like nominal labels.
Thus, the problem presents itself as identical for each iteration from the label
ranking perspective.

The baseline method appears stable. Even with completely random object
attributes, it is able to predict a ranking no worse than with the original data.
This is somewhat surprising; the expectation was that, with random object
attributes, the prediction performance should drop to the levels of label ranking.
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10 0.38 0.30 −0.00 0.44 0.41

8 0.35 0.30 −0.00 0.42 0.38

6 0.36 0.30 −0.00 0.28 0.36

4 0.39 0.30 −0.00 0.18 0.34

2 0.35 0.30 −0.00 0.12 0.30

0 0.39 0.30 −0.00 0.09 0.22

Table 7.2: τP against number of relevant attributes
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7.3 Noise

To test how the different ranking methods handle noisy data, different kinds of
noise are introduced to the generated data, and the methods are tested on it.

7.3.1 Rank Noise

For this experiment, the generated dataset is used, the generation of which
has been described in section 6.1. To reiterate, a fixed number of context and
object items are initialized with random values. An m × n matrix M with
random entries governs the rating of each object in each context. A rating is a
value in R, which is calculated by the following function:

r(x, z) = ν ·Nx,z + (ν − 1) ·
m∑
i=1

n∑
j=1

Mi,j · x(i) · z(j).

After each object has been rated, an order is established according to the rating.
Then, 40 binary preferences of the form z1 � z2 are randomly picked for each
context and put into the data set.

In the formula above, Nx,z represents a random noise component for the
rating of object z in context x, and ν, 0 ≤ ν ≤ 1 the ratio of noise. For the
present experiment, ν is gradually increased.

The results are shown Figure 7.3 and Table 7.3. The x-axis shows the
amount of noise, that is ν, in percent. It can be noticed that the effects only
begin to show with a great amount of noise, from 80 percent onward. This
means that only a high amount of noise in the rating has an effect on the
actual ranking. It can be noted that it would probably be a a better method
for ranking noise generation to modify the ranking itself, e.g. by inverting an
amount of randomly selected preferences in the data.
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Figure 7.3: τP against rank noise [%]
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50 0.17 0.24 −0.00 0.42 0.23

52 0.14 0.23 0.01 0.42 0.21

55 0.15 0.24 0.00 0.40 0.21

57 0.14 0.21 0.01 0.43 0.25

60 0.15 0.21 0.01 0.43 0.25

62 0.16 0.24 −0.00 0.42 0.22

65 0.16 0.25 0.02 0.42 0.26

67 0.13 0.24 0.02 0.43 0.22

70 0.14 0.25 −0.01 0.44 0.24

72 0.17 0.24 0.01 0.43 0.25

75 0.14 0.24 0.00 0.41 0.23

77 0.15 0.24 0.03 0.42 0.27

80 0.15 0.21 −0.00 0.43 0.24

82 0.16 0.22 −0.00 0.44 0.22

85 0.12 0.23 0.02 0.44 0.27

87 0.10 0.23 0.00 0.41 0.19

90 0.12 0.24 −0.01 0.38 0.24

92 0.15 0.22 0.01 0.39 0.27

95 0.13 0.21 0.01 0.39 0.21

97 0.08 0.12 0.01 0.29 0.17

100 −0.01 −0.01 0.00 −0.02 −0.00

Table 7.3: τP against rank noise [%]
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From the results can be seen that the quality of prediction decreases for all
methods; the decrease is roughly equal among all methods, and there is no one
that performs obviously better or worse than the other.

7.3.2 Object Feature Noise

Figure 7.4 and Table 7.4 show the results of an experiment where noise was
added to the object features. That means, after data generation, an amount
of noise was added to each object feature value. This amount of noise was
gradually increased, until the object features are completely random and have
no correlation to the context features anymore.

The x-axis of the graph shows the amount of noise that was added to the
object features. An inspection of the results for the various ranking meth-
ods reveals that label ranking and the default ranking remain constant, while
all other methods decline. Just as in the relevant-attributes experiment in
section 7.2, neither label ranking nor the default ranking are influenced by a
change in object attributes.

While default ranking is not considered to be a real ranking method and
was only introduced as a benchmark, it is still interesting to observe how it
behaves under the different types of introduced noise. Noise introduced to the
correlation between context and object features, as in this and in the following
experiment, does not affect it at all; it scores exactly the same constant predic-
tion performance. Noise introduced to the ranking, as in the relevant-attributes
experiment, does affect it. In that experiment, the preferences change ran-
domly. Default ranking uses the overall preference for an object independent
from a context for prediction. For that reason, the curve for default ranking
shows a random jitter without showing a trend.

