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The universe is made mostly of dark matter and dark energy,
and we don’t know what either of them is.

Saul Perlmutter, 2011 Nobel laureate in Physics

Physicists will tell you that 95% of the stu� in the universe is not what they were paying attention to
– it is something else.

[. . . ] The point of [dark knowledge] that I want to show you [is] that 95% of what a neural
network learns is not what you are trying to get it to learn and is not what you test it on

– it is something else.a

Geo�rey Hinton, 2018 Turing recipient
for his research on artificial neural networks

a He began his talk with these words, in the Excellent Lecture Series at TTIC (Toyota Technological Institute at
Chicago) given on October 2, 2014. http://www.ttic.edu/dls-2014-2015/ (as of January 9, 2019)

http://www.ttic.edu/dls-2014-2015/




Abstract
Deep Learning, the learning of deep neural networks, is nowadays indispensable not only in the fields of
computer science and information technology but also in innumerable areas of daily life. It is one of the
key technologies in the development of artificial intelligence and will continue to be of great importance
in the future, e.g., in the development of autonomous driving. Since the data for learning such (deep)
neural networks is clearly limited and therefore the neural network cannot be prepared for all possible
data which have to be handled in real-life situations, a solid generalization capability is necessary. This
means the ability to acquire a general concept from the training data, so that the task associated with
the data is properly understood and the training data is not simply memorized. An essential component
behind such a generalization capability is regularization.

A regularization procedure causes a neural network to generalize (better) when learning from data.
Various, commonly and widespread used regularization procedures exist, which, for example, limit the
weights in the neural network (parameters by whose adaptation learning takes place) or temporarily
change its structure, and thus implicitly aim for the neural network to make better predictions on as yet
unseen data.

Self-Imitation Regularization (SIR) is presented in this thesis and is an easy to implement regular-
ization procedure which, in contrast to the established standard regularization procedures, explic-
itly addresses the actual objective – the formation of predictions – and only implicitly influences the
weights/parameters in the neural network. The existing (dark) knowledge of the learning neural net-
work is used and explicitly involved in the learning principles (i.e., the error function to be minimized) of
the neural network. Since this is one’s own knowledge, which, in turn, is made available during learning,
this can be seen as a form of self-imitation. For a given data example, the (dark) knowledge contains,
on the one hand, information about the similarities to other classes (in a classification problem, a neu-
ral network predicts classes and classifies the data). On the other hand, it quantifies (relative to other
data examples) the confidence of the neural network in the prediction for this data example. Intuitively,
through self-imitation, this information induces a questioning behavior regarding the correctness of the
given solutions in the training data as well as deepens the understanding of correlations and similarities
between the classes.

Besides the regularization ability, which has strong guarantees of success (partially under statistical
significance), the use of SIR stabilizes the training, increases the data efficiency and is resistant to er-
roneous data labels, which was demonstrated in various experiments. It is also applicable to very deep
neural network architectures and can be combined with some standard regularization methods (i.e.,
dropout and maxnorm regularization). The implementation and additional computation effort is very
low while the hyperparameter tuning is simple.

In this thesis, experimental results on the use of SIR are analyzed and evaluated using several pro-
cedures, and the learned neural networks are examined closely in order to explain the regularization
behavior along with accompanying properties.
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Zusammenfassung
Deep Learning, das Lernen von tiefen Neuronalen Netzen, ist heutzutage nicht nur aus der Informatik
und Informationstechnologie, sondern auch aus unzähligen Bereichen des Alltags nicht mehr wegzuden-
ken. Es bildet eine der Schlüsseltechnologien in der Entwicklung von Künstlicher Intelligenz und wird
auch für die Zukunft von großer Bedeutung sein, wie bspw. in der Entwicklung des Autonomen Fahrens.
Da die Daten zum Lernen von solchen (tiefen) Neuronalen Netzen natürlich begrenzt sind und dieses
somit nicht auf sämtliche mögliche Daten, die im späteren realen Einsatz verarbeiten werden müssen,
vorbereitet werden kann, ist eine solide Generalisierungsfähigkeit notwendig. Also die Fähigkeit ein ge-
nerelles Konzept aus den Lerndaten zu lernen, damit die mit den Daten verbundene Aufgabe wirklich
verstanden wird und die präsentierten Daten nicht einfach nur auswendig gelernt werden. Hinter einer
solchen Generalisierungsfähigkeit steckt eine wesentliche Technik: Regularisierung.

Ein Regularisierungsverfahren bewirkt das (bessere) Generalisieren eines Neuronalen Netzes beim
Lernen aus Daten. Diverse, viel eingesetzte und weit verbreitete Regularisierungsverfahren existieren,
die bspw. die Gewichte im Neuronalen Netz beschränken (Parameter durch deren Anpassung das Lernen
stattfindet) oder dessen Struktur temporär verändern und damit implizit bezweckt werden soll, dass das
Neuronale Netz bessere Vorhersagen auf ungesehenen Daten trifft.

Self-Imitation Regularization (SIR) wird in dieser Thesis vorgestellt und ist ein einfach zu implemen-
tierendes Regularisierungsverfahren, das im Gegensatz zu den etablierten Standardregularisierungsver-
fahren explizit am eigentlichen Ziel – der Formung der Vorhersagen – ansetzt und nur implizit die Ge-
wichte/Parameter im Neuronalen Netz beeinflusst. Dabei wird das vorhandene (Dark) Knowledge des
lernenden Neuronalen Netzes genutzt und explizit in die Lernprinzipien (d.h. die Fehlerfunktion, die
minimiert werden soll) des Neuronalen Netzes involviert. Da es sich um das eigene Wissen handelt,
was nun wiederum beim Lernen zusätzlich zur Verfügung gestellt wird, kann dies als eine Form von
Selbstimitation gesehen werden. Das (Dark) Knowledge beinhaltet für ein gegebenes Datenbeispiel zum
einen Informationen über die Ähnlichkeiten zu anderen Klassen (in einem Klassifizierungsproblem sagt
ein Neuronales Netz Klassen vorher, um damit die Daten zu klassifizieren). Zum anderen quantifiziert
dies (relativ zu anderen Datenbeispielen) darüber, wie sicher sich das Neuronale Netz beim Treffen der
Vorhersage zu diesem Datenbeispiel ist. Intuitiv gesehen wird durch diese Informationen mittels der
Selbst-Imitation sowohl ein hinterfragendes Verhalten bzgl. der Korrektheit der vorgegebenen Lösun-
gen in den Lerndaten hervorgerufen, als auch das Verständnis über Zusammenhänge und Ähnlichkeiten
zwischen den Klassen vertieft.

Neben der eigentlichen Regularisierungsfähigkeit, die starke Erfolgsgarantien (teilweise mit statisti-
scher Signifikanz) aufweist, stabilisiert der Einsatz von SIR das Training, erhöht die Dateneffizienz und
erweist sich als resistent gegen fehlerhafte Datenlabel, was in diversen Experimenten gezeigt werden
konnte. Auch ist es auf sehr tiefen Netzarchitekturen anwendbar und kann mit manchen Standard-
regularisierungsmethoden (Dropout und Maxnorm) kombiniert werden. Der Implementierungs- sowie
zusätzliche Berechnungsaufwand ist sehr gering und das Tunen der Hyperparameter ist einfach.

In der Thesis werden experimentelle Ergebnisse zum Einsatz von SIR mit verschiedenen Verfahren
ausgewertet und evaluiert, sowie die gelernten Neuronalen Netze genauer untersucht, um das Regulari-
sierungsverhalten samt einhergehender Eigenschaften zu erklären.
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Notation
Math notation:

The math notation does mainly follow the notation used in Petersen et al. (2004) and Goodfellow
et al. (2016).

A Matrix
Ai Matrix indexed for some purpose
A(i) Matrix indexed for some purpose
A> Transpose of matrix A
I Identity matrix (i.e., ones on the diagonal and zeros elsewhere)

a Vector
ai Vector indexed for some purpose
a(i) Vector indexed for some purpose
a> Transpose of vector a
1 All-ones vector (i.e., every element is equal to one)
kaka a-norm of vector a

a Scalar
a
(i) Scalar indexed for some purpose

ai j The element in the ith row and jth column of the matrix A
ai, j The element in the ith row and jth column of the matrix A
ai The ith element of vector a (or taken from a set)
fi(a) The ith element of the output vector of the function f , i.e., equal to yi for y = f (a)

A Set
N Natural numbers
R Real numbers
R+ Positive real numbers (exclude zero)
Rn

n-dimensional (real valued) vector space
P (A) Power set of set A

P(X � a) Probability that random variable X is greater than or equal to a

E
X⇠p(·)
{·} Expected value of {·} for the random variable X distributed according to p(·)

f
L Function f labeled for some purpose

f � g(·) The composition of functions f and g, i.e., f (g(·))
ra f (·) Gradient of function f with respect to to vector a
@ f (·)
@ a

or @
@ a

f (·) Partial derivative of function f with respect to scalar a

exp a Exponential function of a, i.e., e
a

log a The natural logarithm of a, i.e., equal to ln a or log
e
a
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Abbreviations:
ANN Artificial Neural Network
CNN Convolutional Neural Network
KD Knowledge Distillation
ML Machine Learning
MLP Multi-Layer Perceptron
MSE mean squared error
NN Neural Network
RL Reinforcement Learning
RNN Recurrent Neural Network
SIR Self-Imitation Regularization
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1 Introduction
When Geoffrey Hinton, Oriol Vinyals, and Jeff Dean introduced a method they called "Knowledge dis-
tillation" in 2014 (Hinton et al., 2015), they shed light upon an intriguing property of artificial neural
networks that they referred to as dark knowledge; or at least Geoffrey Hinton did so in a talk named
"Dark knowledge" in the Excellent Lecture Series at Toyota Technological Institute at Chicago (TTIC)
given on October 2, 2014.

Clearly, this term is more metaphoric than scientific but gives a vivid description of the subject. As
quoted on the opening pages, the term dark knowledge is derived from the phenomena of dark matter
and dark energy (Abbott et al., 2016) used in astrophysics and yields a description for the material that
the universe is mostly made of. To be more precise, dark matter makes up 27% and dark energy 68%
of the universe which results in the impressive total portion of 95%. Although the effects and necessity
of the existence of dark matter and dark energy were already demonstrated in the 20th century as the
reasons why rotating galaxies do not fly apart and the universe is permanently expanding, respectively.
However, it is astounding that it is entirely unknown what dark matter and dark energy is made of.
Therefore, it seems that over the past decades, most of the research that has been highly successful in
physics has been based on areas dealing with the remaining 5% of ordinary matter. The visualization
of a dark matter simulation on the title page of this thesis vividly shows a possible segmentation of the
universe into complex filaments of dark matter (in black) and rare clusters of ordinary matter (orangeish
glowing), and demonstrates how small the ordinary matter share of 5% is.

Returning to computer science, machine learning, and the explanation of Geoffrey Hinton’s dark
knowledge term in artificial neural networks: In addition to learning the ability to make an accurate
prediction based on a prediction task, such as a classification problem – which is a typical setting artifi-
cial neural networks are deployed in – artificial neural networks generally acquire much more knowledge
as a side product of generalization during the course of learning. For example, in this additional knowl-
edge lies the understanding of similarity and correlation between the different outcomes to be predicted
(i.e., the different classes in a classification setting). However, since in most cases of application the final
prediction is of interest only, the research community has mainly paid attention to only a small part of
knowledge an artificial neural network acquires which is measured by the final prediction performance.
Again, note that the given information in the presented quote expound dark knowledge as an analogy of
dark matter and dark energy serves more motivational purposes than scientific significance. Especially
the percentage of 95% is not related to any portion of knowledge within an artificial neural network in
general. However, this dark knowledge phenomenon is clarified in Hinton et al. (2015) explaining the
method of knowledge distillation as a concrete procedure of training artificial neural networks, which is
going to be explained in more detail in Sec. 2.8. Roughly, knowledge distillation can be described as a
technique that allows distilling the (dark) knowledge in a large and deep neural network into another
much smaller neural network, which would not be able to acquire that knowledge from the data on
its own. These ideas and concepts were taken up to develop a novel regularization method, which is
introduced in this thesis.

Regularization encompasses all the techniques supporting a neural network learning the general con-
cept from the data better and to prevent the neural network from overfitting on the (training) data.
Overfitting describes the memorization of idiosyncrasies in this data or even of all data examples. If
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overfitting cannot be prevented and such generalization cannot be achieved (e.g., by missing or using
unsuitable regularization methods), this can have severe consequences in later use even leading to a
complete uselessness of the learned neural network, and also it will not perform well on data that were
not available in the learning phase. Various regularization methods have been developed that became
increasingly often used and popular. Probably the most famous example is the method of dropout (Sri-
vastava et al., 2014), where a random selection of neurons within the neural network is temporally
dropped. Now, for a few examples, the neural network gets by with fewer neurons and must continue to
learn until some other neurons are picked instead and turned off. Many other well-known regularization
methods address the problem of overfitting by directly constraining the weights (parameters within the
neural network by whose adaptation the learning takes place). It can be criticized that these methods
often approach the problem very indirectly in the form of parameter limitations or changes in the neural
network architecture but do not interact directly with the knowledge of the neural network.

Self-Imitation Regularization (SIR), introduced in this thesis, is a regularization method, which uses
the (dark) knowledge within the neural network that is currently undergoing learning and makes it ex-
plicitly available to the learning principles (i.e., the loss that is aimed to minimize) of the same neural
network. The regularization through such a form of self-imitation is convenient and straightforward
to implement into an existing learning framework, incurs hardly any additional computational effort,
and requires barely any hyperparameter tuning (i.e., particular hyperparameter setting are suggested,
which turned out to be robust and able to achieve improvements in many different tasks). Through a
large number of experiments conducted within the context of this thesis, SIR demonstrated regularizing
abilities (partially with guarantees of success under statistical significance) on multiple data sets and
across diverse architectures. Even very deep neural networks with over 100 hidden layers constituted no
hurdle compared to other regularizers. In addition to regularizing in terms of minimizing the amount of
overfitting, SIR was also successfully used to increase the data efficiency or to stabilize the training (that
a neural network learns something meaningful at all; underfitting problem) where other regularization
methods were not able to help. Furthermore, in experiments in which many data labels were intention-
ally incorrectly specified, good results were nevertheless achieved when using SIR. In the experiments,
it was often observed that SIR could be beneficially combined with standard regularizers to improve the
result much more than if each of the regularization methods had been used separately. In order not to
rely solely on empirical results regarding the performance scores of the learned self-imitation regularized
neural networks, the learned neural networks are examined more closely and interpreted so as to explain
how the regularization is achieved as well as pointing out the effectiveness of different SIR settings.

Regarding the structure of the thesis, the method of Self-Imitation Regularization (SIR) is introduced
in Sec. 3 after a detailed introduction into the background topics (Sec. 2) about neural networks and the
concept of dark knowledge as well as the methods on which SIR is based. Subsequently, the experiments
conducted within the context of this thesis will be explained in Sec. 4 and their results are thoroughly
discussed and interpreted in Sec. 5. Here, the regularization ability of SIR is verified (Sec. 5.1) as well
as examined (Sec. 5.2), and the behavior of SIR in special problems is further investigated (Sec. 5.3 -
5.7). This is rounded off with summarizing the characteristics of SIR and investigational findings in a
conclusion (Sec. 6), whereby the initial working hypotheses are confirmed or rejected.
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2 Background

2.1 Machine Learning

Since Neural Networks (NNs) are the subject of interest in this thesis and belong to the field of Machine
Learning (ML), the basic concepts and definitions of ML are introduced in this section.

Abstractly, a computer program which takes an input x , somehow manipulates it and then produces
an output y which can be considered as a function y = f (x) in a mathematical sense. Therefore, a
computer programmer aims to design such a function by programming a computer in order to solve a
specific task what means explicitly defining the function f .

As computational resources and performance have increased in recent decades, the demands on com-
puter programs have increased to solve more complex and sophisticated tasks. Furthermore, tasks that
are easily manageable by humans such as visual perception or dealing with natural language in both
written and spoken form cannot be easily implemented on a computer system since in most cases nei-
ther an algorithmic description nor even a mathematical notion exists to specify computer programs (viz.
the function f ) to cope with these tasks to at least an extent a human being does. Nevertheless, hope
is not yet lost, since, for most of these tasks, at least a set of data D is available, which exemplarily
shows mappings from the input x to the output y according to the underlying, unknown function f or
at least consists of input data. Related to the previous examples, it is relatively easy to provide a set of
images along with matching labels describing the object pictured on those or audio snippets of speech
with complementary written transcriptions. This is exactly the point where ML begins.

Briefly in conclusion and according to Géron (2017, ch. 1): ML is the science (and art) of programming
computers so they can learn from data. This means that the function f is not needed to be specified
manually but providing data D to a learning algorithm that manages to learn (or approximate) the
desired function f with f̂ instead. Another benefit in finding powerful learning algorithms lies in gaining
a more general concept of solving a large number of comparable problems by only exchanging the data
instead of manually specifying a program (i.e., function f ) for each task.

Putting this into perspective, according to today’s ML research findings, the principle of learning is split
up into different types of problem, and task settings and a variety of learning techniques and algorithms
exist instead of having one all-encompassing, universal, and potentially cumbersome learning algorithm.
Consequently, in order to apply ML one have to categorize the task roughly according to the following
points successively:

Problem class (Degree of supervision! Task specification)! Learning algorithm

These points are further explained and defined in the following section.

2.1.1 Categories of Machine Learning

The problem classes of ML can be distinguished into three classes: supervised learning, unsupervised
learning and reinforcement learning. This distinction is based on the degree of supervision. Supervision
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in this context is essentially describing the further knowledge and information the raw input data is
accompanied with. Imagine, when we have the correct output of the unknown function f instead of
only having a measure that assesses the quality of the outputs of a (partly) learned function f̂ , or, even
worse, having no information except for the input data, this represents a higher degree of supervision. In
addition to the degree of supervision, the different problem classes yield interpretations for the different
goals of ML: Unsupervised learning describes the data, supervised learning makes predictions whereas
reinforcement learning can be seen as going beyond and making decisions based on the data. The
terminology of making predictions based on the input as used in supervised learning can also be rephrased
as directly mapping inputs to outputs for what reason supervised learning fits most with the concept of
learning a function y = f̂ (x).

After deciding on the class based on the degree of supervision, we have to specify the task further.
Any task specifications within these are further explained in the following but note that the focus lies
on supervised learning since the method introduced in this thesis is mostly investigated in terms of this
problem class.

Supervised learning
As the name suggests, supervised learning has a high degree of supervision. In particular, our data

includes true outputs of the unknown function f . First of all, it is more common to refer to the (true)
outputs of the unknown function f taken from a data set D as (true) data targets (or also as labels).
Formally, our data set consisting of inputs x 2 X and targets y 2 Y is defined as

D= {(x (d), y
(d)) 2 X⇥ Y | d = 1, 2, . . . , D} with D > 0.

Note that X and Y can indeed be infinite sets, but the amount of data we can collect and process (data
set D) is finite. Therefore, the number of data samples (x (d), y

(d)) 2 D (also called data examples or
data instances) is denoted with D.

Depending on the nature of the targets y 2 Y different task/problem specifications do exist in super-
vised learning:

• Classification:
For classification problems, the target set Y is a discrete set (|Y| 6= inf) and the possible n tar-
get values {1,2, . . . , n} = Y ⇢ N are the indices referring to the elements of a set of classes
C = {c1, c2, . . . , cn}. A classification task can be further discriminated into a binary (n = 2), or
a multi-class or n-class (n > 2) classification which are also called logistic regression and multi-
nomial logistic regression respectively. In practice, it is often the case that the indices are further
represented via a one-hot-encoded vector. A one-hot-encoded vector is a special case of a binary-
encoded vector, where each component can either be one or zero with the further restriction of
only one component is allowed to be one ("hot") per encoding vector. Formally, this results in a
new target set of Y = {e1, e2, . . . , en} ⇢ {0, 1}n denoting the set of the unit vectors of the stan-
dard basis in an n-dimensional Euclidean space. One hot encoding is being done since using the
raw index values as target representation might entail the risk of some learning algorithms falsely
inferring that classes with a smaller quantitative difference between their index values might be
semantically more related than classes with a higher difference between their index values.
Example: Classify images according to the animal depicted on them. Having the images (represented
by raw RGB pixel values) as input data samples x

(i) of cats and dogs, subsequently, with the classes
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C = {cat, dog}, and trying to learn a function discriminating between cat and dog images is a binary
classification problem.

• Multi-label classification:
Multi-label classification is highly similar to standard classification problems and, therefore, often
misunderstood. We also have a discrete target set Y, but it does not consist of one-element labels
any more. Instead, multiple labels can be assigned to one input instance x at once. Thus, a
discrete set of different labels (similarly to the set of different classes in standard classification
problems) is defined as L = {l1, l2, . . . , ln}. By allowing all possible combinations of labels as
targets for this problem, the target set can be expressed as the power set of the label set Y =
P (L) inducing 2n possible combinations of labels (or analogously doing this with the indexes
of the labels in L). The targets are often represented as a binary-encoded vector in practice by
each component is indicating the presence and absence of a specific label via a component of one
and zero, respectively. It is important to not confuse the terms labels and classes in the context
of multi-label and multi-class classification since multi-class classification indicates the standard
classification problem from above with n> 2 classes.
Example: Consider the problem of classifying images from above but with multiple animals depicted
per image. While a trained multi-class model is only capable of predicting one of the shown animals,
a multi-label model can accomplish this task better by predicting labels for all shown animals.

• Preference learning or label ranking:
Preference learning or label ranking is similar to multi-label classification, but instead of only pre-
dicting the presence of a set of labels for each input instance, a ranking of these labels is predicted
(for example through numeric scores y). This ranking represents a (partial) ordering of the labels
from which the preference of arbitrary two labels (Li ⌫ L j, yi � yj) can be derived. Multi-label
classification can be seen as a special case of preference learning which is why a ranking can be
used to predict a subset of labels, e.g., by introducing an artificial calibration label that separates
the relevant from the irrelevant labels within each label ranking (Fürnkranz et al., 2008).
Example: Recommendation systems based on user data can be understood as a preference learning
task, where not only a subset of the available labels should be displayed but also in an order that the
labels displayed first fitting the user’s preferences best.

• Regression:
In contrast to the problem specifications mentioned above, the target set Y for a regression problem
is continuous (|Y|!1) and can be an arbitrary n-dimensional space Y ✓ Rn.
Example: Given records of stock price developments as training data can be used to train a model
predicting the expected stock price for the next hour.

Note, that more supervised learning tasks are present, but that would go beyond the scope of this
thesis.

Unsupervised learning
In this regime, we have a total lack of supervision. More detailed, contrary to supervised learning, we

have no targets besides the input data x 2 X which results in a thinner, unlabeled data set

D= {(x (d)) 2 X | d = 1,2, . . . , D} with D > 0.
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Typical tasks in unsupervised learning are, for example, clustering where data samples are divided into
clusters based on discovered similarities of data features and properties, or density estimation where the
underlying distribution (or function) the input data was drawn from (or what produced the data) is
learned by estimating the density function of this distribution.

Reinforcement learning
In the reinforcement learning arrangement, an agent interacts with an environment over (discrete)

time steps by taking actions based on perceived observations and rewards, which is the only supervision
in this setting, to reach a specific goal. See Sutton and Barto (2018) for more details. Formally, this can
be modeled as a Markov Decision Process (MDP) where the actions for a given state the agent selects
are sampled from a policy (distribution or function). For an optimal behavior, the agent is aimed to
maximize the expected (discounted) return, which is the (geometrically weighted) sum of the rewards
collected within an episode.

One can consider learning an approximation of the value function, e.g., the Q-function, estimating
this return to plan the actions. The Q-function provides an estimate about the expected return for the
rest of the episode if the current policy is followed (given the current state and an action that could
be executed next). This, coupled with Bellman’s principle of optimality (Bellman et al., 1957), allows
composing an optimal policy from the Q-function by greedily selecting the action for the given state
for which the Q-function estimate is maximal. Q-learning (Watkins and Dayan, 1992) is a technique
to learn an approximator of the Q-function where the estimate is adjusted according to the temporal
difference error (Sutton and Barto, 2018, ch. 6) measuring the error between the Q-function estimate for
the current state and the next state by incorporating the reward perceived in the current state.

Semi-supervised learning
Apart from the three problem classes stated previously, one might consider additional problem classes.

However, the central problem classes of ML are remaining the three ones since other problem classes
can primarily be expressed either as combinations or simplifications of these major three problem classes
without the loss of generality. For example, semi-supervised learning can be formulated as a combi-
nation of supervised and unsupervised learning or active learning can be obtained by a simplification
of Reinforcement Learning (RL). However, the principle behind semi-supervised learning is roughly
outlined since semi-supervised learning plays an increasingly important role in ML. Furthermore, the
possible application of the introduced method, Self-Imitation Regularization (SIR), will be discussed in
this thesis.

As mentioned above, semi-supervised learning can be seen as a combination of both supervised and
unsupervised learning. Accordingly, the data set consists of both labeled and unlabeled data

D=Dlabeled [Dunlabeled

with Dlabeled = {(x (d), y
(d)) 2 X⇥ Y | d = 1, 2, . . . , D}, Dunlabeled = {(x (d)) 2 X | d = 1,2, . . . , Dunlabeled},

and Dlabeled + Dunlabeled > 0.

From another point of view and more obvious when considering the formal definition, semi-supervised
generalizes supervised and unsupervised learning. Therefore, Dlabeled 6= ; and Dunlabeled = ; or al-
ternatively Dlabeled > 0 and Dunlabeled = 0 results in supervised learning whereas Dunlabeled 6= ; and
Dlabeled = ; or alternatively Dunlabeled > 0 and Dlabeled = 0 yields unsupervised learning as special cases
of semi-supervised learning.
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Before finishing this section about semi-supervised learning, it is worthwhile mentioning that the
techniques of semi-supervised learning are very useful and would improve the learning on any problem
class with a higher level of supervision than unsupervised learning, e.g., supervised learning or RL, if
additional data without supervision is around. This is a widespread case in practice since labeling the
data is often associated with high expenses and costs, e.g., when human experts are needed to label
the data, and some unlabeled data is left. The reason why we can profit from unlabeled data can
be explained by the fact that unsupervised learning has the interpretation of learning to describe the
data as mentioned earlier. Intuitively, by having a more accurate description of the data, a prediction
task might be learned more easily and better due to an improved understanding of the input data and
its patterns. Considering this in two steps of understanding the data first and solving the prediction
task based on this improved understanding later, the first step can be seen as a way of representing
the data in order to make it more informative for a prediction base, which is commonly referred to as
(automatic) feature extraction. As a result, algorithms that automatically generate features from the
input might benefit from processing more (unlabeled) input data while learning. E.g., in artificial neural
networks using a multi-layered network architecture, features are generated across the first layers and
down-stream layers are making use of it to compute the prediction.

2.1.2 Algorithms in Machine Learning

There are many learning algorithms and types of models that are designed for specific problem classes
and tasks. A rough distinction can be made between parametric and non-parametric learning algorithms
(or models).

Parametric models contain parameters and learn through the learning algorithm adjusting these pa-
rameters. The vector containing all parameters of the model is denoted as ✓ and the model as
f̂ (x) = f (x;✓ ). A (deep) neural network is a typical example of parametric models with millions of
parameters in some cases.

Non-parametric learning algorithms do not adjust the parameters of a model in order to learn or fre-
quently do not learn a model at all. A well-known example is the k nearest neighbor algorithm, which
stores the training data and predicts the target appearing most within the k nearest neighbors (training
data instances) for a query at prediction time. To achieve good results, a proper distance metric for the
input data space is needed, which considers semantic similarities of the data. That is hard to obtain in
settings with high-dimensional input data with a proportionally low degree of useful information as it is
the case for image data (Karpathy and Li, 2015, ch. 1: Image Classification).

Once a suitable learning algorithm has been chosen, the hyperparameters must be set properly.

Hyperparamters:
Hyperparameters are parameters in a learning algorithm which are not being learned but set before-

hand by the expert/programmer. For example, k of the k nearest neighbor algorithm is a hyperparameter
or in the regime of (artificial) neural networks a high number of hyperparameters is introduced. For ex-
ample, the number of neurons the neural network is meant to contain, the number of layers in which
these are organized, or the learning rate.

Tuning these hyperparameters so that the learning algorithm performs well is tricky since this suf-
fers from the curse of dimensionality (Bellman et al., 1957). Moreover, high-dimensional spaces of
hyperparameters do commonly have low effective dimensionality, which means that the outcome of
a hyperparameter search is more sensitive to changes in some particular dimensions than in other ones
(Caflisch et al., 1997) since some hyperparameters affect the outcome of the learning algorithm more
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Figure 2.1.: Example of binary classification problems (data samples (x1, x2) of the positive class are de-
noted with + and of the negative class are denoted with �) where the data is linearly sep-
arable in (a) and non-linearly separable in (b). The decision boundary (separation) of the
linear model is depicted with a black line where data samples in the green sub-space will be
predicted as positive and data samples in the red sub-space will be predicted as negative. The
linear model can successfully separate (a) while this is not possible for (b).

notable than others. Bergstra and Bengio (2012) showed that random search is therefore more effective
than grid search in practice since with the latter approach much computation time is wasted in examining
hyperparameters which might be unimportant while holding all the other hyperparameters fixed.

2.1.3 Expressive power and separability

By choosing a concrete model in ML, we make non-negligible assumptions about the problem-solving
approach and the hardness and idiosyncrasies of the given task, which is aimed to be learned.

The expressive power refers to the capability of the model to express a solution for the given problem.
If the expressive power of a model is too low, the task cannot be solved. For example, if we want to fit a
linear model in a regression problem (i.e., fitting the data with a line) where the underlying function of
the training data is non-linear, the result will be that our model insufficiently expresses or fits the data.

For classification problems this is pretty much the same in that the chosen model has to be rich enough
to be capable of separating the space of input samples and assigning these sub-spaces to particular
classes. Mainly, a rough distinction is made between linearly and non-linearly separating models and
linearly and non-linearly separable problems (Minsky and Papert, 1988, ch. 12). See linear and non-
linear separability in an example of a binary classification problem visualized in Fig. 2.1.

Further statements can also be made if a model has to solve more complex sequences of tasks. The
classes from computational complexity theory are used for this purpose. For example, a model is Turing-
complete if it has the expressive power of an arbitrary computer program .
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Figure 2.2.: Generalization behavior visualized in the learning curves regarding the accuracy metric on
the training data (purple curve) and test data (orange curve) over the course of training.
Additionally, the gaps between curves and axes are labeled with the common interpretation
terminology and the (under-) fitting and overfitting phases are depicted, which are oriented
to the iteration where the best model was achieved.

2.1.4 Generalization

The original goal of ML was to learn a function or task automatically without providing further infor-
mation about the problem-solving approach. However, this goal is aimed at being achieved implicitly by
letting an algorithm learn from (training) data involving the solution (i.e., the desired model output) for
an input but no further solving approaches. This inevitably leads to a small but not negligible shift in
the formulation of the goal away from the original one. Namely, learning concepts from the (training)
data in order to perform well on this very same data whereby we assume that this good performance
will remain on unseen data (meaning data which was not involved during training) and consequently
solving the original goal implicitly. This capability of transferring the knowledge to unseen data is re-
ferred to as generalization. To assess the degree of generalization another data set called the test data
set, which is independent of the training data, can be used to measure the performance of the model on
this data. A typical generalization behavior is plotted in Fig. 2.2 with the learning curves regarding the
accuracy metric on the training as well as on the test data over the course of training (e.g., ten training
epochs, which means that the training algorithm has processed the training set ten times). The accuracy
metric measures the relative amount (in relation to the number of samples in the data set) of correct
classifications on the given data set.

The generalization (of the model), depends on (a) the model, (b) the learning algorithm and (c) the
training data. Concerning the model (a), the capacity and expressive power of the model is crucial to
capture the concept and patterns of the training data in order to achieve the task. The capacity of a
model is usually expressed in the number of parameters and whenever the capacity is too low or the
expressive power is improper (e.g., trying to separate the data by a linear model but the data is non-
linearly separable only) in order to capture the concept the problem of underfitting occurs. Apart from
that, the problem of underfitting can also occur when iterative learning algorithms, such as those for
learning neural networks, are stopped prematurely whereby the model has not run sufficiently many
iterations to fit on the training data properly. Underfitting can be seen in the gap between the accuracy
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on the training data and the optimal accuracy value (commonly 1.0). Ensuring a proper expressive
power and increasing the capacity of the model addresses the problem of underfitting in most cases but
depending on the choice of the learning algorithm (b) this is prone to overfitting. Overfitting can be
seen as the gap between the performance on the training data and the test data. This is very dependent
on the chosen learning algorithm as, for example, if the model fits the training data (which shows
that the capacity is high enough) the model can entirely suffer from overfitting and barely achieves
generalization if the learning algorithm encourages rote learning leading to the pure memorization of
the training data samples, which is low risk in terms of a low training error but obviously does not
serve to generalize the model. Nevertheless, it is common practice especially in deep learning to choose
high capacity models while addressing the problem of overfitting with the learning algorithm, i.e., with
appropriate regularization techniques (Goodfellow et al., 2016, ch. 7, p. 225) as described in Sec. 2.7
(standard regularization methods) or the novel regularization method introduced in this thesis (see Sec.
3). The suitability of the training data (c) should not be neglected since the success of generalization or
even sufficient fitting on the training data hinges with this. Otherwise, the model might tend to overfit to
idiosyncrasies of the training data. This is dependent on the amount of data available for training, on the
one hand, since a small training set might not be sufficient to recognize general patterns and structures,
as well as dependent on the quality of the training data, on the other hand, especially in the case of
supervised learning regarding the correctness of the target labels, which were set by humans or even
human experts beforehand. Additionally, it is essential to ensure that the distribution and characteristics
of the training data match those of the test data or, more generally, match those of the data the learned
model is planned to be used on in the future. Furthermore, the samples of the training data have to be
drawn independently from the same distribution (in which case the training data and training samples
are said to be independent and identically distributed, which is often abbreviated to i.i.d.) (Bishop,
2006, ch. 1.2.4, p. 26).

As one can see in the learning curves of Fig. 2.2, the test accuracy (representing the generalization)
is not necessarily asymptotic during learning and can decrease again in a later phase of training. This
phase can be denoted as the overfitting phase whereas the phase before the maximum in the test curve
is reached can be called (under-) fitting phase. This is because the model needs some time to learn the
general concept and patterns of the data at the beginning of training (fitting phase) while starting to
gradually overfit to special samples and idiosyncrasies of the training data later on (overfitting phase).
This is the reason why it is advisable to take a snapshot of the best model according to the accuracy (or
a similar metric) on some test data over the course of training. After training, this snapshotted model is
the best or most generalized model achieved during training and is represented by the maximum of the
test set learning curve. Within the underfitting and overfitting phases the problem of underfitting and
overfitting respectively, is the predominant factor hindering the model from generalizing.

2.2 Artificial Neural Networks

So-called Artificial Neural Networks (ANNs), or also Neural Networks (NNs) for short, can be modestly
described as universal, non-linear, and parametric function approximators (Hornik et al., 1989) in math-
ematical terms. Since this does not provide an easily understandable introduction to this topic and the
name itself is inspired from an entirely different scientific field anyway, we are going to start with a more
intuitive perspective: namely from the field of biology or preferably, neuroscience.
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Neuroscientific inspiration:
The (human) brain is a huge network consisting of over 120 billion neurons (Herculano-Houzel, 2009)

which receive electrical and chemical signals from adjoining neurons and combine those signals by tem-
poral and spatial summation. If a unique location, the axon hillock, a swollen part of the cell body of a
neuron, is triggered by a charge exceeding a particular threshold a signal is fired on its way to a large
number of subsequent neurons (Kandel et al., 2013, ch. 2) known as the all-or-none principle. By doing
so, all of these neurons are solving specific tasks by propagating information encoded in the electro-
chemical signals step by step where each neuron solves a particular and more simple subtask. Due to the
hierarchical arrangement, the brain (a network of neurons) is able to accomplish the whole and more
complex task.

The connections between neurons where the transmission of the signals happens are called synapses.
The fact that these synapses can transmit the signals to different degrees of effectiveness and, moreover,
this modulation behavior of synaptic transmission can change over time, leads to the underlying mech-
anism of storing (implicit long-term) memory: a from of learning. This implicit memory storage covers
the unconscious and automatic memorization of perceptual and motor skills or habits through habitua-
tion, sensitization, and conditioning, for example. Habituation involves activity-dependent presynaptic
depression of synaptic transmission whereas sensitization and conditioning result from presynaptic facil-
itation or long-term potentiation of synaptic transmission (Kandel et al., 2013, ch. 66; Chapman et al.,
1990). In a nutshell, this type of learning involves changes in the strength of the synaptic signal trans-
missions to trigger reactions and behavior that might be advantageous according to the experienced and
recurring stimuli.

Note that another type of learning in the human brain exists: the long-term explicit memory storage.
This happens consciously like remembering places, objects or people and begins in the hippocampus
and medial temporal lobe of the neocortex, which is different from the implicit memorization. Interest-
ingly, many skills are initially stored as explicit memory, however, through repetition become ingrained
and stored as implicit memory. For example, gradually automating particular finger movements while
practicing a piano piece over time (Kandel et al., 2013, ch. 67).

Artificial Neural Networks in computer science:
Now, with this brief biological illustration in mind, we can acquire a mathematical model to approx-

imate arbitrary functions by having small units also called neurons doing simple calculations based on
numerical input signals with each solving a task partially. They are arranged in a hierarchically struc-
tured network by each passing a numerical output signal to subsequent neurons. To achieve an analogy
for the modulation behavior of the synaptic transmission effectiveness, real-valued weights are used to
scale each input signal. Obviously, by adjusting those weights adequately, the artificial neural network
is able to accomplish specific tasks. In order to fit the weights accordingly, automated and data-driven
learning algorithms are used in most cases. This process is referred to as learning or, alternatively, as
training, optimizing, or fitting the artificial neural network. All of this is explained in more detail in the
following sections. However, this is basically the composition of artificial neural networks and holds for
many different variants and variations of artificial neural networks developed in the past years.

At this point, it has to be emphasized that – contrary to popular belief often found in the media or
popular science – with the use of artificial neural networks we claim neither to simulate the biological
brain which is impossible as its functioning is far from being fully discovered yet, nor to offer an adequate
or correct abstract model allowing us to draw any conclusions about the brain. By doing so, we would
neglect important and strong assumptions since many choices of design and construction are made for
mathematical and computational reasons. So the brain should just be seen as an inspiration. In fact,
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this is a highly valuable inspiration from which many brilliant ideas and methods have been derived in
the past and which drives the research of neural networks further, however it is meant to be no more
than an inspiration. Subsequently, and as mentioned above, many techniques were often deduced from
mathematics and computer science, making these both essential sources of inspiration and indispensable
"toolboxes" in order to get all of this working or even tractable.

The following will examine the concept of artificial neural networks in more detail by starting with
the smallest components and ending with advanced architectures.

Early history, in a nutshell:
It all began back to the 1940s with the first theories of biological learning as well as mathematical

representations and formal descriptions of neural signal processing (McCulloch and Pitts, 1943; Hebb,
1949; Widrow and Hoff, 1960) moreover with the first breakthrough by Frank Rosenblatt who designed
an algorithm called perceptron (Rosenblatt, 1958, 1962) and implemented this on a machine to learn
image recognition tasks. 20x20 photocells of a camera were connected randomly to multiple neurons
building the single-layer perceptron which was aimed to learn a binary classification of the perceived
visual content. As common in ML, in order to learn the task, the perceptron was shown several visual
inputs. Whenever the perceptron misclassified such an input, the weights were adjusted based on Hebb’s
rule (Hebb, 1949). After the summation of the weighted inputs, the Heaviside step function, which maps
negative arguments to zero and non-negative arguments to one (see Fig. 2.8b), was used as activation
function in order to produce the final output which was obviously inspired by the all-or-none principle of
nervous activity.

