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Abstract

The random forest algorithm is a popular classification method in machine learning. Thereby, the pre-
diction of this ensemble model is made by combining decision tree predictions within the forest. Those
predictions are made based on the instance numbers and distributions of the respective leafs. Therefore,
if those leafs are small (i. e. there are only a few number of instances in that leaf), the prediction
might be uncertain and false. This seems to be increasingly problematic for smaller leafs when using
the probability as the prediction methods. The purpose of this bachelor thesis is examining existing and
introducing new prediction methods which can be used instead of probability and which consider the
uncertainty of the leafs based on the number of instances used for the prediction. The evaluation of
those methods showed that probability gives bad estimations on single decision trees. However, none
of the tested methods managed to achieve significantly better results than the probability in random
forest classification. The experiments in this thesis indicate that random forest are not as affected by the
uncertainty of small leafs as single decision trees, although it was shown that large trees (i. e. small
leafs) on average perform better than smaller trees, when used in random forests.
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1 Introduction

Machine learning is a large field in computer science which has many real world applications. One com-
mon application for machine learning is classification. Classification describes the process of assigning
labels to instances using the information given by an available dataset. There are a bunch of different
algorithms and models capable of classification. However, different algorithms usually have different ad-
vantages and disadvantages. Due to the increasing popularity and use of machine learning in different
fields, it has become important for machine learning techniques to not only achieve results as good as
possible but also to be fast, efficient, and, preferably, also humanly understandable. One such machine
learning algorithm which is not only capable of achieving a high accuracy in classification tasks but also
runs relatively fast is decision tree learning. Using decision trees, you can follow the decision path of the
tree to be able to understand why the respective class is predicted. Since decision trees group instances
(data points) according to properties of the features (information available about a instance), you can
always see which similar instances are used to get to the prediction. If you want to make precise deci-
sions for tasks where there are many, possibly small regions, the size of the decision tree and therefore
the number of possible regions (leafs) used to make predictions increases. While this usually helps to
distinguish between more types of instances, it can also cause the regions to be very small, in other
words, there only a few instances on which the predictions are based on. Because you can almost never
make sure that your dataset is free from noise and inaccuracies, making predictions on only a small
number of instances might not always be the best solution. If, for example, a prediction is based on only
one instance, predicting the class of that instance might be the best prediction you can make but you
can not be very certain about that prediction being right. On the other hand, if there are 1000 instances
which agree on the same class, it is safe to say that the prediction of that class for any new instance is
very likely true.
There exist multiple ways of dealing with this kind of uncertainty. It is possible to build a smaller tree
so that every region on which a decision is based on has enough instances and you can be more certain
about a decision. On the other hand, this can also reduce the accuracy of the respective model because
the model might generalize to the data too much. Another method which, among others, aims to reduce
uncertainty and error of single models is ensemble learning. Ensemble learning describes the process of
taking a number of models, often of the same type but usually trained differently in at least one aspect,
and making a final prediction based on the decision of each model. Thereby, it is often possible to reduce
the bias, i. e. the error of a machine learning model resulting from the model itself1, because the other
models are not making the same mistakes. Therefore, at least in theory, the correct decisions more often
than not outweigh the false decisions and the predictive accuracy of the ensemble is improved compared
to the single model. One such ensemble learning technique commonly used for decision tree learning is
random forests. In random forests, decision trees are built using a subset of the available data2. More-
over, additional randomness is included in the tree building process itself. Therefore, random forests
can combine the decisions of sufficiently different decision trees to usually achieve better classification
results than single decision trees. However, even if incorrect predictions of single decision trees within
random forests can be outweighed by the ensemble learning process, it nevertheless seems desirable to
reduce the weight of such predictions for the ensemble to make even less errors in those cases.
The basic approach of making predictions based on decision trees and within random forests is by cal-
culating the probability of the number of instances per class for each region. Thereby, a small number
of instances will in many cases not represent the true, unknown underlying probability. The goal of this
bachelor thesis is finding ways to reduce or model the amount of uncertainty, unlike the probability pre-
diction, in order to gain more appropriate predictions. Thereby, aggregated predictions too are supposed