The baseline ranking method’s results are also relatively constant. In con-
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Figure 7.4: τP against object feature noise [%]
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0 0.10 0.24 0.00 0.43 0.25

5 0.15 0.24 0.00 0.43 0.23

10 0.13 0.24 0.00 0.42 0.22

15 0.15 0.24 0.00 0.41 0.24

20 0.16 0.24 0.00 0.40 0.22

25 0.15 0.24 0.00 0.41 0.21

30 0.16 0.24 0.00 0.40 0.22

35 0.14 0.24 0.00 0.39 0.21

40 0.16 0.24 0.00 0.37 0.24

45 0.15 0.24 0.00 0.34 0.17

50 0.15 0.24 0.00 0.34 0.21

55 0.16 0.24 0.00 0.30 0.12

60 0.15 0.24 0.00 0.27 0.14

65 0.18 0.24 0.00 0.26 0.18

70 0.16 0.24 0.00 0.24 0.14

75 0.18 0.24 0.00 0.22 0.14

80 0.14 0.24 0.00 0.21 0.12

85 0.15 0.24 0.00 0.20 0.14

90 0.15 0.24 0.00 0.19 0.11

95 0.14 0.24 0.00 0.19 0.13

100 0.14 0.24 0.00 0.18 0.11

Table 7.4: τP against object feature noise [%]
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trast, the object feature coding methods of cross-attribute and classifier-per-
attribute show a clear decrease in prediction quality, with cross-attribute rank-
ing staying well above classifier-per-attribute ranking. Similarly to the relevant-
attributes experiment in section 7.2, the results show that an approach like ob-
ject feature coding, which utilizes the correspondence between context features
and object features exclusively, relies on the presence of such a correspondence.
A proposal to work around this shortcoming is given in section 8.1.

7.3.3 Context Feature Noise

The final experiment adds noise to the values of the context attributes. Fig-
ure 7.5 and Table 7.5 show the results. The x-axis of the graph shows the noise
ratio in percent.

The decrease in prediction performance is clearly visible. All methods seem
to be equally affected; the two decomposed methods show the best results, with
the cross-attribute approach on top of all others.

In contrast to the previous experiment, label ranking also sees a loss in
prediction performance.

7.4 Summary

The experiments show that the decomposition approaches can increase the
accuracy of rank prediction in comparison to both label ranking and non-
decomposed methods which take into account context and object features.

It becomes apparent, however, that the decomposition approach depends
especially on a good modeling of the object features. Otherwise, even label
ranking can outperform the decomposition approach.

It would be another interesting experiment to model a label ranking problem
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50 0.06 0.12 0.00 0.23 0.11

52 0.06 0.11 0.00 0.20 0.13

55 0.06 0.10 0.00 0.18 0.11

57 0.07 0.09 0.00 0.16 0.09

60 0.06 0.07 0.00 0.14 0.10

62 0.04 0.06 0.00 0.11 0.10

65 0.06 0.05 0.00 0.11 0.07

67 0.04 0.04 0.00 0.08 0.06

70 0.01 0.03 0.00 0.07 0.05

72 0.02 0.04 0.00 0.05 0.02

75 0.03 0.02 0.00 0.06 0.03

77 −0.00 0.02 0.00 0.05 0.03

80 0.01 −0.00 0.00 0.05 0.01

82 −0.01 −0.01 0.00 0.02 −0.00

85 −0.02 0.01 0.00 0.00 0.01

87 0.02 0.02 0.00 0.02 0.01

90 0.02 0.00 0.00 0.02 0.01

92 −0.01 −0.00 0.00 0.00 0.02

95 −0.00 0.01 0.00 0.01 −0.02

97 −0.01 −0.01 0.00 0.02 −0.02

100 −0.02 0.01 0.00 0.01 −0.05

Table 7.5: τP against context feature noise [%]
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for the decomposition methods, with one object feature per label, which has
a positive value if the object has the corresponding label and a negative value
otherwise. The results could then be compared to label ranking.
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Chapter 8

Conclusion

The objective of the present work was to find and evaluate an approach that
unifies the known scenarios of object ranking and label ranking.

The unified ranking scenario was defined as a generalization of both label
ranking and object ranking. After a general consideration of the common
approaches to ranking problems, several basic methods have been selected and
described in order to provide a benchmark for evaluation.

A technique well-known in multi-class classification, the decomposition of
a problem by means of a coding matrix, has been transferred to the ranking
scenario. In order to demonstrate the versatility of the technique, the pairwise
label ranking method has been expressed in terms of a coding matrix. Then,
an approach named object feature coding has been proposed, which specifies a
coding matrix through a function of the features of the objects that should be
ranked.

This technique is a method that utilizes decomposition. This means, the
method decomposes the problem into multiple smaller sub-problems, which
are then solved and their solutions combined to form a solution to the original
problem. For this reason, the general properties of the decomposition of data
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mining tasks have been discussed; two benefits of decomposition have been
identified that were expected to apply to the proposed methods, and thus were
expected to become visible in the further evaluation. The first is the ability
to distribute computation among different processing units, thus allowing for a
faster execution. This benefit has been evaluated in the course of the analysis
of algorithmic complexity, and it could be shown that the proposed ranking
methods could indeed be distributed among multiple computers, since the single
sub-problems are independent of each other.

The second expected benefit was an increase in prediction performance.

The described methods were implemented and subsequently tested on real-
word data as well as on generated data. First, a comparison between label
ranking and the baseline ranking method for the unified scenario has shown
that the information of object features can indeed improve prediction accuracy.

Secondly, the it could be shown that the introduced decomposition ap-
proaches can further increase performance.