Overall, this outstanding work caused a great interest in the field of ML but was later superseded
by Marvin Minsky and Seymour Papert in 1969 who showed that a perceptron is not able to represent
the logical XOR function (Minsky and Papert, 1969) due to the capability of learning linearly separable
patterns only. Later on, it was shown that the logical XOR function can still be learned with a different
non-linear choice of activation function (Melnychuk et al., 2017) or the use of a so-called Multi-Layer Per-
ceptron (MLP) (with a single hidden layer and non-linear activation functions) which will be explained in
Sec. 2.2.3. However, Minsky and Papert (1969) had such a massive impact on neural network research
that this stagnated until the 1980s and revived with the invention of the backpropagation algorithm
(Rumelhart et al., 1986), explained in Sec. 2.2.4.

2.2.1 The neuron

Nevertheless, the formulation of a neuron as explained in the perceptron algorithm is still present and is
still used in a slightly generalized form in today’s definition of artificial neural networks.

In Fig. 2.3, the composition of an artificial neuron is schematically visualized. Each of the I inputs
(also referred to as input activations) the neuron perceives (x1, x2, . . . , xI) are element-wisely multiplied
by the weights (w1, w2, . . . , wI) in the neuron first. Each weight is exactly assigned to one input at a time
which results in the requirement that we always must have as many weights in a neuron as incoming
input activations. Inputs, as well as weights, are real numbers with no further restrictions in general.

The weighted input activations are summed up including an additional parameter: the bias b. The bias
is independent of the inputs or can also be seen as an additional weight w0 = b, which is dedicated to a
constant input activation of 1. Obviously, a neuron is a parametric model and the vector of parameters ✓
incorporates all the weights and the bias of the neuron. Formally, ✓ = (w1, w2, . . . , wI , b)>. Throughout
the training, these parameters are optimized to improve the neuron’s capability to capture the concept
of the input and produce the desired output.
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To obtain a better understanding of the summation z (called pre-activation) of the weighted inputs
it should be mentioned that this weighted sum can also be seen as linear combination of weights and
inputs or as the dot product between the vector of the weights w = (w1, w2, . . . , wI)> and the vector of
the inputs x = (x1, x2, . . . , xI)>. Its calculation can be described in matrix-from as follows

z =
IX

i=1

wi · xi + b = w>x + b (2.1)

Up to this point, a neuron is clearly nothing more than a simple linear model used in different areas of
ML. For example, when solving linear regression each explanatory variable has its own slope coefficient
(Freedman, 2009, p. 26) which is equivalent to scaling each input activation xi by the corresponding
weight wi in a neuron. As the name linear model suggests, this type of model is limited to solve linearly
separable problems only. Therefore, we do not use z as the final output of the neuron but apply an
activation function (also referred to as transfer function) ' first.

Historically, the Heaviside step function as the activation function in the perceptron mimics the all-
or-none principle of a biological neuron and the fact that this provides binary instead of real values as
output is preferable for binary classification problems. However, the activation function is furthermore
of crucial importance in a mathematical context since an appropriate choice serves the capability of a
neuron to no longer being limited to separate linearly. Thus, the activation function has to be non-linear,
e.g., of sigmoidal shape, a step function, or piecewise linear. The activation function is single-variable
and scalar-valued and is commonly of (strictly) monotonically increasing, differentiable, and bounded
nature but many well-functioning and widely used activation functions do not meet all of these criteria.
Some common activation functions are presented in Sec. 2.4. Note that choosing the identity function
'(z) = z as activation function yields a standard linear model as a special case of an artificial neuron.
Conversely, an artificial neuron is a generalization of a linear model.

Finally, rather than having multiple input activations, each neuron provides exactly one output acti-
vation o. This is merely the result of the activation function o = '(z) = '(w>x + b). A more general
formulation denoting the output of a parametric model is o = f (x ;✓ ).

2.2.2 Layer of neurons

Up to now, using a single neuron is only capable of producing one output by definition, which at first
glance seems sufficient for classification problems or regression problems in ML since there is only one
class c 2 C or one value y 2 Y, respectively, per input sample x desired to be predicted. However,
a single output value is not sufficient for regression problems with multiple outputs y 2 Y ✓ Rn or
when the classes in a multi-class classification problem are one-hot encoded. One-hot encoding is always
suggested since predicting the class index with a single output value would implicitly lead to learning
the misconception about classes whose index values are near to each other that they would be more
(semantically) similar to each other than to other ones with more distant index values (as mentioned in
Sec. 2.1.1).

For that reason, using several neurons is the most straightforward approach to obtain a model
which incorporates the prediction of multiple outputs or, in other words, a vector-valued output
o = (o1, o2, . . . , on)> instead of a scalar one o. Each neuron receives exactly the same input activa-
tions x but due to the different weight, as well as bias, values between the neurons, each neuron is able
to produce an individual output (activation) oj. Such a setting is called a layer (of neurons) or also
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Figure 2.3.: Schematic structure and computation flow of an artificial neuron. I denotes the number of
input activations (e.g., the dimension of a data sample used as input).

single layer perceptron. The notation for a single neuron of the preceding section (Sec. 2.2.1) is extended
for a layer of J neurons in the following. The weights of the jth neuron within the layer are denoted
with wj1, wj2, . . . , wjI and are gathered in the weight vector w j = (wj1, wj2, . . . , wjI)> where each neuron
perceives I input activations. Furthermore, the bias, the pre-activation, and the output (activation) are
indexed by j in the jth neuron being bj, zj, and oj, respectively.

Instead of computing the outputs of the neurons in the layer separately, the dot product formulation
from Eq. 2.1 computing the pre-activation zj for a single neuron is extended to a matrix-vector product
formulation in order to obtain the pre-activations z = (z1, z2, . . . , zJ)> of all J neurons through one
operation

z = W x + b where W =

0
BBB@

w11 w12 . . . w1I

w21 w22 . . . w2I

...
...

. . .
...

wJ1 wJ2 . . . wJ I

1
CCCA = (wji) j=1,...,J ;i=1,...,I .

As a consequence the vector of parameters for the layer has to be extended and can be achieved by
the vectorization of the block matrix containing the weight matrix W and the bias vector b of the layer
✓ = vec((W b)) in order to capture all learnable parameters present in the layer.

Note that it is common to use the same activation function ' for all neurons in one layer. For that
reason, the output activations the layer of neuron predicts can be stated as follows

o = '(z) = '(W x + b) = f (x ;✓ )
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Figure 2.4.: Schematic structure of a Multi-Layer Perceptron (MLP) consisting of four layers (L = 4) where
two hidden layers exist. The inputs are five-dimensional, and the output is three-dimensional
(e.g., represents three classes). The directions of the computation flow for both forward
(computing the output of the neural network) and backward pass, e.g., learning the param-
eters with the backpropagation algorithm (see Sec. 2.2.4), are depicted.

where ' simply denotes the element-wise application of the activation function ' whereby oj = '(zj)
applies.

2.2.3 Multi-Layer Perceptron (MLP); or, stacking layers of neurons

By combining several layers of neurons sequentially, an ANN is obtained. This means that the output
activations of a layer are routed to the subsequent layer as input activations. Such stacking of layers is
referred to as Multi-Layer Perceptron (MLP) since the terminology ANN is an umbrella term comprising
several different network architectures where layers are not required to be combined sequentially only,
for example. MLPs are commonly schematically visualized as depicted in Fig. 2.4 where one can see an
MLP with four layers (L = 4).

The first layer, on the left of Fig. 2.4, called the input layer, is not a real layer of neurons since the
neurons in the input layer do not contain any learnable parameters (weights or biases) but represent
the perception of the input data vector x where the jth neuron of the input layer transmits the jth
component x j of the input data vector x to all of the down-stream neurons in the following layer. For
that reason, the neurons in the input layer are visualized differently from the other neurons of the
network through a dotted boundary in Fig. 2.4. The last layer (or Lth layer) on the right side of Fig.
2.4 is called the output layer since the output activations of this layer are treated as the output vector of
the whole network or model o = f (x ;✓ ). The remaining intermediate layers, which are indexed with
l = 2, . . . , L � 1, are referred to as the hidden layers since they do not have a direct connection to the
"outside world" of the model unlike the input and output layer dealing either with the inputs or outputs.
The (output) activations of the hidden layers are hidden within the model.
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From a functional point of view, the model (i.e., an MLP consisting of L layers) is described by

o = f (x ;✓ ) = ( fL � . . . � f2 � f1)(x ;✓ )

where fl denotes the function producing the output activations of the lth layer and � the composition
operator of two functions ( f � g)(x) = f (g(x)). Furthermore, the notation of the constituents of a single
layer of neurons as stated in Sec. 2.2.2 is extended to the multi-layer setting by indexing these with
the index of the layer they are contained in. Hence, the weight matrix, bias vector, parameter vector,
pre-activation vector, and output activation vector of the lth layer where l = 2, . . . , L is denoted with
Wl , bl , ✓l zl , and ol , respectively, which must not be confused with the lth component of some vector
therefore it is printed in boldface. For the input layer (l = 1) any notation for the weight matrix, bias
vector or pre-activation vector is superfluous because of the lack of parameters within this layer, but the
output activation of this layer can be expressed with o1 = x . Another notational equivalence exists in
the output layer with o = oL denoting the output of the entire model. Finally, the extension of notation
allows for a model formulation in matrix notation

o = f (x ;✓ ) = oL with ol = '(Wl ol�1 + bl) where l = 2, . . . , L and o1 = x .

Again, the parameter vector ✓ has been extended to include all learnable weights and biases of the
whole MLP, e.g., by the vectorization of the block matrix incorporating parameter vectors of all layers
✓ = vec((✓1 ✓2 . . . ✓L)).

Through stacking multiple layers, a hierarchical order is achieved which is not the case in the regime
of flat neural networks or single layer perceptrons. A hierarchical structure facilitates to learn more
expressive representations of the input data and consequently obtains a more powerful model in contrast
to the flat structured models.

This can be motivated from the neuroscientific perspective where hierarchical structures are present
throughout the brain. Brodmann (1909) showed that the neocortex develops from six layers in the mam-
malian brain, which is the part of the brain responsible for the execution of higher-order brain functions,
including cognition, sensory perception, and sophisticated motor control (Lodato and Arlotta, 2015).
For example, it requires approximately 0.1 seconds for someone to visually recognize their mother. The
sequence of neuron firings that can take place during this short time interval cannot possibly be longer
than a few hundred steps due to the switching speed of biological neurons where the fastest neuron
switching times are known to be on the order of 10�3 seconds (Mitchell, 1997, p. 82). These facts
vividly demonstrate the effectiveness of sequentially combining layers of neurons in a hierarchical order
so that particular groups of neurons are dedicated to solving specific subtasks in order to make complex
decisions.

From another perspective, stacking multiple layers can be motivated by aiming to maximize the ex-
pressive power of the network from a theoretical point of view. Cybenko (1989) and Hornik et al.
(1989) showed that approximating arbitrary but continuous functions with a neural network architec-
ture with two layers of neurons is possible up to an arbitrarily small error (under a finite norm) (e.g.,
one hidden and the output layer in an MLP with three layers). The same holds for arbitrary functions
(then including the non-continuous ones, too), which can be approximated with neural networks of
three layers of neurons (e.g., a four-layer MLP) (Cybenko, 1988). For both proofs, the required number
of neurons in the hidden layers depends on the function to be approximated (Mitchell, 1997, p. 105).
Moreover, Siegelmann and Sontag (1992) even proved the Turing completeness of finite Recurrent Neu-
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ral Networks (RNNs) (Goodfellow et al., 2016, ch. 10; Sherstinsky, 2018), which are neural networks
architectures that are capable of processing sequences with varying length of consecutive inputs such
as sentences in natural language and holding an internal state over the course of processing a single
sequence, and such concrete ones with a surprisingly low number of units (about a thousand units only).

The general definition of an MLP allows choosing the number of hidden layers L � 2� 0 arbitrarily to
construct "deeper" neural network architectures. Learning deep neural network architectures motivates
the term deep learning (LeCun et al., 2015), which earned widespread popularity over the past years
due to the tremendous successes in various fields. However, the question arises whether to go beyond
shallow networks like MLPs with one or two hidden layers since, according to the theoretical findings
of the expressive strength as described above, this seems to nullify any reason for using deeper neural
networks. In fact, it has to be distinguished between the capability of representing a function with
a neural network (or the approximation quality), which is in line with the expressive strength of the
neural network, and learning a function from a finite (training) data set of data samples associated
with this underlying function. Here, other difficulties might occur such as an insufficient amount of
data or noisy data targets that can evoke optimization issues such as over- or underfitting (Goodfellow
et al., 2016). Therefore, for training neural networks, deeper neural networks should be preferred over
shallow ones to achieve better generalization (Bengio, 2009) and, moreover, deep networks can be more
effective than shallow ones even with a comparably lower number of neurons as empirically shown by
Goodfellow et al. (2014), for example.

2.2.4 Gradient-based learning

After presenting the construction of neurons and their function of producing outputs based on the inputs
and learned weights, it remains to answer the question of how the neurons are able to learn such
weights in order to produce the desired outputs. As mentioned earlier, Hebb’s rule (Hebb, 1949) inspired
the update rule in the perceptron algorithm, and this approach can indeed train a single neuron or
a single layer of neurons whereas this does not generalize to neural networks with multiple layers of
neurons (e.g., MLPs). To address this incapability another and more general optimization strategy is
commonly used: gradient descent optimization. Combined with the backpropagation algorithm (described
later), this caused the second neural network hype back in the 1980s by facilitating the learning of MLPs.
Furthermore, its general formulation allows for the appliance on more sophisticated neural network
architectures such as CNNs (see Sec. 2.3) and RNNs (Goodfellow et al., 2016, ch. 10; Sherstinsky,
2018), which are a significant contribution to the current success of deep learning over various areas.
So, the simplicity of this optimization approach is even more surprising.

Gradient Descent Optimization:
Gradient descent optimization method, which is an iterative first-order optimization method, which

gradually adjusts the model’s parameters ✓ through first-order information by determining the gradient
of the error (or loss) on the training data D with respect to the parameters over several iterations, which
are commonly referred to as epochs, in order to reach a local minimum.

As a short example, optimizing according to the gradient descent method can be compared to finding
oneself in the mountains (representing the shape of the loss function) blindfolded and trying to find a
valley (a local minimum). If you now determine the gradient under your feet at your current location
(which represents the current parameter vector ✓ ) and follow this gradient downhill when taking the
next step, you will reach a valley after some time since at a valley there is no gradient which can be
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followed for a successive step. Note that this valley/minimum has to be neither a global minimum nor a
good minimum at all, nor does it actually have to be a minimum, since it could also be a saddle point.

In the supervised learning setting the loss for a data sample (x (d), y
(d)) 2D ⇢ X⇥Y expresses the error

between the model’s output o
(d) = f (x (d);✓ ) given input x (d) and the data target y

(d) and is denoted as
l(o(d), y

(d);✓ ). Considering a batch of data samples (e.g., the whole training data set D) the losses for
each data sample have to be aggregated (often via an average over the individual data sample losses)
in order to obtain a single scalar loss representing the performance on the particular sample batch. The
notation of a parametric model o = f (x ;✓ ) (such as a neural network) can be extended to process a
batch of input samples X = (x (1) x (2) . . . x (D))> of D data samples (as a block matrix) through the
model yielding a vector of outputs o = (o(1), o

(2), . . . , o
(D))> instead of a single scalar output as follows

o = f (X ;✓ ) =

0
BBB@

f (x (1);✓ )
f (x (2);✓ )

...
f (x (D);✓ )

1
CCCA

for the sake of conciseness through such notation in matrix-from.

To minimize the error being made on the entire training data set D, the aggregated loss function,
which the gradient descent optimization is applied on, is defined as the error between the (vector
of the) model’s outputs o = f (X ;✓ ) regarding the (block matrix of the) training input samples X =
(x (1) x (2) . . . x (D))> and the corresponding (vector of the) data targets y = (y (1), y

(2), . . . , y
(D))>.

Formally, as follows

L(o, y;✓ ) =
DX

d

1
D

l

�
f (x (d);✓ ), y

(d);✓
�

. (2.2)

As the gradient is utilized to adjust the parameters so that the loss decreases, the weights are updated
in the opposite direction of the gradient, i.e., the negative of the gradient, since the gradient of the
loss with respect to the parameters indicates the direction in which the loss increases. This leads to the
gradient descent update rule

✓t+1 = ✓t �↵ ·r✓t
L(o, y;✓t)

where ✓t+1 denotes the updated parameters, which are used in the successive training epoch, ✓t

denotes the parameters of the current epoch the gradient has been computed with respect to, and the
learning rate (or step size) hyperparameter ↵ is a positive real-valued scalar which is usually chosen
to be much less than 1, i.e., 0 < ↵ ⌧ 1, in order to limit the magnitude of the gradient leading to a
restricted change in the parameter update. A low learning rate addresses the problem of overshooting or
oscillating around a local minimum in the loss function where gradient descent with a high learning rate
suffers from. However, this has the disadvantage that the convergence speed might be lower due to the
small update steps in the parameters. To ensure convergence to a local optimum the sufficient condition

1X

t=1

↵t =1, and
1X

t=1

↵2
t
<1 (2.3)

must be met, e.g., by using a learning rate schedule which decays the learning rate over time where ↵t

denotes the learning rate applied in the tth epoch of learning (Goodfellow et al., 2016, ch. 8.3.1, p. 291).
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In practice, more sophisticated optimizers build upon the method of gradient descent and are applied
because of faster convergence and reduced effort in learning rate schedule tuning (since some implicitly
ensure the conditions from Eq. 2.3). These optimizers store and (mostly exponential moving) averag-
ing the previous gradients. Further, they derive their improvements from this additional information
by scaling the size of the current gradient (which is directly equivalent to scaling the learning rate)
to, for example, finely approach to a minimum and prevent oscillating around it, and add the current
momentum to the gradient in order to move faster (i.e., performing larger update steps) when the pre-
vious gradients point in a similar direction. For example, such sophisticated and well-known optimizers
are RMSProp (Tieleman and Hinton, 2012), AdaDelta (Zeiler, 2012), Adam (Kingma and Ba, 2014), or
AMSGrad (Reddi et al., 2018).

Backpropagation:

Considering the appliance of the gradient descent method on a deep neural network, there are some
major difficulties arising from the depth of the network architecture. On the one hand, determining the
gradient analytically with respect to the parameters ✓ in the network might be error prone and have
to be redone whenever the network’s architecture is slightly changed. On the other hand, computing
the gradient with respect to the parameters ✓ can be computationally demanding when the computa-
tion of the partial derivative is performed for each parameter separately, and intermediate results might
be calculated redundantly. Fortunately, these matters are being addressed by the backpropagation (or
backprop) algorithm (Rumelhart et al., 1986). The backpropagation algorithm is often claimed to be an
efficient application of the chain rule from calculus on neural networks or, more generally, on computa-
tional graphs. First of all, a computational graph is a directed acyclic graph whose nodes denote – mostly
simple – mathematical operations (such as addition, multiplication, etc.) and the inflowing edge(s)
provide the values of the operands whereas outgoing edge(s) yield the result(s) of the computation be-
ing expressed by this node. See Fig. 2.5 for an example of a computational graph. A computational
graph can express arbitrarily complex computations by breaking them down into simple, immediate sub-
computations what applies for ANNs. By applying input values (e.g., the input data and the current
parameters in the case of a neural network) on the edges of the first/input nodes of the computational
graph and propagating the values through the graph (similar to propagating an input through a neural
network) leads to the result at the edges of the last nodes of the graph. This is called a forward pass or
forward propagation. If the intermediate results of each node in the computational graph are stored in
the forward pass and the partial derivatives of the output edges(s) of a node with respect to all input
edges are known for all the operations/nodes used throughout the graph, we are ready to use the back-
propagation algorithm to determine the gradient of the computational graph’s output with respect to
particular graph inputs. An example of the backpropagation algorithm applied to a computational graph
is shown in Fig. 2.5. The algorithm is initialized with storing a gradient of 1 of the output node (with
respect to the output) obviously since generally @ o/@ o = 1 applies. Then, the algorithm computes the
gradients with respect to the inflowing edges beginning with the last nodes of the computational graphs
all the way up to the input edges the gradient with respect to is desired. This takes place by propagating
and storing the gradients of the intermediate nodes in a backward manner, which are efficiently reused
without the need of reevaluating the partial derivatives of any node. According to the chain rule, the
gradients are successively built by calculating the gradient of the currently considered node with respect
to the input edges and multiplying this intermediate gradient with the gradient of the downstream node
which yields the gradient of the graph(’s outputs) with respect to the input edges of the currently consid-
ered node. This step in the backpropagation algorithm is readily apparent in the definition of the chain

2.2. Artificial Neural Networks 35



x1

w1

x2

w2

·

·

+ (·)2

3
14= 2 · 7
2

21= 3 · 7

�5
3.5= 0.5 · 7
0.5
�35= (�5) · 7

6
7= 1 · 7

�2.5
7= 1 · 7

3.5
7= (2 · 3.5) · 1

1.225
1

Forward pass

Backward pass

Figure 2.5.: Visualization of the backpropagation algorithm applied on a computational graph with the
inputs x1 = 3, w1 = 2, x2 = �5 and w2 = 0.5. The purple numbers are all (immediate)
results from the forward pass whereas the orange ones are the (immediate) gradients (of
the output 1.225 with respect to the inputs of the currently considered node) determined in
the backward pass according to the backpropagation algorithm. This computational graph
could represent a neuron with two input activations, no bias parameter and (uncommon)
quadratic activation function. The gradient with respect to the inputs of interest (the current
weights w1 = 2 and w2 = 0.5) can be easily obtained (@ o/@ w1 = 21 and @ o/@ w2 = �35).

rule using Leibniz’s notation: Given y = ( f � g)(x) = f (g(x)) with the intermediate result z = g(x) the
chain rule states

@

@ x
f (g(x)) =

@ y

@ x
=
@ y

@ z
· @ z

@ x

which can obviously be extended by combining arbitrarily many functions. The gradients obtained with
respect to the ANN’s parameters ✓ are now used for gradient descent optimization to achieve the learning
of the ANN. The directions of the forward and backward pass through an MLP are depicted in Fig. 2.4.

Expressing an ANN as a computational graph in order to perform the backpropagation algorithm
for the gradient computation automatically (often called autodiff meaning automatic differentiation for
short) is performed under the hood of most frameworks used for neural network implementations and
learning such as PyTorch (Paszke et al., 2017), which was used to perform experiments for this thesis, or
Tensorflow (Abadi et al., 2016). In most cases, the programmer has to define the network architecture,
i.e., the forward pass, only and the differentiation is performed automatically when operations are used,
which are defined within the framework (including the partial derivatives) or partial derivatives are
explicitly provided.

Gradient estimation on batches:
As one can imagine, depending on the size of the training data set and the chosen learning rate, gra-

dient descent might need many epochs, i.e., many parameter update computation steps, to reach a local
minimum. Hence, it would be advantageous to determine the gradient on a subset of the entire training
data set solely in order to perform a parameter update step based on this gradient. This would bring the
advantage of updating the parameters much more frequently in the same amount of time and eventually
reach convergence faster. A justification for using a subset only paired with a slightly modified gradient
descent method, called mini-batch gradient descent, is shown in the following derivation (adapted from
Schulz and Aziz (2018)).
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Recall that the goal is to minimize the loss on the entire training data set and such loss function is
defined as shown in Eq. 2.2 by taking each training data sample (x (d), y

(d)) 2 D into account. Hence,
the gradient of interest can be reformulated as

r✓ L(o, y;✓ ) =r✓
DX

d

1
D

l

�
f (x (d);✓ ), y

(d);✓
�
=

DX

d

1
D
r✓ l

�
f (x (d);✓ ), y

(d);✓
�

.

Considering the sum followed by the factor 1/D, it is apparent that this corresponds to the definition of
an expectation of a discrete and uniformly distributed random variable X describing the index of a data
sample in the training data set D and each index d, i.e., each data sample (x (d), y

(d)), is taken equally
likely with a probability of P (X = d) = 1/D. This insight allows for reformulating

r✓ L(o, y;✓ ) = E
X⇠U(1,D)

�
r✓ l

�
f (x (X );✓ ), y

(X );✓
� 

where U(1, D) denotes the discrete uniform distribution parameterized so that it is defined on
{1, 2, . . . , D} ⇢ N. Yet, we can take M samples of X and compute the mean over the gradients of the
loss for each sample and we would have a Monte Carlo estimate of the gradient

r✓ L(o, y;✓ ) =
MX

m=1

r✓ l

�
f (x (dm);✓ ), y

(dm);✓
�

where dm ⇠ U(1, D) (w.o. replacement)

or, more informally speaking, we replace the expectation by sampling via Monte Carlo simulation (An-
derson, 1999). By choosing the mini-batch size M ⌧ D, the computational effort per gradient estimate,
which requires more frequent parameter updates but introduces gradients with higher variance than the
gradient of Eq. 2.2. The gradient estimates are therefore also referred to as stochastic gradients where
the stochasticity (or variance) increases when the mini-batch size M is decreased. This leads to the
special case of setting the M = 1 so that the gradient is estimated based on a single data sample only,
which is called stochastic gradient descent but it has to be noted that the distinction between the terms of
mini-batch gradient descent and stochastic gradient descent is not that strict and clear in the literature
where the stochastic gradient descent terminology is sometimes used in combination with mini-batches.
Generally, the hyperparameter M controls the trade-off between the accuracy of the gradient estimate
and computation time. However, when M is set too low, this might require a small learning rate to
maintain stability due to the high variance in the gradient estimate what, on the other hand, might lead
to a disproportionately high convergence time (Goodfellow et al., 2016, ch. 8.1.3, p. 276).

2.3 Convolutional Neural Networks (CNNs)

The presented neural network architecture of simply stacking several layers of neurons upon each other
(i.e., MLP) can be further extended to more sophisticated neural network architecture designs. The
architecture of Convolutional Neural Networks (CNNs) (LeCun et al., 1998; Fukushima, 1980) has become
indispensable in today’s field of deep learning and is presented in this section.

The main inspiration for convolutional neural networks is visual information processing in the mam-
mal brain, more precisely the primary visual cortex (V1). There, the signals are interpreted in stages with
nerve cells firing at specifically oriented edges (the simple cells) or, based on this activations, at edges
moving in a particular direction (the complex cells) (Hubel and Wiesel, 1963). The information signals
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Figure 2.6.: Visualizes the convolution operation with a 3x3 kernel exemplarily where zero padding is
applied. The currently considered input and output pixels are printed in boldface and the
filter kernel’s weights in green. The colored (·) notation refers to the elements from the
specific image/kernel the color is associated with.

thus become more and more abstract in subsequent areas/layers of the brain (Brodmann, 1909), up to
so-called grandmother cells, i.e., (hypothetical) nerve cells that fire when a specific person is recognized
(Gross, 2002). Since convolutional neural networks, or more precisely, convolutional layers, follow the
conceptional idea of recognizing edges and subsequently more abstract visual patterns like the nerve
cells in the V1, they are successfully used in the field of image processing (e.g., image classification, as
in the experiments in this thesis). Nevertheless, the use of convolutional neural networks could also be
surprisingly profitable in other areas, e.g., in natural language processing (Kim, 2014).

Further motivation behind the use of convolutional neural networks concerns reasons for computing
efficiency since visual input data is high-dimensional (i.e., dimensions = the number of pixels times the
number of color channels). Here, the use of a standard MLP architecture is very computationally inten-
sive since the number of neurons and, consequently, the number of weights would be extremely high
due to the fully-connected layers. Be aware that the input layer alone would already contain as many
neurons as input dimensions, whose output activations would then be sent to each neuron in the next
layer. Thus each of these neurons must have a single weight parameter for each of these many activa-
tions, which results in a tremendously high number of weights. To make this point more clear, consider
colored images of 32x32 pixels (with a color depth of 3), which is a 32 · 32 · 3 = 3072-dimensional
input. If an MLP architecture with the first hidden layer only consisting of 1000 neurons is applied, the
number of weights in this very first layer would be 3 072000. As a rough comparison, the successful
and state-of-the-art ResNet architecture (He et al., 2015) with 110 layers defines a convolutional neural
network, which would only contain 1 730714 parameters in total (for a 10-class classification problem).

Convolutional neural networks consist of two additional components that are not present in the MLP
design: the convolutional layer and the pooling layer. Both types of layers are explained in detail in
the following sections. A convolutional layer contains the neural network’s parameters and can be
considered as a replacement for the layers of neurons (fully-connected layers) as used in the MLP archi-
tecture. A pooling layer does not contain any parameters and is ordinarily placed after a convolutional
layer. This is repeated several times at the beginning of the neural network to compress the high-
dimensional input into informational features (i.e., of a lower dimension) that are then processed in
standard (fully-connected) layers of neurons up to the output layer.

2.3.1 Convolutional layer

The basic operation behind a convolutional layer is the convolution (i.e., linear filtering) from the field of
computer vision. Filtering, in general, refers to the manipulation of pixel values of an image. Therefore,
a filter kernel is specified, which determines the calculation of a new value for each pixel by additionally
including adjacent pixels. A linear filter kernel (i.e., convolution) has a specific (commonly square)
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Figure 2.7.: Visualizes max pooling on 2x2 regions exemplarily. The colored areas highlight over which
values the max function is applied to determine the output values.

shape, which tells how many adjacent pixels are considered. For example, a kernel with a shape of 3x3
includes the eight direct neighbor pixels (in vertical, horizontal and diagonal direction) to calculate the
filtered value for the considered pixel (in the center of the kernel). The kernel and its filtering behavior
are further specified by weights that are used to build a weighted sum of the considered pixel and its
adjacent pixels as the new pixel value. Frequently, filtering is imagined so that the filter kernel slides
over the image and calculates the output image pixel by pixel. An example of filtering is visualized in Fig.
2.6 where zero padding was applied, which means that missing adjacent pixels needed for the kernel
calculation at the edges of the input image are filled with zeros as placeholder values (= black pixels).

Depending on the kernel’s weights, a convolution can express different filter behaviors. For example,
blurring, sharpening and, most importantly, edge detection. Depending on the weights, differently ori-
ented edges can be detected, which is where the connection to the functioning of the simple cells in the
primary visual cortex should become clear.

As the term weight suggests, one could ponder to learn the weights of a filter kernel as any other
parameters in a neural network. In order to extract more diverse properties from the input (e.g., dif-
ferently aligned edges), several filters could be applied to the same input. This is exactly the case in a
convolutional layer. It consists of several convolution kernels that are applied to the input activations
for this layer where the weights are learned individually. Input activations can be either the pixel values
of an input image that is applied in the input layer or activations from a previous convolutional layer.
Note that the output of a convolutional layer can be considered as an image with the same number of
color channels as convolutions are applied in the convolutional layer. Further, the convolution operation
is applicable to inputs with arbitrary (color) depth where the kernel extends to a tensor instead of a
matrix.

Just like in a standard MLP layer of neurons, a bias parameter can be added to each convolution output,
and an activation function is applied element-wisely. It should become apparent that this definition can
drastically reduce the number of parameters compared to standard MLP layers since the number of
parameters does only depend on the number of convolutions and their kernel sizes (and of the depth
of the input) but does not correlate one-to-one with the input dimensionality. This implies that the
same weights interact with multiple input activations to generate the output, which is a kind of weight
sharing. Further note that as the convolution operation is linear by definition (Goodfellow et al., 2016,
ch. 9, p. 326), this can be implemented efficiently in matrix/tensor operations.

2.3.2 Pooling layer

A pooling layer is different from standard MLP layers of neurons since it does not contain anything that
could be considered as neurons or parameters at all. It is primarily used to reduce the spatial size of the
output of a convolutional layer for computational reasons, on the one hand, but also helps to make the
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Figure 2.8.: Plots of (a) sigmoidal and (b) (variants of) rectifier activation functions mapping the neuron’s
pre-activation z to the final output (activation) o. As all rectifier activation function variants
have the same (linear) image for z � 0, this part is plotted uncolored in black. The orange
rectifier activation function variant in (b) can be seen as the Leaky ReLU as well as the para-
metric ReLU function (PReLU) with the slope parameter set to 0.1. The actual output o of a
maxout unit (pink in (b)) does not depend on a single pre-activation z unlike all other acti-
vation functions presented. Maxout maps the pre-activation value z directly to the output o

(thick pink and partly black line) whenever no other pre-activation (thin lines) is higher.

representation, the neural network learns, invariant to small translations of the input (Goodfellow et al.,
2016, ch. 9, p. 336). The reduction takes place by pooling the activations within subdivisions similar to
a convolution kernel, which means that a single value is produced based on the input activations in each
pooling region (i.e., subdivision). In contrast to filtering, this cannot be imagined as a kernel sliding
pixel by pixel over the image but jumps so that the areas do not overlap, i.e., no pixel is involved in
several output calculations. The most common choice for a pooling operation is the max pooling (Zhou
and Chellappa, 1993) where the maximum of the values within the considered area makes the output.
Max pooling is exemplarily visualized in Fig. 2.7.

2.4 Activation functions

The activation function is a single-variable and scalar-valued function, which is applied to transferring
the pre-activation signal z in a neuron and this result is used as the output (activation) o (thus, also
called transfer function). The activation function is commonly of (strictly) monotonically increasing, dif-
ferentiable, and bounded nature. Originally, it is inspired by the all-or-none principle of nervous activity
where a certain threshold must be exceeded before the neuron fires a signal. This can be modeled by the
Heaviside step function (purple in Fig. 2.8a) but it is utterly unsuitable in neural networks when train-
ing with a gradient-based optimization method (e.g., gradient descent paired with backpropagation) is
planned since the derivative is zero wherever the function is differentiable, which would result in no pa-
rameter adjustments for all parameters in the neural network. Apart from the neuroscientific inspiration,
another compelling reason why a (non-linear) activity function is required in a neural network is that
only then does the stacking of layers improve the expressive power of the neural network (or model)
whereas the model would remain linearly separating by stacking layers with linear activation functions
or even without any activation functions put in.
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2.4.1 Sigmoidal activation functions

As close approximations of the Heaviside step function and satisfying the requirements of differentiability
and the existence of non-zero values in the derivative, the family of sigmoidal functions can be taken
into account.

Sigmoid function:
The sigmoid function �(·) is a special case of the logistic function and the most prominent function

within the family of sigmoidal functions and was heavily used in the early history of neural networks
(see the orange curve in Fig. 2.8a). It can be construed as a smooth (i.e., continuous and differentiable)
variant of the Heaviside step function, which means that the inputs are also squashed into the range of
[0, 1] with limz!�1�(z) = 0 and limz!1�(z) = 1.

The sigmoid function and its derivative are defined as follows

�(z) =
1

1+ exp(�z)
=

exp(z)
exp(z) + 1

and
@ �(z)
@ z

= �(z)(1��(z)).

One drawback in using the sigmoid function as activation function is that the derivative is nearly
zero for z values being of a high magnitude of about |z| > 4 producing very small gradients, which are
back-propagated (by multiplication according to the chain rule) through the network (or computational
graph) to all parameters of upstream nodes. This phenomenon is called the problem of vanishing gradi-
ents. Whenever the pre-activation z is of a high magnitude so that the resulting gradient is quite small,
the neuron is called saturated since it would take many training iterations (i.e., parameter update steps)
to adjust the parameters so that the magnitude of z will decrease and the gradients become larger again.

Another disadvantage is that the mapping of the sigmoid function is not zero-centered whereby a bias
in the gradient is induced, which is an undesired property assuming that the data has been normalized
and zero-centered beforehand (which is common practice) (LeCun et al., 1998).

Hyperbolic tangent:
The hyperbolic tangent function tanh(·) (see the green curve in Fig. 2.8a) is a shifted and scaled

version of the sigmoid function (Goodfellow et al., 2016, ch. 6.3.2, p. 191) which does not suffers
from the disadvantage of not being zero-centered. For that reason, the hyperbolic tangent function is
preferred over the sigmoid function as a choice of the activation function. The function and its derivative
are defined as follows

tanh(z) =
exp(z)� exp(�z)
exp(z) + exp(�z)

= 2�(2z)� 1 and
@ tanh(z)
@ z

= 1� tanh2(z).

Note that the problem of saturating neurons using the hyperbolic tangent activation function is still
present. Moreover, this is not only a specific problem of the sigmoid and hyperbolic tangent function but
rather a serious limitation the entire family of sigmoidal function suffers from.

2.4.2 Rectifier activation function variants

The widespread problem of saturating sigmoidal units can make gradient-based learning very difficult
especially for very deep neural networks. For this reason, their use as hidden units in feedforward neural
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networks is now discouraged (Goodfellow et al., 2016, ch. 6.3.2, p. 191). Note that using rectifier
activation function variants results in the neural network approximating the function that is aimed to be
learned with a piece-wise linear function.

Rectifier (linear unit (ReLU)):
The rectifier linear unit, ReLU for short, ⇢(·) denotes a neuron using the rectifier function as activation

function, which is plotted in purple Fig. 2.8b.
The ReLU function and its derivative are defined as follows

⇢(z) =max(0, z) and
@ ⇢(z)
@ z

=

®
1 if z > 0

0 if z < 0

where one can see that the rectifier is not differentiable in zero. As it is required that the activation
function is differentiable (in all values of z) in order to perform gradient-based optimization, the value
of the derivative at zero can be chosen to be 0 or 1 where the letter choice evokes the derivative to
become the Heaviside step function. However, this choice is of little importance in practice because of
the pre-activation z rarely approaches exactly zero.

The problem of saturation does not exist for positive inputs anymore. Furthermore, the gradients
for positive inputs are of constant magnitude (= 1) and does not begin to vanish. For that reason,
training very deep neural networks is much faster if the hidden layers are composed of ReLUs as shown
by Glorot et al. (2011) as well as Krizhevsky et al. (2012), who observed a speed up in convergence
time by a factor of six for the CIFAR-10 image data set. Considering the rectifier for negative inputs z

the gradient is exactly zero regarding such pre-activations z. This is an extreme case of saturation since
parameters and, consequently, the unit’s pre-activation production behavior will not change anymore as
no parameter updates apply why such neurons are commonly called dead. In order to avoid having dead
neurons immediately after initialization, the bias of a neuron can be initialized with a slightly positive
value.

Unfortunately, the output activation of a ReLU is not zero-centered.

Leaky ReLU:
The leaky ReLU ⇢Leaky(·) (orange in Fig. 2.8b) addresses the problem that the neurons will not die over

the course of training. A negative pre-activation z in such neurons is not mapped to exactly zero anymore
and produces small gradients. This is achieved by tilting the negative side of the rectifier slightly, leaving
an eponymous leak, that allows negative pre-activations to pass down-scaled. The slope of the linear
mapping on the negative side is set to a small positive value such as 0.1 or 0.01.

The Leaky ReLU function and its derivative are formally defined as follows

⇢Leaky(z) =max(0.1z, z) and
@ ⇢Leaky(z)
@ z

=

®
1 if z > 0

0.1 if z < 0
.

All in all, this has no disadvantages compared to the standard ReLU.

Parametric ReLU:
The parametric ReLU, PReLU for short, ⇢PReLU(·) can be seen as a generalization of the (leaky) ReLU

(see orange in Fig. 2.8b) as the slope of the negative side of the rectifier function is controlled by
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an additional parameter for each neuron which is learned through training via backpropagation like
a classical parameter in a neuron (or, alternatively, held fixed and set beforehand, which makes it a
hyperparameter). Hence, the PReLU can be comprehended as a leaky ReLU where the degree of the leak
(on the negative side) is controlled by the neuron itself.