1 This is in comparison to the variance which is the error resulting from noise or other flaws and inaccuracies of the data.
2 Some instances might be used multiple times, this process is called bagging.
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to be more accurate because it seems to be logical that predictions based on less instances should not be
weighted equally to predictions based on a large number of instances. Put another way, this thesis aims
to find and evaluate alternative prediction methods which, based on a region in a decision tree, get as
input a number of instances with the respective class and the instance numbers itself and return some
kind of prediction value.
To keep the extent of this thesis reasonable, only binary classification3 is considered. The prediction
methods of this thesis are divided into two families. A (single) decision tree prediction describe any
prediction which can be applied on a single decision tree. This means that when comparing different
prediction values of different decision trees you get a ranking or maybe even some kind of probability
estimation of the respective class. In comparison to single decision tree prediction, the other family of
prediction methods is aggregating predictions. Those describe methods which can only be used in an
ensemble because they need multiple classifiers to come up with a final aggregated prediction. One of
the more simple examples is taking the average over a number of predictions but there are also more
complex method you can think of.
The structure of this thesis is as follows. In Chapter 2, I introduce the general machine learning founda-
tions necessary to understand the following chapters of this thesis. Moreover, background on probability
distributions and belief functions is given. All single prediction methods, i. e. prediction methods
which can be applied on a single decision tree, are introduced in Chapter 4. Prediction methods which
make predictions based on multiple decision trees are described in Chapter 5. Thereby, some aggregation
methods in Chapter 5 can be used to combine outputs from methods of Chapter 4. Afterwards, Chapter 6
explains which datasets are used to test the methods and states the setup of the experiments. Chapter 7
shows and interprets the results of those experiments. Final remarks and possibility for future research
are given in Chapter 8.

3 Classification, where there are only two possible labels to choose from. For simplicity, those can always be called positive
and negative.
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2 Foundations

This chapter covers the foundations necessary to understand this thesis. First, a general introduction to
machine learning in regards to the term “learning” is given (2.1). Afterwards, the basic properties of
classification (2.2), evaluation (2.3) and the foundations of error and uncertainty (2.4) are presented.
The following sections (2.5, 2.6 and 2.7) in this chapter are necessary foundations for one or more
prediction strategies proposed in subsequent chapters. Lastly, information about decision trees (2.8),
ensemble learning (2.9) and random forests (2.10) is given.

2.1 Machine Learning

In machine learning, instead of strictly following a predefined behavior as specified by the programmer,
the behavior of application software is learned by the machine learning algorithm itself. What “learning”
in this context means is well described by the following quote, “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.” (Mitchell, 1997). Thereby, the machine
learning algorithm is used to train a machine learning model by learning from the experience in the
specified task. But because the algorithm does not simply know which learned behavior is “good” or
“bad”, a performance measure is necessary to tell the algorithm which behavior is beneficial for the
specified task. The idea is that the more experience is available, the higher the performance achieved by
the resulting machine learning model, which was generated using the machine learning algorithm, is.
Therefore, it is very important to specify a suitable performance measure for the respective task.

2.2 Classification

Machine learning is a big field with multiple different tasks. One such task, which is covered in this thesis,
is classification. Machine learning classifiers are built on a (preferably large) data set, which consists of
features and classes1 as experience for the training process. When there are only two classes to be
predicted, the process is called binary classification. Besides labeled data where each entry is assigned
a class, there is also unlabeled data where each entry only consists of features and the respective class
is unknown. Here, the goal of classifiers is to recognize patterns in the labeled data, which therefore is
used as training data, to then apply the so learned model to the unlabeled data in order to predict the
class of new, unlabeled data. There are many different ways to train a classifier, so a good performance
measure is needed to efficiently and successfully complete the training process. However, it is important
to evaluate the performance of a classifier based on its performance on new, unseen data instead of the
training data. Otherwise, the classifier might just root learn every instance of the training data to achieve
perfect predictions on the training set while not scoring great results on new data2 which would be more
useful. But because you can not tell how well a classifier performs on data where the class is unknown,
parts of the available labeled data are often used to determine the performance of the classifier. This
part of the data is called test data. Then, the accuracy metric can be used to assess the performance of a
classifier:

accuracy=
number of correctly predicted instances

total number of predictions

1 Also “labels” or “class-labels”.
2 This behavior of learning to closely to the training data and thereby achieving worse results on new data is called

overfitting. The opposite, not learning enough from the training data, is called underfitting.
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Keep in mind that an accuracy of 50% for binary classification is not better than randomly guessing the
label for each instance3. Therefore an accuracy as high as possible (close to 1) is desirable. However,
since data itself can be incomplete or contain too much noise, it can be impossible to achieve perfect ac-
curacy (accuracy = 1) for classifiers based on the given data sets. Which accuracy should be considered
“good” or “bad” must then be decided depending on the available training data as well as the application
task.

2.3 Evaluation

Another, sometimes more useful tool to measure the performance of a classifier is receiver operating
characteristic (ROC) curves. Here, not the predicted classes but the predicted values are considered (for
example the probability of the positive class). Now, you can plot those values with regard to the true
classes to find out more about the behavior of your classifier on the data. Figure 2.1 shows an example
of a ROC curve. There, you notice that a trade-off between the true positive rate (instances which are
classified as positive and are actually positive) and the false positive rate (instances which are classified
as positive but are actually negative) is shown. Now, only using the base classifier on which the ROC
curve is built, you can choose any point of the curve as a threshold for classification. Going back to the
probability example, this means that you not only can predict the positive class if the probability is above
50% (negative class otherwise) but you could also predict the positive class if the probability is above
30%. In that case, you would classify more instances as negative, thereby reducing the true positive rate
and improving the false negative rate. Another example is classifying every instance as positive. Here,
the true positive rate would be 1 but the false positive rate would be 1 as well4. All in all, the output
values of a classifier are better (regardless of whether a high true positive rate or a low false positive
rate is more important) whenever the ROC curve is more close to the top left corner (ideal point, zero
error) than to the bottom right corner (worst point, full error5). In other words, the area under the
curve (AUC) can be used to assess the quality of a classifier. The advantage of the AUC compared to the
ROC curve is simply that it makes comparing multiple curves much easier (higher AUC indicates a better
classifier performance).

Another helpful tool for the evaluation of classifier performance is cross-validation (Kohavi et al.,
1995). When applying cross-validation (CV), or more generally speaking k-fold cross-validation, the
data (training data and test data) is split into k equally large portions. Then, k − 1 portions are used
to train the model and 1 portion is used to test the model (for example by calculating the accuracy).
This process is repeated k times, so that there has been tests on every portion of the data. For example,
if you use k=2 (2-fold CV), you build the model on one half of the data and test it on the other half.
Afterwards, you build a new model on the former test data (which hereby turns into the training data)
and test it on the former training data (which now is the test data). The average of both results is used
as the result of the evaluation.

2.4 Error and Uncertainty

When a model does not perform as well as it was hoped for or even if a model performs completely fine,
you still would like to know why the model performs as well as it does. While this question in general is
3 Furthermore, always predicting one class can actually result in accuracies above 50% if the class ratio of the dataset is

not balanced. Therefore, you should always look at accuracy values differently given the problem.
4 In this case, the classifier would not be very useful because the positive class is predicted all the time.
5 In fact, you can argue that in case of the bottom right corner you only have to switch the prediction of the positive and

negative class to gain perfect performance. This is not wrong and as a result you can also argue that the blue linear line
in the middle (Figure 2.1) is the worst possible ROC curve. However, correctly implemented classifiers usually have a
performance between random and perfect (not worse than random). Therefore, the original argumentation also makes
sense.
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Figure 2.1: Here, an example of a ROC curve is shown (the classifier is a decision tree). The example
uses a dataset (magic telescope) and a prediction method (Prior1,1) which are also part of the
experiments later. However, the purpose here is only demonstrating how ROC curves look
like.