Nonetheless, it could be demonstrated that the introduced decomposition
method also has weaknesses when the object features do not show a high corre-
lation to the context features. In extreme cases, even label ranking performed
better. An approach was suggested that could alleviate or solve this problem
by modeling object id in the object features.

Finally, it is to be said that the two methods of per-attribute ranking and
cross-attribute ranking that were implemented and tested within the object
feature coding framework are only two examples of a multitude of many possible
methods and parametrizations.
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8.1 Future Work

8.1.1 Data

The only real-world data used for evaluation is the sushi dataset (see sec-
tion 6.1). This is largely due to the reason that data fit for the specific scenario
is much harder to find than data for standard data mining scenarios, and sur-
veying new data is outside the scope of this work.

Ideally, there should be several real-world datasets on which the ranking
methods are tested to gain a sound evaluation. It remains an open task to find
such data and evaluate the proposed methods on them.

Likewise, the automatically generated data used in the present work is gen-
erated ad-hoc. A more sophisticated data generation approach would deliver
more general results. But it is obvious that a good method for data gener-
ation should generalize from the regularities found in real-world data. Thus,
real-world data might be needed either way.

8.1.2 Experiments

In cases where there is no correlation between context and object features, it
could be helpful to augment objects with features that identify or label them.
One such experiment is sketched in section 7.4.

8.1.3 Margin-based Decoding

Allwein et al. (2001) introduce a method of decomposing multi-class learn-
ing tasks into multiple binary learning tasks. This method takes into account
the margin, which is an inherent property of the classification of many binary
classification algrorithms such as support-vector machines, AdaBoost, regres-
sion, logistic regression and decision-tree algorithms. It is a real value whose
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magnitude can be interpreted to be a measure of confidence for the particular
decision. Allwein et al. show how the learning of the mentioned algorithms
minimize a loss function on the margin of the training examples, and go on to
prove how the loss of the individual binary classifiers bounds the loss of the
original problem.

A similar approach could be used with the algorithm described in this work,
where only the binary predictions of the single classifiers are taken into account.
Such an approach is expected to increase prediction performance.
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Appendix A

Implementation

The ranking methods to be tested are implemented in Java. Figure A.1 shows
a class diagram of the ranking methods. As can be seen, LabelRanking, De-
faultRanking and ClassifierPerAttribute inherit from AbstractLabel-
Ranking. This is the superclass for all methods that need to know the complete
set of objects at training time, as described in section 2.3.1 BaselineRanking,
on the other hand, can make predictions for previously unseen objects. The
AbstractLabelRanking class provides facilities for establishing object iden-
tity between objects of the training and test sets, which are utilized by the
subclasses.

The Weka toolkit(Hall et al. , 2009) provides a library for standard machine
learning tasks such as classification and regression. As described in chapter 3,
the ranking task is reduced to one or more classification tasks. In the imple-
mentation, classification is performed by a Weka learner. By programming
against the interface provided by Weka, any of the pre-implemented machine

1Although the general object feature decoding approach can rank unseen objects, this is
not part of the experiments and has therefore not been implemented.
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Figure A.1: Class diagram of the ranking methods
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learning algorithms can be used. The actual algorithm that was used for the
experiments described in chapter 7 is the C4.5 decision tree generator intro-
duced by Quinlan (1993), which is implemented in Weka under the name of
J48.

A.1 Data File Format

A data format for the unified ranking scenario must store two relations, one for
the context set and one for the object set. Additionally, each member of the
context set must be associated with a set of pairwise object preferences.

The LPCforSOS (Learning by Pairwise Comparison for Problems with Struc-
tured Output Spaces) framework2 developed in cooperation between the Knowl-
edge Engineering Group 3 and the Knowledge Engineering & Bioinformatics
Lab of Philipps-Universität Marburg4 aims at learning to predict structures
such as orders through pairwise comparisons.

LPCforSOS extends the ARFF (Attribute-Relation File Format) used by
Weka. In ARFF, every instance of the data set is associated with a single
class, as it fits the standard classification problem. The EARFF (Extended
ARFF) used by LPCforSOS allows for the association of multiple classes with
an instance. By using preferences in the place of classes, it is possible to attach
a preference relation to each instance. Note that there are no restrictions on
the preference relation such as antisymmetry, meaning it may be z1 � z2 and
z2 � z1 for z1 6= z2. This is intended and in line with the problem formulation
in chapter 2.

2http://www.ke.tu-darmstadt.de/projects/lpcforsos
3http://www.ke.tu-darmstadt.de/
4http://www.uni-marburg.de/fb12/kebi/
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Figure A.2: Context File Format
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Figure A.3: Object File Format
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The implementation uses an EARFF file for the set of contexts. A sample
can be seen in Figure A.2. In the @data section at the bottom, the prefer-
ences can be seen at the right, surrounded by curly braces. Although in this
example the objects are denoted by numerals, generally they can be denoted
by any label. The labels are specified in the @Class attribute, and their order
corresponds to the order of object instances in the object data file. Figure A.3
shows the corresponding object data. It is specified in the ARFF format.

The original raw data was converted into the target format with the use of
some Python scripts.
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