The PReLU function is defined as follows

⇢PReLU(z) =

®
z if z > 0

az otherwise
.

Exponential ReLU (ELU):
The exponential ReLU, ELU for short, ⇢ELU(·) (see the green curve in Fig. 2.8b) has all benefits of

(leaky) ReLU but is closer to zero-mean output activations and speeds up the training further compared
to (leaky) ReLUs (Clevert et al., 2015).

The ELU function is defined as follows

⇢ELU(z) =

®
z if z > 0

a (exp(z)� 1) otherwise

where a � 0 is a hyperparameter, which can be set to 1 by default.

Note that this variant of the rectifier function is differentiable in all values of z.

Maxout units:
A maxout unit (Goodfellow et al., 2013) further generalizes the (leaky) ReLU making it possible to

approximate arbitrary convex functions with a single maxout unit (with a proper number k of affine
transformations) by computing the maximum over linear functions. The key difference to classical neu-
rons with rectifier activation functions is that within a maxout unit not only a single pre-activation is
produced but k many. Each pre-activation zj with j = 1, . . . , k is produced by a linear model (or any
other affine transformation is possible) as usual in an artificial neuron with distinct parameters for each
of the k pre-activations but all of them receive the same input (vector) x . As activation function, the
max-operator is applied over the k pre-activations and aggregating them into a single output for this
unit/neuron. To get a better understanding, see Fig. 2.8b for an exemplary visualization of a maxout
unit activation for k = 4 (in pink).

Apart from the increased expressive power of a single (maxout) unit paired with the benefits of
(P)ReLU, a major drawback of maxout units is that the number of parameters per unit increases by
the factor of k. However, it turns out that maxout networks are able to outperform networks with rec-
tifier activations using fewer neurons and even less parameters (see the empirical results in Goodfellow
et al. (2013)).

2.5 Loss functions

The choice of the loss function is a crucial factor for successful learning and is task-dependent in most
cases.
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2.5.1 Mean squared error

Given a regression problem, the mean squared error (MSE) is an appropriate choice and measures the
mean squared difference between the model’s output o

(d) = f (x (d);✓ ) and the data target y
(d) for all

data samples in the training set (x (d), y
(d)) 2D. This can also be comprehended as the squared Euclidean

distance (L
2-norm) of the difference between the (vector of the) model’s outputs o = f (X ;✓ ) regarding

the (block matrix of the) training input samples X = (x (1) x (2) . . . x (D))> and the corresponding
(vector of) data targets y = (y (1), y

(2), . . . , y
(D))> and eventually being reduced by dividing with the

number of training samples D

L(o, y;✓ ) =MSE(o, y) =
DX

d

1
D
( f (x (d);✓ )� y

(d))2 =
1
D
k f (X ;✓ )� yk22

where k·k2 denotes the L
2-norm.

This represents the most intuitive mathematical formulation of an error in the form of distance-based
deviation from the data targets. Furthermore, it is differentiable what is not so for the absolute difference
between output and data target or further the Manhatten distance (or L

1-norm) between the vector
difference.

2.5.2 Cross entropy loss

MSE is improper for training on multi-class classification problems (i.e., where the number of classes
is n > 2) in combination with the model output trained on one-hot encoded targets since we do not
care about exact values but rather are interested in the class prediction represented by the highest value
in the output vector as well as the match between this class prediction and the data target. The class
prediction is represented by the argmax operation (abbreviation for arguments of the maxima) of the
model’s output vector o = (o1, o2, . . . , on)> 2 Rn, which yields the index of the class (i.e., component of
the output vector) the highest output value assigned

ŷ = argmax
i=1,...,n

(oi).

Alternatively, this can be seen as a ranking, which means that the classes are sorted by the output values
(also called scores in the context of rankings) in descending order, and we choose the top-ranked class
(the class at the first position in the ranking) as the model’s prediction.

Hereafter, we assume that the model’s output vector o is in the form of a discrete probability distribu-
tion over the classes. Formally, the necessary conditions

nX

i=1

oi = 1>o = 1 and oi � 0 8i = 1,2, . . . , n (2.4)

do apply. Applying the so-called softmax function on the outputs squashes the values into a probability
distribution to fulfill these conditions while preserving the ranking of the classes as described in Sec. 2.6.
Note that the one-hot encoding vector of a true (data) target also meets the conditions and is, therefore,
a discrete probability distribution which assigns probability of one (= 100%) to the correct class and
probability of zero to all the other classes.
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Figure 2.9.: This plot of p 7! � log(p) visualizes the penalization e�ect within the cross entropy loss,
especially the high penalization when the probabilities predicted for the target class are low.

When the cross entropy loss is put to use in a classification learning problem (coupled with one-hot
encoded true targets), the loss aims to penalize model errors with regard to the true targets by consid-
ering the assigned probability (output) oj for the true class cj of the target y . The loss is high whenever
the assigned probability oj for the correct class cj is low and, consequently, low whenever the assigned
probability oj is high. This is accomplished by using the negative logarithm of the probability oj as loss

l(o, y;✓ ) = � log(oj) where yj = 1, (2.5)

i.e., cj denotes the target class. This loss is also often referred to as the negative log likelihood loss. The
strength of the penalization is visualized in Fig. 2.9. If the model makes a grave error on the sample, i.e.,
assigns a low probability to the class which is the target class but requires a high probability, the cross
entropy loss highly penalizes the model for this mistake. In fact, the loss function grows faster as the
probability moves further towards zero and reveals the limiting property limp!0� log(p) =1. On the
other hand, the loss approaches zero when the probability output of the true class is close to one since
this is the desired output and in the case of being exactly one equal to the one-hot encoded target.

The further generalization of this loss by additionally considering the errors between the output and
target probabilities for the other classes (oi and yi with i = 1, . . . , n where i 6= j when cj denotes the true
class), leads to the full formulation of the loss as the cross entropy H(·, ·) between a sample (x , y)> and
the (probability) output of the model o = f (x ;✓ ) as follows

l(o, y;✓ ) = H(y , o) = �
nX

i=1

yi log(oi) (2.6)

where all terms within the sum evaluate to zero when hard targets are used since yi = 0 with i = 1, . . . , n

where i 6= j when cj denotes the target class and yj = 1 what is, therefore, equivalent to Eq. 2.5.
Hard (target) in this context is equivalent to the designation of a one-hot encoded target so that all

components yi are zero except for the target class cj where yj is one. On the contrary, soft targets assign
a non-zero probability to each class and aiming to assign the true class cj the highest probability (yj > yi

for 8i = 1, . . . , n where j 6= i) in order to capture the information of which class is most likely the true
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class. Let y be soft targets in the cross entropy loss; then it obliges the probabilities to be high with an
importance of the target probabilities. This is enforced through the penalization with the negative log
probabilities weighted by the corresponding probabilities carried in the soft target. Soft targets can be
particularly rich in information about the corresponding input x since they can encode the uncertainty
of the true class (the class with the highest probability assigned to) depending on the magnitude of the
probability of this class and, on the other hand, further information such as similarities between the
classes can be expressed with soft targets. Those ideas and conceptions behind soft targets are of major
importance for the method introduced in this thesis.

In fact, the output probabilities of the model o are nearly always soft targets due to the characteristics
of the softmax function (Sec. 2.6).

From an information theoretical perspective, where the name cross entropy also derives from, one can
derive the connection of the cross entropy to two other information theoretical metrics, the entropy H(·)
and the Kullback-Leibler (KL) divergence (or called relative entropy) DKL(· k ·), as follows

H(y , o) = �
nX

i=1

yi log(oi)

= �
nX

i=1

yi (log(oi)� log(yi) + log(yi))

= �
nX

i=1

Å
yi log

Å
oi

yi

ã
+ yi log(yi)

ã
= �

nX

i=1

yi log
Å

oi

yi

ã
�

nX

i=1

yi log(yi)

= DKL(y k o) + H(y). (2.7)

In Information Theory, the entropy H(·) of a distribution is a measure of the unpredictability of the possi-
ble values being adopted by a random variable obeying this distribution. This means that a distribution
with a single (or only a few) narrow spikes and elsewhere low or near-zero values in the probability mass
(or density) function has a lower entropy than a distribution with high or non-zero values everywhere in
the probability mass (or density) function since the unpredictability of the outcome when sampling from
the latter distribution is higher compared to the former one where it is most likely that such sample lies
in the region of the spike in the probability mass (or density) function. For example, consider a discrete
probability distribution over two classes representing whether the weather will be "sunny" and "rainy"
tomorrow. If we are in a desert-like region, the probabilities assigned to the "sunny" class are meant to
be relatively high and, thus, the unpredictability of tomorrow’s weather is low which means that the en-
tropy of this probability distribution is low. On the contrary, a probability distribution which assigns each
weather class the same probability of occurrence, as it might be the case for being located in Germany
in the month of April, would have a high entropy which represents the unpredictability of the next day’s
weather, i.e., a sampling outcome. The KL divergence DKL(p k q) defines an asymmetrical distance metric
measuring the distance of a probability distribution q to another one p. The more the distribution q is
similar to p, the lower is the KL divergence DKL(p k q), and vice versa. Regarding the weather example,
assume that the cross entropy does now capture the true weather distribution as target and you or the
weather forecast makes a prediction about the weather for tomorrow. If the prediction about the weather
is congruent with the true distribution, the cross entropy will just be equal to the entropy of the weather
distribution (i.e., its intrinsic unpredictability). But if your predictions are wrong, the cross-entropy will
be higher than the entropy by the amount of the KL divergence (Géron, 2017, ch. 4).
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This information theoretical understanding and additional definition of the cross entropy in Eq. 2.7
supports the theoretical work for this thesis. Furthermore, it encourages further investigation of the
difference between applying either the cross entropy or the KL divergence. Since the data targets being
used for training are not influenced by the model or the model’s parameters ✓ , the entropy term H(y)
of the cross entropy loss (in Eq. 2.7) does not affect the computation of the gradient and

r✓H(y , o)
(2.7)
= r✓DKL(y k o) +r✓H(y) =r✓DKL(y k o)�

nX

i=1

r✓ yi log(yi)| {z }
=0

=r✓DKL(y k o)

shows that the gradient with respect to the parameters ✓ of the cross entropy loss H(y , o) is equal to
the gradient of the KL divergence H(y k o) for the model’s output probabilities o and the data target
y . This holds for both hard as well as soft targets where the only difference lies in the quantities of the
two metrics since for (one-hot encoded) hard targets the entropy is zero while it is greater than zero
for soft target and shown in the following. Recap the definition of the possible values that hard target
vectors can consist of y 2 {0,1}n for which the entropy H(y) = �

P
n

i=1 yi log(yi) is always zeros since
either yi = 0 yields yi log(yi) = 0 or yi = 1 yields yi log(yi) = 0 due to log(yi) = log(1) = 0. Note that
the argumentation is also valid in the opposite direction (that hard target probability distributions zero
the entropy) since only either yi = 0 or yi = 1 zero the entropy. Thus, when soft targets are used, i.e.,
y 2 (0,1)n 6= {0, 1}n, the entropy is H(y) 6= 0 and, in fact, H(y) > 0 since the entropy is non-negative
per definition.

Nevertheless, the gradients are equal according to the above reasoning. Therefore, the cross entropy is
preferable over the KL divergence since the evaluation is less computationally intensive (when computing
the original definition in Eq. 2.6), more numerically stable and better compatible with the softmax
squashing function applied to yield a probability distribution in the model’s output o.

The exact partial derivatives (for the gradient) of the cross entropy with respect to the model’s output
o are

@ H(y , o)
@ oi

=
@

@ oi

Ç
�

nX

k=1

yk log(ok)

å

= �
nX

k=1

@

@ oi

yk log(ok) = �
@

@ oi

yi log(oi)�
nX

k=1
k 6=i

@

@ oi

yk log(ok)
| {z }

=0

= � yi

oi

. (2.8)

2.6 Softmax

The softmax function �(·), also known as the normalized exponential function, is a squashing function
that ensures the output vector components forming proper probabilities/masses of a discrete probability
distribution, i.e.,meeting the necessary conditions defined in Eq. 2.4. A probability is assigned to each
softmax input component zj by preserving the ranking of the input components such that

8z 2 Rn : 8zi, zj : zi � zj, �i(z)� � j(z) (2.9)
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�i(zi))

Figure 2.10.: Illustrates the properties of the softmax function for (a) a pre-activation distribution over
the three classes C = {cat,dog,fish} mapped to (b) the softmax probability distribution for
some classification problem.

holds. Formally, the softmax function is defined as follows

� : Rn! (0,1)n; �(z) =

0
BBB@

�1(z)
�2(z)

...
�n(z)

1
CCCA where �i(z) =

exp(zi)
nP

k=1
exp(zk)

. (2.10)

For the application of the cross entropy loss in solving classification problems (see Sec. 2.5.2) the out-
put (vector) of the neural network o is meant to form a probability distribution, i.e., fulfill the necessary
conditions in Eq. 2.4. For that reason, the softmax function is commonly used as activation function in
the output layer of the neural network o = 'L(z) = �(z) where z denotes the pre-activation (vector)
in the output layer (the Lth layer). Especially the softmax as activation function is not only an element-
wise application of a scalar-valued activation function on the layer as opposed to the other activation
functions presented so far (see Sec. 2.4) but rather uses the pre-activations of all neurons within this
layer for normalization purposes. Furthermore, the softmax function can be regarded as multi-class gen-
eralization or also called multinomial logistic regression (n> 2) of the sigmoid function (defined in Sec.
2.4.1) (Bishop, 2006, p. 198), which is utilized as activation function in the output neuron in a binary
classification (n= 2) task (and also known as logistic regression).

Though, the question arises why the softmax function, in particular, is preferred over other techniques
that manage to transform the pre-activation so that a discrete probability distribution over the classes
is represented. To answer this question, the transformation of the softmax function should be further
investigated. Fig. 2.10 exemplarily shows the mapping properties of the softmax function in two bar
charts for an arbitrary pre-activation distribution over three classes C = {cat, dog, fish} for some classi-
fication problem. First of all, it is apparent that the ranking is preserved (as stated in Eq. 2.9) as well
as the mapped distribution is a discrete probability distribution (meets the necessary conditions in Eq.
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2.4). Moreover, this reveals the main feature of the softmax function, to which the function owes its
name, that the maximum value in the pre-activations (i.e., class dog in Fig. 2.10a) is emphatically lifted
in the output distribution in relative comparison with the other classes’ probabilities (Fig. 2.10b). The
probabilities for the other classes are strongly pushed towards zero (i.e., cat and fish in Fig. 2.10b). It
can be seen as a form of "winner-take-all" (Goodfellow et al., 2016, ch. 6.2.2.3, p. 183).

Hence, the softmax produces a vector which is nearly similar to the one-hot encoded index of the max-
imum pre-activation argmax

i=1,...,n zi. It is called softmax since it delivers a softened one-hot encoding of
the maximum input component. At the same time, it must be noted that this name is trifle misleading
since it is a softened argmax and not a softened maximum which is why the term "softargmax" would
be more appropriate (Goodfellow et al., 2016, ch. 6.2.2.3, p. 184) but rather unusual. In fact, as the
components cannot exactly adopt the values of zero and one, the output can be construed as a soft target.

However, since the distribution is highly similar to the one-hot encoding representing the argmax, this
comes in handy when learning from hard targets as it is the case for the targets in most classification
problems (e.g., in combination with cross entropy loss) with the benefit of differentiability compared to
the plain argmax function, which is a valuable property in order to bring gradient-based optimization
(such as gradient descent) coupled with backpropagation to bear.

It is worthwhile mentioning that a popular misunderstanding of the probability distributions produced
by a neural network with a softmax activation in the output layer is present where one interpret the prob-
ability values assigned to each class as quantification of certainty. For example falsely saying: "The neural
network is 99% sure that this picture shows a cat". There is no evidence for making this interpretation
since the neural network is trained on hard targets, on the one hand, where no further information of
certainty is encoded and, on the other hand, the softmax function highly squashes the pre-activations so
that the class with the highest pre-activation gets a probability value assigned of nearly 100% (nearer to
100% the higher this pre-activation is) without considering the (relative) ratio to the pre-activations of
the other classes. For example, consider the pre-activations for the classes C = {cat, dog, fish} from Fig.
2.10a z = (2.5, 5,�3)> where the ratio between the pre-activations of dog and cat is one half and the
softmax produces the probabilities of about o = (0.0758, 0.9239,0.0003)>. If these pre-activations were
scaled by a factor of ten, z = (25,50,�30)>, maintaining the ratio of one half, dog would get assigned a
probability of 100% (obviously depending on the floating point precision) and all other classes a prob-
ability of 0% showing evidently that the softmax does not keep the ratio between the pre-activations
and is scale-variant. However, the probabilities of the other classes (besides the top class) can be indeed
informative as they can carry similarities between the classes, for example. That information reveals
the dark knowledge of the neural network and is further investigated for the method introduced in this
thesis (see Sec. 2.8).

Apart from that, the softmax is indeed shift-invariant which means that pre-activation vectors with the
same element-wise difference (i.e., shifted by a scalar) yielding the same softmax probability distribu-
tion. This can also be comprehended as that the (absolute) differences between the pre-activations are
considered in the softmax mapping instead of the (relative) ratio. The shift-invariance is shown in the
following

�i(z�c) =
exp(zi � c)

nP
k=1

exp(zk � c)
=

exp(zi)exp(�c)
nP

k=1
exp(zk)exp(�c)

=
exp(zi)exp(�c)

exp(�c)
nP

k=1
exp(zk)

=
exp(zi)

nP
k=1

exp(zk)
= �i(z) 8c 2 R.

This property comes in handy to increase the numerical stability by subtracting the maximum pre-
activation before applying the softmax whereby the values of the exponential terms in the softmax
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definition (see Eq. 2.10) becoming smaller. This helps to prevent numerical issues like over- or un-
derflows in the floating point arithmetic.

(Partial) Derivative:

Since the softmax function is further investigated for the topic of this thesis and gradient-based opti-
mization is used for learning neural network, the partial derivatives of the softmax function are of high
importance. They are given by

@ �i(z)
@ zj

= �i(z)
�
Ii j �� j(z)

�
(2.11)

where Ik j are the elements of the n⇥ n identity matrix I (Bishop, 2006, p. 209) and their derivation is
shown in the following.

A case-by-case analysis 1 regarding j is done:

If j 6= i:

@ �i(z)
@ zj

=
@

@ zj

0
BB@

exp(zi)
nP

k=1
exp(zk)

1
CCA =

=0z }| {✓
@

@ zj

exp(zi)
◆✓

nP
k=1

exp(zk)
◆
� exp(zi)

✓
@
@ z j

nP
k=1

exp(zk)
◆

✓
nP

k=1
exp(zk)

◆2 (2.12)

= �
exp(zi)exp(zj)✓

nP
k=1

exp(zk)
◆2 = �

exp(zi)
nP

k=1
exp(zk)

·
exp(zj)

nP
k=1

exp(zk)

= ��i(z) ·� j(z) (2.13)

If j = i:
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@ zj

=
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@ zj

0
BB@

exp(zi)
nP

k=1
exp(zk)

1
CCA =
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exp(zi)
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k=1
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exp(zk)

◆2 (2.14)
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exp(zk)

◆
� exp(zi)exp(zj)

✓
nP

k=1
exp(zk)
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exp(zi)

✓
nP

k=1
exp(zk)

◆

✓
nP

k=1
exp(zk)
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exp(zi)exp(zj)✓

nP
k=1

exp(zk)
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=
exp(zi)

nP
k=1

exp(zk)
� exp(zi)

nP
k=1

exp(zk)
·

exp(zj)
nP

k=1
exp(zk)

= �i(z)��i(z) ·� j(z) (2.15)

1 Similar to Eli Bendersky - The Softmax function and its derivative:
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ (as of April 11, 2019)
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where the quotient rule applies for Eq. 2.12 and Eq. 2.14. In conclusion for arbitrary j, Eq. 2.13 and Eq.
2.15 compose to the final solution

@ �i(z)
@ zj

=

®
�i(z)��i(z) ·� j(z), if j = i

��i(z) ·� j(z), otherwise

=

®
�i(z)

�
1�� j(z)

�
, if j = i

�i(z)
�
0�� j(z)

�
, otherwise

= �i(z)
�
Ii j �� j(z)

�
.

2.6.1 Temperature Softmax

The temperature (of the) softmax function is a mechanism allowing for controlling the softness of the
resulting distribution (or soft targets) o as exemplary visualized in Fig. 2.11 for the pre-activation dis-
tribution of Fig. 2.10a over three classes C = {cat, dog, fish} for some classification problem. It is mainly
used in reinforcement learning (Sutton and Barto, 1998, ch. 2.3) to implicitly control the amount of ex-
ploration the agent performs during training by lifting the probability of taking actions that differ from
the agent’s greedy behavior. Applied on the output layer of an ANN, a higher temperature (⌧ > 1) let
the softmax produce softer outputs (Fig. 2.11c) and a lower temperature (⌧ < 1) sharpens the distri-
bution (Fig. 2.11a) by increasing the probability of the class which got the highest pre-activation value
assigned to (and, consequently, decreasing the probabilities of the other classes). Intuitively speaking,
the distribution is melted by a high temperature like candle wax and sharpened by a low temperature
like freezing water expands and forms jags.

The temperature mechanism leads to a further generalized formulation of the softmax function �(·/⌧)
and incorporates the hyperparameter of temperature ⌧ 2 (0,1) = R+:

�i(z/⌧) =
exp(zi/⌧)

nP
k=1

exp(zk/⌧)
,

which, in other words, means that the pre-activation vector z is scaled by the inverse temperature ⌧�1 ·
z = z0 before it will be passed to the softmax function. Note, that ⌧ = 1 is the special case of this
generalization leading to the standard softmax formulation as stated in Eq. 2.10.

(Partial) Derivative:
The partial derivatives of the temperature softmax function can be determined trivially based on the

partial derivatives of the standard softmax function (see Eq. 2.11) by making use of the chain rule

@ �i(z/⌧)
@ zj

=
@ �i(⌧�1 · z)

@ zj

=
@ �i(z0)
@ z0 j

@ z
0
j

@ zj

= �i(z0)
�
Ii j �� j(z0)

�
⌧�1

= ⌧�1�i(⌧�1z)
�
Ii j �� j(⌧�1z)

�
= ⌧�1�i(z/⌧)

�
Ii j �� j(z/⌧)

�
.
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(b) Outputs oi = �i(z/⌧) with ⌧ =
1.0; Equal to standard softmax
oi = �i(z)

cat dog fish

0

0.2

0.4

0.6

0.8

1

Classes ci

O
ut

pu
ts

o
i

(c) Outputs oi = �i(z)/⌧ with ⌧ =
2.0

Figure 2.11.: Illustrates the characteristics of the temperature softmax function for the pre-activation dis-
tribution of Fig. 2.10a over the classes C = {cat,dog,fish}. As a reference, the center chart
(b) is the same as the standard softmax output (i.e., ⌧ = 1.0). For the left chart (a), a low
temperature of ⌧= 0.5 is applied and sharpens the distribution whereas a high temperature
of ⌧= 2.0 applies for the right chart (c) softening the distribution.

Clearly, the obtained partial derivatives are equal to the ones of the standard softmax in Eq. 2.11 when
scaling the pre-activations and the resulting partial derivatives by the inverse temperature ⌧�1.

As further characteristics of the temperature hyperparameter ⌧, we examine its limits. If the tempera-
ture is set really low, ⌧! 0, the resulting distribution would have exactly the form of a one-hot encoding
since the class with the highest pre-activation gets 100 % assigned. On the other hand, if the tempera-
ture is set extremely high, ⌧!1, a uniform distribution over the n classes with probability 1/n would
be returned by the softmax function. Note that the latter case completely loses the information about
the top-class and the ranking whereas the first case preserves this information but loses all information
about the other classes.

The temperature softmax function is going to be of great importance regarding the exposure and
amplification of dark knowledge as proposed in the method of Knowledge Distillation (KD) (Hinton et al.,
2015) (see Sec. 2.8) as well as the method introduced in this thesis (see Sec. 3).

2.6.2 Combination of softmax and cross entropy loss

As frequently mentioned before, the softmax distribution and the cross entropy loss suit each other fruit-
fully and are almost always applied in combination in practice when it comes to classification problems.
Since the method introduced in this thesis is implemented and applied in the loss function regarding
these two functions, some properties are discussed here as they are being referred to later.

The partial derivatives (forming the gradient) with respect to the pre-activations (of the output layer
in the neural network) z are

@ H(y ,�(z))
@ zj

= � j(z)� yj = oj � yj (2.16)
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(Goodfellow et al., 2016, ch. 6.5.9, p. 218) and can be derived as follows

@ H(y ,�(z))
@ zj

=
nX

k=1

@ H(yk,�k(z))
@ �k(z)

@ �k(z)
@ zj

= �
nX

k=1
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�k(z)
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nX

k=1
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yk(0�� j(z))
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yk = �yj + yj� j(z) +� j(z)(1� yj) (2.17)

= �yj + yj� j(z) +� j(z)�� j(z)yj

= � j(z)� yj = oj � yj.

where Eq. 2.17 is valid since
P

n

k=1 yk = 1 due to y is representing a probability distribution (according
to the first necessary condition in Eq. 2.4) and, therefore,

P
n

k=1, k 6= j
yk =

P
n

k=1 yk � yj = 1 � yj. The
gradient term is intuitive as well as straightforward to interpret as the differences between the true and
predicted probabilities per class pointing towards the direction where this difference increases.

2.7 Regularization

As described in Sec. 2.1.4, one major challenge in ML is to achieve the desired generalization of a model
to "unseen" new data while learning on a limited and finite training data set. In other words, addressing
the problem of overfitting (on the training data).

Methods and approaches that do so are referred to as regularization. More specifically, regularization
denotes any modification we make to a learning algorithm that is intended to reduce its generalization
error but not its training error (Goodfellow et al., 2016, ch. 5.2.2, p. 224). This goal can be accomplished
through various approaches and techniques like constraining the parameters or adjusting the neural
network’s architecture.

Some well-established and prevalent regularization methods are presented in the following. These
can be divided into two categories of regularization techniques: the parameter norm penalty regular-
ization methods (e.g., L

1 and L
2 regularization) as well as the maxnorm regularization can be seen

as techniques that constrain the weights of the neural network. Hence, the capacity of the model is
limited to prevent overfitting since much specific information has to be encoded within the model to
memorize particular training data samples or peculiarities. Thus, a general concept has to be learned in
order to perform well on the training data. This is frequently justified with the statement that a simple
model/description should be preferred over a complex one according to Occam’s razor, which, however,
is seen as a misinterpretation (Domingos, 1999) as the concept of simplicity has not directly to correlate
with the syntactic size as it is expressed through the (number of parameters in a) model. Further, this
is why weight constraining regularization methods are partly criticized and, e.g., replaced by more so-
phisticated regularization methods such as dropout. Dropout, for example, is a regularization method
(explained in Sec. 2.7.3) from the second category of regularization techniques that are considered
in this thesis, which can be phrased as encompassing modification techniques of the neural network’s
architecture while learning.

As the original intention of the method, Self-Imitation Regularization (SIR), introduced in this thesis
(see Sec. 3) is the regularization of neural networks, it is investigated in comparison to such standard
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regularization methods. Furthermore, combinations of SIR and standard regularization methods are
further studied to understand the complementarity of the methods. Note that SIR does not directly fit
into one of the two categories stated above.

Moreover, other techniques exist that are not directly involved in the learning (algorithm) but applied
on the training data set and can therefore be referred to as regularization methods. Data augmentation
serves an example for this type of regularization where the training data samples are randomly modified
such as tilting or cropping samples of an image data set to prevent overfitting (Goodfellow et al., 2016,
ch. 7.4; Miko�ajczyk and Grochowski, 2018).

2.7.1 Parameter norm penalty regularization

This type of regularization adds a norm penalty ⌦(✓ ) to the loss function l(o, y;✓ ) leading to a soft
constraint regarding the parameter values, i.e., the magnitude of the parameters according to the chosen
norm. The parameter norm penalty regularized loss is generally formulated as

bl(o, y;✓ ) = l(o, y;✓ ) +�⌦(✓ )

where the non-negative hyperparameter � 2 [0,1) ⇢ R controls the strength of regularization where
higher values of � correspond to higher regularization and the special case of setting � = 0 leading to
no regularization (i.e., bl(o, y;✓ ) = l(o, y;✓ )) (Goodfellow et al., 2016). Usually, the norm penalization
does not apply for all parameters of the neural network but only the weights of the neurons (i.e., means
that the biases remain unconstrained). Hence, w (✓ ) denotes the vector containing all weights but no
biases from the parameters (vector) ✓ of the neural network.

With the choice of the norm, we can encode preferences for the weights having specific characteristics
since, in general, different instances of weight vectors can achieve the same low (or even optimal) loss
on the training data but different results regarding a proper generalization to unseen data. Two common
norm choices and their characteristics are presented in the following.

L1 regularization:
Choosing the L

1-norm as parameter norm penalty is called L
1(-norm) regularization or lasso regular-

ization since the use of the L
1-norm as norm penalty is the core principle in lasso regression (Tibshirani,

1996). Formally, as follows

⌦(✓ ) = kw (✓ )k1 =
X

k

|wk(✓ )|

results in the weight vector w (✓ ) becoming sparse throughout the training since a sparse weight vector
minimizes the penalty �⌦(✓ ) (Tibshirani, 1996), on the one hand, but still being able to solve the task
reasonably, i.e., minimize the original loss function l(o, y;✓ ). Sparsity means that most elements of a
vector are zero (or almost zero due to numerical inaccuracies). The L

1-norm can be seen as measur-
ing the sparsity by counting all violations in a vector where values differ from zero (weighted by the
magnitude of the deviation).

The advantage of sparse weight vectors is that the neurons ignore most of the input (activations) and
solely focus on the import ones whereby they will become nearly invariant to "noisy" inputs (Karpathy
and Li, 2015, ch. 1: Neural Networks Part 2) which contributes to generalization. This can also be seen
as a form of feature selection (i.e., using a small subset of features only) which commonly facilitates ML
algorithms (Goodfellow et al., 2016, ch. 7 p. 232; Tibshirani, 1996).
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L2 regularization:
Regularizing with the L

2-norm penalty is defined as the (half of the) squared length of the weight
vector w (✓ ) in Euclidean space or, in other words, penalizing by the sum of quadratic weights. Formally,
as follows

⌦(✓ ) =
1
2
kw (✓ )k22 =

1
2

ÇvtX

k

wk(✓ )2
å2

=
1
2

X

k

wk(✓ )2.

L
2(-norm) regularization is also known as ridge regularization as the L

2-norm penalty has its origin
in ridge regression (Hoerl and Kennard, 1970; Tikhonov, 1943). Generally, the L

2-norm penalty is
minimized by small values in the weight vector w (✓ ) (not necessarily being sparse but rather diffuse)
(Bishop, 2006, ch. 3.1.4, pp. 144-145). By penalizing peaky weight vectors and preferring diffuse ones,
a neuron benefits from using all of its inputs a little rather than relying on some of its inputs a lot.
Nevertheless, the noise sensitivity (against the inputs) decreases due to the small weight magnitudes
with which such noise is only slightly amplified. This counteracts overfitting and consequently supports
generalization.

L
2 regularization is also called weight decay since, in every update step, each weight is linearly decayed

towards zero (Karpathy and Li, 2015, ch. 1: Neural Networks Part 2).
Note that squaring and halving the L

2-norm are applied due to computational reasons since this can-
cels the square root in the L

2-norm definition without changing the minimum due to the monotonicity
of the square root function, and simplifying the gradient computation, respectively.

Usually, the regularization effects of the L
2-norm penalty are superior over the ones caused by the

L
1-norm for what reason L

2 regularization is commonly preferred as weight penalty.

Elastic net regularization:
Nevertheless, the different aims of the L

1-norm and the L
2-norm penalty cannot necessarily be consid-

ered as entirely counteractive or, moreover, it might be meaningful to pursue both objectives to a certain
extent and achieving a minimizing equilibrium between both penalties.

Therefore, both norm penalties can be used for regularization contemporaneously by adding both to
the loss function l(o, y;✓ )

l
ENR(o, y;✓ ) = l(o, y;✓ ) +�1 kw (✓ )k1 +�2

1
2
kw (✓ )k22

where the strength of each norm penalty is controlled individually by the two distinct hyperparameters
�1 and �2, which have to be set carefully.

This approach is called elastic net regularization (Karpathy and Li, 2015, ch. 1: Neural Networks Part
2).

2.7.2 Maxnorm constraint

The maxnorm regularization method introduces a hard constraint in the form of an upper bound on the
length of the weight vector of each neuron w (i)(✓ ) (where i indexes the ith neuron) by down-scaling
the whole vector in order to fulfill the constraint

��w (i)(✓ )
��

2  c after each parameter update. It is
called max-norm regularization since the maximum value of the norm is bounded to the value of the
hyperparameter c. Furthermore, c can be seen as the radius of a ball in the weight space of a neuron
wherein all weight vectors lie that fulfill the constraint. Whenever a weight vector w (i)(✓ ) went out of
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this ball through an update step, it is projected onto the surface of this ball (Srivastava et al., 2014) by
down-scaling the vector in order to fulfill the constraint.

2.7.3 Dropout

Concept and implementation:

Srivastava et al. (2014) introduced the method of dropout as a simple way to prevent neural net-
works from overfitting. Dropout is applied on a higher level than only (soft or hard) constraining the
parameters of the neural network as it is the case for the other regularization methods presented above
but randomly modifying the architecture of the neural network over the course of training and, conse-
quently, altering the flow of information through the neural network. Dropout implements a simple form
of randomly changing the architecture by temporarily "dropping" a random subset of neurons for a single
training iteration (including forward- as well as backward pass). By dropping a neuron, it is referred
to temporarily removing the neuron from the neural network along with all its incoming and outgoing
connections (Srivastava et al., 2014). From another point of view, this can be seen as sampling a (sub-
)network or binary masked network from the 2N possible neural network instances (when N denotes
the number of neurons within the neural network) or setting the output activation of a dropped neuron
to zero no matter what input activations are perceived. The hyperparameter p 2 [0, 1] ⇢ R specifies the
probability of a neuron being dropped. Be aware that the parameters of a dropped neuron are being
retained and are not affected by the parameter update in this training iteration and that no dropout is
applied at prediction/test time after training is done.

At test time, the output activations of all neurons oi have to be scaled by (1�p) in order to maintain the
expected output activation of a neuron from training with dropout (and hence the desired and learned
prediction behavior of the neural network) (Karpathy and Li, 2015, ch. 1: Neural Networks Part 2) since
this expected output activation with dropout applied is given by

E
mi⇠Bernoulli(1�p)

{mioi}= (1� p) · 1 · oi + p · 0 · oi = (1� p)oi

where the random variable mi denotes the dropout mask for the ith neuron, which is Bernoulli-
distributed and takes the value zero at a probability of p causes the ith neuron being dropped in this
iteration and takes the value one at a probability of 1� p prevent the ith neuron from dropping. This is
an efficient approximation of the predictions of all 2N possible neural networks, which had been trained
with dropout and should be therefore queried as an ensemble at test time. However, Srivastava et al.
(2014) showed that averaging the predictions of k � 1 (Monte Carlo model averaging) neural networks
using dropout each test case can indeed slightly reduce the prediction error for high values of k but is
not worth the computational overhead. Thus, the scaling approach is a fairly good approximation of the
average of the true ensemble (i.e., k!1).

Moreover, since changing the behavior of the neural network at prediction/test time is commonly
undesired, inverted dropout is applied in practice by remaining the output activations of the neurons
untouched at prediction/test time but scaling these by the inverse of 1 � p (i.e., dividing by 1 � p) at
training time (Karpathy and Li, 2015, ch. 1: Neural Networks Part 2). This is another way to ensure
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that the expected output activation of a neuron is the same during test and training time (viz. oi in both
scenarios) as shown in the following

E
mi⇠Bernoulli(1�p)

ß
mioi

1� p

™
=
(1� p) · 1 · oi

1� p
+

p · 0 · oi

1� p
= oi.

It is important to mention that the definition of the hyperparameter p is not consistent throughout the
literature since it often denotes the probability of turning a neuron on instead of dropping it.

Interpretation and features:
The most widespread interpretation of the regularizing effect of dropout is that this implicitly trains an

ensemble of models. Learning an ensemble of several models is a common technique in ML to depress
the generalization error with the idea that an incorrect prediction of a single model can be compensated
or outvoted by other models. In fact, each of the 2N dropout binary masks represents one model in the
ensemble, but these models share their parameters as opposed to a classical ensemble of models with
independently optimized parameters (Hinton et al., 2015).

On the other hand, dropout can be interpreted that the neural network is being forced to have a
redundant representation of knowledge acquired through learning since certain knowledge about specific
classes or inputs is not necessarily available at some iteration if the neurons, which are dedicated to
encoding this knowledge, are currently dropped (Canny, 2016, Lecture 8, p. 47). Moreover, this makes
it quite difficult and unlikely that the neural network is being able to overfit on specific training samples
as training particular neurons to trigger on such samples is not really achievable when these neurons
are likely being dropped in various iterations. Even if they are turned on, the input activations would
probably be too different due to the (mostly) different dropout situations in the upstream neurons in the
neural network over various iteration.

Srivastava et al. (2014) showed that dropout provokes that the hidden features (i.e., the output acti-
vations of the hidden layers) becoming sparse. Regarding proper generalization, this might be preferable
for the same reasons that apply to L

1 regularization.
Apart from that, Srivastava et al. (2014) pointed out that the breaking of co-adaptions by dropout

might be the main factor for a low generalization error. The partial derivative for each parameter in the
neural network determines how the parameter should be changed so that the loss on the mini-batch is
reduced but depending on the current behavior of all other neurons or parameters. Consequently, the
parameters of a neuron might be changed by the gradient to fix mistakes induced by other neurons what
Srivastava et al. (2014) refer to as complex co-adaptions leading to overfitting since these co-adapted
parameters do not generalize to unseen data. Therefore, dropout might inhibit co-adaption by preventing
a malfunctioning neuron from relying on the presence of other specific units correcting its mistakes.

2.8 Knowledge Distillation and Dark Knowledge

The work of Knowledge Distillation (KD) (Hinton et al., 2015) is of a central role in this thesis and
introduces the concept of dark knowledge (Hinton, 2014). While SIR, the method introduced in this
thesis, uses the KD mechanism as a basis for regularizing neural networks, the original motivation behind
KD comes from a different purpose:

A pivotal impediment to the deployment of large deep neural networks (or even ensembles of such)
in the field such as industrial real-time applications on potentially low-power computing devices (e.g.,
mobile devices) is that these suffer from requiring higher computing power to meet such demands.
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Additionally, decreasing the computing requirements when deploying deep neural networks via cloud
services in data centers, is of a keen economic and ecological interest. By speaking of deployment, it is
implied that the neural networks were trained beforehand and are then put to use as they are, i.e., with-
out further learning, for which reason only forward passes within the neural network are performed.
Learning a smaller neural network from the very start is most often barely an adequate option since
this will most likely be outperformed by a larger neural network (ensemble) in terms of the capabil-
ity in recognizing and extracting patterns, structures, and hidden properties from the data to achieve
superb learning success. This obviously comes with the drawback of great computation power and
time for making predictions, i.e., performing forward passes through the neural network. Changing the
structure/architecture of the neural network while perceiving the learned knowledge is hard or rather
impossible since this knowledge is encoded in the parameter values and, thus, closely intertwined with
the structure of the neural network. Hence, rather a technique of transferring or projecting the learned
knowledge from a large neural network to a smaller one is needed. Hinton et al. (2015) continued and
further developed the work of Bucila et al. (2006); Ba and Caruana (2014) and realized this concept
with the method of KD by distilling the knowledge in large neural networks (and even ensembles of
neural networks) into smaller (single) neural networks. In fact, the method that was proposed in Bucila
et al. (2006) turns out to be only a special case of KD as shown by Hinton et al. (2015).

However, Urban et al. (2017) recently showed in empirical studies that CNNs require a certain depth
in order to learn well even if distillation is used to support besides learning directly on the data.

Dark knowledge:
To understand the knowledge distillation technique, it is crucial to understand the concept behind

dark knowledge first. As stated in the KD introduction, small and shallow neural networks tend to be
less able to learn from the (hard) data targets and to gain information compared to large and deep
neural networks. The hard data targets (one-hot encodings) simply tell the correct class that should be
predicted. Therefore, a large deep neural network must have acquired more knowledge than a small
shallow one that supports predicting the correct class and is not obviously represented in the hard data
targets, as well as not easily detectable in the input data. This supporting knowledge is referred to as
dark knowledge (Hinton, 2014) and buried in the neural network.

Hinton (2014), as well as Hinton et al. (2015), propose that the dark knowledge is revealed in the soft
prediction of a neural network since this can be interpreted as similarities between the classes the neural
network has learned (given an input sample). The similarities are expressed through the probabilities
assigned to the classes that are not predicted (i.e., all classes except the one with the highest probability)
so that the classes with higher probabilities are relatively more similar to the predicted class than the
other ones with lower probabilities. From another perspective, one can say that the neural network is
more sure about the given input should have been rather predicted with some class holding a higher
probability than another one with a lower probability. In another way, the probabilities can be used as
scores in order to form a ranking of the classes, analogous to preference learning (see Sec. 2.1.1), where
the relation ci � cj (, yi > yj) allows the interpretation that the neural network considers it more
likely that the correct class for the given input is ci instead of cj. Or for ci � cj � ck that class cj is more
similar to ci than ck is, for the given input.

As commonly all other probabilities (except the highest probability) of a softmax output are rather low,
Hinton et al. (2015) used the temperature softmax (with temperature ⌧> 1) to amplify the probabilities
of the classes that are most similar to the predicted class and consequently uncovering the dark knowl-
edge more strongly. As an example, refer to Fig. 2.11 where one can see that the outputs of the neural
network with a standard softmax activation (Fig. 2.11b) show the expected similarities that cat is (more)
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Figure 2.12.: Knowledge Distillation (KD) framework diagram. A full (student) neural network training
setting is framed where the additional KD technique is highlighted in gray and KD hyperpa-
rameters are printed in blue.

similar to dog than fish is (more) similar to dog. Alternatively, the neural network would rather predict
the class cat for this input than the class fish. The higher temperature (⌧= 2.0 in Fig.2.11c) emphasizes
this relation by noticeable increasing the probability of the class cat while keeping the probability of the
class fish comparatively low.

In this thesis, further techniques to reveal and emphasize the dark knowledge are proposed (in Sec.
3).

Distillation technique:

As a large deep neural network seems to occupy superior dark knowledge than a small shallow one
the goal of KD is now to distill this dark knowledge in the large deep neural network, called the teacher
(network) by = bf (x ; b✓ ) for this purpose, to the smaller neural network, accordingly called the student
(network) y = f (x ;✓ ). See Fig. 2.12 that visualizes the entire KD framework as an abstract diagram.

To reveal the dark knowledge in the teacher network, all training input data samples are processed by
the teacher network to obtain corresponding soft targets containing the dark knowledge. As these soft
targets are produced with a (temperature) softmax activation, the necessary conditions for a discrete
probability distribution (see Eq. 2.4) are fulfilled, and these soft targets can be used as targets in the
cross entropy loss H(·, ·). Hence, the student network can be trained on the training data but using the
teacher’s soft targets instead of the data targets which are much more informative (carry the dark knowl-
edge) in the cross entropy loss. Hinton et al. (2015) claimed that this can be improved by additionally
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incorporating the data targets, i.e., the loss to the data targets, and using a weighted average of both
loss functions as the final loss

L
KD(Z, Y , bY ;✓ ) =

1
M

MX

m=1

l
KD(z(m), y (m), by (m);✓ )

=
1
M

MX

m=1

0
B@⇡ ·H

�
by (m), e�(z(m))

�
| {z }

(2.18)

+ (1�⇡) ·H
�
y (m),�(z(m))

�
| {z }

(2.19)

1
CA (2.20)

where the hyperparameter ⇡ 2 [0, 1] ⇢ R denotes the (relative) weight for the loss of Eq. 2.18
contribution to the final KD loss in relation to the data loss (Eq. 2.19), (x (m), y (m)) is the mth sample of
the data (mini-)batch, M denotes the (mini-)batch size, z(m) the pre-activations of the student network
given the mth data sample input x (m), by (m) = bf (x (m); b✓ ) the (mth) soft target predicted by the teacher
network given the mth data sample input x (m), Z the (matrix of) pre-activations, bY the (matrix of) soft
targets, and Y the (matrix of) one-hot encoded data targets.

It should be mentioned that another interpretation of distilling (or transferring) the knowledge to
the student network exist. Namely, that the student network mimics or imitates the teacher network
(Ba and Caruana, 2014; Urban et al., 2017). That is analogous to saying that a neural network fits
or approximates the training data originated by reducing the loss to this data. The imitation rate ⇡
represents the (relative) degree of imitating the teacher in contrast to fitting the data. Note, that the
terminology of imitation is eponymous for the introduced method, Self-Imitation Regularization (SIR),
in this thesis.

Note that both the teacher’s prediction and the student’s softmax output used in the imitation loss
(Eq. 2.18) should have used the same temperature ⌧ for the softmax activation. The use of a high
temperature leads to softer distributions having a higher entropy and providing more information per
training case (since the higher magnitudes of the probabilities of the non-predicted classes affect the
gradient more intensely) and can improve the learning speed by reducing the variance of the gradients
between update steps (Hinton et al., 2015).
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3 Self-Imitation Regularization (SIR)
Self-Imitation Regularization (SIR) is a regularization method implementing a form of self-imitation in
a neural network and, therefore, leverages its interim (dark) knowledge by explicitly incorporating this
knowledge in the loss formulation. It can be understood as being based on KD and is inspired by the
work of Hu et al. (2016) where a method was proposed to transfer prior knowledge, such as domain
knowledge or human intention, to a neural network through first-order logic rules. Here, SIR, as well
as Hu et al. (2016), follow the idea of not using an additional teacher network beside the training of
the student network but only has the (student) neural network whose predictions are used as a basis to
form (teacher) targets in a KD loss (i.e., as by (m) in Eq. 2.20). In strong contrast to Hu et al. (2016),
no further knowledge, like logic rules encoding, is used to obtain the (teacher) targets from reshaping
the (student) neural network’s predictions. Therefore, SIR can be easily applied in any neural network
classification learning setting since no more than the data is needed and the imitation (loss) targets are
based on the (dark) knowledge that the neural network has previously acquired up to the current training
iteration. On the other hand, towards KD, the non-negligible overhead – in terms of computation and
(hyperparameter) tuning time, as well as computational resources – of training an exhaustive teacher
network drops since only one network, the student, is being trained. Therefore, the computational
overhead induced by SIR is very small since only information is used that is already required for the
computation of the data loss (i.e., the per-activations of the neural network). Incorporating the neural
network’s own (soft) output in the imitation loss (Eq. 2.18) again and further training on this should
make the naming self-imitation clear. That it is not necessary to use a teacher network of a higher capacity
or expressive power in a KD-like setting in order to contribute generalization but a neural network of
the same architecture as the student network is shown by Furlanello et al. (2018) and Yim et al. (2017).
The components of SIR are explained in detail below, but it is worth already referring to the framework
diagram in Fig. 3.1.

However, another technique to reshape the predictions is needed since using the exact neural network’s
softmax output �(z) as imitation target (i.e., by = �(z); note that the mini-batch index m is omitted for
the sake of clarity) in the cross entropy term again (Eq. 2.18) can indeed lead to a non-zero (cross
entropy) imitation loss, but the gradient of this imitation loss with respect to z is always zero and,
therefore, will not affect the learning. The former can be seen in the fact that the cross entropy simplifies
to the entropy, which is non-zero for soft targets (i.e., if probabilities besides 0% or 100% exist). This
simplification is derived in the following

H(�(z),�(z)) = �
X

i

�i(z) log(�i(z)) = H(�(z))

or can also be justified by the fact that the cross entropy is composed of the sum of the entropy and
the KL divergence (Eq. 2.7) and the KL divergence, forming a distance metric for the deviation of two
probability distributions, is obviously zero in that case. The fact that the gradient with respect to the
pre-activations z (over which the gradients flow back to the parameters ✓ in the neural network) is zero

61



Data
D =

��
x(n)

,y(n)
� N

n=1

with x(n) 2 X ,y(n) 2 Y

Sample minibatch��
x(m)

,y(m)
� M

m=1
✓ D

with M  N

Neural network’s
pre-activations z(m) given x(m)

e�
�
z(m)

�

b�
�
z(m)

�

�
�
z(m)

�

Data loss
H
�
y(m)

,o(m)
�Imitation loss

H

⇣
by(m)

, eo(m)
⌘

+

Self-Imitation Regularization (SIR)

x(m) z(m)

by(m)

*

o(m)

eo(m)

y(m)

· (1 � ⇡)·⇡

Update parameters ✓

Figure 3.1.: Self-Imitation Regularization (SIR) framework diagram. A full neural network training setting
is framed where the additional method of SIR is highlighted in gray and SIR hyperparameters
are printed in blue. The red asterisk * refers to the path where the backward flow through
the imitation target can be considered.

can be seen by putting by = �(z) in the partial derivatives of the softmax and cross entropy combination
(defined in Eq. 2.16)

@ H(�(z),�(z))
@ zj

= � j(z)�� j(z) = 0.

Asymmetric softmax imitation:

Hinton et al. (2015) suggested using the temperature softmax function to reveal the dark knowledge
and improve the distillation where such softening can be seen as a modification of a standard softmax
output, and can be used to form the (teacher) soft target from the neural network’s prediction (i.e., the
pre-activations z). Obviously, if the same temperature ⌧ is used for both the neural network’s output eo =
e�(z) and the soft target by in the imitation loss as it is the case in the KD setting (Eq. 2.18), the problem
of zero gradients, mentioned before, would come up again. For that reason, different temperatures have
to be used either for the neural network’s output eo = e�(z) and the soft target by = “�(z), which are
denoted as e⌧ and b⌧ respectively, with e⌧ 6= b⌧. Normally, we make sure that the teacher target is softer
than the student one so that the student is able to profit from soft(er) targets (i.e., e⌧ < b⌧.). We call this
asymmetric softmax imitation. In order to verify this, we ran preliminary experiments in the standard
KD setting with asymmetric softmax imitation, and it turned out that the imitation/distillation of/from a
pre-trained teacher network is still possible. The achieved performance is comparable to those achieved
in the KD experiments where the same temperature was used (i.e., symmetric softmax imitation with
⌧= e⌧= b⌧). For more details on these experiments, refer to Sec. 3.3.2.

Chained softmax function:

Another approach to soften the softmax distribution, which, to the best of our knowledge, has not
been studied or used before, is to chain the softmax function a few times. We refer to this as the chained
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(c) Outputs oi = �i(�(�(z)))

Figure 3.2.: Illustrates the characteristics of the ⇣-chain softmax function for the pre-activation distribu-
tion of Fig. 2.10a over the classes C = {cat,dog,fish}. As a reference, the left bar chart (a) is
the same as the standard softmax output (i.e., ⇣ = 1). The distribution is softened (b) with
⇣ = 2 and (c) with ⇣ = 3 for the chained softmax function �(⇣)(z).

softmax function or, more precisely, as the ⇣-chain softmax function where ⇣ denotes the number of the
chained softmax functions what is formally defined as

�(⇣)(z) = (� � . . . ��)| {z }
⇣times

(z) with ⇣ 2 N+.

The softening characteristics of the chained softmax are similar to the temperature softmax since for
both the distribution gets softer when the ⇣ respectively ⌧ is increased. Note that the probabilities of the
non-predicted classes are strongly increased, even if the probability after applying the softmax function
once is nearly zero. In Fig. 3.2 this can be exemplarily seen for the 2-chain (Fig. 3.2b) and 3-chain (Fig.
3.2c) softmax function compared to the standard softmax (Fig. 3.2a). The pre-activations that serve as
inputs for the softmax functions are the same as shown in Fig. 2.10a for the three classes cat, dog, and
fish. Of course the same applies to the chained softmax function that the concept behind asymmetric
softmax imitation must be obeyed in order to obtain non-zero gradients. So the distinction regarding the
hyperparameter ⇣ needs to be made that e⇣ specifies the number of times the softmax is applied on the
neural network’s pre-activations z in order to form the imitation prediction/output eo and b⇣ the number
of times the softmax is applied on z to obtain the soft imitation targets by with e⇣ 6= b⇣.

Again, it is demonstrated in Sec. 3.3.1 that the chained softmax function can be seen as a replacement
for the temperature softmax function in KD to achieve comparatively accurate performance according to
preliminary experiments with KD.
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Loss formulation:
For the sake of clarity, the (multi-objective) loss function incorporating the method of SIR is stated

here
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where the definitions remain the same as in the KD loss formulation (Eq. 2.20) except the distinct
softmax function variants “�(·) and e�(·) in Eq. 3.1 producing the imitation targets by and the imitation
predictions eo, respectively. Hence, these two can be either set individually as any chained or temperature
softmax function so that the concept of asymmetric softmax imitation can be represented with this
notation.

Gradient flow through the imitation targets:
Since the imitation targets are produced by the neural network itself, which is trained simultaneously

on this loss, the target values depend on the neural network’s parameters ✓ . This is in contrast to the
loss computation based on the training data (Eq. 3.2) where the data targets obviously do not depend
on ✓ or in the KD setting where the teacher network that was trained beforehand is kept fixed during
distillation. Now, it can be considered to incorporate the gradients flowing back through the imitation
targets by with respect to the parameters ✓ instead of only considering the gradients induced by the
neural network’s prediction eo within the imitation loss. To make this more clear, consider the schematic
diagram of the SIR framework in Fig. 3.1 as an abstract computational graph, where the path marked
with the red asterisk (*) indicates the path over which the gradients can be propagated back in SIR.
Intuitively, this gradient explains how the "self-teaching" behavior of the neural network (represented by
by in the imitation loss) should be changed in order to reduce the loss.

Furthermore, by incorporating the target gradients, this also enables to use the symmetric softmax
imitation for SIR since a non-zero gradient is obtained even though the imitation target by and the
prediction eo are being the same. As mentioned above, symmetric SIR can be construed as an entropy
penalty, which means that this penalty is minimized by harder prediction distributions. Further, the
gradient of the imitation loss in symmetric SIR is exactly the gradient of the entropy function. Note that
in the rest of this thesis, symmetric SIR does implicitly refer to the symmetric SIR variant where the target
gradients are incorporated because otherwise no gradients exist, which would make any experimental
examination obsolete. On the other hand, asymmetric SIR produces non-zero gradients for both variants
– with or without target gradients – which is why the chosen variant is explicitly mentioned.

3.1 Hypotheses

Before presenting the experimental set-up (Sec. 4) and results (Sec. 5), all (initial) hypotheses about
SIR or, more specifically, about the regularization behavior of SIR are outlined here first since they have
given a strong impetus to the investigations and the design of the experiments. Note that the conclusion
(Sec. 6) summarizes whether the hypotheses can be rejected or accepted.
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Hypothesis I (Regularization). Producing soft targets instead of using the raw hard data targets only
can be seen as a qualitative enrichment of targets regarding their information content. We make the
hypothesis that even soft targets produced by the network itself – for which reason these might be of
poor quality at times – can already contribute generalization (i.e., regularize) even if the quality is lower
than for targets obtained by a sophisticated teacher network that was trained beforehand in KD. That
soft targets produced by a proper teacher network do have regularizing properties per se emerges from
various experiments in Ba and Caruana (2014); Hinton et al. (2015); Urban et al. (2017) where they
ascertained that the (student) neural networks were able to learn better in terms of the accuracy on
unseen (test) data when soft targets were provided compared to learning on the training data only.

Hypothesis II (Compensate for erroneous data labels). Generally, data labels are assumed to be correct,
but in practice, this is not always the case. For example, if the data (including the labels) was collected
via sensor measurements, noise signals might have occurred; or if the data set was labeled manually,
careless mistakes or, even worse, frequent mistakes due to an advanced difficulty in labeling the data
set might have been made. Therefore, compensating such erroneous data labels while training can be a
highly desirable property for a regularization method such as SIR.

(a) By directly incorporating the neural network’s predictions on the input samples into the loss com-
putation, we hypothesize that the possibility of declining a data target arises whenever the neural net-
work’s prediction indicates another class and, therefore, assesses the data label as wrong. This could
be made possible by the SIR loss (Eq. 3.3) constituting a multi-objective loss. A minimum specifies a
trade-off between satisfying the two objectives of staying with the neural network’s opinion (possibly
represented by the self-imitation loss, Eq. 3.1) and learning something new from the data (represented
by the data loss, Eq. 3.2). The relative importance of the two objectives can be set by the hyperparameter
⇡. More intuitively speaking, with SIR, the neural network might be able to question the training data
instead of unthinkingly learning from the data targets even if they evidently seem to be wrong. This
is exactly the case in a standard neural network learning setting with no regularization applied where
the neural network is subject to the training data and will entirely overfit on incorrect data targets (if
the capacity is high enough as well as the expressive power being sufficient). Ba and Caruana (2014)
concluded that the teacher targets in a KD arrangement eliminate label errors and, thus, facilitates the
learning of the student network what supports this hypothesis.

(b) Note that label correction as delineated in Hyp. II (a) could already work with hard imitation
targets and does not require the dark knowledge in the soft targets since a hard target prediction can
already replace the wrong (hard) data target. Nevertheless, we hypothesize that soft targets could im-
prove the label correction ability further. As stated in Sec. 2.6, the class probabilities resulting from a
softmax activation cannot be interpreted directly as a quantification about the confidence that the corre-
sponding class might be the correct one but relatively compared to other input samples the probability
can be seen as the confidence in (the correctness of) the predicted class. Furlanello et al. (2018) picked
up this idea and described the KD gradient induced by the imitation loss (Eq. 2.18) as learning from
the training targets using importance weights for each sample based on the teacher’s confidence in the
predicted class. This form of quantification by the neural network’s soft prediction has the possibility of
being more fine-grained than only using the (hard) prediction in order to correct a possibly erroneous
data target. Thus, the training could be much more stable in early iterations when the neural network is
not properly fit (underfitted) on the training data and might produce faulty and diffuse predictions since
this low confidence does not affect the data labels much. In contrast, for a pre-trained teacher in a KD
setting, the difference in the correction ability of erroneous data labels between the use of soft and hard
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targets might not be that decisive than for SIR as the teacher produces reliable predictions from the early
beginning.

Hypothesis III (Learn about a class through information about other classes). The main idea behind
dark knowledge and further KD is that a soft target can reveal rich information about other classes apart
from the one the hard target indicates for a given input (data) sample such as similarities. As similarities
can be coded, we assume that learning by using soft targets is supported to the extent that the neural
network can also learn about the other classes (apart from the class the hard data target refers to) while
a data example is shown.

As an intuition, this might be similar to association when one shows a child something new like a
picture of an animal the child has not seen before. It is a usual behavior to associate certain aspects with
already existing knowledge and, moreover, to draw further conclusions on this basis. For example, if you
show a photo to a child that shows a zebra which the child does not know, the child will soon notice that
there are great similarities to a horse, e.g., in terms of physique and anatomy. Thus it can remember a
zebra better in the future (e.g., if it is to paint one from memory) because it has seen horses more often
and can therefore also transfer aspects of a horse to the zebra, which may not have been visible on the
original zebra photo. Furthermore, it will make further assumptions based solely on this association.
For example, the child would now paint carrots for food because it assumes that a zebra could also be a
herbivore due to the high (visual) similarity to a horse.

Back to neural network learning such an assistance that points out the similarities could be made
explicitly available in the imitation loss and can be assumed to improve the learning. In contrast, in
classical neural network learning this does not happen as any predicted probability higher than zero for
a class, which is not the true one according to the data target, is penalized and pushed lower by the
gradient. The partial derivative with respect to such corresponding pre-activation zj, if a final softmax
activation �(·) and cross entropy loss H(·, ·) are being used, is simply the probability of the softmax
distribution for that pre-activation � j(z) since the desired probability is (yj = 0) according to the hard
data target y (see Eq. 2.16). This means that the pre-activation should be lower after the parameter
update by performing a gradient descent step. Moreover, the gradient pushes pre-activations that are
higher compared to other ones even stronger (except for the one that corresponds to the data target)
since the steepest update step is taken, and so a harder distribution is predicted next time the (input)
data sample is shown. On the contrary involving soft targets, the imitation loss would appreciated a
predicted probability higher than zero if the soft target carries a non-zero probability for the particular
class. Therefore, the gradient of the imitation loss would affect, that the pre-activations are adjusted
to fit the soft target probability whereby the neural network’s parameter have to adjust such that the
class can also be considered as reasonable for the given input sample (whose target originally refers to
another class).

We are aware of the fact that the initially stated arguments consider that the soft targets are of a
certain quality (e.g., if they come from a pre-trained teacher network). However, it might be possible
that similarities between classes are being discovered early in training – simply due to the fact that
the neural network makes a wrong classification and thus a wrong soft target in the imitation loss in
combination with the correct data target might teach a notion of similarity between the two classes.

Hypothesis IV (Complementary to standard regularization methods). The standard regularization meth-
ods, which are considered in this thesis, namely, L

1-norm and L
2-norm regularization, maxnorm and

dropout, address the problem of overfitting by explicitly constraining the weights or changing the neural
network architecture temporally by dropping neurons, which implicitly intends to affect the predictions
of the neural network so that these are more general. SIR, on the other hand, works more abstractly by
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regularizing on the basis of existing knowledge and can be interpreted as explicitly addressing the actual
prediction distribution of the neural network and thus implicitly adapting the parameters.

Obviously, there is a fundamental difference in the overall approach of SIR and we hypothesize that
thus the mechanism of action may be different from the standard regularization methods. Moreover,
that this regularization behavior of SIR is complementary to the standard regularization methods. In this
case, SIR could be combined with other standard regularization methods so that a better result would
be obtained than if each of the two methods had been applied on its own.

However, in the context of KD, it has often been reported that regularizing the student network by
dropout or weight decay leads to worsening the generalization performance (Ba and Caruana, 2014;
Urban et al., 2017) and could also be observed in preliminary experiments in KD when dropout was
activated in the student network, which speaks against this hypothesis.

Hypothesis V (Data efficiency). On the one hand, soft targets could generally be considered as an
enrichment over hard targets and Hinton et al. (2015) showed, on the other hand, that it was possible
to train a student network in a KD setting on an extremely small subset of the original training data (the
full set was used to train the teacher beforehand) without further loss in generalization compared to
the baseline where the student network (architecture) was trained on all training data available. Based
on these results, Hinton et al. (2015) concluded that the further information that is encoded in the soft
targets must be crucial in learning and generalizing.

Therefore, we hypothesize that by using soft targets (and thus if SIR is applied), the neural network
can still achieve good results in terms of generalization with less data, making the training more data
efficient. This feature is very much in demand in practical applications, either because labeling data is
associated with very high costs or simply because there is not much (input) data available for a problem,
e.g., because it is not easy to obtain.

Again, one should be aware of the fact that the stated arguments consider that the soft targets are
of a certain quality (e.g., if they come from a pre-trained teacher network) but as argued in Hyp. II
(Compensate for erroneous data labels), the diffuse predictions that are produced in the early beginning
of training when the model is underfitted should not bias the training much (the data loss prevails in the
gradient) and basic similarities should have been discovered quickly (as argued in Hyp. III; Learn about
a class through information about other classes).

3.2 Further variants of Self-Imitation Regularization (SIR)

In this section, further variants besides the ones that are already described above in the introduction of
the method of SIR (e.g., target gradients or asymmetric vs. symmetric SIR), are proposed. Potentially,
these can bring advantages, which, however, did not become considerably apparent in preliminary stud-
ies, which is why these are not regarded as direct components of SIR and are not extensively investigated
in the context of this thesis.

3.2.1 Penalty formulation

The loss formulation of SIR, as stated in Eq. 3.3, can be construed as a multi-objective loss constructed
by the weighted average between the imitation loss (Eq. 3.1) and the data loss (Eq. 3.2) where the
imitation rate ⇡ controls the weighting.
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On the other hand, one could consider reformulating this loss so that the imitation loss penalizes
the data loss. In the following, this concept is referred to as penalizing SIR and formally results in the
alternative loss formulation

L
pSIR(Z, Y ;✓ ) =

1
M

MX

m=1

l
pSIR(z(m), y (m);✓ )

=
1
M

MX

m=1

�
H(y (m),�(z(m))) + ⇡p ·H(“�(z(m)), e�(z(m)))

�
(3.4)

where ⇡p � 0 controls the imitation strength.

This choice can be motivated in three ways: first, many regularization methods incorporated in the loss
function are applied as a penalty (e.g., the norm-penalty regularization methods shown in Sec. 2.7.1).
Second, this is more neatly related to solving a constrained optimization problem via the Lagrangian with
the objective to minimize the data loss subject to the constraint that the imitation loss should be low (i.e.,
equal to zero). The obtained Lagrangian multiplier is the imitation strength ⇡p hyperparameter, defining
the hardness of the constraint (Boyd and Vandenberghe, 2015, ch. 5.1.4, p. 218). Third, this could be
preferable for implementation as it only requires the addition of the imitation loss to the data loss and
does not require the data loss to be modified (i.e., scaled).

In the following, the equivalence up to a scaling factor, i.e., 1/(1�⇡), between the penalizing SIR loss
(Eq. 3.4) and the standard (multi-objective) SIR loss (Eq. 3.3) can be easily shown

l
SIR = (1�⇡) · ldata +⇡ · l imit

1
1�⇡ · l

SIR

| {z }
= lpSIR

= l
data +

⇡

1�⇡| {z }
=⇡p

·l imit (3.5)

where imitation loss and data loss are abbreviated with l
imit and l

data, respectively, for the sake of clarity.

Furthermore, preliminary experiments comparing the application of SIR in the standard (i.e., multi-
objective) loss formulation to the penalizing SIR loss formulation have shown that there is no apparent
difference so both formulations can be used interchangeably. Therefore, in the following, the formula
for conversion between the imitation strength ⇡p and the imitation rate ⇡ is presented that keeps the
ratio between the influences of the imitation loss and the data loss. This guarantees that the intention
and aim in setting the hyperparameter for one loss variant are maintained when switching between the
loss formulations. As already derived in Eq. 3.5, given ⇡, the equivalent ⇡p is defined by ⇡p = ⇡/(1�⇡)
whereas ⇡= ⇡p/(1+⇡p) if ⇡p is given since

⇡p =
⇡

(1�⇡)
⇡p �⇡ ·⇡p = ⇡

⇡p = ⇡+⇡ ·⇡p

⇡p = ⇡(1+⇡p)
⇡p

1+⇡p

= ⇡
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applies.
It is left to be said that due to the simple addition of the imitation loss penalty, the penalizing SIR

formulation increases the magnitudes of the gradients over the ones of the gradients that are induced by
the data loss alone (i.e., without the appliance of SIR at all) or even over the ones of the multi-objective
SIR loss formulation. The increase factor of the gradients of the loss is exactly 1/(1�⇡) if the same ratio
between the imitation and data loss is kept as shown in Eq. 3.5. The standard (multi-objective) SIR loss
formulation eliminates or at least keeps this difference small since the two loss functions are averaged,
i.e., both losses are scaled down and so the gradients by ⇡ and (1�⇡), respectively. This limitation of
the gradients’ magnitudes can be beneficial in practice by, e.g., simplifying the tuning of the learning
rate ↵ for the gradient descent optimization (see Sec. 2.2.4). This is because ↵ has to be chosen smaller
if the gradients can adopt more differently large magnitudes between while training in order to prevent
too large parameter update steps that could otherwise destabilize training. This is the reason why the
multi-objective loss formulation is applied in the conducted experiments and unexceptionally considered
in the rest of the thesis.

3.2.2 Target network

In general, the training samples that are used for learning through the loss computation based on the
data targets are assumed to be i.i.d. (as mentioned in Sec. 2.1.4). However, from the perspective of the
imitation loss in SIR (Eq. 3.1), the imitation targets by are obviously not i.i.d at all. The main reason for
this is that the imitation targets change over time (while learning) as the neural network’s parameters ✓
change since the imitation targets depend on the neural network (i.e., on its parameters ✓ ). The violation
of the i.i.d. assumption could entail serious consequences with regard to training instability, such as the
parameters ✓ in the neural network diverging, and the neural network will not learn anything.

The problem that targets, which are involved in a loss computation, depending on the neural network’s
parameters ✓ , is also commonly present in the field of RL, e.g., in the widely applied approach of Q-
learning, which is explained in Sec. 2.1.1. The core idea behind the Deep Q-Networks (DQN) algorithm
(Mnih et al., 2013) is to put a (deep convolutional) neural network into use to approximate the Q-
function, which is referred to as the Q-network, via Q-learning. Consequently, the loss computation
involves the temporal difference error, where the targets depend on the neural network’s parameters
✓ . Since this is deemed unstable, an improvement of the DQN algorithm was subsequently proposed in
Mnih et al. (2015): the concept of a target network. Here, the targets for the Q-network training loss
are no longer obtained using the current parameters ✓ . Instead, the parameters, denoted as ✓�, are
only updated with the Q-network parameters every C iterations and held fixed in between resulting in
the so-called target network (i.e., containing the parameters ✓�). This stabilizes the training since the
targets, the Q-function estimate is fitted on, stay fixed for some time.

This idea could be taken up for SIR by periodically copying (e.g., after C epochs) the current parame-
ters ✓ and held them fixed to form a target network (with the parameters ✓�) that produces the imitation
targets by = “�(z�) where z� is the pre-activation vector predicted by the target network whereas every-
thing remains the same and, thus, using the neural network with the current parameters ✓ for the
predictions e�(z) in the imitation loss. By doing so, the i.i.d. assumption holds over the period the tar-
get network parameters ✓� are held fixed since the target network produces constant targets per input
sample during this time. This would engage a more stable training as the neural network can approach
the imitation targets without them moving away. Furthermore, it is worthwhile mentioning that this
naturally resolves the problem of symmetric SIR without target gradients where, in contrast to KD, only
zero gradients are obtained because the targets and predictions in the imitation loss differ as they are
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now produced from differently parameterized neural networks; except in the few iterations where the
copy ✓� just has been renewed with ✓ .

According to preliminary studies, the appliance of the target network does not bring any considerable
or obvious advantages in terms of improved stability or generalization. Moreover, according to the
experimental results, standard SIR (without a target network) already turns out to be very stable, and
beyond that, it is even able to stabilize the training of a neural network that is not able to learn anything
from the training data without regularization or even with some standard regularization methods applied
(for more details on this, refer to Sec. 5.5). On the other hand, without incorporating the target network,
the hyperparameter C denoting the target network parameter update period is not involved, which
simplifies the hyperparameter tuning. Overall, for these reasons, this SIR variant is not further examined
in this thesis and is left for future work.

3.3 Preliminary studies in Knowledge Distillation (KD)

The results of preliminary studies on the method of KD are briefly presented in this section. These were
conducted to validate the major modifications to KD that are used in order to make SIR functioning
and to get a sense in advance whether these might be meaningful in SIR or already lead to the basic KD
principle collapse. If these modifications do not hold for KD where high-quality teacher/imitation targets
are available, then one can imagine that the chance of success in SIR is even lower. The two approaches
that are investigated here are the chained softmax function as a replacement for the temperature softmax
function and the asymmetric (softmax) imitation compared to the symmetric imitation as per the KD
method.

For the KD experiments, a pre-trained teacher neural network with a ResNet architecture consisting
of 18 layers (see Sec. 4.3 for details on this architecture) achieving a test accuracy of 92.10% was
used. The student neural network has a standard convolutional neural network architecture with three
convolutional layers (with a 3x3 convolution kernel), each connected with max pooling, followed by
two fully-connected layers. The ReLU activation function is applied after each layer except for the output
layer. If the student neural network is learned without KD, it achieves a test accuracy of 86.17%.

Note that the implementation of Li (2018), which is provided on GitHub1, was used for the execution
of the preliminary experiments the KD. For this reason, the results obtained in the preliminary experi-
ments are not comparable to the results of the main experiments in this thesis, which are explained in
Sec. 4 and discussed in Sec. 5. Furthermore, in this implementation, the data (i.e., the CIFAR-10 data
set (Krizhevsky, 2009)) is heavily pre-processed via normalization and data augmentation (Goodfellow
et al., 2016, ch. 7.4; Miko�ajczyk and Grochowski, 2018) by randomly cropping and horizontal flipping
the image data.

3.3.1 Comparison: temperature and the chained softmax function

First of all, the experimental results have shown that KD with the chained softmax function as replace-
ment for the temperature softmax function works and reaches similar performance (in terms of test
accuracy).

To examine the effects of the different hyperparameter settings in more detail, Fig. 3.3 visualizes the
achieved test accuracy scores in heat maps for both the temperature softmax function (Fig. 3.3a) and the
chained softmax function (Fig. 3.3b). Through this visualization, it becomes strikingly apparent that the

1 https://github.com/peterliht/knowledge-distillation-pytorch (April 15th, 2019); Many thanks for sharing.
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(a) Temperature softmax function (b) Chained softmax function

Figure 3.3.: Heatmaps showing the test accuracy scores achieved with di�erent hyperparameter settings
regarding the knowledge distillation method (i.e., imitation rate ⇡ as well as ⌧ and ⇣ for the
temperature and chained softmax function, respectively). The results are presented for (a)
the temperature softmax function and (b) the chained softmax function.

chained softmax function is less sensitive to the hyperparameter choice than the temperature softmax
function is. This applies for both scenarios: varying the softmax function hyperparameter ⌧ respectively
⇣ while leaving the imitation rate ⇡ fixed as well as varying the imitation rate ⇡ while leaving the
softmax function hyperparameter ⌧ respectively ⇣ fixed. Furthermore, the variance induced by the choice
of hyperparameters is much higher in the temperature softmax function case, and no heuristics exist
according to which the ⌧ can be set. Moreover, the wrong choice of hyperparameters in the temperature
softmax function has drastic consequences and destabilizes the training almost completely.

For this reason, in nearly all experiments conducted in the context of this thesis in order to investigate
the method of SIR, the 2-chain softmax function is used as a replacement for the temperature soft-
max function (whenever a softened softmax distribution is desired). Although the maximum achieved
test accuracy scores in the preliminary KD experiments are (slightly) higher with the temperature soft-
max function (but be aware that comparably more temperature softmax experiments were conducted).
Nevertheless, using the 2-chain softmax function eliminates the need to tune the temperature hyper-
parameter ⌧ at all, which simplifies the investigation and hyperparameter tuning much. This makes it
possible to focus on the imitation rate ⇡ without encountering the problem that the result correlates
much with the softmax function hyperparameter choice.

3.3.2 Comparison: Symmetric and asymmetric imitation

The results regarding preliminary experiments comparing the symmetric imitation and two different
asymmetric imitation settings (where once the student’s prediction is softened and once the teacher’s
prediction) in KD are aggregated in Table 3.1. These show that asymmetric imitation does not interfere
with KD. Much rather the chained softmax function considerably improved over the symmetric imitation
when asymmetric imitation is applied so that the teacher’s prediction (i.e., the imitation targets) are
softened. Here the gap to the maximum achieved test accuracy with the temperature softmax function
is almost nullified. Overall, the result that asymmetric imitation where the student’s prediction is only
softened and the imitation target is not is ineffective was expected since the softening of the imitation
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Symmetric Asymmetric, soft student Asymmetric, soft teacher

Max. Min. Max. Min. Max. Min.
Temperature softmax 87.39 11.76 87.17 13.02 87.22 11.72
Chained softmax 86.61 83.26 86.58 62.29 87.21 56.46

Table 3.1.: The results from KD experiments using either symmetric, asymmetric with softened student
distributions or asymmetric with softened teacher distributions. Further, either a temperature
or a chained softmax function was used to produce the softened distributions. Both, the
minimum and maximum test accuracy that were achieved over several experiments within an
experimental configuration are presented.

targets should contribute to the dark knowledge becoming revealed. Hence, asymmetric imitation is
used for SIR only in a sense that the imitation targets are softened more than the imitation predictions.

Note that these experimental results demonstrate again that the chained softmax function is more
stable than the temperature softmax function comparing the minimum achieved test accuracy scores.
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4 Experiments

4.1 Experimental set-ups

In order to thoroughly investigate the method of SIR and to point out specific properties (especially
regarding the formulated hypotheses in Sec. 3.1), different types of experiments were conducted, and
their set-ups will be outlined in the following. The results are presented, discussed and analyzed in
Sec. 5. Generally, the experiments do not aim to achieve the highest performance possible, e.g., not
trying to achieve a new state-of-the-art performance, and therefore, the hyperparameters have not been
tuned extensively. Rather, they were kept the same between the experiments so that the results are
comparable and observed effects can be attributed to isolated modifications, such as the use of SIR. In
detail: all neural networks were trained over 100 epochs, with mini-batch size M = 64 and using the
Adam optimizer with the hyperparameters as suggested by Kingma and Ba (2014), namely with learning
rate ↵ = 0.001, �1 = 0.9, �2 = 0.999 and ✏ = 10�8. Furthermore, the random seeds were set fixed
for all experiments to ensure that the (random) neural network initialization and the ordering in which
the training samples are drawn are the same over all experiments. The neural networks are initialized
according to the Xavier initialization (Glorot and Bengio, 2011).

4.1.1 Noisy data labels

Directly related to Hyp. II (Compensate for erroneous data labels), the ability to correct erroneous
data labels and the robustness against overfitting on such labels are being examined in this type of
experiments.

For this purpose, noisy data labels are used for learning, which are obtained by randomly selecting
and assigning another class to a random portion of the training data labels. Formally, this is expressed
as label noise on a certain portion of data. For instance, applying label noise on 20% of the training data
yields that the label of every fifth training sample is incorrect (on average). Obviously, the test data labels
remain untouched to measure the final (generalization) performance and, thus, to infer the robustness
against overfitting on the noisy labels.

Note that this artificial data label noise cannot reliably simulate all types of erroneous data labels that
might occur in practice since this noise is (uniformly) distributed over all classes. Systematical or biased
mistakes as they might occur in manual labeling if some classes are more difficult to distinguish than
others, for example, cannot be captured by this approach. On the other hand, a lot of label noise is
used (up to 50% in some experiments to make learning particularly difficult), and it is considered rather
unlikely to occur in practice that such a high false rate is present in the data labels.

4.1.2 Learning on a small training data subset

For some experiments, the number of training data samples is reduced (by preserving the class distribu-
tion of the original training data set). These experiments are intended to serve as evidence regarding
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Hyp. V (Data efficiency). Note that other types of experiments are frequently combined with this config-
uration since learning on a very small amount of training data increases the susceptibility to overfitting.

4.1.3 Reduced training samples of a class

One of the main motivations about making the dark knowledge explicitly available in the loss formu-
lation, and probably the primary idea in KD, is that information about the other classes in terms of
similarities and correlations are revealed.

In order to study how well SIR enables to learn about a class through the similarities and correlations
to other classes as hypothesized in Hyp. III (Learn about a class through information about other classes),
the training samples of a particular class are reduced in some experiments. Therefore, it is made more
challenging for the neural network to acquire a general concept for this class and, simultaneously, the
risk of overfitting on these few training samples for this class increases. This experimental setting is based
on Hinton et al. (2015) where they completely removed all samples of a particular class when training
the student neural network with KD while the teacher neural network was trained on the full data set
beforehand. They were able to achieve a remarkable high test performance with the student neural
network for the class that was not available in the training data which shows the immense support of
the soft teacher targets. We aim to reproduce the learning through the samples from other classes when
applying SIR.

4.1.4 Standard regularization methods

Apart from applying SIR for regularization purposes in the experiments only, additional experiments
were conducted applying standard regularization techniques (as presented in Sec. 2.7) to the neural
networks. These results enable us to tell whether effects observed with SIR are unique to this method or
can also be achieved by other (standard) regularizers.

Furthermore, experiments incorporating combinations of SIR and standard regularization methods
were carried out to scrutinize the complementarity of SIR and standard regularization techniques (Hyp.
IV; Complementary to standard regularization methods). Since the number of possible combinations of
various regularizers grows (exponentially) with the number of regularizers involved in a single combina-
tion, we have limited the experiments to complement SIR with a single additional standard regularizer.
Otherwise, the possibility of performing an ablation study (e.g., as done by Hessel et al. (2017)) would
have existed where all regularization techniques (including SIR) are used together and the result is com-
pared to the results obtained from the combinations where a single regularization technique is dropped.
This reveals which regularizer had the strongest impact on the entire combination. However, this ex-
acerbates the problem of finding proper hyperparameters for the regularizers and would require a lot
of computing time and effort. This is also the reason why the elastic net regularization was not used
since the tuning of the two hyperparameters controlling the L

1-norm and L
2-norm penalty is particularly

sensitive and often ends up with only one of the two penalties coming into effect.

4.2 Data sets

Since deep learning revolutionized computer vision in recent years, (deep convolutional) neural net-
works are used over various practical applications within this field today and continue to be heavily
researched (e.g., for autonomous driving). Moreover, many visual data sets have been established as
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Data set Classes Train samples Balanced Test samples Res. No. channels
MNIST 10 60000 – (almost) 10000 28x28 1
CIFAR-10 10 50000 ÿ 10000 32x32 3
CIFAR-100 100 50000 ÿ 10000 32x32 3
EMNIST letters 26 124800 ÿ 20800 28x28 1
EMNIST digits 10 240000 ÿ 40000 28x28 1
EMNIST combined 47 112800 ÿ 18800 28x28 1
Fashion-MNIST 10 60000 ÿ 10000 28x28 1
KMNIST 10 60000 ÿ 10000 28x28 1
SVHN 10 73257 – 26032 32x32 3

Table 4.1.: Information about the data sets where the resolution (Res.) is given in pixels, Balanced indi-
cates whether the training samples are equally distributed over the classes, and No. channels
refers to the number of values describing one pixel: 1! grayscale or 3! colored (RGB).

benchmark data sets to evaluate new developments around neural networks. Therefore, the experi-
ments in this thesis were focused on classification problems on visual data.

Facts about the data sets used, such as the number of classes, the amount of data samples and prop-
erties of the images, are summarized in Table 4.1. Note that the data sets are used as they are in the
experiments without further preprocessing such as PCA whitening or ZCA whitening (Krizhevsky, 2009),
but are padded to a resolution of 32x32 pixels if necessary.

MNIST:
The MNIST data set (LeCun, 1998), probably the most famous (visual) data set in ML, is a collection of

28x28 pixels grayscale images showing handwritten digits. Consequently, this data set contains n = 10
classes representing the 10 Arabic numerals. Some train samples are shown in Fig. 4.1d.

CIFAR-10:
The CIFAR-10 data set (Krizhevsky, 2009) is a labeled subset of the 80 million tiny images data set

(Torralba et al., 2008) with n = 10 classes C = {plane, car, bird, cat, deer, dog, frog, horse, ship, truck}. The
images are down-scaled (32x32 pixels) colored photos showing real-world objects and animals, e.g., as
presented in Fig. 4.1a.

CIFAR-100:
The CIFAR-100 data set (Krizhevsky, 2009) is equal to the CIFAR-10 data set in terms of resolution and

colored real-world photos. The images are also taken from the 80 million tiny images data set (Torralba
et al., 2008) with difference that n = 100 classes are present. The class labels are C = {apple, aquarium
fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, boy, bridge, bus, butterfly, camel, can, castle,
caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach, couch, crab, crocodile, cup, dinosaur, dolphin,
elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard, lamp, lawn mower, leopard, lion,
lizard, lobster, man, maple tree, motorcycle, mountain, mouse, mushroom, oak tree, orange, orchid, otter,
palm tree, pear, pickup truck, pine tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road,
rocket, rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snake, spider, squirrel, streetcar, sunflower,
sweet pepper, table, tank, telephone, television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale,
willow tree, wolf, woman, worm} and a (training data set) example image for each class is depicted in
Fig. 4.1b.
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The classes are further categorized into the 20 super classes aquatic mammals, fish, flowers, food con-
tainers, fruit and vegetables, household electrical devices, household furniture, insects, large carnivores, large
man-made outdoor things, large natural outdoor scenes, large omnivores and herbivores, medium mammals,
non-insect invertebrates, people, reptiles, small mammals, trees, and two types of vehicles (vehicles 1 and
vehicles 2). For instance, this is useful to get more information about relationships (e.g., similarities)
between the classes. However, the 100 (sub-) classes were used for the neural network training in the
experiments carried out in the context of this thesis.

EMNIST:
EMNIST is an extension of MNIST to handwritten letters (Cohen et al., 2017) and the images are

therefore of the same resolution (and also grayscale). Some examples of handwritten letters are printed
in Fig. 4.1g and it becomes apparent that handwritten letters in both lower case and upper case variants
are present. EMNIST does not refer to a single data set but rather to a collection of MNIST-like (with
handwritten letters in addition) data sets. The EMNIST data sets that were used in the experiments are
the following:

• EMNIST letters: Contains n= 26 classes for the handwritten letters (case insensitive).

• EMNIST digits: Only handwritten digits as in MNIST but more training and test samples (by a
factor of two and four, respectively).

• EMNIST combined: Contains both handwritten digits and letters. In principle, it is case sensitive,
but letters that have the same appearance regardless of the case are merged into one class. This is
the case for the letters C, I, J, K, L, M, O, P, S, U, V, W, X, Y and Z, and results in a total number of
n= 47 classes.

Fashion-MNIST:
The Fashion-MNIST dataset (Xiao et al., 2017) contains 28x28 grayscale images of fashion products

from n = 10 different categories/classes as shown in Fig. 4.1e. The data set was intentionally designed
to serve as a replacement for the classical MNIST data set to test implementations of machine learning
algorithms that already support the MNIST data set (i.e., for any ML frameworks that are compatible
with MNIST) but it is considered a more challenging task due to the much more diverse images of fashion
products. The classes are C = {t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle
boot}.

KMNIST
The KMNIST (abbreviation of Kuzushiji-MNIST) data set (Clanuwat et al., 2018) is a subset of the

Kuzushiji data set. This data set is a visual data set with ancient Japanese characters (written in cursive
Kuzushiji style; examples are depicted in Fig. 4.1f) that are used in classical Japanese literature (for over
1,000 years and printed in books until 150 years ago). However, most Japanese natives today cannot
read it. The Kuzushiji character images are labeled with the modern Hiragana counterpart. The KMNIST
data set serves as a replacement for MNIST and, therefore, comprises 28x28 grayscale images of n = 10
different classes (i.e., character types). In contrast, the full Kuzushiji data set contains 3,999 character
types.
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Architecture No. parameters Depth Conv. kernel Max pooling region Activation
LeNet5 62 006 2+ 3= 5 5x5 2x2 ReLU
ConvNet 10 071 562 3+ 3= 6 5x5 3x3 ReLU
ResNet-8 78 042 7+ 1= 8 3x3 No ReLU
ResNet-20 272 474 19+ 1= 20 3x3 No ReLU
ResNet-32 466 906 31+ 1= 32 3x3 No ReLU
ResNet-56 855 770 55+ 1= 56 3x3 No ReLU
ResNet-110 1 730 714 119+ 1= 110 3x3 No ReLU

Table 4.2.: Information about the neural network architectures where Depth shows the number of con-
volutional layers, the number of fully-connected layers and the total without counting the
input layer (No. conv. + No. fully-connected = No. total). Note that the actual number of pa-
rameters varies depending on the number of classes (n = 10 classes are assumed here). Note
that the ResNet architectures also incorporate convolutional layers with a 1x1 kernel.

SVHN:
The SVHN (Street View House Numbers) data set (Goodfellow et al., 2014) provides a digit classifi-

cation problem (n = 10 classes), but in comparison to the optical character recognition data sets from
above, the images are real-world photographs. Namely, house numbers from Google’s Street View im-
agery as exemplarily printed in Fig. 4.1c. Two more facts, making the SVHN data set different from
the other character recognition data sets presented before is that the images are colored (as images in
CIFAR-10/100) and that the digits are not narrowly cropped so that it happens that further digits can
(partly) appear at the sides of the image, if it is a multi-digit house number, from which the photo was
taken.

4.3 Neural network architectures

As the focus is on visual data and image classification in the experiments within the scope of this the-
sis, convolutional neural networks are put to use. All facts and information about the neural network
architectures are aggregated in Table 4.2.

The architectures utilized the most are referred to as LeNet5 and ConvNet in the course of the thesis.
The LeNet5 architecture follows exactly the definition in LeCun et al. (1998) and is a convolutional
neural network of low capacity (i.e., a low number of parameters with 62 006). When dropout is used,
only the activations of the last convolutional layer as well as the first fully-connected layer are affected,
and the dropping rate is commonly set to p = 0.5 (but it is specified in the discussion of the experimental
results).

In sharp contrast to this, the ConvNet architecture is constructed by Srivastava et al. (2014) with
the intention of obtaining a high capacity model that is more susceptible to overfitting and therefore
relies on effective regularization methods. When dropout is applied, the neuron dropping rate p is set
individually per layer. Specifically, rates of 0.1, 0.25, 0.25, 0.5, 0.5 and 0.5 are used going from the input
to convolutional to fully-connected layers except the output layer/activations (Srivastava et al., 2014).

The ResNet architectures (He et al., 2015) are especially capable of learning while being very deep.
This is achieved by introducing so-called skip connections, whereby the activations of a layer can skip
some layers unchanged and then be made available for further processing. This allows the neural net-
work to more flexibly determine how much depth is really needed as layers that are not necessary can
be simply skipped. Further peculiarities of this architecture are that a modification of the Xavier initial-
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(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

(d) MNIST (e) Fashion-MNIST (f) KMNIST

(g) EMNIST letters

Figure 4.1.: Samples taken from the (training) data sets (a) CIFAR-10, (b) CIFAR-100, (c) SVHN, (d)MNIST,
(e) Fashion-MNIST, (f) KMNIST and (g) EMNIST letters. Each column shows ten examples of a
single class except for the CIFAR-100 data set where only one sample is presented for each of
the 100 classes.
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ization, batch normalization (Ioffe and Szegedy, 2015) and average pooling before the (fully-connected)
output layer are applied. Furthermore, the basic block variant is used – please refer to the original paper
(He et al., 2015) for more detailed information on this. The ResNet architecture is used in the depths
of 8, 20, 32, 56 and 110 layers to enable investigations of the effects in the neural network with re-
spect to the depth (e.g., the results are presented in Sec. 5.6). Note that no dropout is used in the
ResNet architecture in the experiments since He et al. (2015) did not use it nor suggested to what ex-
tent dropout could be applied in such a deep and thin neural network architecture. Furthermore, it is
generally discouraged to combine batch normalization with dropout (Li et al., 2018).

Apart from the presented architectures that are intensively used in the experiments and are thor-
oughly investigated, two further architectures were put to use in preliminary experiments and showed
similar results. Namely, the AllConvNetC exactly as defined in Springenberg et al. (2014), which is an
architecture where only convolutional layers but neither pooling nor fully-connected layers are used, as
well as the MaxoutConvNet (Goodfellow et al., 2013) where the neural network contains maxout units
(explained in Sec. 2.4.2) instead of rectified linear units (ReLUs).

4.4 Evaluation methodologies

4.4.1 Metrics

Since the performance of a model can relate to a variety of aspects, there are also several metrics that
can be used to measure its performance in terms of different aspects. The metrics used to evaluate the
experimental results are presented in this section.

Note that for each conducted experiment, the performance scores, models and outputs were stored for
both the best performing model according to the test accuracy throughout training and the final model
at the end of training (after 100 epochs). The accuracy of the (best) interim model is briefly referred to
as the best accuracy in the discussion of the experimental results.

Accuracy:

The accuracy is a very simple but powerful metric to measure a model’s performance since it expresses
the relative number of correctly predicted samples of a data set. This metric ranges between zero and
one where higher values indicate a more accurate model, and can also be understood as a percentage.
A model that does not make any mistakes has an accuracy score of 100% while a randomly acting one
achieves an accuracy score of 1/n on average in the case of evaluating on a data set with n balanced
classes. Formally, the accuracy of a model f (x ;✓ ) on a given data set D = {(x (d), y

(d))}D
d=1 ✓ (X⇥ Y)

where Y ⇢ N refers to the indices of all n classes C= {c1, c2, . . . , cn} in a classification problem, is defined
as follows

1
D

DX

d=1

I
y(d), f (x (d);✓ )

where Ii, j are the elements of the n⇥ n identity matrix I or, alternatively, this can be seen as evaluating
the indicator function indicating whether i and j are equal (i.e., evaluates to 1) or not (i.e., evaluates to
0).
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Precision:
The precision measures the performance on a particular class. It is defined by the percentage share

of the instances that were correctly classified with this class. Therefore, it ranges from zero to one and
favors precise models when predicting the considered class, but in return, they might rather predict this
class less often.

The precision is formally defined as
t p

tp+ f p

where t p counts the true positives and f p the false positives (regarding the investigated class).

Recall:
The precision measures the performance on a particular class and can be seen as a counterpart to the

precision. It is defined by the percentage share of correctly classified instances from this class. It ranges
from zero to one, and favors models that predict the considered class for as many instances that are from
this class as possible, but does not devalue models predicting this class for instances that are not from
this class.

The recall is formally defined as
t p

tp+ f n

where t p counts the true positives and f n the false negatives (regarding the investigated class).

F1 score:
The F1 score is the harmonic mean of precision and recall (Chinchor, 1992; Sasaki, 2007) and is there-

fore intended for use if both precision and recall should be maximized (equally weighted). This is often
appreciated since heavily optimizing a model only according to one of these evaluation criteria might
result in undesired and absurd models. For example, a model classifying only one instance correctly in
the investigated class results in an optimal precision but a very low recall whereas always predicting the
investigated class entails an optimal recall but a low precision.

The F1 score is formally defined as

2 · precision · recall
precision + recall

.

Position error:
The position error (Hüllermeier and Fürnkranz, 2005) is a metric that is used in multi-label classifica-

tion (outlined in Sec. 2.1.1) but can be adapted to measure the quality of a ranking of classes generated
by the softmax prediction probabilities or the pre-activation values of a neural network. The position
error measures the deviation of the predicted target label’s position from the top-rank. The higher its
position (i.e., the lower is the deviation from the top-rank) the better (i.e., the lower the position error).
In this case, the model considers this label as more important (i.e., more likely that this would be the
correct prediction) than if its ranking position is low. The position error is closely related to the conven-
tional (classification) error (i.e., 1� accuracy) but for a misclassification, the position of the target label
in the predicted ranking is considered. This provides a finer criterion for distinguishing the prediction
quality of two models, even if they achieve the same accuracy on a data set.
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Given that the target class c
0 got assigned the ranking position rank(c0) 2 {1,2, . . . , n} where n is the

number of classes/labels and the top-rank is n where the target is desired to be ranked at. Formally, the
normalized position error (Hüllermeier and Fürnkranz, 2005) is defined as

(n� rank(c0))
n� 1

where the error values range between zero and one.

Note that a model that predicts random rankings achieves an average (normalized) ranking error of
50% instead of 0%. Since in order to achieve a ranking error of zero, the model must always rank the
target class intentionally on the lowest position.

Confusion matrix:

The confusion matrix is a detailed representation of the prediction performance from which several
metrics, such as the accuracy, precision or recall, can be derived and calculated. It is a matrix that shows
all cases of classification as well as misclassification of a model evaluated on a given data set. The y-axis
refers to the (data) target classes while the x-axis refers to the predicted classes. Now, the i, jth element
(ith row and jth column) of this matrix carries the number of times the model predicted the class cj (the
class with the class index j) when the target class of these data instances was actually ci (the class with
the class index i). Consequently, the number of correct classifications can be found along the diagonal
of the confusion matrix since i = j applies for the diagonal elements and all misclassifications in the
rest of the elements in the confusion matrix (i 6= j). Therefore, the higher the numbers on the diagonal
and the lower the remaining numbers in the confusion matrix, the better (i.e., more accurate) the model
predicts. This representation is richer than the single accuracy score since it provides insights in specific
issues like indicating particular classes the model frequently mix up.

As an example (visualization), please refer to Fig. 5.10. Here, a poorly functioning neural network
that always predicts a single class can be indicated by its confusion matrix in Fig. 5.10a, which can be
concluded since all elements are zero except the ones of a single column. The confusion matrix of a far
better behaving model is shown in Fig. 5.10b as the numbers along the diagonal clearly stands out from
the others.

Entropy:

As Hinton et al. (2015) suggest, soft targets that have a high entropy can be seen as more informative
than hard targets. Furthermore, this is the original information theoretic interpretation of the entropy
describing how much information is carried within the given distribution. Therefore, the entropy mea-
surement is used to determine the informational content of the softmax predictions, as well as the soft
targets used for the self-imitation, and make it comparable between neural networks that were learned
differently. However, one has to be cautious because the maximum entropy value implies a uniform
distribution, and it is controversial to speak of high informational content with such a soft target.

As the entropy depends on the number of classes n, the normalized entropy of a predicted probability
distribution p (i.e., expressed as a vector p of probabilities) is defined so that it ranges from zero to one
as follows

H(p)
H((1/n, 1/n, . . . , 1/n| {z }

n times

)>)
=

1
log(1/n)

X

pi

pi log(pi)
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where the highest entropy that is achieved with a uniform distribution is mapped/normalized to one.

Receiver operating characteristic (ROC) analysis:
The ROC space is the space that is spanned over the true positive rate on the y-axis and false posi-

tive rate on the x-axis. This enables comparing different classifiers within the ROC space according to
different cost models, which specify some desired trade-off between the true positive and false positive
rate. The upper left corner, i.e., point (0,1), represents a perfect classifier since the true positive rate is
100% while the false positive rate is 0% (Fawcett, 2004). Per definition, this analysis can only be applied
to binary classification. However, one can consider a multi-class classification problem as a binary one
when analyzing the performance regarding a particular class by referring to all samples in this class as
positive and to all the other samples as negative instances (Provost and Domingos, 2003). Two possible
application scenarios for considering the ROC curve are presented in the following.

The performance of a ranker (i.e., an ML model that produces a score for each instance) can be taken
as a classifier by defining a threshold score above which all instances are classified as positive. This
ends up in an individual classifier for each possible threshold, and the corresponding ROC curve of these
classifiers can be used to determine an optimal threshold according to a cost model or further the quality
of the instance ranking can be compared to other rankers. For instance, in areas where the ROC curve of
ranker A is above the one of ranker B, the ranking quality of A regarding the cost model corresponding
to this area is superior over the quality of B. Consequently, ROC analysis can be used to determine the
ability in separating instances of a particular class form the others, e.g., by the associated pre-activation
value in a neural network (alternatively, the probability of the output distribution can be used as well).
Here, the considered class represents the positive and all other classes the negative as ROC analysis does
only apply for binary classification. This analysis has the advantage of being independent of the other
classes in a multi-class classification problem if they dominate the pre-activation of the investigated class
too strongly so that it is only rarely predicted, which can occur, e.g., by learning on imbalanced training
data (Hinton et al., 2015). This is because the model captures the prior associated with the imbalanced
class distribution (Buda et al., 2018).

As presented as a special case of preference learning in Sec. 2.1.1, rankings of labels can be used for
multi-label classification. Hence, the ROC curve can be used to examine the quality of the ranking of
the labels produced for a given input instance. Therefore, the correct labels (according to the labels that
are assigned to the input instance in the data set) are treated as positives and the remaining ones as
negatives where a good ranking ranks all positives precede negatives. The ROC analysis can be used to
find an appropriate threshold above which the labels should be predicted.

ROC Area under curve (AUC):
Considering the ROC analysis regarding the class separation quality of a ranker as described above,

the ROC Area under curve (AUC) score reduces the ROC performance to a single score, which can be used
to compare different rankers. Since the ROC AUC is a portion of the area of the unit square, its value
ranges between zero and one and has further the statistical property that the ROC AUC is the probability
that a randomly chosen positive instance is ranked higher than a randomly chosen negative instance
(Fawcett, 2004).

Especially when a (convolutional) neural network is learned on imbalanced training data, Buda et al.
(2018) suggested using the ROC AUC to evaluate the discriminating power for particular classes inde-
pendently of the magnitudes of the pre-activation scores associated with the other classes.

For the case of solving multi-label classification with predicting label rankings, the ROC AUC can be
used to evaluate the quality of the ranking and the suitability to split the set of labels in two subsets
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either of the labels that should be predicted or these that should not (which is represented by a ROC
AUC score of 1). Note that maximizing the ROC AUC is equivalent to minimizing the frequently used
rank loss (Kotlowski et al., 2011; Rubin et al., 2011).

4.4.2 Statistical tests

If one wants to draw conclusions about the performance of an ML algorithm A compared to another
algorithm B that are as general as possible (e.g., specifically here that SIR improves the test accuracy
over a baseline), it is indispensable to test the performance of the algorithms on multiple data sets in
order not to show the superiority on only one task a single data set represents. Webb (2000) warns that it
is debatable whether comparing the mean performance scores across data sets is meaningful because the
performance scores in different data sets cannot simply be regarded as directly comparable. For example,
it is hard to tell whether an improvement of 95% to 96% accuracy on some data set is worth more (or
not) than an improvement from 35% to 40% on another data set. Pair-wise comparisons of the achieved
performance scores per data set would provide a tendency as to which of the two algorithms is superior.
However, the question arises whether this tendency is sufficient enough to draw a reliable conclusion, or
whether it is just a product of chance. In other words, it is demanded to keep the probability p that the
performance differences between the algorithms are just a product of chance minimal when concluding.
This is exactly where statistical testing gets involved.

Formally, consider n (test) data sets where the two algorithms are evaluated on to obtain a sequence
of n independent paired performance scores (or also referred to as observations). The null hypothesis
H0 formulates the assumption that the paired observation sequences follow the same underlying distri-
bution. By appliance of the statistical test, the probability p (also called significance value or p-value)
is determined and quantifies how likely it is that H0 is true or, conversely, that H0 is false, and the ob-
servations follow distinct distributions (two-tailed testing), with a probability of 1 � p. If p is low, H0

is rejected since H0 seems very unlikely being true and the alternative hypothesis H1 (stating that the
observations have been drawn from distinct distributions in the two-tailed testing) is accepted. For that
purpose, a significance level ↵ is defined that serves as a threshold to reject H0 if p  ↵. Typical choices
are ↵ = 0.05 or ↵ = 0.01 where the test outcome, i.e., that the distributions are different as formulated
through H1, is commonly concluded to be significant or highly significant, respectively. Most statistical
tests produce an intermediate result, called the test statistic, which can be compared to the critical values
(under a certain level of significance ↵) to show significance (under ↵) for what p  ↵ is guaranteed
without the need of explicitly calculating the p-value. Note that the critical value is also dependent on
the number of observations. Obviously, it is desired to show that the proposed method, SIR, improves
the neural networks being learned on significantly many data sets, but that does not imply that one
would not care nor that it would not be of interest when SIR worsens the result on significantly many
data sets. Therefore, two-tailed significance tests will be considered (instead of one-tailed), which are
able to expose both worsening and improvements under statistical significance.

Loza Mencía (2013) pointed out that it quickly happens to draw wrong conclusions from statistical
tests such as it is only possible to detect the presence but not the absence of statistical significance in
statistical testing. This is because the determined p-value only considers the probability of making a
type 1 error (i.e., the rejection of a true H0). If no significance (under a specified significance level ↵)
is obtained, the type 2 error occurs and refers to the probability that a false H0 is not rejected (i.e.,
accepted). Generally, most tests have a relatively high type 2 error (depending on the power/sensitivity
of the test) because the tests mainly focuses on the p-value (i.e., type 1 error) by design.
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In the following, two statistical tests are presented which suit our needs in terms of assumptions that
these entail, especially as these are non-parametric. Parametric statistical tests assume a particular type
of distribution the observations do obey. Since we cannot (or do not want to) tell that the observations
are distributed in a certain way, e.g., normally distributed observations would be implicitly assumed if
the paired t-test is used, Demöar (2006) suggests the sign test and the Wilcoxon signed-rank test, both
being non-parametric, for pair-wise comparisons of two ML algorithms over multiple data sets.

The only fact that marginally undermines the independence assumption of the observations on mul-
tiple data sets is that each pair of observations was evaluated on the same test set instead of using
cross-validation or similar. However, due to the large size of these test sets any bias/dependence induced
through evaluating with the same test data samples is considered marginal, and independence can still
be assumed. See Table 4.1 for more details on the sizes of the (test) data sets that have been used.

Sign test:
The sign test is simple and popular to test for significance by quantifying over the number of data sets

on which algorithm A performs better/worse than algorithm B. Simply, the sign test counts the signs of
the pair-wise differences between the observations which can intuitively be seen as counting the number
of successes (positive sign), failures (negative sign) and ties (difference is zero) across the data sets.
Note that ties are ignored but reduce the sample size, i.e., number of observations. From a statistical
perspective, the observed differences can be seen as realizations of a Bernoulli distributed random vari-
able X (i.e., the possible outcomes are either zero (no success) or one (success)). The null hypothesis
H0 now formulates that P(X � 0) = 0.5, which yields the intuition that successes and failures do occur
equally often. Consequently, the alternative hypothesis H1 states the opposite so that P(X � 0) 6= 0.5.
The sequence of observations forms a Bernoulli process whose probability of occurrence is described
by a binomial distribution parametrized by the number of observations and a success probability of 0.5
(assuming H0). The significance level ↵ indicates the sum of the (equally large) areas under the mass
function of the binomial distribution on both ends (in the two-tailed test). The sequence of observations
must lie within one of these areas so that H0 could be rejected under this significance level.

The notation of (successes / failures / ties) will be used in the evaluation of the experiments and the
number of successes serves as the test statistic. It is obvious that this test is non-parametric and, overall,
that there are no further assumptions about the actual values of the observed differences are being made.
On the other hand, this leads to the fact that the test is very conservative, and significance can only be
proven with very clear observations.

Wilcoxon signed-rank test:
The Wilcoxon signed-rank test (Wilcoxon, 1950) is like the sign test a non-parametric test but is more

powerful which is reflected in the fact that a type 2 error is less likely and, thereby, H0 can be rejected
with a smaller number of successes (depending on the difference values) and with a smaller number of
observations, which is a handy feature since the generation of observations that require the training of a
neural network is time-consuming and computationally intensive.

The test is attained by incorporating the values of the pair-wise differences: a ranking is formed
according to the absolute difference values in ascending order, two sums, one for the positive differences
and one for the negative differences, are formed from the corresponding ranking position numbers, and
the minimum of the two sums serves as test statistic where H0 can be rejected if this value is lower
than the critical value under the significance level ↵. Further, the p-value can be computed exactly (the
formula is omitted for the sake of brevity) or approximated with a normal distribution, which is very
inaccurate and not recommended, if the sample size is small (smaller than 20). Note that differences
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of zero (ties) are being excluded from the ranking and differences of the same magnitude are usually
assigned the average rank.

However, the above-motivated advantages over the sign test are accompanied by a disadvantage: the
performance score differences are assumed to be commensurable to a certain extent in order to form
the ranking, but this assumption is still weaker than assuming normal distributions like in the paired
t-test, for example. Nevertheless, the sign test is preferred over the Wilcoxon signed-rank test and,
therefore, performed first. When the sign test does already indicate statistical significance, the Wilcoxon
signed-rank test becomes superfluous since the certainty of rejecting H0 with the sign test is as great as a
rejection by the Wilcoxon signed-rank test because the type 1 error is guaranteed to be smaller than the
required significance level ↵ for both (Mittenecker, 1979, ch. 11b, p. 168), but no assumptions have to
be made regarding the comparability of the differences between the observed performance scores.
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5 Experimental results

5.1 Regularization capability

In order to be able to make statements about the regularization capability of SIR as well-founded as
possible, the results were compared across several (visual) data sets. This variety of data sets makes it
reasonable to draw overall conclusions and statements about properties of SIR that would be transferable
to any other (visual) data sets.

In the following, it is verified that the method of SIR is indeed a regularization method (directly
supporting Hyp. I; Regularization) with partially statistical significance according to the sign tests in
different experimental configurations over multiple data sets (or relying on the Wilcoxon signed-rank
test result whenever the null hypothesis cannot be rejected with the sign test). The statistical tests are
applied on the accuracy scores the learned neural networks achieve on the test set.

Regularizing behavior can manifest itself in several ways, depending on the reason for which the
unregularized model encounters problems to generalize properly. As mentioned in Sec. 2.1.4, the gener-
alization (of the model) depends on (a) the model, (b) the learning algorithm and (c) the training data.
Since (b), the learning algorithm, is the feature that is examined by comparing a neural network learned
with SIR to an unregularized neural network, the other two determinants, namely the properties of (a)
the model and (c) the training data, can be varied to control the difficulty of learning and, thus, the
need for an adequate regularization method. Regarding (a) the model, the neural network architectures
LeNet5 and ConvNet are put to use where the LeNet5 is a relatively small model and, therefore, should
not be able to drastically overfit on the idiosyncrasies of the training data by design but should be able
to (only) roughly capture the general concept of the data (i.e., the task that is represented by the data).
The ConvNet, on the contrary, is of a high capacity, which might entail strong overfitting. Regarding (c)
the training data, instead of only using the full portion of available training data, additional experiments
on a small subset (i.e., 10%) of the training data samples were conducted. Since the (visual) data sets
are very large, overfitting is often not too much of an impediment to learning if the capacity of the model
is appropriate. In summary, several experimental configurations are present, some of which are more
prone to overfitting than others.

While presenting the outcomes of the statistical tests (see Table 5.1), the neural networks using either
the LeNet5 or ConvNet architecture are referred to as small and large models respectively, as well as a
full training data set is termed as large data set whereas the subset (i.e., a portion of 10%) of the training
data set is termed as small data set. The outcomes of the statistical tests are presented in Table 5.1 while
the raw performance scores (in terms of the test accuracy) and the pair-wise differences, which were
used for statistical testing, can be found in Table A.1 in the appendix.

It has to be underlined that the fact that in most configurations the positive results or even statistical
significance have been achieved without tuning the hyperparameters per configuration or much more
per data set is very astonishing and remarkable.
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Configuration Sign test Wilcoxon signed-rank test

Data Arch p-value Test statistic p-value Test statistic
10% LeNet5 0.03906 * (8/1/0) 0.07422 7
10% ConvNet 0.07031 (7/1/1) 0.02086 * 1

100% LeNet5 1.00000 (5/4/0) 0.16406 10
100% ConvNet 1.00000 (4/4/1) 0.44121 12

Table 5.1.: Results from the statistical tests for di�erent experimental configurations over multiple data
sets. Self-imitation regularized neural networks are compared to unregularized neural net-
works. * denotes statistical significance according to the respective statistical test under a
significance level of ↵= 5%.

Small data sets:
On the small data set variants, self-imitation regularized neural networks improved on significantly

(under a significance level of ↵ = 5%) many data sets compared to the unregularized neural networks
according to the sign test for the LeNet5 and to the Wilcoxon signed-rank test for the ConvNet (see the
first two rows in Table 5.1).

Therefore, it can be concluded that applying SIR will improve the learning of an (unregularized)
neural network that is trained on a small set of data with similar characteristics to those of the used
visual data sets. Moreover, without the need to tune the hyperparameters that are newly introduced by
the appliance of SIR since the very same SIR hyperparameter setting was used in all the experiments
considered for the statistical testing.

With regard to the architecture, i.e., the high difference in capacities between the LeNet5 and ConvNet
architecture, one can conclude that SIR achieves an improvement independently of the neural network’s
capacity on small data sets.

Large data sets:
On large data sets, we cannot say that the results achieved with self-regularized neural networks (with

the very same hyperparameter setting as used in the case of small data sets) and the unregularized ones
(significantly) differ according to the results of the sign test, as well as the Wilcoxon signed-rank test (see
the last two rows in Table 5.1). This outcome seems to be without a doubt since SIR has only improved
the performance over the unregularized neural network after the learning was finished on about half
of the data sets. As the size of the data sets is the only difference to the experiment evaluations from
above, one can infer that SIR has good guarantees in regularizing a neural network (independently of
its capacity) when the amount of training data is low but does not affect the learning much when there
is a lot of training data is available. So, this overall supports the hypothesis that SIR increases the data
efficiency (Hyp. V; Data efficiency) since less information is available to learn from if the amount of data
is low. The regularizing behavior of SIR on small data sets could be further attributed to the qualitative
enrichment of the data targets by incorporating the soft targets (even if these targets are self-predictions)
as it was assumed in Hyp. I (Regularization).

On the other hand, it cannot be claimed that SIR is not able to regularize neural networks on large data
sets because if the actual differences per data set in terms of test accuracy between the neural network
with SIR applied and without are considered, it is strikingly apparent that the declines against the unreg-
ularized baseline are comparatively negligible whereas the improvements are much more pronounced.
This can be seen in the test accuracy differences plotted in Fig. 5.1 for the LeNet5 (Fig. 5.1a) and
ConvNet (Fig. 5.1b) architecture. Especially for the LeNet5 architecture, the improvements are higher
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Figure 5.1.: Di�erences in test accuracy on multiple data sets between self-imitation regularized neural
networks compared to unregularized ones for the (a) LeNet5 and (b) ConvNet architecture.

than any decline in terms of magnitudes whereas, in the case of the ConvNet on the EMNIST (combined)
data set, SIR enables the neural network to learn anything at all. More about the findings that SIR can
contribute to stabilization of the training is presented in Sec. 5.5.

Overall, this analysis makes it clear why the applied statistical tests on this test accuracy differences do
not prove any significance and why (in the case of the Wilcoxon signed-rank test) only minor tendencies
could be shown. In the case of the sign test, only the sign of the differences is considered, distinguishing
into improvement or deterioration. Although this property was initially desired and motivated the use of
the (non-parametric) sign test since no assumptions about the comparability of accuracy values across
multiple data sets are being made, these very one-sided results (i.e., greater improvement than worsen-
ing effects) would argue in favor of SIR. However, these tendencies were not clear enough to make the
Wilcoxon signed-rank test showing significance on this (small) number of observations.

Further SIR hyperparameter settings:
The results shown above on a single hyperparameter setting are not intended to give the impression

that SIR only works with these hyperparameters. Therefore, the results of neural networks learned on
another hyperparameter setting of SIR, namely that the target gradients are now suppressed and a lower
imitation rate ⇡ = 0.25 is used, over the same experimental configurations as above are shown in Table
5.2 while the raw performance scores (in terms of the test accuracy) and the pair-wise differences, which
were used for statistical testing, can be found in Table A.2 in the appendix. The results are even more
positive and significant than the ones obtained with the previous SIR hyperparameter setting.

However, one should note that since two SIR hyperparameter settings are used for statistical testing
and are both compared to the same (unregularized) baseline, i.e., the same sequence of observations, the
problem of multiple comparisons is entailed, though to a very small extent as it involves only two com-
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Configuration Sign test Wilcoxon signed-rank test

Data Arch p-value Test statistic p-value Test statistic
10% LeNet5 0.03906 * (8/1/0) 0.07422 7
10% ConvNet 0.00781 ** (8/0/1) 0.01427 * 0

100% LeNet5 0.03906 * (8/1/0) 0.01953 * 3
100% ConvNet 1.00000 (4/3/2) 0.79985 12

Table 5.2.: Results from further statistical tests with a di�erent SIR hyperparameter setting for di�er-
ent experimental configurations over multiple data sets. Self-imitation regularized neural
networks are compared to unregularized neural networks. * and ** denote statistical sig-
nificance according to the respective statistical test under a significance level of ↵ = 5% and
↵= 1%, respectively.

(a) 10% train data (b) 100% train data

Figure 5.2.:Mean test accuracy (with standard error bands) achieved with the ConvNet architecture on
the data sets KMNIST, EMNIST (letters, combined, digits), Fashion-MNIST and CIFAR-10 for
either (a) 10% or (b) 100% of the training data. Averaged over di�erent SIR hyperparameter
settings. Note that the error bands for some data sets at ⇡ = 0.75 are actually wider and
were down-scaled for the sake of clarity since the SIR configuration using symmetric standard
softmax imitation does not managed to learn in these cases.

parisons with the baseline. Nevertheless, one could consider to use the Bonferroni correction (Dunnett,
1964), which is recommended for comparing multiple machine learning algorithms (Salzberg, 1997;
Benavoli et al., 2016), and is a straightforward but conservative method to counteract the multiple
comparison problem by multiplying the p-values by the number of multiple comparisons (i.e., two) or
conversely, dividing the significance level ↵ by this. According to the additionally presented results of the
Wilcoxon signed-rank tests, the significance under the Bonferroni correction holds in most cases where
the null hypothesis H0 could not be longer rejected with the sign test.

However, the intention of these further statistical tests is to show that other hyperparameter settings of
SIR work and by examining the test accuracy differences between the hyperparameter settings (compare
the differences between Table A.1 and Table A.2) one can see that these are more pronounced in the
hyperparameter setting evaluated before (target gradients and ⇡ = 0.5). This fact can, among other
things, be attributed to the higher imitation rate ⇡, which is investigated in the following in more detail.
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Imitation rate ⇡:
In investigating the effects in relation to the imitation rate ⇡ further, Fig. 5.2 shows that SIR with

⇡ = 0.25 works similarly well as ⇡ = 0.5 on average, but has a much smaller variance across most
data sets. Furthermore, ⇡ = 0.75 is not recommended because the average performance does not
increase compared to ⇡ 2 {0.25,0.5}, and the variance is considerably increased on average since the
SIR configuration using symmetric standard softmax imitation (i.e., “�(·) = e�(·) = �(·); with target
gradients) does not manage to learn on the (small variants of the) data sets EMNIST letter and digits
(in Fig. 5.2a), and the (full) KMNIST data set (in Fig. 5.2b). On the other hand, this could also only
argue against the stability of symmetric SIR because such drastic problems were not observed when
asymmetric SIR is applied in combination with ⇡ = 0.75. In conclusion, one can say that the effects of
SIR are more pronounced if a higher imitation rate ⇡ is used but at a higher risk, at the same time.

5.1.1 Regularization ability with other regularizers being present

With regard to Hyp. IV (Complementary to standard regularization methods), the complementary of SIR
and other standard regularization methods is investigated over multiple visual data sets (i.e., all the ones
used above and defined in Table 4.1) and on the four experimental configurations, again, concerning the
capacity of the neural network as well as the data set size. Analogous to the isolated analysis of SIR
above, statistical tests, the sign test and the Wilcoxon signed-rank test, are carried out on this results
comparing the performance scores (in terms of test accuracy) of the neural network regularized with
a standard regularization method in combination with SIR to the neural network regularized with the
standard regularizer alone.

SIR is used in the same hyperparameter settings as above, namely with the asymmetric softmax imi-
tation b⇣ = 2 and e⇣ = 1, and either with target gradients at an imitation rate of ⇡ = 0.5 or without at
⇡ = 0.25. The outcomes of the statistical tests are presented in Table 5.3. In more detail, the outcomes
for the SIR with target gradients and ⇡= 0.5 are aggregated in Table 5.3a whereas the raw performance
scores can be found in Table A.3 (L

1-norm reg.), Table A.4 (L
2-norm reg.), Table A.5 (maxnorm) and

Table A.6 (dropout) in the appendix. The outcomes for SIR without target gradients and ⇡ = 0.25 are
collected in Table 5.3b whereas the raw performance scores can be found in Table A.7 (L

1-norm reg.),
Table A.8 (L

2-norm reg.), Table A.9 (maxnorm), and Table A.10 (dropout) in the appendix.
In contrast to the isolated analysis of SIR, where a single hyperparameter setting allowed very clear

conclusions to be made across different configurations over multiple data sets, the results of the statis-
tical tests here are not that clear and the test statistics (successes and failures in the test statistic of the
sign test) show less obvious tendencies. Possibly the combination of SIR and standard regularizers also
requires a finer tuning of the hyperparameters per experimental configuration or even per data set. Thus
the beneficial property of SIR that it does not require much tuning effort would no longer exist in com-
bination with other regularization methods. However, it remains unclear whether an appropriate tuning
of the standard regularization method would already be sufficient while the same hyperparameters can
be used for SIR as in the previous investigations where only SIR was applied.

Apart from the fact that the outcomes of the statistical tests are not clear over the different config-
urations and does not allow for profoundly general conclusions, some slight tendencies become appar-
ent and are discussed in the following. Overall, SIR seems to be most profitable to be combined with
maxnorm regularization where within no experimental configuration the addition of SIR worsened the
performance on more data sets than it could improve. Moreover, the addition of SIR without target gra-
dients improved the LeNet5 architecture trained on the full data set on all data sets (highly significantly
many under the significance level ↵ = 1% according to the sign test), and the p-values (at least from
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Configuration Sign test Wilcoxon signed-rank test

Data Arch Standard regularizer p-value Test statistic p-value Test statistic
10% LeNet5 L

1 �=0.00005 1.00000 (4/5/0) 0.91016 21
10% ConvNet L

1 �=0.00001 0.28906 (2/6/1) 0.04232 * 3
100% LeNet5 L

1 �=0.00005 1.00000 (4/5/0) 0.91016 21
100% ConvNet L

1 �=0.00001 1.00000 (4/4/1) 0.83363 16
10% LeNet5 L

2 �=0.005 1.00000 (4/5/0) 0.49609 16
10% ConvNet L

2 �=0.005 0.06250 (0/5/4) 0.05906 0
100% LeNet5 L

2 �=0.005 0.00391 ** (0/9/0) 0.00391 ** 0
100% ConvNet L

2 �=0.005 0.06250 (0/5/4) 0.05906 0
10% LeNet5 Maxnorm c=3.5 0.50781 (6/3/0) 0.25000 12
10% ConvNet Maxnorm c=3.5 0.72656 (5/3/1) 0.62406 14

100% LeNet5 Maxnorm c=3.5 0.17969 (7/2/0) 0.05469 6
100% ConvNet Maxnorm c=3.5 0.28906 (6/2/1) 0.23395 9

10% LeNet5 Dropout p=0.5 0.50781 (6/3/0) 0.49609 16
10% ConvNet Dropout p=1.0 0.17969 (7/2/0) 0.49609 16

100% LeNet5 Dropout p=0.5 0.17969 (2/7/0) 0.35938 14
100% ConvNet Dropout p=1.0 0.50781 (6/3/0) 0.30078 13

(a) Target gradients and ⇡= 0.5

Configuration Sign test Wilcoxon signed-rank test

Data Arch Standard regularizer p-value Test statistic p-value Test statistic
10% LeNet5 L

1 �=0.00005 0.50781 (6/3/0) 0.65234 18
10% ConvNet L

1 �=0.00001 0.72656 (3/5/1) 0.52861 13
100% LeNet5 L

1 �=0.00005 1.00000 (5/4/0) 0.49609 16
100% ConvNet L

1 �=0.00001 0.28906 (2/6/1) 0.36273 11
10% LeNet5 L

2 �=0.005 0.50781 (6/3/0) 0.65234 18
10% ConvNet L

2 �=0.005 0.37500 (4/1/4) 0.10565 1
100% LeNet5 L

2 �=0.005 0.00391 ** (0/9/0) 0.00909 ** 0
100% ConvNet L

2 �=0.005 1.00000 (2/3/4) 0.41849 4
10% LeNet5 Maxnorm c=3.5 0.28906 (6/2/1) 0.29362 10
10% ConvNet Maxnorm c=3.5 0.72656 (5/3/1) 0.36273 11

100% LeNet5 Maxnorm c=3.5 0.00391 ** (9/0/0) 0.00391 ** 0
100% ConvNet Maxnorm c=3.5 1.00000 (4/4/1) 0.72629 15

10% LeNet5 Dropout p=0.5 1.00000 (5/4/0) 0.59363 17.5
10% ConvNet Dropout p=1.0 0.50781 (6/3/0) 0.42578 15

100% LeNet5 Dropout p=0.5 0.50781 (3/6/0) 0.59363 17.5
100% ConvNet Dropout p=1.0 0.17969 (7/2/0) 0.07422 7

(b) No target gradients and ⇡= 0.25

Table 5.3.: Results from the statistical tests for di�erent experimental configurations over multiple data
sets. Neural networks with SIR (either (a) with target gradients and ⇡ = 0.5 or (b) without
target gradients and ⇡= 0.25) and a standard regularizer are compared to a neural network
regularized solely with this standard regularizer. * and ** denote statistical significance ac-
cording to the respective statistical test under a significance level of ↵ = 5% and ↵ = 1%,
respectively.
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Figure 5.3.: Learning curves of test accuracy (solid line) and train accuracy (dashed line) for the ConvNet
architecture on the CIFAR-10 data set. Asymmetric SIR was applied with b⇣ = 2, e⇣ = 1 and
target gradients.

the Wilcoxon signed-rank test) are almost below 0.05 if the target gradients were used. The combina-
tion of SIR and dropout does also seem relatively beneficial since the performance is mostly improved
while a clear number of data sets for which the addition of SIR degrades the performance can be only
found in the configuration with the LeNet5 architecture on the full data sets. Overall the norm penalty
regularization methods, L

1-norm and especially L
2-norm regularization does not seem to be profitably

combinable with SIR. On the ConvNet architecture, the performance was worsened on most data sets
when combining L

1-norm regularization with SIR while the addition of SIR to L
2-norm regularization

was only able to achieve improvements on the small data set configurations for one SIR hyperparameter
setting (no target gradients and ⇡ = 0.25) while in most cases no improvements or further declines
partially on even highly significantly (under the significance level ↵ = 1% according to the sign test)
many data sets occurred.

In conclusion, Hyp. IV (Complementary to standard regularization methods) cannot be solidly sup-
ported by this investigation because only the maxnorm regularization and dropout showed slight tenden-
cies that a combination with SIR is beneficial while, in most cases, a combination with a norm-penalty
regularization method failed. However, it should be noted that according to the raw performance scores
in Sec. A.1 in the appendix, the regularization effect of SIR alone in terms of test accuracy is higher
on many data sets than the one of applying a standard regularization method alone especially for the
experimental configurations where the training data samples were reduced to 10%.

5.1.2 Overfitting in the later training course

Although SIR regularizes and can contribute to generalization significantly, as shown above, it cannot
completely eliminate overfitting in the later course of training. This means that the overfitting phase (as
explained in Sec. 2.1.4) can still occur.

For example, learning curves of test and train accuracy are shown in Fig. 5.3 of a self-imitation regular-
ized and an unregularized neural network, as well as of neural networks where standard regularization
methods were applied. Here, one can observe the presence of a slight overfitting phase after about the
best accuracy was reached (after around 10,000 iterations). However, this phenomenon also occurs in
the settings with standard regularization methods, which is why SIR cannot be claimed to be inferior to
these standard regularizers regarding this problem.

In order to more thoroughly examine the (later) overfitting of SIR, the final accuracy (after finishing
the training) is plotted over the best accuracy in Fig. 5.4 for neural networks trained on (subsets of)
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(a) CIFAR-10, 100% training data (b) CIFAR-10, 10% training data (c) CIFAR-100, 10% training data

Figure 5.4.: Di�erent neural network architectures trained on (subsets of) either CIFAR-10 and CIFAR-100
with SIR and standard regularization methods. Asymmetric SIR was applied with b⇣ = 2, e⇣ = 1
and target gradients. Each point represents the best accuracy (x-axis) and the final accuracy
(y-axis) of a single neural network.

either CIFAR-10 or CIFAR-100 with SIR as well as standard regularizers. This visualizes the drop of
accuracy from the best performing model within the course of training to the final model after 100
episodes by the difference between the value on the x-axis and the y-axis for a point (representing the
performance of a neural network). In the plots in Fig. 5.4a and Fig. 5.4c one can observe the line
representing SIR being similar to the lines of the standard regularizers for what reason the drop of
accuracy and the impact of later overfitting in SIR is existent but of a similar extent compared to the
standard regularizers on the full CIFAR-10 and CIFAR-100 (this plot is omitted) data sets, as well as on
the 10% subset of the CIFAR-100 data set. In contrast, this phenomenon of later overfitting occurs much
more pronounced in the plot in Fig. 5.4b where the final accuracy is more than 5% lower than the one of
the best model for some models trained with SIR while most (except the L

2 regularized) neural networks
barely show any difference.

Overall, it can be said that SIR cannot prevent the overfitting phase in the later course of training at
all and might tend to be more susceptible to this compared to standard regularizers according to the
experimental results on the (subsets of) CIFAR-10 and CIFAR-100.

5.2 On the functioning of Self-Imitation Regularization (SIR)

Based on the experimental results, this section outlines and verifies the principal functioning of SIR. The
effects of SIR on the predictions (and thus the soft targets used in for the self-imitation), on the one
hand, and on the learned parameters ✓ within the neural network, on the other hand, are investigated
and interpreted.

5.2.1 Predictions and soft targets investigation

Obviously, SIR depends entirely on the soft targets that are used in the imitation loss (Eq. 3.1), and these,
in turn, are based on the original prediction of the neural network up to a softening modification (i.e., a
chained softmax function). For that reason, the characteristics of the predictions (and soft targets) being
made by a neural network that was learned under the appliance of SIR in comparison to the predictions
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(a) Neural network’s (standard) softmax predictions (b) (2-chain) softmax soft targets for imitation loss

Figure 5.5.:Mean normalized entropy of the distributions, (a) �(z) and (b) �(2)(z), when querying the
learned neural networks (for both the LeNet5 and ConvNet architecture) on the test data set
samples from CIFAR-10, CIFAR-100, MNIST and KMNIST. The entropy normalization makes
the values comparable over multiple data sets with a di�erent number of classes. Note that
standard error bands are plotted but are very narrow and, therefore, barely visible.

of unregularized neural networks are examined, which provides meaningful clues on the regularization
behavior of SIR.

For this purpose, the entropy of the neural network prediction (distribution) serves as a rough quality
measure by telling whether the distribution is rather hard (low entropy) or soft (high entropy). A
soft distribution is considered to carry much information because, in addition to the predicted class
(i.e., the one with the highest probability), it also quantifies about the other classes. In the context of
the self-imitation, a distinction must be made between the properties (i.e., entropy) of the (standard
softmax) prediction of the neural network and the soft targets used in the imitation loss since these are
different whenever asymmetric softmax imitation is used as the soft targets are a modification of the
(soft) predictions. In Fig. 5.5, the mean entropy of the neural networks’ soft predictions (Fig. 5.5a) as
well as the soft targets (if they differ from the soft predictions; Fig. 5.5b) are shown in terms of different
SIR hyperparameter settings over different values of ⇡, as well as in comparison with an unregularized
neural network.

It becomes strikingly apparent that the choice between symmetric and asymmetric imitation has a
fundamental impact on the properties of the neural network’s prediction (distribution). That was rather
unexpected since, in the preliminary experiments with KD, no differences between symmetric and asym-
metric imitation were observed, and it was rather considered as a trick to get non-equal distributions in
the cross entropy in order to obtain non-zero gradients (induced by the prediction e�(z)) in the imitation
loss (Eq. 3.1). As Fig. 5.5a shows, the predictions of neural networks using symmetric self-imitation are
equal to or even lower in entropy than the predictions of the unregularized networks (see the orange and
purple curves in comparison to the blue baseline in Fig. 5.5a). On the other hand, predictions of neural
networks trained with asymmetric self-imitation show high or even very high entropy (red and green
curves in Fig. 5.5a). This behavior seems to be generally valid since it was averaged over all test data
samples of several data sets (CIFAR-10, CIFAR-100, MNIST and KMNIST) for different neural network
architectures (LeNet5 and ConvNet) and shows hardly any variance. Furthermore, this behavior can also
be observed when evaluating the models on the training data as well as when the interim version of the
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neural networks, when the highest test accuracy was achieved over the course of the training, is being
evaluated. As expected, the effects regarding the entropy increase for all SIR settings when the imitation
rate ⇡ was increased.

When considering the effect of the 2-chain softmax distributions in Fig. 5.5b, which are used as soft
targets in the asymmetric imitation settings, the characteristics observed in Fig. 5.5a (standard softmax)
remain (relative) unchanged, but the size of the entropy values has risen substantially. Such high entropy
measurements point undoubtedly to an almost uniformly distributed probability distribution. This fact
was also unexpected because whenever the soft targets are strongly uniformly distributed, there is a risk
that it may lead to a loss of information regarding both the probabilities revealing the dark knowledge
and the predicted class associated (and quantified in terms of confidence) with the highest probability.
For a freshly initialized neural network, the same high entropy is observed when 2-chain softmax targets
are produced since the neural network’s pre-activations are distributed close to zero.

In order to pursue this further, Fig. 5.6 shows the entirely different distribution characteristics of the
prediction (and correspondingly produced soft targets) being made by an asymmetric self-imitation reg-
ularized neural network (first row, Fig. 5.6a, Fig. 5.6b and Fig. 5.6c) in comparison to an unregularized
one (second row, Fig. 5.6d, Fig. 5.6e and Fig. 5.6f) when evaluating the learned models (both of the
ConvNet architecture) on the CIFAR-10 test sample shown in Fig. 5.6g, which is labeled as ship.

The (asymmetric) self-imitation regularized neural network’s pre-activations are all close to zero, with
the values for the classes, which the neural network considers to be possibly correct, standing out com-
paratively clearly. That leads to a relatively soft softmax distribution (Fig. 5.6b; compared to the one of
the unregularized neural network in Fig. 5.6e). In sharp contrast, since the pre-activations of the unreg-
ularized neural network are of a high magnitude with high differences between the values zi and are,
further, strongly negative for the classes the neural network is certain about to be incorrect, the softmax
distribution is hard (Fig. 5.6e). The two-chain softmax target (Fig. 5.6c) that were used for learning in
the SIR set-up, is very soft due to applying the softmax twice but, nonetheless, still carry the information
about the two classes, ship and car, the neural network was originally certain about (regarding to the
pre-activations z and the softmax output e�(z)). If a 2-chain softmax target had been produced in the
unregularized setting (Fig. 5.6f), any information about classes the neural network also considers (cat
has the least difference to the highest pre-activation of ship in Fig. 5.6d) would have been completely
lost due to the hard distribution that is already obtained after the first appliance of the softmax function
(Fig. 5.6e).

Clearly, an unregularized neural network, which minimizes the data loss (Eq. 3.2) only, does not learn
to predict soft (softmax) distributions as the (data) loss function implicitly favors such that are mostly
hard and low in their entropy (as seen in Fig. 5.5a) as the loss is minimal if the hard data targets can
be matched almost exactly. Therefore, pre-activations of high magnitude and strongly diverging zi are
produced to meet this demand.

When using symmetric softmax imitation, the imitation loss (Eq. 3.1) can also be construed as an
entropy penalty in addition to the data loss (Eq. 3.2). As the data loss itself already prefers softmax
distributions of low entropy, as just argued, the symmetric softmax imitation further (and explicitly)
encourages the neural network in learning hard prediction distributions (i.e., low entropy) by inducing
such entropy penalty in the loss. Thus, more extreme pre-activations are produced.

In the case of SIR using asymmetric softmax imitation, the imitation loss (Eq. 3.1) strives for an
opposite goal than the data loss (Eq. 3.2). Small pre-activations will result in softer softmax distributions
and reduce the imitation loss (with softened targets – formally, an asymmetry of b⇣ > e⇣, which is the case
being considered in this thesis). Further, it can be assumed that the prediction distribution does not
degenerate to a uniform distribution since salient probabilities for classes the neural network considers
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(a) SIR pre-activations zi

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fr
og

ho
rs

e
sh

ip
tr

uc
k

0

0.2

0.4

0.6

0.8

1

Classes ci

O
ut

pu
ts

o
i

(b) SIR softmax outputs oi = �i(z)
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(c) SIR 2-chain softmax outputs oi =
�i(�(z))
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(d) Unreg. neural network’s pre-
activations zi
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(e) Unreg. neural network’s softmax
outputs oi = �i(z)
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(f) Unreg. neural network’s 2-chain
softmax outputs oi = �i(�(z))

(g) Predicted test sample

Figure 5.6.: Exemplary prediction distributions of two learned neural networks either (a) - (c) with using
SIR while learning or (d) - (f) without regularization on (g) a CIFAR-10 test sample (labeled as
ship). The hyperparameter setting b⇣ = 2, e⇣ = 1, ⇡= 0.25 with target gradients was used for
training the self-imitation regularized ConvNet neural network.
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to be possibly correct, are preserved in order to reduce the data loss (Eq. 3.2), on the one hand. This
characteristic of prediction distributions (observed in asymmetric SIR) approaches an equilibrium in
minimizing the multi-objective loss function L

SIR that SIR composes (Eq. 3.3 through the weighted
average of the imitation (Eq. 3.1) and data loss (Eq. 3.2). On the other hand, it could be possible
that classes that are also considered likely to be correct besides the predicted class, are preserved in
the soft targets (i.e., two-chain softmax distributions) due to the target gradients (which were allowed
while training the self-imitation regularized neural network that produced the results in the first row in
Fig. 5.6). It was already hypothesized in the beginning that this might be the case because the target
gradients point towards a "teaching behavior" that helps the student to reduce the (imitation) loss. From
a mathematical perspective, the target gradients would favor a lower entropy if these gradients can be
considered to be similar to the ones in the symmetric SIR set-up.

Overall, such soft softmax predictions are only possible when the differences between the pre-
activation values zi are very small. Exactly for the reason that the produced pre-activations show
very small differences and are of a small size, it can be assumed that the neural network must have
learned small weights (at least in the output layer) since it was regularized by SIR in order to meet the
requirements of a soft output distribution (i.e., to minimize the imitation loss). The consequence of this
regularization is that the generalization of the neural network improves since small weights generally
contribute to generalization. This fact, in particular, motivates the use of parameter norm penalties, as
explained in Sec. 2.7.1, where the regularization strategy drives the weights closer to the origin (Good-
fellow et al., 2016, ch. 7, p. 227). That small weights support generalization is because overfitting gets
more difficult, on the one hand, since strong and characteristic values in the weights are needed in order
to capture specific input structures (e.g., which correspond to the idiosyncrasies of the training data or
even memorization of certain training samples). On the other hand, small weights are less sensitive
against noise and variations in the inputs since such noise is not amplified and propagated through the
neural network much which is why the prediction behavior keeps to be stable on slightly different or
unseen data (i.e., invariant under one or more transformations of the input variables (Bishop, 2006,
ch. 5.5.3, p. 261)).

5.2.2 Parameters investigation

The specific properties of the parameters ✓ being learned with SIR applied are investigated further in
the following to support the statements claimed above. It is also of interest to what extent the learned
parameters differ from those learned using other standard regularizers. From this, conclusions can
be drawn about which standard regularization methods are similar to SIR and which can possibly be
combined fruitfully (i.e., show complementary mechanisms).

For that purpose, the mean magnitudes of the weights w (✓ ) and biases b(✓ ) (per layer) are presented
in Fig. 5.7. On the one hand, the use of the (squared) L

2-norm k✓k22 as a metric (Fig. 5.7a) should
show whether the parameters ✓ take extreme values or are rather small and diffusely distributed. On
the other hand, with the L

1-norm k✓k1 as metric (Fig. 5.7b), the sparseness of the parameters ✓ should
be shown (i.e., the smaller the more sparse). Note that these norms are selected to show such properties
in the parameters ✓ as particularly that properties are aimed to be adopted when utilizing these norms
in norm-penalty regularization, i.e., L

2 and L
2 regularization (see Sec. 2.7.1).

However, we should be careful that the L
1-norm does not necessarily give reliable insights into sparsity

because a vector that is sparse but has large values unequal to 0 can still have a higher L
1-norm length

than a diffuse vector. For instance, consider vvv 1 = (0,2, 0,0, 0)> and vvv 2 = (0.5,0.5, 0.5,0.5, 0.5)> where
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Figure 5.7.: Mean lengths (according to either the (a) L
2-norm or (b) L

1-norm) of vectors that are being
constructed by splitting the learned parameters ✓ (on the CIFAR-10 data set with the ConvNet
architecture) by weights w (✓ ) (abbreviated with w) and biases b(✓ ) (abbreviated with b),
and further by the type of layer (input, hidden, and output layers). The mean is computed
so that for each layer type the average length per parameter is represented . Note that
First/Input layer refers to the first layer containing parameters in the neural network. The
hyperparameters were set as follows: sSIR: b⇣ = 1, e⇣ = 1 with target gradients; aSIR (n.t.):
b⇣ = 2, e⇣ = 1, no target gradients; aSIR (t.): b⇣ = 2, e⇣ = 1 with target gradients; Dropout was
applied architecture specific; L

1 reg.: � = 0.00001; L
2 reg.: � = 0.005; Maxnorm: c = 3.5.
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vvv 1 is obviously (more) sparse, yet kvvv 1k1 = 2 < 2.5 = kvvv 2k1. Furthermore, Hurley and Rickard (2009)
have shown that the L

1-norm does not capture all criteria of sparsity.
First of all, the conclusion from above that due to the small pre-activations and soft softmax distri-

butions, the output parameters become smaller (in their magnitude) when asymmetric SIR is applied
can be confirmed by considering the squared L

2 lengths in comparison to the unregularized neural net-
work. Furthermore, since the reduction according to the squared L

2 metric is even more pronounced
than the reduction according to the L

1 metric (in comparison to the unregularized neural network), very
small (i.e., zero centered) parameter values with absolute values smaller than 1 can be deduced since
then the squared L

2-norm provides smaller results than the L
1 norm, i.e., a

2 < |a| applies for arbitrary
�1< a < 1. Thus, most weights w (✓ ) in the output layer modulate the input attenuatingly.

According to both squared L
2 and L

1 lengths, the weights w (✓ ) in the input (i.e., the first layer
in the neural network that contains parameters) and hidden layers were only marginally affected by
(asymmetric) SIR which is in strong contrast to L

2 regularization where the size of the weights w (✓ )
in all layers was substantially decreased. Further, the same applies to the L

1 regularization in terms of
the hidden (and the output) layers. Overall, the way in which all weights w (✓ ) were regularized here is
most similar to the Maxnorm regularization.

It is strikingly apparent that the properties of the biases b(✓ ) learned when asymmetric SIR was ap-
plied differ strongly from those of the unregularized (or symmetrically self-regularized) neural network
as per the L

2-norm measures in Fig. 5.7 because of the remarkably high magnitude in the hidden layers
besides being low in the output layer as discussed before. This amplifies the (output) activations of the
hidden neurons independent of the actual input signals. It is unclear why SIR is calling for such behavior,
but up to a minor difference in the scale, the characteristics of the biases b(✓ ) are highly similar to the
ones of the biases when dropout was put in while training. In addition to the asymmetric SIR, dropout is
the only regularization method that produces biases b(✓ ) in the hidden neurons that are of such a high
magnitude.

Regarding the weights w (✓ ) in all layers of the neural network, the two investigated asymmetric SIR
settings in Fig. 5.7 – with the difference that the target gradients were once allowed and once not – do
not show any differences but do so with respect to the biases b(✓ ). According to both norms, the biases
b(✓ ) in the learned neural network where SIR was applied with activated target gradients, are of smaller
magnitude compared to the ones where the target gradient flow was inhibited in the backpropagation.

In terms of symmetric SIR, this investigation of the learned parameters ✓ does not reveal obvious
insights that would enable conclusions to be drawn about possible regularization behavior besides that
the magnitude of the parameters ✓ increased slightly compared to the unregularized neural network,
which was to be assumed due to the more diverging pre-activations zi and harder softmax distributions
(i.e., higher entropy).

In conclusion: on the one hand (asymmetric) SIR causes small-valued and diffuse parameter vectors
✓ (especially in the output layer) which is generally assumed to contribute generalization (as it is the
purpose for some standard regularization methods). On the other hand, SIR effectuates the parameter
vector ✓ in terms of the lengths (as shown in Fig. 5.7 and extensively discussed) in a way which is
similar to the parameter vectors obtained when utilizing some other standard regularization methods.
Both facts highly support Hyp. I (Regularization) about the regularization ability of SIR. In contrast, due
to the fact that there is no similarity to some other standard regularization methods (in terms of the pa-
rameter vector lengths k✓k) or at least no similarity in all examined aspects to all standard regularizers,
it can be assumed that the operating mechanism of SIR being complementary to that of those standard
regularizers and that they can thus be combined profitably. This supports Hyp. IV (Complementary to
standard regularization methods).
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(a) Unreg. neural network (b) Symmetric SIR (c) Asymmetric SIR

Figure 5.8.: Average softmax distributions (over the x-axis) visualized as heat maps per class (on the y-axis)
on the CIFAR-10 test data set. The neural networks were either trained (a) unregularized, (b)
with symmetric SIR or (c) with asymmetric SIR.

In Sec. 5.3 - Sec. 5.7, the above-made statements about the regularization ability of SIR are further
substantiated in the experimental results, and certain regularization properties of SIR are highlighted in
discussing the results of problem-oriented experiments (such as those incorporating incorrect training
data labels).

5.2.3 (Ranking) quality of the soft targets/predictions

As the soft targets are suspected as the major reason why SIR works by providing further information in
addition to the (hard) data targets, this section discusses the properties and quality of the soft targets in
the context of SIR.

Similarity information in the soft predictions:
Soft targets/predictions reveal the dark knowledge in the non-maximum probabilities, i.e., the prob-

abilities of the classes that are not predicted. More specifically, information about the similarities and
correlations between the classes are encoded in these probabilities. As already presented in Fig. 5.6, one
can notice that the prediction probability distribution (i.e., softmax distribution of the pre-activations) of
an unregularized neural network is very hard (see Fig. 5.6e), which is why such information about the
other classes is not apparent as these probabilities are all near-zero. In contrast, SIR produces softer dis-
tributions (see Fig. 5.6b) that tend to contain more information. As the consideration in Fig. 5.6e is only
based on a single CIFAR-10 test sample (see Fig. 5.6g), this examination is extended to all test data sam-
ples in order to investigate the general quality of the similarities and correlations between the classes for
differently self-imitation regularized (⇡ = 0.25 and either symmetrically with ⇣ = 1 or asymmetrically
with b⇣ = 2 and e⇣ = 1) as well as unregularized neural networks.

The matrices/heat maps in Fig. 5.8 present the average softmax distribution (over the x-axis) per class
(ground truth on the y-axis) with the ConvNet architecture on the CIFAR-10 test data set. Note that
this visualization is not equal to confusion matrix visualizations since it does only contain the softmax
distributions of correctly predicted samples because it is assumed that the quality of the similarities
and correlations might not be reliable if not even the correct class could be predicted. This decision
is justifiable since all considered neural networks have roughly the same test accuracy, and thus the
evaluation takes place on a similar number of test data samples. Furthermore, the probabilities for
the predicted/correct classes are ignored (i.e., light gray) for visualization reasons because otherwise,
due to the high probability values for the correct classes, the colors of the heat maps would not be
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well distinguishable for all other probabilities any more. Note that these ignored probabilities range
between 95% and 99% on average for the predictions of the unregularized neural network as well as the
symmetrically self-imitation regularized neural network, but between 66% and 81% when asymmetric
SIR was applied.

Again, the fundamental difference between asymmetric and symmetric SIR becomes apparent in the
softmax distributions being softer (see Fig. 5.8c) and harder (see Fig. 5.8b), respectively, than the ones
of an unregularized neural network (see Fig. 5.8a). The hardness can be seen in the sparseness of prob-
abilities that are not zero (i.e., not almost black). The unregularized neural network is able to express
mostly meaningful general similarities but the ones of the symmetrically self-imitation regularized neu-
ral network seem slightly better concerning the quality since the sparse non-zero probabilities highlight
valuable similarities. For example, symmetric SIR learned that general similarities for the class plane are
bird and ship (first row in Fig. 5.8b), which seems meaningful because a bird and a plane are both able
to fly while on images showing either a ship or a plane the color blue might dominate. However, the un-
regularized neural network does also point out slight similarities to the classes deer and horse (first row
in Fig. 5.8a), which does not seem meaningful at all. In sharp contrast, the asymmetrically self-imitation
regularized neural network produces non-zero probabilities for all classes (at least more than 2%) while
the highest probabilities showing the general similarities are about 5%. Although the similarities there-
fore seem to be very uninformative, the difference between the highest similarity probabilities to the
lowest ones is equal to the differences in the unregularized and symmetrically self-imitation regularized
neural networks. Nevertheless, only considering the similarity information in the asymmetric SIR case
associated with probabilities of more than 2.5%, this seems the least informative and clear since it is
very diffuse but sparsity would be more meaningful here. Considering the average softmax prediction
for the class plane again (first row in Fig. 5.8c), besides the main similarities to the classes bird and ship,
similarities to the classes cat, deer and frog are learned with asymmetric SIR and do not seem justifiable.
Therefore, the similarities are less clear than in the unregularized neural network’s (average) predictions
and even less so than in the symmetric SIR case.

The expression of similarities as in the symmetric SIR case (Fig. 5.8b) seems to be preferable over the
other ones because these are the most sparse. Intuitively, sparse information on similarities is most akin
to the way a person would express such similarity information while explaining something by focusing on
the essentials to maintain high informational content without confusing the counterpart. For example,
it would not make sense to enumerate all mammals when explaining to a child what a zebra is because
they have slight similarities as they feed their cubs on milk. Instead, it would be more effective to limit
themselves to fundamental characteristics, such as the high similarity to a horse except for the coat
pattern. As symmetric SIR acts as an entropy penalty, hard distributions are preferred, which could be
sparse, but it might also occur that these are near one-hot encoded predictions where all information
about similarities is lost. Therefore, a trade-off between diffusely predicting similarities to all other
classes and predicting no similarities (i.e., solely almost 100% to the predicted class) has to be found in
order to obtain sparse and meaningful prediction distributions.

Ranking quality of the soft predictions:
To evaluate the ranking quality of the similarities and soft targets/predictions on a more thorough and

measurable basis, ConvNet neural networks are considered in the same three settings (i.e., no regular-
ization, symmetric SIR and asymmetric SIR) as before but on the CIFAR-100 data set. As explained in
Sec. 4.2, the CIFAR-100 has 100 classes, which can be categorized into 20 super classes that express sim-
ilarities so that classes in the same super class are more similar to each other than classes from different
super classes. This serves a notion of whether a produced ranking for a given input image (according to
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Arch. Regularization
(Sub) class performance Super class performance

Accuracy Position err. Accuracy Position err. ROC AUC
LeNet5 None 27.90% 10.34% 40.52% 4.74% 75.08%
LeNet5 Asym. SIR 28.94% 11.33% 41.03% 4.81% 72.20%
LeNet5 Sym. SIR 28.13% 10.10% 41.56% 4.69% 75.27%
ConvNet None 28.94% 12.31% 41.00% 4.92% 73.21%
ConvNet Asym. SIR 29.86% 20.20% 41.42% 5.46% 60.10%
ConvNet Sym. SIR 29.38% 11.69% 41.91% 4.80% 73.57%

Table 5.4.: Evaluation metrics regarding the ranking quality of the soft predictions on the CIFAR-100 test
set. Namely the accuracy and (normalized) position error on (sub) class basis as well as the
accuracy, (normalized) position error and ROC AUC on super class basis. The best scores per
architecture are printed in green whereas the worst are printed in red.

the probabilities or pre-activations assigned to each of the 100 classes) is meaningful since classes that
are in the same super classes as the correct class is (according to the data labels) should be ranked above
classes that are in another super class. For example, given an image showing an apple, the ranking is of
a higher quality if classes from the super class fruits and vegetables are ranked at the top (got the highest
probabilities assigned).

In addition to the standard test accuracy on the (sub) classes, Table 5.4 shows evaluations according
to metrics measuring the ranking quality of the soft predictions on the test set with regard to the (sub)
classes (i.e., normalized position error) as well as, in particular, to the super classes (accuracy, normalized
position error, ROC AUC). The normalized position error is adjusted for the super classes in a way that it
considers the highest rank some (sub) class obtains that is in the same super class as the data label. As
described above, it is preferable that (sub) classes in the super class in which the data label is are ranked
high what is expressed by the ROC AUC as it can be applied on multi-label classification via preference
learning as described in Sec. 4.4.1. Here, all (sub) classes in this super class are labeled as positive and
the remaining ones as negative.

The results are very clear and consistent with all previous insights that SIR generally improves the test
accuracy (regarding the (sub) classes) where asymmetric SIR outperforms symmetric SIR whereas sym-
metric SIR is considered to produce more informational predictions (in terms of class similarities) than
the unregularized neural network and especially than asymmetric SIR. The latter is expressed in the fact
that symmetric SIR achieves the best scores according to all ranking evaluating metrics and asymmetric
SIR the worst ones (except the super class accuracy if this is considered as a ranking evaluation mea-
surement). That producing informational soft targets can indeed be advantageous, e.g., as symmetric
SIR effectuates, is expressed in two facts: on the one hand, whenever a (test) sample is misclassified the
correct label might also get a high probability assigned (according to symmetric SIR, which achieved the
best (sub) class position errors). On the other hand, a wrongly predicted (sub) class is very similar to
the correct (sub) class, which can be seen in symmetric SIR achieving the highest accuracy on the super
classes (i.e., the wrongly predicted (sub) class is in the same super class as the correct class).

Finally, the fact that symmetric SIR is able to improve the (ranking) quality of the predictions over
an unregularized neural network and consequently the quality of the soft targets used for self-imitation,
this qualitative enrichment could support learning and might give a hint that Hyp. III (Learn about a
class through information about other classes) might be correct in the case of symmetric SIR.
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.9.: Test accuracy of several learned neural networks either of the (a) LeNet5 or (b) ConvNet ar-
chitecture, which were regularized by SIR to di�erent extends, plotted to di�erent degrees of
label noise, which were held fixed throughout training. The unregularized baseline (model) is
depicted by the blue curve. Whenmultiple hyperparameter settings are used for a regulariza-
tionmethod, themean performance is plottedwhereas the highest and lowest performances
that were achieved are plotted with thin dotted lines.

5.3 Noisy data label compensation

The experiments where the neural networks were trained on a training data set with partly noisy data
labels (as specified in Sec. 4.1.1) were intended to show the ability of SIR in compensating errors in
training labels in the first place. Therefore, the following discussion of the experimental results is based
on experiments conducted on noisy data labels and serve to support Hyp. II (Compensate for erroneous
data labels).

The ability to compensate errors can be further broken down into two core properties. First, into the
robustness against such incorrect labels so that learning is influenced only to a small extent by them.
This represents the intuition of the neural network is questioning the data labels "before accepting the
label" by connecting this with the already acquired knowledge. Second, into the pure correcting ability
of the noisy training labels when letting the (partly) learned network predict such a training instance.
Being good in correcting those labels from early on in training might be especially important to achieve
a superior regularizing ability and, consequently, prevent overfitting on the incorrect information in the
SIR setting since the predictions are reused as "teaching" imitation targets (in the imitation loss in Eq.
3.1).

5.3.1 Robust learning despite noisy labels

In order to investigate the influence of noisy labels on the learning process when using SIR, the final test
accuracy is analyzed. The question arises whether regularizing a neural network via SIR increases the
robustness and improves the learning compared to the unregularized neural network can undoubtedly
be affirmed according to the final test accuracy based on the experimental results of multivariate data
sets from preliminary experiments and various modern CNN architectures applied on the CIFAR-10 data
set, which is presented in this section.
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(a) Unregularized ConvNet (b) ConvNet with SIR (⇡= 0.75) applied

Figure 5.10.: Confusion matrices of the evaluation of an (a) unregularized and (b) self-imitation regular-
ized ConvNet on the CIFAR-10 test data set where the neural networks were trained with
50% (training) label noise.

Fig. 5.9 shows the reduced loss of accuracy of self-imitation regularized neural networks compared
to unregularized ones when label noise was applied to the training data. The SIR hyperparameter
settings of the neural networks that were used to create the plots are two asymmetric softmax settings
with softened imitation targets (b⇣ = 2) and either allowing or inhibiting target gradient flow, and one
symmetric setting with the standard softmax function (entropy penalty). By distinguishing the final test
accuracy scores by different imitation rates ⇡ 2 {0.25,0.5, 0.75} one can observe that a higher imitation
rate effectuates a higher regularizing effect, reflected in an improved generalization, in most training
cases with label noise applied for the two neural network architectures LeNet5 and ConvNet. That SIR is
not very susceptible to overfitting on the noisy data labels can be seen in the fact that the improvement
in test accuracy achieved with SIR is even more striking on the high capacity ConvNet architecture (see
Fig. 5.9b) since high capacity models are generally more prone to overfitting (as described in Sec.
2.1.4). Moreover, this enables the ConvNet neural network to sensibly learn despite highly noisy training
data labels (i.e., label noise of 50%). In contrast, the unregularized neural network is not able to learn
anything and only achieves accuracy of 10%, which is equal to random guessing or always predicting
the same class in the ten class classification problem that the CIFAR-10 data set represents. The actual
behavior of this learned unregularized ConvNet is always predicting the same class (i.e., class horse) on
both the training and the test set as it can be seen in the confusion matrix in Fig. 5.10a (evaluated on the
test set). To the opposite, SIR drastically improves the learning of the ConvNet on the CIFAR-10 training
data with label noise of 50% by achieving a final test accuracy of almost 40% when, e.g., using an
imitation rate of ⇡= 0.75 and symmetric standard softmax imitation (i.e., ⌧= ⇣ = 1) while maintaining
all other hyperparameters as in the unregularized training setting. This improvement is also strikingly
apparent when comparing the test set confusion matrix in Fig. 5.10b with the one of the unregularized
neural network (Fig. 5.10a).

For a more in-depth investigation of how the hyperparameter settings in SIR do affect the learning on
data with label noise, the accuracy scores are averaged over the different degrees of label noise (10%,
25% and 50%) and plotted over the imitation rate ⇡ separately per SIR hyperparameter setting (see
Fig. 5.11). The results of an additional symmetric softening softmax SIR hyperparameter setting is
considered to allow for a meaningful interpretation without disregarding the dependencies of symmetry
and softening softmax functions. Thus, two symmetric softmax imitation settings with either standard
softmax (⇣ = 1) or a two-chain softmax (⇣ = 2) as well as two asymmetric ones with a two-chain softmax
imitation target (b⇣ = 2 but e⇣ = 1) where once the target gradient flow is allowed are considered.
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(a) LeNet5 on CIFAR-10 with label noise (b) ConvNet on CIFAR-10 with label noise

Figure 5.11.:Mean test accuracy (to di�erent degrees of label noise) with standard error bands of the
test accuracy of several learned neural networks, which were regularized by SIR to di�erent
degrees, plotted over the imitation rate ⇡. The blue line depicts the unregularized baseline.

Again, as it is already apparent in Fig. 5.9, the intensity of the regularization is higher for a higher
imitation rate ⇡ in most settings.

However, it becomes apparent in this plot that symmetric SIR and the softened symmetric imitation
(i.e., ⇣ = 2, the purple curves) is inferior to the asymmetric SIR settings and in the case of the LeNet5
architecture (5.9a) frequently even worse than or equal to the mean of the unregularized neural network
(blue horizontal line). Although the symmetric standard softmax imitation (⇣ = 1, the orange curve)
performs better for high imitation rates (⇡ 2 {0.5, 0.75}) in the LeNet5 architecture (5.9a), we cannot
overall conclude that this setting is substantially superior to the symmetric softened imitation (⇣ = 2, the
purple curves) since apart from these cases the results obtained with both settings are similar. Therefore,
it can be inferred that the asymmetric imitation is more robust against noisy labels.

Considering the two asymmetric settings further, it can be observed that both work well and are robust
against the label noise on average. However, the target gradients (red curves compared to the orange
curves) induce a more steady proportionality to the imitation rate ⇡, on the one hand, as the (red) curve
is monotonically increasing for both architectures, LeNet5 and ConvNet. On the other hand, the target
gradients SIR setting seems to be more reliable in achieving improvements since the variance (visualized
by the standard error bands) over the training results to various degrees of label noise is lower for most
imitation rates ⇡. Regarding the choice of ⇡, the raw experiment results of the LeNet5 (see Table A.11)
and ConvNet architecture (see Table A.12) indicate the tendency that when setting ⇡= 0.25 SIR without
target gradients (nearly) outperforms SIR with target gradients and the opposite is the case when setting
⇡ = 0.5. However, such superiority of one setting is not clear for ⇡ = 0.75 because SIR without target
gradients outperforms SIR with target gradients only on the LeNet5 but vice versa regarding the ConvNet
architecture. Further experiments on different architectures did not reveal any evident insights in this
matter. Nevertheless, SIR with target gradients is slightly preferable according to the previous arguments.

Finally, it is worthwhile mentioning that SIR is not able to completely overcome the occurrence of
the overfitting phase (as explained in Sec. 2.1.4) if training takes places on noisy labels since the final
performance is almost always lower than the highest accuracy achieved by an interim model over the
course of training. This is, however, also the case for unregularized neural networks, as shown for the
LeNet5 and ConvNet architectures in Fig. 5.12. The difference between the best accuracy and the final
accuracy is most notable in the case of ConvNet (compare Fig. 5.12b to Fig. 5.9b), which is expected
due to the high capacity of this architecture. However, this in no way detracts from the arguments
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.12.: Best accuracy achieved on the test set by an interimmodel over the course of training where
either the (a) LeNet5 or (b) ConvNet architecture, which were regularized by SIR to di�erent
degrees, were trained to di�erent degrees of label noise.

that SIR prevents overfitting as presented in the previous examinations since self-imitation regularized
neural network overfits less than an unregularized. Note that no further examinations based on this
best accuracy metric are made since this is not reliable and fragile to outliers that can arise if an interim
neural network performs well on the test set only by chance. In order to smooth out such effects of
randomness, the best model should be picked according to an additional data set (commonly referred
to as validation set), which is independent of the training as well as the test set but equally distributed.
Then the test set can be acquired to measure the performance of this picked model to make subsequent
comparisons between the models fairer. For our purpose, measuring the interim performances on the
test set is sufficient to show that the shape of the (test performance) learning curve is rough of concave
form as the test curve in the conceptional visualization in Fig. 2.2 and thus demonstrates the presence
of the overfitting phase.

In conclusion, it can be said that SIR is robust against label noise in terms of both (later) overfitting to
the noisy labels and improved generalization despite the label noise compared to unregularized neural
networks.

Comparison with standard regularizers:
The results in terms of (final) test accuracy from the experiments where the standard regularization

methods, L
1-norm, L

2-norm, maxnorm and dropout, were applied on the two architectures, LeNet5
and ConvNet, are shown in Fig. 5.13. This is directly compared to the mean test accuracy values the
self-imitation regularized models had achieved, which were initially presented in the plots in Fig. 5.9.

Interestingly, while the standard regularization methods, especially dropout, improve the test accu-
racy and partially outperform SIR in the LeNet5 architecture (Fig. 5.13a), the opposite is the case for the
ConvNet architecture (Fig. 5.13b). Here, SIR substantially improves the test accuracy in comparison to
the standard regularization methods, and no single standard regularizer surpassed SIR when label noise
was applied. In fact, some standard regularizers barely improve over the baseline, whereas others com-
pletely fail on this architecture when learning on noisy labels. The fact that the L

2-norm regularization
performed superior on the ConvNet architecture on the original data (i.e., no label noise) but entirely
failed (i.e., 10% test accuracy) whenever label noise was incorporated was unexpected and does not
actually speak for robustness against label noise with L

2-norm regularization.
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.13.: Test accuracy of di�erently learned neural networks to di�erent degrees of label noise either
of the (a) LeNet5 or (b) ConvNet architecture, which were regularized by SIR as already
presented in Fig. 5.9, but the mean accuracy scores are plotted for SIR. In addition, the test
accuracy achieved with standard regularization methods is depicted.

Combinations of SIR and standard regularizers:
Frequently, if SIR is surpassed by a standard regularization method according to the final test accuracy,

this is not the case when consulting the best test accuracy. This shows that both regularization settings
learned interim models while training that achieve the same test accuracy but the self-imitation regular-
ized neural network tends to overfit more in the later course of training (compare the final test accuracy
values shown in Fig. 5.9 to the best accuracy values in Fig. 5.12). This suggests the assumption that
SIR although it is susceptible to overfitting, but contributes to generalization. Therefore, SIR might be
combined beneficially with standard regularization methods that prevent the later overfitting resulting
in new peak performance.

Fig. 5.14 shows the performance of the most fruitful combinations of SIR (separately per the choice
of the imitation rate ⇡ = {0.25, 0.5,0.75}) with standard regularizers or the performance of SIR alone
if no improvement could be obtained in any combination with a standard regularization method. It
becomes apparent that in almost all different label noise levels, SIR in combination with a standard
regularizer was able to surpass the standard regularizers on the LeNet5 architecture (see Fig. 5.14a)
and the performance of the self-imitation regularized neural networks is further pushed if a standard
regularizer was added on the ConvNet architecture (see Fig. 5.14b).

Again, it turns out that asymmetric SIR performs better than symmetric SIR since all profitable com-
binations with a standard regularization method involve asymmetric SIR (with b⇣ = 2 and e⇣ = 1). More
precisely, SIR without target gradients was involved in achieving the new peak performances on the
LeNet5 architecture while SIR with target gradients was applied when new peak performances have
been achieved on the ConvNet architecture.

Considering the standard regularization methods that led to new peak performances, it turns out that
most often L

1-norm, dropout and maxnorm regularization were involved. These findings are in line
with the results of the statistical tests applied on the performance scores of different combinations of SIR
and standard regularization over multiple data sets in Sec. 5.1.1 since the (partially slight) tendencies
point out that these regularization methods might be beneficially combined with SIR. Furthermore, the
results of combinations with the L

2-norm regularization do not stand out, which is consistent with the
statistical significantly deterioration in some configurations in the statistical testing. Combinations with
the maxnorm regularization achieved improvements as well as near-peak performance (oftentimes not
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(a) LeNet5 on CIFAR-10

(b) ConvNet on CIFAR-10

Figure 5.14.: Peak test accuracy performance of di�erently learned neural networks to di�erent degrees
of label noise either of the (a) LeNet5 or (b) ConvNet architecture, which were regularized
by SIR combined with an additional standard regularizer. The test accuracy achieved with
standard regularized as well as unregularized neural networks is depicted (in blue).
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.15.:Measures the accuracy on the (subset of) training data samples that had noisy labels while
learning but considering the original labels instead in this evaluation. The learned neural
networks are either of the (a) LeNet5 or (b) ConvNet architecture and were regularized by
SIR to di�erent extends, other standard regularization methods or remained unregularized,
and are plotted to di�erent degrees of label noise. For SIR di�erent symmetric and asym-
metric settings were applied and the mean performance is plotted (solid lines) while the
highest and lowest performances that were achieved are plotted with thin dotted lines.

the peak-performance, which is why this is not that apparent in Fig. 5.14), which is consistent with the
finding of statistically significantly frequent improvements in some configurations.

Eventually, one can conclude that SIR can be combined complementarily with other regularization
methods (except the L

2-norm regularization) to achieve new peak performances on experiments with
label noise applied to different degrees. This strongly supports Hyp. IV (Complementary to standard
regularization methods).

5.3.2 Correcting ability of noisy training labels

The ability of correctly predicting training instances whose labels were noisified beforehand (and used
over the course of training) can be observed on such noisy training samples but incorporating the original
(i.e., correct) labels instead to measure the neural network’s performance. Thus, the accuracy on the
noisy training samples is measured and presented in Fig. 5.15, and referred to as correction accuracy in
the following.

It becomes apparent that SIR is not able to get the neural network to correct the noisy labels after
learning. For the ConvNet architecture (Fig. 5.15b) SIR as well as all other learned neural networks,
except for the remarkable results where dropout was applied, fail to correct such training samples and
completely overfit on the noisy labels (since the correction accuracy is 0%) due to the high capacity of
the ConvNet architecture making such memorization possible. Alternatively, some other neural networks
reach a correction accuracy of exactly 10% if these have not learned anything which has already been
identified in Fig. 5.9b, and therefore correct noisy labels by chance.

In the case of the LeNet5 architecture, the correction ability seems superior first, but this good correc-
tion ability can be directly contributed to the fact that the LeNet5 capacity is too low in order to overfit
on the noisy training data labels which implicitly acts as strong regularization. Therefore, most training
samples with noisy labels are classified as if they had never been seen before since the peculiarity of this
sample due to the noisy label cannot be memorized with the limited capacity. This is the reason why this
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.16.:Measures the position error on the (subset of) training data samples that had noisy labels
while learning but considering the original labels instead in this evaluation. The learned neu-
ral networks are either of the (a) LeNet5 or (b) ConvNet architecture where all experimental
settings remain the same as in the evaluation shown in Fig. 5.15.

plot is highly similar to the one showing the results on the test accuracy (in Fig. 5.9a), and the correcting
accuracy is high if it is the test accuracy. By distinguishing between the symmetric and asymmetric SIR
settings on the LeNet5 architecture the tendency reveals that symmetric (in the setting of ⇣ = 1) out-
performs asymmetric SIR (b⇣ = 2, e⇣ = 1 and target gradients either activated or deactivated) regarding
the correction accuracy and corresponds to the highest performances plotted with the thin dotted lines
in Fig. 5.15a. Note that the symmetric SIR setting with ⇣ = 2 does not show any conspicuous change
compared to the unregularized baseline.

Since it is not only a peculiarity for SIR that the correction of incorrect training data labels is not
successful and also causes problems for other regularization methods, the question arises whether the
predictions in a self-imitation regularized neural network considers the correct class also to be very likely
(i.e., also assigns a high probability). For example, the second highest probability might be assigned to
the correct class. As the quality of a misclassification is aimed to be quantified, the (normalized) position
error can be used for this purpose as described in Sec. 4.4.1. This error metric does not evaluate all errors
equally, as the accuracy measure does, but gives less weight if the correct class gets a high probability,
i.e., a high rank according to the probability scores.

Fig. 5.16 shows the correction ability in the same circumstances as before (in Fig. 5.15), but the
normalized position error is used for evaluation instead of the accuracy and is therefore referred to as
the correction position error in the following. Again, the tendency that the symmetric SIR setting with
⇣ = 1 performs better than the asymmetric SIR settings on the LeNet5 architecture can be observed in
Fig. 5.16a. For the ConvNet this becomes strikingly apparent as the position errors differ extensively
between symmetric and asymmetric SIR. Here, the position error for the asymmetric SIR settings is very
high (above 50%), which means that the ranking position of the correct training data label is worse on
average than for a random ranking since this would make a position error of 50% on average. On the
other hand, the symmetric SIR setting with ⇣ = 1 performs even slightly better than the unregularized
neural network according to a reduced position error which means that the correct class is ranked higher
than in the unregularized neural network. These findings can be seen in Fig. 5.16b where the maximum
error curves (dotted curves) correspond to the asymmetric SIR setting whereas the minimum ones to the
symmetric SIR setting.
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(a) LeNet5 on CIFAR-10 (b) ConvNet on CIFAR-10

Figure 5.17.: Incorrect label uncertainty factors computed by the division of the mean prediction prob-
ability corresponding to a correct by the one corresponding to a noisified training sample.
The learned neural networks are either of the (a) LeNet5 or (b) ConvNet architecture where
all experimental settings remain the same as in the evaluation shown in Fig. 5.15.

Finally, it can be concluded that stronger regularization methods, such as dropout, are required to
correct noisy training labels. This achieves such good results because of varying the neural network
architecture throughout training that makes memorization difficult or even impossible. SIR cannot
counteract the data loss enough to prevent memorization/ overfitting. To do this, the data loss (Eq.
3.2) must be completely canceled out or compensated by the imitation loss (Eq. 3.1) if the data label is
considered to be incorrect.

More generally, in order to be able to correct, an awareness that a training data label is incorrect
must be present first. In other words, the confidence of a training sample prediction must be different
depending on whether there is an erroneous data label or not. This could be measured in the difference
between the highest predicted probability in the case of a wrongly labeled training sample and the one
for a correctly labeled sample. Note that comparing the pure probability values across differently regu-
larized neural networks is not meaningful and would not allow drawing conclusions since the prediction
distribution characteristics per se might be completely different. For example, in Sec. 5.2.1 and more
specifically in Fig. 5.6 it is shown that unregularized neural networks predict with very hard softmax dis-
tributions and consequently the maximum probability is very high (near 100%) (see Fig. 5.6e) whereas
an asymmetrically self-imitation regularized neural network produces softer softmax distributions where
the maximum probability is not that extreme valued (see Fig. 5.6b). Therefore, the evaluation con-
cerning the uncertainty of the correctness of a training data label is performed by dividing the mean
maximum probabilities of a neural network’s output distributions for correct training data samples by
the mean of the maximum ones predicted for incorrect training data samples. This is denoted with (in-
correct label) uncertainty factor where a higher uncertainty factor represents a higher sense or awareness
of an erroneous data label.

Fig. 5.17 presents the uncertainty factors of SIR and unregularized neural networks on the training
data where label noise was applied to different degrees (i.e., 10%, 25% and 50%). Although asymmetric
SIR turned out to be often inferior to symmetric SIR and even to other regularization methods as well as
to unregularized neural networks in terms of the correction ability of the incorrect training data samples
(according to both the accuracy and position error), it also acquires a sense of a training label being likely
to be incorrect. This sense is frequently even higher than of the unregularized baseline (i.e., a higher
uncertainty factor). Nevertheless, the uncertainty factor of a symmetrically self-imitation regularized
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neural network is substantially higher in most cases (highest factors in Fig. 5.17). Overall, one can
conclude that SIR prevents that the neural network imprints the wrong label too strongly and thus
retains a higher degree of uncertainty since the uncertainty factors of the unregularized neural networks
are very small. However, it is worthwhile mentioning that other standard regularization methods are
also able to achieve an increased uncertainty factor over the unregularized baseline.

5.4 Learning from other classes

In this section, the results from the experiments where a particular class was underrepresented in the
training data to different degrees (as described in Sec. 4.1.3) are shown and discussed. The experiments
were carried out on several architectures, and no substantial improvements could be achieved in any of
them, which is against Hyp. III (Learn about a class through information about other classes). Again,
substantial differences between symmetric and asymmetric SIR occurred in a way that symmetric SIR
works similarly to the unregularized neural networks, but asymmetric SIR mostly worsened the perfor-
mance on the underrepresented class considerably. The neural networks were trained on the CIFAR-10
data set where samples of the class dog were reduced on 75%, 50% and 25% of the 5,000 training data
samples originally available for this class.

As an inevitable side effect, the training data set becomes imbalanced which might entail the risk that
the neural network almost ignores the underrepresented class and only rarely predicts it (i.e., only if
the neural network is highly certain) since it is too unlikely to be correct and, conversely, the risk is
too high that it fails when predicting it. Frequently, for this underrepresented class, a high precision is
achieved but to a low recall. This is the reason why the prediction performance for a single class should
be evaluated by considering both the precision and the recall, e.g., by consulting the F1 measure.

Hinton et al. (2015) reported that the pre-activation values for an underrepresented class are relatively
low, which represents the statement that a class is only predicted if the neural network is very certain
since the bias parameter for this class is much too low as these were learned to represent the prior
associated with the imbalanced distribution of the training data. This issue is pointed out in Sec. 4.4.1
where the ROC AUC measurement is mentioned at the same time to address this problem by evaluating
the discriminating power regarding the pre-activation scores (which is equal to use the corresponding
softmax probability value) of a particular class isolated from the other ones.

Masko and Hensman (2015) empirically showed on the CIFAR-10 and CIFAR-100 data sets that im-
balanced training data sets could have a negative impact on the overall performance of a convolutional
neural network. However, according to their experiments with a single class being majorly underrepre-
sented in the training data set, the total performance (test accuracy) was not affected and also the recall
of the reduced class was only affected negligibly. Therefore, a single class can be easily reduced without
the need for additional methods, such as oversampling (He and Garcia, 2009; Masko and Hensman,
2015), to overcome problems that could be induced by an imbalanced training data set.

The results achieved with the LeNet5 and ConvNet architecture in terms of the F1 and ROC AUC scores
on the test set are presented in Fig. 5.18.

Compared to the unregularized baseline, no improvements can be achieved if SIR is applied according
to the F1 scores. Also among the different SIR settings, no substantial differences can be discerned.

According to the ROC AUC scores, the difference between symmetric SIR and asymmetric SIR becomes
apparent as the scores achieved with the asymmetric SIR settings are clearly separated from the ones
achieved with symmetric SIR or the unregularized baseline. Especially when the ConvNet was trained
on 25% of the original dog training samples, SIR seriously worsened the discriminating ability of the dog
pre-activation value since the worst ROC AUC score of 0.5 is approached, which represents an entire
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(a) LeNet5 F1 score (b) ConvNet F1 score

(c) LeNet5 ROC AUC score (d) ConvNet ROC AUC score

Figure 5.18.: Either (a) & (b) test F1 score or (c) & (d) test ROC AUC score of di�erently learned neu-
ral networks either of the (a) & (c) LeNet5 or (b) & (d) ConvNet architecture for the
class dog. The results, obtained by di�erent symmetric SIR (purple and orange curves) and
asymmetric SIR (red and green curves) settings averaged over the di�erent imitation rates
⇡ = {0.25,0.5, 0.75} as well as by unregularized neural networks (blue curve), are plotted
over di�erent extends the class dog was underrepresented while learning. The highest and
lowest performances that were achievedwithin a specific SIR setting with di�erent imitation
rates are plotted with thin dotted lines.
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discriminating incapability. In other words, considering the pre-activation value for the class dog to form
a ranking with the test samples, the probability that a randomly selected sample of the class dog is ranked
above a sample from another class is 50%. Thus, the ranking is randomly ordered.

Overall, comparing the two asymmetric SIR settings where once target gradients are allowed and once
suppressed, SIR with target gradients is superior according to most of the F1 as well as the ROC AUC
scores. Comparing the two symmetric SIR settings where they differ in the choice of applying the softmax
function once or twice to produce the prediction eo and target by used for the self-imitation, it becomes
apparent that the latter setting with ⇣ = 2 (purple lines) seems to perform better on average according
to both scores and is above all less sensitive to the choice of imitation rate ⇡ since symmetric SIR with
⇣ = 1 the performance drastically drops if ⇡ had not been set properly. The question arises why an
entropy penalty such as symmetric SIR represents should help in improving the performance on the class
dog. Perhaps this helps to raise the pre-activation for the class dog more pronounced when predicting
this class since the resulting softmax distribution is harder and favored by the entropy penalty.

5.5 Training stabilization

Hinton et al. (2015) hinted that soft targets (with high entropy) induce much less variance in the gradient
between training samples in comparison to the hard data targets and hence the model can be trained
by using a much higher learning rate or, conversely, training can be stabilized. Apart from that, it was
not expected that the application of SIR would have a significantly stabilizing impact. However, during
the experiments, it turned out that this is an astonishingly strong property of SIR. The improvement
of stabilization is most often observable in SIR helping a neural network to learn anything meaningful
at all (which is frequently to a great extent). Without SIR, this neural network was not able to learn
anything from the data, which is reflected in the fact that it randomly predicts classes or, more likely,
always predicts the same class. Frequently, even the application of standard regularization methods
could not help in these situations. In this section, different scenarios in which SIR stabilized the training
are gathered and briefly discussed.

Stabilization with high capacity models:
Even if the full training data set is available and the capacity of the model is high (ConvNet architec-

ture), the unregularized neural network is not able to learn, e.g., from the EMNIST (comb.) and only
achieved the lowest test accuracy of 2.13%. Applying (asymmetric) SIR (with b⇣ = 2 and e⇣ = 1), learn-
ing is enabled, and the test accuracy is lifted to an impressive score of 86.37% (see Fig. 5.1b or Table
A.1d). Only the L

1-norm regularization (Table A.3d) and dropout (Table A.6d) were able to stabilize the
training whereas the L

2-norm (Table A.4d) and maxnorm (Table A.5d) regularization were not able to
support learning.

Stabilization on small data sets:
SIR has already shown over various experiments that it increases data efficiency, but it is also capable

of stabilizing the training on little data such as on 10% of the CIFAR-10 training data with the ConvNet
architecture. Here, the unregularized (Table A.1b) as well as the L

2-norm regularized (Table A.4b) neural
network did not even rudimentarily learn to predict for the ten classes, which results in 10% test accuracy.
Although dropout (Table A.6b), L

1-norm (Table A.3b) and maxnorm (Table A.5b) regularization enabled
the neural network to learn, applying (asymmetric) SIR (with b⇣ = 2 and e⇣ = 1) increased the test
accuracy to 52.47% (Table A.1b) – more than any other of the standard regularization methods was able
to achieve in the experiments. Again this outcome supports Hyp. V (Data efficiency).
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Stabilize learning from incorrect data labels:
As discussed in detail in Sec. 5.3.1, SIR can improve learning on data sets with incorrect data labels

and, further, even stabilizes the training, for example, with the ConvNet architecture on the CIFAR-10
data set with 50% label noise (see Fig. 5.9b or the confusion matrices in Fig. 5.10). While this is able to
achieve with several SIR settings, no other standard regularization method was found in the experiments
that managed to support the neural network, i.e., achieve a test accuracy beyond 10% (Fig. 5.9b).

Instability through SIR:
Despite the excellent results in terms of training stabilization, it is important to note that SIR itself

could cause instability so that the neural network is no longer able to learn. However, this effect was
only observed when symmetric SIR and a high imitation rate ⇡ (i.e., ⇡ = 0.75) was used. For example,
this occurred on a 10% subset of the EMNIST letter and digits training data set as well as on the full
(100%) KMNIST data set (as discussed in Sec. 5.1 regarding Fig. 5.2).

In addition, when SIR and standard regularization methods that performed well on their own were
applied in combination, this could also cause instability issues. For instance, this took place on several
configurations where SIR (with target gradients) was combined with L

1-norm regularization on the
data sets CIFAR-100, EMNIST (comb.) and SVHN (Table A.3) or on the same data sets, except EMNIST
(comb.) but EMNIST (letter) instead, when L

2-norm regularization was combined (Table A.4). Maxnorm
in combination with SIR (with target gradients) never caused any instability issues (Table A.5) while
dropout in combination faced such issues only on 10% of the SVHN training data with the ConvNet
architecture (Table A.6b). On the other hand, SIR without target gradients in combination with standard
regularization methods faced instability issues less often (see Table A.7, Table A.8, Table A.9 and Table
A.10).

Yet, in general, it is not clear, which of the regularization methods in a combination, either SIR or
the standard regularizer, is responsible for this and it is assumed that the two regularization methods
are interfering with each other. Note that this issue weakens Hyp. IV (Complementary to standard
regularization methods) especially for the L

1-norm and L
2-norm regularization.

5.6 Depth of a neural network

The effect of SIR is studied on very deep neural networks or, more specifically, how the effect is de-
pendent on the depth of neural networks. Sec. 5.1 showed that SIR is able to regularize (or improve
the performance) independently from the capacity of the neural network architecture. However, these
differed primarily only in the number of parameters and not essentially in depth. According to the pa-
rameter investigation in Sec. 5.2.2 the effects of (asymmetric) SIR were most apparent in the output
layer in terms of the weight and bias vector lengths (i.e., smaller lengths than the ones of unregularized
neural networks). Any changes in terms of the lengths due to SIR, on the other hand, in the other layers
are negligibly small. Therefore, it could be concluded that the regularization behavior does only affects
the output layer while the other layers remain relatively unregularized. This suggests the presumption
that SIR applied on very deep neural networks might, therefore, be less successful than on shallow neural
networks. However, according to the experimental results, this cannot be corroborated – on the contrary
– SIR was able to regularize very deep neural networks as well as shallow ones as shown in the following.
This means that there has to be a substantial regularizing impact on the hidden layers or at least that
excessive overfitting can be limited despite an increasing number of layers/parameters.

The experiments were conducted with the ResNet architecture (as presented in Sec. 4.3) on the CIFAR-
10 data set where the depth of the neural network was different while keeping all other hyperparameters
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(a) 10% training data (b) 100% training data

Figure 5.19.: Neural networks with the ResNet architecture at di�erent depths (i.e., plotted over the
number of layers) were trained on either (a) 10% or (b) 100% of the CIFAR-10 training data
set. The solid lines map the final test accuracy whereas the dash-dotted lines map the best
test accuracy (i.e., the highest test accuracy achieved by an interim model while learning).

and architectural characteristics fixed. The results achieved with asymmetric SIR with b⇣ = 2, e⇣ = 1 and
target gradients are presented here but note that SIR with deactivated target gradients showed similar
behavior. The results, plotted over the number of layers, are shown in Fig. 5.19. Here, one can observe
that in most cases, SIR was able to improve the (final) test accuracy (i.e., solid lines) compared to the
unregularized neural networks at different depths. Hence, SIR does not seem to have difficulties at
higher depths, and its effectiveness does not depend on this.

Admittedly, the results are not particularly clear since, for example, on the full data set (Fig. 5.19b) one
can observe an apparent improvement over the baseline for the neural networks of 56 layers whereas
the performance does not further increase under the appliance of SIR when the number of layers is
increased to 110, but the unregularized neural network evidently outperforms them. On the other
hand, when training on 10% of the data only this does not happen, and most self-imitation regularized
neural networks easily surpass their unregularized counterpart. Inexplicably, in this reduced training
data setting, SIR performs worse than the baseline when a shallow neural network with eight layers was
used.

In order to further substantiate that SIR is not affected by the depth and is also applicable to (very)
deep neural networks, experiments with the ResNet architecture on the CIFAR-10 data set were con-
ducted when label noise was applied on the training data set. The label noise experimental set-up is
explained in Sec. 4.1.1 and several experiments were conducted with different amounts of label noise,
i.e., label noise on 10%, 25% and 50% of the training data samples. The final test accuracy scores (solid
lines) after learning with the same architecture (and regularization) on training data that was noisified
to different degrees are averaged and depicted in Fig. 5.20 with standard error bands besides. Here
it becomes strikingly apparent that (on average) SIR is able to improve on all investigated neural net-
work depths over the unregularized counterpart and even with all the imitation rates investigated (i.e.,
⇡ 2 {0.25, 0.5,0.75}). Further, without showing an appreciably higher variance according to the stan-
dard error bands. Apart from the fact that these results underline the strength of SIR on noisy/erroneous
data labels again, it can be concluded that SIR also appears to be effective against label noise regardless
of the capacity and especially the depth of neural networks as the studies in Sec. 5.3.1 were mainly con-
fined to shallower neural network architectures of similar depth as the LeNet5 and ConvNet architectures
are.
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Figure 5.20.: Neural networks with the ResNet architecture at di�erent depths (i.e., plotted over the
number of layers) were trained on the CIFAR-10 where the training data labels were noisi-
fied at di�erent degrees beforehand. The solid lines map the final mean test accuracy, the
dash-dotted lines map the best test accuracy (i.e., the highest test accuracy achieved by an
interim model while learning) and the error bands (for the final test accuracy) show the
variance over the di�erent label noise degrees.

The highest accuracy scores achieved throughout different neural network learning courses with some
interim model, which are visualized by the dash-dotted lines in Fig. 5.19 as well as Fig. 5.20, are consis-
tently comparable to the final test accuracy to some extent so that the relation between the differently
regularized neural networks with different depths remains unchanged. In other words, a model that
performs better according to the best test accuracy than another one also performs better according to
the (final) test accuracy. An exception to this are the experiments where the neural networks learned on
a smaller training subset (i.e., 10%) shown in Fig. 5.19a where the best accuracy scores seem very noisy
but thus rather unreliable. Nonetheless, the gap between the best and the final test accuracy for training
with SIR is comparable to the unregularized counterparts for what reason SIR seems to be equally sus-
ceptible to overfitting in the later course of training as the unregularized neural network whereby this
does also not depend on the depth.

Furthermore, other standard regularizers are also unable to prevent (or at least reduce) this form of
later overfitting. Besides, most of them (i.e., L

1-norm and maxnorm regularization) were not able to
apparently improve over the unregularized baseline while some (i.e., especially the L

2-norm regular-
ization) turned out to be very dependent on the depth of the neural network where the capability of
beneficially regularizing substantially decreases when the depth of the neural network was increased up
to resulting in an apparent worsening in deeper neural networks. This leads to two possible conclusions:
first that the regularization approach of SIR seems to be superior over the standard regularization meth-
ods on the ResNet architecture, which is further corroborated by He et al. (2015) claiming that the thin
ResNet architecture regularizes by design to a certain extent where the standard regularization methods
do not seem to be able to further support generalization. Second, the hyperparameters of the standard
regularization methods have not been extensively tuned. Therefore, this could be required to improve
over the baseline or, in the case of the L

2-norm regularization worsening on the deep neural networks,
the hyperparameters might have to be tuned with respect to the depth of the neural network in partic-
ular. The former fact supports Hyp. I (Regularization) and the assumption in Hyp. IV (Complementary
to standard regularization methods) that SIR might yield another regularization approach than other
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regularization methods whereas the latter one supports the finding that SIR seems to be very insensitive
to its hyperparameters, which was already observed in other experimental evaluations.

Since the training of very deep neural networks is associated with high computing times, it was re-
frained from investigating the properties on deep neural networks on a large number of data sets, e.g.,
in statistical tests.

Overall, these results were not expected not only due to the parameter investigation but further due
to the fact that KD is claimed to perform worse on deep neural networks as the student neural network
(Romero et al., 2014; Yim et al., 2017). The predictions of the teacher neural network indeed show a
richer "solution" than the hard data labels do but do not reveal the "solution approach" that produced
these predictions. The hidden activations can be construed as gradually solving the task by processing
the information through the hidden layers. Hence, it could have been expected that the same problem
applies for SIR, but this presumption does not seem to be valid.

5.7 Pre-fitting

Beyond tuning the imitation rate ⇡ in SIR to a value staying fixed while training, one could also consider
changing the imitation rate over the course of training. In detail, the imitation rate could be set low at
the beginning of training so that the neural network can roughly fit on the data, without being irritated
by the self-imitation where the imitation targets by come from an entirely underfitted model and are
therefore not meaningful. We refer to this as pre-fitting. Simplifying this further, SIR is completely
deactivated in the beginning (i.e., ⇡ = 0.0) and activated (i.e., ⇡ 6= 0.0) after a particular number of
episodes.

The results from the experiments on the CIFAR-10 data set over various architectures have shown
that such pre-fitting has indeed an effect on both the final test accuracy, which tended to improve, and
the learning speed since the interim models achieved a certain test accuracy earlier at the beginning of
training when (asymmetric) SIR was deactivated, but both are affected only slightly.

However, pre-fitting introduces the hyperparameter tuning to become more necessary and might also
be more complicated since not only a fixed value for ⇡ must be determined but a schedule over the
training course according to which the imitation rate ⇡ should be modified. Even in its simplest form
as applied in the experiments described before, the period in which SIR is deactivated as well as the
certain value to which ⇡ is set afterward have to be both suitably determined. For the experiments
discussed above, this period was set according to the epoch where the learning curve (in terms of the
test accuracy) of an unregularized neural network was at the end of the underfitting phase. Since this
is frequently not known beforehand, the determination of the pre-fitting period would be even more
difficult in such situations.

According to the assumption formulated in Hyp. II (Compensate for erroneous data labels) that espe-
cially at the beginning of the training the imitation targets do not contain useful information but might
not irritate the learning since these soft targets do not produce any sharply misleading gradients, seems
to be confirmed here since no apparent improvements could be achieved when pre-fitting the neural net-
work before applying SIR. Furthermore, the pre-activations obtained when querying a freshly initialized
neural network are distributed close to zero which consequently results in a nearly uniform distribution
for the imitation target by especially if a chained softmax function with b⇣ � 2 is used to produce this.
Hence, the gradient introduced through the imitation loss (Eq. 3.1) in SIR does not considerably affect
the data loss (Eq. 3.2) gradient, which then dominates the multi-objective loss and is primarily used
for learning. Consequently, SIR can be considered automatically controlling the influence of the imita-
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tion and bringing the imitation (loss) into focus (still limited by the imitation rate ⇡) only when the
predictions become more defined after a few epochs.
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6 Conclusion
This section aims to give a summarizing overview of the findings on the properties and behavior of the
method of Self-Imitation Regularization (SIR). On this occasion, a position is taken on each of the initial
working hypotheses formulated while introducing SIR (in Sec. 3.1), and these are rejected (marked with
–) or accepted (marked with ÿ) if applicable. If it is not possible to make a decision, it is marked with ~
in the following treatise.

First of all, the most unexpected finding is that symmetric SIR and asymmetric SIR strongly differ in
their properties and partly even produce opposite effects. So far asymmetric SIR has only been assumed
to be a trick or minor modification compared to the KD-like symmetric SIR in order to obtain non-
zero gradients (even if the target gradients are disabled). Therefore, some properties or hypothesis
assumptions do only apply for one of the two variants. Further unexpected findings are discussed after
the hypotheses treatise below.

ÿ Hypothesis I (Regularization). SIR regularizes neural networks with different architectures and ca-
pacities learning on (visual) data sets. This occurs particularly reliably as the statistical test outcomes
suggest (see Sec. 5.1) since SIR was able to regularize in most experimental configurations on signif-
icantly or even highly significantly many (visual) data sets (under a significance level of ↵ = 5% or
↵= 1%, respectively).

Besides the evaluation based on measuring the performances of the differently regularized neural
networks, the parameter investigation (Sec. 5.2.2) hinted that (asymmetric) SIR regularizes by limiting
the parameters in the output layer to prevent them from overfitting and leads to soft output distributions
(Sec. 5.2.1). Nevertheless, this does not imply that the direct regularization of the parameters in the
output layer would lead to SIR only being applicable to shallow neural networks. On the contrary, SIR
achieves outstanding results and, above all, independent of the depth of the neural networks, which
could be shown in experiments conducted on differently deep neural nets with up to 110 layers (see Sec.
5.6).

However, according to the parameter investigation along with the quality evaluation of the soft pre-
dictions/targets, asymmetric SIR does regularize (the parameters in) the output layer implicitly by de-
manding for soft output distributions due to the very soft imitation targets (caused by, e.g., applying the
softmax function a second time). On the other hand, this does not necessarily contribute to generaliza-
tion due to high-quality soft (imitation) targets. Moreover, these targets are worse than in symmetric
SIR in terms of (ranking) quality and also worse than the (soft) predictions of an unregularized neural
network. Briefly, asymmetric SIR regularizes well but the (ranking) quality of the predictions, used as
imitation targets, is poor whereas symmetric SIR does not improve (i.e., regularizes in terms of gener-
alization performance) that strong but yields predictions that are of an improved (ranking) quality (see
Sec. 5.2.3). This suggests that possibly the dark knowledge encoded in the probabilities of the other
classes in the imitation target is not used in the asymmetrical case or cannot even be used because it
is lost too much, e.g., by the application of the chained softmax function. This does not only apply to
Hyp. I (Regularization) but also to all other hypotheses based on the quality of the encoded similarities
and correlations in asymmetric SIR. In particular, the presumption that the chained softmax function
is responsible for this (e.g., because all classes are assigned clear non-zero probabilities, as shown in
Fig. 5.6c) suggests that the temperature softmax function must also be studied in the future whether
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similarity information is more distinctly preserved (e.g., since near-zero probabilities in the standard
softmax distribution stay relatively low when the temperature is increased). Nevertheless, the chained
softmax function is responsible for the main regularization effect that limits the parameters due to the
high softness of the chained softmax distributions, which does not necessarily apply to temperature soft-
max distributions. Remember that another drawback of the temperature softmax function is that the
tuning of the temperature hyperparameter is difficult.

In the end, Hyp. I (Regularization) can be accepted since asymmetric SIR shows a clear (and symmetric
SIR moderate) regularization behavior.

ÿ Hypothesis II (Compensate for erroneous data labels). As the experiments on training data sets with
label noise showed, SIR (asymmetric as well as symmetric) is robust against label noise. Moreover, on
data sets where the degree of label noise was very high (i.e., 50%), SIR was able to stabilize the training
with a neural network of a very high capacity while different other regularization methods (i.e., L

1-norm,
L

2-norm, maxnorm and dropout regularization) have been applied but failed (see Sec. 5.3.1).
The examination of the correction ability of the noisified training samples (Sec. 5.3.2) shows that

SIR cannot prevent overfitting from occurring to the extent that incorrectly labeled training samples are
wrongly predicted by assigning the highest probability to the incorrect class. Therefore, SIR using hard
labels as imitation loss could not steer against the incorrectness induced by the data loss since they would
not differ from the incorrect hard data targets. This affirms Hyp. II (b) that the use of soft imitation
targets is superior over the use of hard ones regarding the robustness against noisy training data labels.
Independent of the information about the other classes (beside the incorrect data label class) including
the correct one, that is carried in the soft imitation targets and might be of a low quality in the case of
asymmetric SIR, SIR still allows a form of questioning of the data label (as presumed in Hyp. II; Com-
pensate for erroneous data labels) even though the probability for this incorrect class is highest. This is
because of the uncertainty that is implied in the probability for predicting the noisy class given a noisi-
fied training data sample. This probability is relatively smaller than the highest probability predicting on
correctly labeled training samples. This is shown in the discussion about the (incorrect label) uncertainty
factor in Sec. 5.3.2 where also asymmetric SIR turned out to be superior over the unregularized neural
network. This relative certainty information does not seem to be lost in the imitation target after the
second application of the softmax function in asymmetric SIR either. However, symmetric SIR achieved
the best results regarding the correction ability (e.g., measured with the position error) because of the
improved (ranking) quality standing out from the ones achieved with the unregularized neural network.

In the end, Hyp. II (Compensate for erroneous data labels) can be accepted because of the clear and
remarkable results in contributing generalization on training data sets holding incorrect data labels.

– Hypothesis III (Learn about a class through information about other classes). Although the quality of
the soft targets in symmetric SIR is high, this does not support considerably in learning from a data set
with an underrepresented class so that the performance on this class could be improved. Even worse,
asymmetric SIR substantially worsened the prediction performance for this class (see Sec. 5.4).

In general, it could not be demonstrated in any experiments that a neural network can learn about
a class through information about other classes if SIR is put to use. Thus, Hyp. III (Learn about a
class through information about other classes) has to be rejected. Again, under consideration of the
temperature softmax function, this might become possible and should become an element of future
work.

~ Hypothesis IV (Complementary to standard regularization methods). Combining (asymmetric) SIR
with maxnorm regularization or dropout shows improving tendencies (instead of solely relying on
maxnorm respectively dropout) according to the evaluation over multiple data sets in Sec. 5.1.1 and
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even statistical significance in an experimental configuration with maxnorm. Further, both standard reg-
ularizers achieved improved results in combination with SIR in label noise experiments (see Sec. 5.3.1)
even though the maxnorm combination achieved inferior performance compared to the combination of
SIR with L

1-norm regularization in a high-capacity model.
It is very difficult to make a reliable statement about L

1-norm regularization because the outcomes
vary immensely. As just mentioned, the peak performances in the label noise experiments were achieved
in a high-capacity model with SIR in combination with L

1-norm regularization, but L
1-norm regular-

ization also caused the training to become unstable (see Sec. 5.5). Moreover, in some experimental
configuration, it was also found that the combination of SIR with L

1-norm regularization led to deteri-
oration on a statistically significant number of data sets against the use of L

1-norm regularization alone
(see Sec. 5.1.1).

On the other hand, combining L
2-norm regularization with SIR worsened the performance on a highly

significant number of data sets in an experimental configuration for different SIR hyperparameter set-
tings (see Sec. 5.1.1), had not achieved considerable improvements in the label noise experiments (see
Sec. 5.3.1) and even destabilized the training in several scenarios (see Sec. 5.5).

Eventually, as the combination of SIR with standard regularization methods is clearly advantageous
with maxnorm regularization as well as dropout, on the one hand, but is inoperable with L

2-norm
regularization and rather moderate with L

1-norm regularization, Hyp. IV (Complementary to standard
regularization methods) cannot be accepted. However, it should not be simply rejected since success
or failure of a combination here depends on the chosen standard regularizer and not on the fact that
SIR would not be combinable with any standard regularizer. Rather, it is complementary to particular
standard regularization methods. Furthermore, it should be noted that the regularization effect of SIR
only (in terms of test accuracy) turned out to be higher on many data sets than the one of solely applying
a standard regularization method especially for the experimental configurations where the training data
samples were reduced to 10% (see Sec. A.1 in the appendix).

ÿ Hypothesis V (Data efficiency). There is no doubt that SIR increases the data efficiency since the
regularizing effects are clearer and more pronounced on smaller subsets of the original training data.
This is expressed in the fact that improvements over an unregularized neural network occurred with a
statistically significant frequency over multiple data sets on all considered SIR and experimental config-
urations where a reduced training set, i.e., only 10% of the original training data, was involved (see Sec.
5.1.

Furthermore, the regularization effect of SIR is substantially pronounced on reduced training data
sets compared to standard regularization methods (see Sec. A.1 in the appendix) to such an extent that
in some cases no other regularization method could be found that would have been able to achieve a
higher result than SIR. For example, even if the training has to be stabilized when an unregularized
neural network is not able to learn from a small amount of data (see Sec. 5.5).

Overall, Hyp. V (Data efficiency) is accepted since learning on a small amount of data with SIR applied
did not cause any difficulties and, on the contrary, even comparatively good results, which speaks for
data efficiency.

Applicable on deep neural networks:
Contrary to the presumptions made based on the parameter analyses and the popular statements that

KD is not suitable for very deep student neural networks (Romero et al., 2014; Yim et al., 2017), SIR
can be profitably applied in very deep neural networks. Details on the experiments with neural networks
with the ResNet architecture with up to 110 layers are being discussed in Sec. 5.6. Summarizing, SIR
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improves neural networks steadily independent of their depth and, besides full and correct training data
sets, even on small subsets of the original training data as well as with label noise applied. In contrast, the
performance of some standard regularization methods (e.g., L

2-norm regularization) decreases strongly
with increasing depth or does not stand out much from the unregularized baseline.

Stabilizes training:

SIR turned out to show a stabilizing ability while training, which means that a neural network that is
not able to learn anything from the data, is able to learn with SIR. Beyond that, in most cases, neural
networks with higher performance results were learned, especially when the amount of training data
was low (i.e., 10% of the original training data), compared to other standard regularization methods.
Moreover, SIR is frequently able to stabilize the training even if standard regularization methods fail.
See Sec. 5.5 for more details.

Ease of hyperparameter tuning:

SIR does only requires a minimal effort in hyperparameter tuning, or in other words, SIR is not very
sensitive to the choice of hyperparameters.Because of replacing the temperature softmax by a 2-chain
softmax function (tuning the chain length ⇣ is usually not necessary) eliminates the tuning of the tem-
perature hyperparameter and, furthermore, the investigations in this thesis describe good criteria when
to decide between symmetric and asymmetric SIR. Good default settings according to the experiments
examined are b⇣ = 2 and e⇣ = 1 (either with or without target gradients) for asymmetric SIR to achieve
a high regularization effect, or b⇣ = e⇣ = 1 for symmetric SIR to improve the (ranking) quality of the
predictions. Regarding the imitation rate ⇡, it was found that setting ⇡ to a low value (e.g., ⇡  0.25)
has good guarantees not to worsen the training (e.g., in terms of stability) while setting this to a high
value (e.g., ⇡� 0.75) entails more pronounced regularization effects but at a higher risk.

The outcomes in the statistical testing further corroborate the statement that the hyperparameter
tuning is simple since improvements were possible on significantly many data sets without individually
tuning the hyperparameters for each data set, nor for the different experimental configurations (see Sec.
5.1).

On the contrary, other standard regularization methods, e.g., L
2, seem to require a more extensive

tuning as the performance is dependent on various factors according to the experiments being conducted.
For example, depending on the data set characteristics (e.g., the extent of label noise; see Sec. 5.3.1) or
the depth of the neural network (see Sec. 5.6). Furthermore, no intuitive or reliable prior knowledge
or presumptions exist according to which the hyperparameters of some standard regularization methods
can be set.

6.1 Future work

In this section, further ideas to extend, improve or further investigate the method of SIR, which might
become an integral part of future work, are discussed. In order to structure this clearly, this section is
divided into two sections, first explaining further investigation methods and ideas, and finally presenting
the ideas for extending/improving SIR.
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6.1.1 Further investigations

Temperature softmax function:

As mentioned in the conclusions about Hyp. I (Regularization), the solid regularization effects when
applying asymmetric SIR is mainly attributed to the application of the chained (i.e., 2-chain) softmax
function. Nevertheless, it is claimed that the low (ranking) quality of the soft predictions/targets is
caused by the peculiarity of assigning a clear non-zero probability to all classes in the distribution ob-
tained from the chained softmax function, and it could be suspected that the dark knowledge about the
other classes (i.e., similarity and correlation information) is annihilated. Furthermore, as concluded con-
cerning Hyp. III (Learn about a class through information about other classes), this leads to a possible
explanation of why this hypothesis could not be substantiated. As symmetric SIR without the application
of the chained softmax function considerably improves this quality and the temperature softmax function
is able to produce near-zero probabilities for classes associated with low pre-activation values, suggest
that the temperature softmax function could increase the (ranking) quality of the soft predictions and
targets, and should be investigated as a replacement for the chained softmax function.

Uncertainty evaluation:

In the thesis, the uncertainty of a prediction that can express itself relative to the other predictions in
the size of the probabilities or shape of the distribution is investigated. In Sec. 5.3.2 the calculation of
an uncertainty factor is proposed, and the evaluation with this shows tendencies that SIR is more able
to formulate uncertainty than other counterparts, e.g., when a prediction has to be made on a training
sample whose label was noisy during training.

Besides, the topic of formulating uncertainty has been ignored for quite some time, but is now being
researched more intensively (Gast and Roth, 2018) since, in general, neural networks lack in reliable and
appropriately formulating such uncertainty. Therefore, more sophisticated evaluation methods regarding
the certainty formulation ability or, also called, calibration of a neural network have been proposed and
utilized in recent years (Guo et al., 2017) such as the expected calibration errors (Naeini et al., 2015).
Consequently, these metrics could be considered to use for further evaluations of SIR with regard to an
adequate expression of uncertainty.

In-depth investigation of the target network variant:

As presented in Sec. 3.2.2, a target network can be used for imitation target generation, which does not
change its parameters over a certain period of training iterations unlike the neural network considered
in standard SIR that changes its parameters every iteration. According to the preliminary studies on this
variant of SIR, no further improvements concerning the training stability became apparent, which was
originally the intention of using a target network.

According to the thorough experiments conducted with (standard) SIR, SIR showed excellent stabi-
lization behavior. However, SIR also induced instability in some experiments. Either when symmetric
SIR is used at a high imitation rate (e.g., ⇡ = 0.75) on some data sets or when SIR is combined with
some standard regularization methods where the regularizer as well as SIR perform well if they were
applied individually. For more details, please refer to Sec. 5.5. In these cases, it should be considered to
try the target network variant of SIR and analyze whether the training can be stabilized then.

6.1. Future work 125



Further types of data:
In the scope of the thesis, experiments were mainly conducted on visual data as well as some multivari-

ate data sets (in preliminary some preliminary studies). In order to further corroborate the regularization
capability of SIR in general, SIR should be applied to other types of data such as sequential data as it is
present in natural language processing, for example. Hence, the neural network architecture of RNNs
(Goodfellow et al., 2016, ch. 10; Sherstinsky, 2018) could be involved.

6.1.2 Extensions and improvements of Self-Imitation Regularization (SIR)

Sequential learning:
Sequential learning or also called online learning refers to learning an ML model on data samples

that are not available as a batch of data beforehand, but these are arriving in a (continuous) stream
where predictions must be made before all of the data samples have been seen (Bishop, 2006, ch. 3.1.3,
p. 143). For example, this could be the case in real-time applications, like stock price forecasting, where
the model should be able to adapt itself to current situations.

A commonly-known problem in using neural networks in a sequential learning setting is that these tend
to "unlearn" or "forget" solving approaches for previously learned (sub-) tasks when these are currently
not present in the data samples considered for training. It is commonly termed catastrophic forgetting
(McCloskey and Cohen, 1989; French, 1999). As sequential learning on neural networks is common
practice in the field of (deep) reinforcement learning, for example, the problem of catastrophic forgetting
is strongly present there and is addressed, e.g., with methods that artificially build a data batch to learn
on more balanced (including earlier) data samples turning this more into a batch learning task (Lin,
1992).

However, it is hypothesized that SIR could be able to improve learning in sequential learning settings
and reduce the problem of catastrophic forgetting by making the previously acquired knowledge present
in the loss. This should preserve this knowledge longer even if the current data samples describe another
sub-task.

Semi-supervised learning:
The computation of the imitation loss (Eq. 3.1) in SIR does not require any data labels, so one can

consider to apply SIR in a semi-supervised learning setting and using the unlabeled data for the imitation
loss computation. Hinton et al. (2015) already proposed the idea that the student neural network could
be trained on unlabeled data only when a strong pre-trained (on supervised data) teacher neural network
is provided. Similarly, Lee (2013) proposed a method that labels the unlabeled data with the predictions
of the neural network but using hard predictions instead of soft distributions.

General imitation targets per class:
In SIR as well as KD, an imitation target is generated for each training sample pointing out the sim-

ilarities and correlations to other classes for this given sample. Instead, one could consider generating
imitation targets that contain more general information for a class concerning similarities and correla-
tions to other classes. An idea would be to use the predictions of the neural network on all training
samples (e.g., from the previous epoch) and average them by class so that a single, mostly general, im-
itation target for each class is obtained. Additionally, the predictions from more distant epochs can be
taken into account by a (e.g., geometrically) weighted average.

Overall, this could make the imitation targets and therefore the training more stable, on the one hand,
and does incidentally solve the problem of symmetric imitation where otherwise zero gradients would
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be obtained if the target gradients are not considered. These general imitation targets can be seen as
a general enrichment or replacement over the one-hot encoded data targets being independent of a
particular training sample.

Direct regularization of the hidden layers:
As discovered in the parameter investigation in Sec. 5.2.2, (asymmetric) SIR directly affects the pa-

rameter magnitudes in the output layer (in order to provoke the production of soft softmax distribution
due to the pre-activation values being small around zero). In contrast, such an effect does not manifest
itself in the hidden layers. Therefore, one could consider to directly regularize the hidden layers with
SIR, e.g., by including the hidden activations in the loss function in the form of an imitation target as it
is done with the output activations in SIR.

Alternatively, the method of KD is claimed to work poorly on deep student neural network (Romero
et al., 2014; Yim et al., 2017) which is why several methods of extending KD to directly incorporating
the hidden layers have been introduced. For example, Romero et al. (2014) and Yim et al. (2017), just
to name a few. These methods could be examined to construct an adaptation for SIR.

Apart from the fact that SIR already works on deep neural networks (i.e., with many hidden layers)
without losing effectiveness when the number of (hidden) layers is increased (as shown in Sec. 5.6),
one could imagine that the potential for improvement and the regularization strength could be increased
further by such a variant of SIR.
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A Experimental results
The (mostly) raw results collected from the conducted experiments that are of higher importance are
printed in this section.

A.1 Statistical tests raw performance scores

A.1.1 Testing Self-Imitation regularized against unregularized neural networks

Target gradients and ⇡= 0.5:

Data set SIR Unreg. Diff.
CIFAR10 45.32 46.82 -1.50
CIFAR100 14.62 13.54 1.08
EMNIST (letters) 89.27 88.93 0.34
EMNIST (comb.) 81.66 79.05 2.61
EMNISTdigits 99.07 99.02 0.05
FashionMNIST 86.22 86.11 0.11
KMNIST 89.93 87.98 1.95
MNIST 98.45 98.07 0.38
SVHN 86.86 85.76 1.10

(a) LeNet5 on 10% training data subset

Data set SIR Unreg. Diff.
CIFAR10 52.47 10.00 42.47
CIFAR100 15.44 15.04 0.40
EMNIST (letters) 91.50 91.08 0.42
EMNIST (comb.) 79.82 79.62 0.20
EMNISTdigits 99.11 98.98 0.13
FashionMNIST 88.02 86.96 1.06
KMNIST 92.98 91.33 1.65
MNIST 98.46 98.50 -0.04
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data subset

Data set SIR Unreg. Diff.
CIFAR10 60.61 59.45 1.16
CIFAR100 30.88 27.90 2.98
EMNIST (letters) 92.26 92.74 -0.48
EMNIST (comb.) 86.22 84.50 1.72
EMNISTdigits 99.40 99.41 -0.01
FashionMNIST 89.84 89.34 0.50
KMNIST 94.72 95.06 -0.34
MNIST 98.99 99.17 -0.18
SVHN 86.86 85.76 1.10

(c) LeNet5 on the full (100%) training data

Data set SIR Unreg. Diff.
CIFAR10 68.77 68.43 0.34
CIFAR100 32.08 28.94 3.14
EMNIST (letters) 93.36 93.38 -0.02
EMNIST (comb.) 86.37 2.13 84.24
EMNISTdigits 99.30 99.54 -0.24
FashionMNIST 91.49 91.56 -0.07
KMNIST 96.20 96.53 -0.33
MNIST 99.22 99.13 0.09
SVHN 19.59 19.59 0.00

(d) ConvNet on the full (100%) training data

Table A.1.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences, which
were used for statistical testing.
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No target gradients and ⇡= 0.25:

Data set SIR Unreg. Diff.
CIFAR10 45.20 46.82 -1.62
CIFAR100 14.47 13.54 0.93
EMNIST (letters) 89.73 88.93 0.80
EMNIST (comb.) 81.61 79.05 2.56
EMNISTdigits 99.12 99.02 0.10
FashionMNIST 86.18 86.11 0.07
KMNIST 90.07 87.98 2.09
MNIST 98.45 98.07 0.38
SVHN 87.36 85.76 1.60

(a) LeNet5 on 10% training data subset

Data set SIR Unreg. Diff.
CIFAR10 48.64 10.00 38.64
CIFAR100 17.03 15.04 1.99
EMNIST (letters) 91.43 91.08 0.35
EMNIST (comb.) 83.31 79.62 3.69
EMNISTdigits 99.13 98.98 0.15
FashionMNIST 87.67 86.96 0.71
KMNIST 92.65 91.33 1.32
MNIST 98.52 98.50 0.02
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data subset

Data set SIR Unreg. Diff.
CIFAR10 59.79 59.45 0.34
CIFAR100 30.17 27.90 2.27
EMNIST (letters) 92.79 92.74 0.05
EMNIST (comb.) 86.18 84.50 1.68
EMNISTdigits 99.45 99.41 0.04
FashionMNIST 90.06 89.34 0.72
KMNIST 95.37 95.06 0.31
MNIST 99.11 99.17 -0.06
SVHN 87.36 85.76 1.60

(c) LeNet5 on the full (100%) training data

Data set SIR Unreg. Diff.
CIFAR10 69.18 68.43 0.75
CIFAR100 28.59 28.94 -0.35
EMNIST (letters) 93.58 93.38 0.20
EMNIST (comb.) 85.30 2.13 83.17
EMNISTdigits 99.54 99.54 0.00
FashionMNIST 91.11 91.56 -0.45
KMNIST 96.25 96.53 -0.28
MNIST 99.25 99.13 0.12
SVHN 19.59 19.59 0.00

(d) ConvNet on the full (100%) training data

Table A.2.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences, which
were used for statistical testing.
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A.1.2 Testing neural networks with SIR combined with a standard regularizer against this standard
regularizer on its own

Target gradients and ⇡= 0.5:

Data set SIR & L
1

L
1 Diff.

CIFAR10 46.25 46.46 -0.21
CIFAR100 14.58 13.64 0.94
EMNIST (letters) 89.67 88.80 0.87
EMNIST (comb.) 82.20 79.95 2.25
EMNISTdigits 98.43 98.55 -0.12
FashionMNIST 86.39 85.90 0.49
KMNIST 88.14 88.89 -0.75
MNIST 97.65 98.17 -0.52
SVHN 19.59 87.14 -67.55

(a) LeNet5 on 10% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 49.15 51.74 -2.59
CIFAR100 1.00 16.02 -15.02
EMNIST (letters) 90.86 91.53 -0.67
EMNIST (comb.) 2.13 83.01 -80.88
EMNISTdigits 98.88 99.11 -0.23
FashionMNIST 87.76 87.60 0.16
KMNIST 91.62 92.16 -0.54
MNIST 98.89 98.76 0.13
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 62.63 60.47 2.16
CIFAR100 28.72 30.69 -1.97
EMNIST (letters) 93.06 93.30 -0.24
EMNIST (comb.) 87.13 86.65 0.48
EMNISTdigits 99.03 99.30 -0.27
FashionMNIST 90.70 89.90 0.80
KMNIST 94.60 94.13 0.47
MNIST 98.64 99.12 -0.48
SVHN 19.59 87.14 -67.55

(c) LeNet5 on 100% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 68.41 69.42 -1.01
CIFAR100 34.10 25.92 8.18
EMNIST (letters) 94.16 94.20 -0.04
EMNIST (comb.) 88.31 86.72 1.59
EMNISTdigits 99.46 99.45 0.01
FashionMNIST 91.49 91.56 -0.07
KMNIST 96.41 96.65 -0.24
MNIST 99.25 99.03 0.22
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.3.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with L

1-norm reg. and solely L
1-norm reg. (used for statistical testing).

Data set SIR & L
2

L
2 Diff.

CIFAR10 49.61 46.71 2.90
CIFAR100 1.00 15.35 -14.35
EMNIST (letters) 88.42 88.17 0.25
EMNIST (comb.) 81.55 79.81 1.74
EMNISTdigits 97.58 98.26 -0.68
FashionMNIST 83.96 85.59 -1.63
KMNIST 86.86 87.22 -0.36
MNIST 97.72 97.63 0.09
SVHN 19.59 83.25 -63.66

(a) LeNet5 on 10% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 10.00 10.00 0.00
CIFAR100 1.00 1.00 0.00
EMNIST (letters) 3.85 90.96 -87.11
EMNIST (comb.) 2.13 2.13 0.00
EMNISTdigits 97.90 98.70 -0.80
FashionMNIST 85.84 87.49 -1.65
KMNIST 88.95 89.64 -0.69
MNIST 97.89 97.94 -0.05
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 53.33 63.83 -10.50
CIFAR100 1.00 29.61 -28.61
EMNIST (letters) 89.17 91.04 -1.87
EMNIST (comb.) 82.69 84.57 -1.88
EMNISTdigits 97.75 98.44 -0.69
FashionMNIST 86.33 89.00 -2.67
KMNIST 89.01 93.07 -4.06
MNIST 97.79 98.49 -0.70
SVHN 19.59 82.91 -63.32

(c) LeNet5 on 100% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 10.00 73.26 -63.26
CIFAR100 1.00 1.00 0.00
EMNIST (letters) 3.85 3.85 0.00
EMNIST (comb.) 2.13 2.13 0.00
EMNISTdigits 98.23 98.68 -0.45
FashionMNIST 86.34 89.48 -3.14
KMNIST 91.41 94.10 -2.69
MNIST 98.62 99.01 -0.39
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.4.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with L

2-norm reg. and solely L
2-norm reg. (used for statistical testing).
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Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 44.91 47.74 -2.83
CIFAR100 15.07 12.67 2.40
EMNIST (letters) 89.49 88.33 1.16
EMNIST (comb.) 82.01 79.21 2.80
EMNISTdigits 98.85 99.09 -0.24
FashionMNIST 85.73 85.85 -0.12
KMNIST 89.99 88.04 1.95
MNIST 98.42 98.04 0.38
SVHN 87.35 86.43 0.92

(a) LeNet5 on 10% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 50.25 42.94 7.31
CIFAR100 14.57 17.01 -2.44
EMNIST (letters) 92.18 91.54 0.64
EMNIST (comb.) 78.67 80.29 -1.62
EMNISTdigits 99.07 99.25 -0.18
FashionMNIST 88.08 87.42 0.66
KMNIST 92.74 92.13 0.61
MNIST 98.63 98.44 0.19
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 60.31 58.01 2.30
CIFAR100 30.90 29.25 1.65
EMNIST (letters) 92.71 92.77 -0.06
EMNIST (comb.) 86.53 85.16 1.37
EMNISTdigits 99.50 99.45 0.05
FashionMNIST 89.05 89.67 -0.62
KMNIST 95.51 94.79 0.72
MNIST 99.08 98.64 0.44
SVHN 87.35 86.43 0.92

(c) LeNet5 on 100% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 70.46 69.81 0.65
CIFAR100 31.37 28.68 2.69
EMNIST (letters) 93.50 93.00 0.50
EMNIST (comb.) 85.88 2.13 83.75
EMNISTdigits 99.64 99.59 0.05
FashionMNIST 91.36 91.24 0.12
KMNIST 95.98 97.02 -1.04
MNIST 99.04 99.25 -0.21
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.5.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with maxnorm and solely maxnorm (used for statistical testing).

Data set SIR & Dropout Dropout Diff.
CIFAR10 50.86 49.71 1.15
CIFAR100 15.99 14.99 1.00
EMNIST (letters) 91.09 91.45 -0.36
EMNIST (comb.) 84.12 83.77 0.35
EMNISTdigits 99.20 99.28 -0.08
FashionMNIST 87.46 87.00 0.46
KMNIST 90.47 90.35 0.12
MNIST 98.69 98.65 0.04
SVHN 87.08 89.70 -2.62

(a) LeNet5 on 10% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 49.54 41.27 8.27
CIFAR100 7.09 10.21 -3.12
EMNIST (letters) 91.96 89.69 2.27
EMNIST (comb.) 83.94 81.45 2.49
EMNISTdigits 98.83 97.84 0.99
FashionMNIST 87.32 87.20 0.12
KMNIST 91.15 90.67 0.48
MNIST 98.73 98.32 0.41
SVHN 19.59 83.03 -63.44

(b) ConvNet on 10% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 60.95 59.75 1.20
CIFAR100 27.05 24.18 2.87
EMNIST (letters) 91.31 93.69 -2.38
EMNIST (comb.) 85.98 87.09 -1.11
EMNISTdigits 99.43 99.61 -0.18
FashionMNIST 90.38 91.34 -0.96
KMNIST 94.99 96.04 -1.05
MNIST 99.14 99.35 -0.21
SVHN 86.68 89.70 -3.02

(c) LeNet5 on 100% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 61.67 57.99 3.68
CIFAR100 9.47 11.39 -1.92
EMNIST (letters) 93.02 83.81 9.21
EMNIST (comb.) 79.54 76.66 2.88
EMNISTdigits 98.67 96.17 2.50
FashionMNIST 88.98 87.57 1.41
KMNIST 94.44 95.09 -0.65
MNIST 99.01 97.06 1.95
SVHN 19.59 83.03 -63.44

(d) ConvNet on 100% training data

Table A.6.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with dropout and solely dropout (used for statistical testing).
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No target gradients and ⇡= 0.25:

Data set SIR & L
1

L
1 Diff.

CIFAR10 44.87 46.46 -1.59
CIFAR100 14.45 13.64 0.81
EMNIST (letters) 89.84 88.80 1.04
EMNIST (comb.) 82.24 79.95 2.29
EMNISTdigits 98.57 98.55 0.02
FashionMNIST 85.93 85.90 0.03
KMNIST 89.58 88.89 0.69
MNIST 97.64 98.17 -0.53
SVHN 85.97 87.14 -1.17

(a) LeNet5 on 10% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 10.00 51.74 -41.74
CIFAR100 13.70 16.02 -2.32
EMNIST (letters) 91.45 91.53 -0.08
EMNIST (comb.) 84.03 83.01 1.02
EMNISTdigits 99.23 99.11 0.12
FashionMNIST 88.41 87.60 0.81
KMNIST 91.86 92.16 -0.30
MNIST 98.50 98.76 -0.26
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 62.30 60.47 1.83
CIFAR100 30.01 30.69 -0.68
EMNIST (letters) 93.72 93.30 0.42
EMNIST (comb.) 87.44 86.65 0.79
EMNISTdigits 99.26 99.30 -0.04
FashionMNIST 90.45 89.90 0.55
KMNIST 94.93 94.13 0.80
MNIST 98.78 99.12 -0.34
SVHN 85.97 87.14 -1.17

(c) LeNet5 on 100% training data

Data set SIR & L
1

L
1 Diff.

CIFAR10 69.33 69.42 -0.09
CIFAR100 1.00 25.92 -24.92
EMNIST (letters) 94.09 94.20 -0.11
EMNIST (comb.) 88.07 86.72 1.35
EMNISTdigits 99.41 99.45 -0.04
FashionMNIST 91.35 91.56 -0.21
KMNIST 96.35 96.65 -0.30
MNIST 99.22 99.03 0.19
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.7.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with L

1-norm reg. and solely L
1-norm reg. (used for statistical testing).

Data set SIR & L
2

L
2 Diff.

CIFAR10 48.64 46.71 1.93
CIFAR100 1.00 15.35 -14.35
EMNIST (letters) 89.32 88.17 1.15
EMNIST (comb.) 81.96 79.81 2.15
EMNISTdigits 98.05 98.26 -0.21
FashionMNIST 85.87 85.59 0.28
KMNIST 88.53 87.22 1.31
MNIST 98.11 97.63 0.48
SVHN 19.59 83.25 -63.66

(a) LeNet5 on 10% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 10.00 10.00 0.00
CIFAR100 1.00 1.00 0.00
EMNIST (letters) 91.22 90.96 0.26
EMNIST (comb.) 2.13 2.13 0.00
EMNISTdigits 98.58 98.70 -0.12
FashionMNIST 87.73 87.49 0.24
KMNIST 90.58 89.64 0.94
MNIST 98.64 97.94 0.70
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 60.65 63.83 -3.18
CIFAR100 26.43 29.61 -3.18
EMNIST (letters) 90.31 91.04 -0.73
EMNIST (comb.) 84.01 84.57 -0.56
EMNISTdigits 98.11 98.44 -0.33
FashionMNIST 88.15 89.00 -0.85
KMNIST 91.17 93.07 -1.90
MNIST 98.24 98.49 -0.25
SVHN 19.59 82.91 -63.32

(c) LeNet5 on 100% training data

Data set SIR & L
2

L
2 Diff.

CIFAR10 72.31 73.26 -0.95
CIFAR100 1.00 1.00 0.00
EMNIST (letters) 3.85 3.85 0.00
EMNIST (comb.) 2.13 2.13 0.00
EMNISTdigits 98.71 98.68 0.03
FashionMNIST 88.18 89.48 -1.30
KMNIST 94.18 94.10 0.08
MNIST 98.93 99.01 -0.08
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.8.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with L

2-norm reg. and solely L
2-norm reg. (used for statistical testing).
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Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 44.81 47.74 -2.93
CIFAR100 13.79 12.67 1.12
EMNIST (letters) 89.72 88.33 1.39
EMNIST (comb.) 81.55 79.21 2.34
EMNISTdigits 99.09 99.09 0.00
FashionMNIST 84.98 85.85 -0.87
KMNIST 90.37 88.04 2.33
MNIST 98.43 98.04 0.39
SVHN 87.75 86.43 1.32

(a) LeNet5 on 10% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 43.92 42.94 0.98
CIFAR100 11.20 17.01 -5.81
EMNIST (letters) 91.43 91.54 -0.11
EMNIST (comb.) 83.65 80.29 3.36
EMNISTdigits 99.08 99.25 -0.17
FashionMNIST 87.94 87.42 0.52
KMNIST 93.14 92.13 1.01
MNIST 98.81 98.44 0.37
SVHN 19.59 19.59 0.00

(b) ConvNet on 10% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 60.33 58.01 2.32
CIFAR100 30.67 29.25 1.42
EMNIST (letters) 93.03 92.77 0.26
EMNIST (comb.) 86.86 85.16 1.70
EMNISTdigits 99.50 99.45 0.05
FashionMNIST 90.06 89.67 0.39
KMNIST 95.70 94.79 0.91
MNIST 99.24 98.64 0.60
SVHN 87.75 86.43 1.32

(c) LeNet5 on 100% training data

Data set SIR & Maxnorm Maxnorm Diff.
CIFAR10 68.26 69.81 -1.55
CIFAR100 32.12 28.68 3.44
EMNIST (letters) 93.46 93.00 0.46
EMNIST (comb.) 84.88 2.13 82.75
EMNISTdigits 99.50 99.59 -0.09
FashionMNIST 90.93 91.24 -0.31
KMNIST 97.05 97.02 0.03
MNIST 99.07 99.25 -0.18
SVHN 19.59 19.59 0.00

(d) ConvNet on 100% training data

Table A.9.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences between
SIR combined with maxnorm and solely maxnorm (used for statistical testing).

Data set SIR & Dropout Dropout Diff.
CIFAR10 50.61 49.71 0.90
CIFAR100 16.11 14.99 1.12
EMNIST (letters) 91.21 91.45 -0.24
EMNIST (comb.) 83.81 83.77 0.04
EMNISTdigits 99.20 99.28 -0.08
FashionMNIST 87.68 87.00 0.68
KMNIST 90.58 90.35 0.23
MNIST 98.61 98.65 -0.04
SVHN 88.79 89.70 -0.91

(a) LeNet5 on 10% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 45.56 41.27 4.29
CIFAR100 6.40 10.21 -3.81
EMNIST (letters) 91.18 89.69 1.49
EMNIST (comb.) 82.32 81.45 0.87
EMNISTdigits 99.08 97.84 1.24
FashionMNIST 87.00 87.20 -0.20
KMNIST 92.93 90.67 2.26
MNIST 98.57 98.32 0.25
SVHN 81.30 83.03 -1.73

(b) ConvNet on 10% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 60.60 59.75 0.85
CIFAR100 26.85 24.18 2.67
EMNIST (letters) 93.52 93.69 -0.17
EMNIST (comb.) 86.41 87.09 -0.68
EMNISTdigits 99.56 99.61 -0.05
FashionMNIST 91.39 91.34 0.05
KMNIST 95.31 96.04 -0.73
MNIST 99.22 99.35 -0.13
SVHN 88.79 89.70 -0.91

(c) LeNet5 on 100% training data

Data set SIR & Dropout Dropout Diff.
CIFAR10 61.61 57.99 3.62
CIFAR100 11.85 11.39 0.46
EMNIST (letters) 84.96 83.81 1.15
EMNIST (comb.) 79.04 76.66 2.38
EMNISTdigits 98.22 96.17 2.05
FashionMNIST 89.88 87.57 2.31
KMNIST 94.42 95.09 -0.67
MNIST 98.59 97.06 1.53
SVHN 81.30 83.03 -1.73

(d) ConvNet on 100% training data

Table A.10.: The raw performance scores (in terms of test accuracy) and the pair-wise di�erences be-
tween SIR combined with dropout and solely dropout (used for statistical testing).
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A.2 Noisy data labels results

Label Noise ⇡ Chained target softmax Target grad Test acc Test pos err Train acc Best test acc

0.10 0.00 1.00 No 54.01 15.03 78.47 60.54
0.10 0.25 1.00 Yes 53.29 15.69 78.90 60.54
0.10 0.25 2.00 No 56.43 14.04 75.25 62.49
0.10 0.25 2.00 Yes 56.10 14.82 78.97 61.21
0.10 0.50 1.00 Yes 56.69 14.15 76.08 62.01
0.10 0.50 2.00 No 56.61 15.17 79.40 61.90
0.10 0.50 2.00 Yes 56.91 14.97 79.51 61.05
0.10 0.75 1.00 Yes 58.84 12.68 68.72 59.55
0.10 0.75 2.00 No 56.98 16.01 76.85 60.53
0.10 0.75 2.00 Yes 56.71 15.48 76.84 61.36
0.25 0.00 1.00 No 47.14 19.09 68.66 58.31
0.25 0.25 1.00 Yes 45.78 20.14 72.44 58.60
0.25 0.25 2.00 No 50.92 17.71 66.15 57.77
0.25 0.25 2.00 Yes 51.16 17.62 65.85 57.54
0.25 0.50 1.00 Yes 52.18 16.49 60.51 57.59
0.25 0.50 2.00 No 51.55 18.37 69.43 58.74
0.25 0.50 2.00 Yes 50.70 20.24 71.81 59.17
0.25 0.75 1.00 Yes 53.59 15.11 53.43 55.97
0.25 0.75 2.00 No 52.93 18.55 66.12 58.94
0.25 0.75 2.00 Yes 53.27 18.33 64.19 58.52
0.50 0.00 1.00 No 33.11 28.76 51.67 49.58
0.50 0.25 1.00 Yes 34.36 28.42 52.26 50.62
0.50 0.25 2.00 No 35.13 29.17 56.63 52.26
0.50 0.25 2.00 Yes 34.31 29.77 57.30 52.26
0.50 0.50 1.00 Yes 41.84 24.75 50.56 52.03
0.50 0.50 2.00 No 37.09 28.55 55.24 52.01
0.50 0.50 2.00 Yes 39.79 25.60 46.80 50.74
0.50 0.75 1.00 Yes 31.14 22.48 25.56 32.76
0.50 0.75 2.00 No 40.21 27.25 49.54 51.85
0.50 0.75 2.00 Yes 38.06 30.29 54.62 51.97
0.00 0.00 1.00 No 59.45 11.04 84.61 64.05
0.00 0.25 1.00 Yes 58.67 11.31 85.24 62.92
0.00 0.25 2.00 No 59.79 12.81 86.99 63.34
0.00 0.25 2.00 Yes 60.18 12.86 88.24 63.73
0.00 0.50 1.00 Yes 58.71 11.22 83.69 63.54
0.00 0.50 2.00 No 59.91 12.67 84.19 63.29
0.00 0.50 2.00 Yes 60.61 12.73 85.66 63.34
0.00 0.75 1.00 Yes 59.87 10.91 74.28 61.55
0.00 0.75 2.00 No 60.09 13.72 85.53 63.43
0.00 0.75 2.00 Yes 59.78 12.99 82.69 62.45

Table A.11.: Performance scores of the LeNet5 neural network training with label noise involved. "Acc"
denotes the accuracy on either the test or train(ing) data set, "pos err" the position error and
"best test acc" the highest accuracy achieved on the test set over the course of training.
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Label Noise ⇡ Chained target softmax Target grad Test acc Test pos err Train acc Best test acc

0.10 0.00 1.00 No 54.69 14.70 96.52 62.62
0.10 0.25 1.00 Yes 57.88 13.76 98.26 63.63
0.10 0.25 2.00 No 63.13 14.56 99.37 67.76
0.10 0.25 2.00 Yes 60.88 15.92 99.95 63.90
0.10 0.50 1.00 Yes 53.99 15.46 97.52 60.19
0.10 0.50 2.00 No 61.98 15.06 99.60 66.02
0.10 0.50 2.00 Yes 63.56 14.50 99.81 67.18
0.10 0.75 1.00 Yes 62.31 12.55 98.32 66.05
0.10 0.75 2.00 No 63.75 15.20 99.62 67.24
0.10 0.75 2.00 Yes 64.32 15.31 99.60 68.12
0.25 0.00 1.00 No 46.25 19.05 97.69 59.35
0.25 0.25 1.00 Yes 48.14 18.53 96.78 60.44
0.25 0.25 2.00 No 56.73 18.60 99.79 64.52
0.25 0.25 2.00 Yes 52.31 20.72 99.69 59.07
0.25 0.50 1.00 Yes 47.03 19.23 98.02 58.79
0.25 0.50 2.00 No 56.25 18.94 99.86 63.48
0.25 0.50 2.00 Yes 57.10 18.44 99.86 62.44
0.25 0.75 1.00 Yes 54.78 19.49 91.99 62.52
0.25 0.75 2.00 No 54.23 22.12 99.63 62.42
0.25 0.75 2.00 Yes 57.56 18.18 99.74 63.20
0.50 0.00 1.00 No 10.00 50.00 10.13 10.00
0.50 0.25 1.00 Yes 10.00 50.00 10.13 10.00
0.50 0.25 2.00 No 10.00 50.00 10.00 10.00
0.50 0.25 2.00 Yes 10.00 50.00 10.00 10.00
0.50 0.50 1.00 Yes 10.00 50.00 10.09 10.00
0.50 0.50 2.00 No 10.00 50.00 10.00 10.00
0.50 0.50 2.00 Yes 31.40 33.68 99.90 47.79
0.50 0.75 1.00 Yes 38.49 25.54 97.34 53.22
0.50 0.75 2.00 No 35.19 34.76 99.59 52.87
0.50 0.75 2.00 Yes 34.54 34.93 99.57 53.22
0.00 0.00 1.00 No 68.43 8.68 98.59 70.62
0.00 0.25 1.00 Yes 65.86 9.66 98.70 69.00
0.00 0.25 2.00 No 69.18 11.03 99.96 70.06
0.00 0.25 2.00 Yes 68.72 11.49 99.95 70.46
0.00 0.50 1.00 Yes 69.52 8.79 98.41 72.19
0.00 0.50 2.00 No 67.38 12.08 99.84 69.91
0.00 0.50 2.00 Yes 68.77 11.63 99.27 71.26
0.00 0.75 1.00 Yes 68.09 9.05 98.76 69.53
0.00 0.75 2.00 No 68.43 11.95 99.82 69.56
0.00 0.75 2.00 Yes 68.41 12.29 99.51 70.77

Table A.12.: Performance scores of the ConvNet neural network training with label noise involved. "Acc"
denotes the accuracy on either the test or train(ing) data set, "pos err" the position error and
"best test acc" the highest accuracy achieved on the test set over the course of training.
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