quite complex and difficult to answer, there are also some easier ways to describe or categorize the lack
of performance of specific models. First of all, error in machine learning is used to describe the mistakes
the machine learning model makes. One way to be more specific about the error of a machine learning
model is by taking a look at bias and variance. The bias describes the part of the error which is a result
of the machine learning model and is high if the model underfits the training data. Contrary to the bias,
the variance is used to describe the part of the error which results from the training data itself. Variance
in the training set can, for example, be a result of measurement errors or inaccuracies. The variance of
a machine learning model is high if that model overfits the training data and therefore also the noise
contained in it. Because you want the error in machine learning models to be as low as possible, you
want to decrease the sum of bias and variance. Thereby, you have to deal with the bias-variance trade-
off. This trade-off describes that models with a low bias often have a high variance and models with a
low variance often have a high bias. This makes sense when thinking about the learning process. If the
machine learning algorithm only learns very basic properties of the data, the model will probably have a
high bias because not enough information of the training data is used but a low variance because noise
in the data will probably be mostly or completely ignored by the model. Now, when utilizing more in-
formation about the data (maybe by taking more features into account), a more complex model is built.
Therefore, this model will represent the data better and therewith have a lower bias. On the other hand,
the variance will be more significant because noise in the data will probably not be ignored as much
as before. For these reasons, the goal of such machine learning algorithms is to find the best possible
trade-off between bias and variance.
Another important aspect related to machine learning mistakes is the concept of uncertainty. For ex-
ample, imagine two different machine learning classifiers, which are given the task to classify a new
instance. For this example, we assume that both classifiers not only return a prediction (the predicted
class), but also the probability for the respective class. Now imagine that the first classifier C1 predicts
class a with a probability of 99% and the second classifier C2 predicts another class b with a probability
of 55%. It is clear, that (without any further information) the prediction of C1 is to be preferred and that
it is overall more likely for the new instance to be part of the class a. This example should show that
certainty and uncertainty about predictions in machine learning can be very important. Furthermore,
you can also define different kinds of uncertainty in order to be able to make even better statements
about the quality of a prediction.
One way of doing so is distinguishing between aleatoric and epistemic uncertainty (Hüllermeier, unpub-
lished). Aleatoric uncertainty is randomness which is inherent to the problem or region and can not
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easily and most of the time not at all be reduced. Epistemic uncertainty on the other hand refers to a
lack of knowledge. Usually, it is possible to reduce the epistemic uncertainty of a problem by gathering
more data. Let us consider the coin toss example. If you know the probability of the coin (for example,
it is perfectly fair), than there is zero epistemic uncertainty in making a prediction about the outcome.
However, there is a high aleatoric uncertainty because both results are possible (equally likely for a fair
coin6). One the other hand, if you get a new coin and you want to find out if it is fair or what the
probability of either side is, then there also is a degree of epistemic uncertainty. Now, you can reduce the
epistemic uncertainty incrementally by tossing that coin repeatedly until you can be relatively sure about
the probability of getting either result (heads or tails). For decision trees, that translates to smaller leafs
having a higher epistemic uncertainty than larger leafs and leafs with a class ratio around 50% having a
larger aleatoric uncertainty than leafs with a class ratio around 0% or 100%.

2.5 Probability Distributions

Probability is an important topic in machine learning. Because in most cases it is not possible to achieve
perfect machine learning predictions, it is necessary to make statements about the certainty and uncer-
tainty of predictions. This is possible by applying probability theory. In decision tree learning, probability
is often used to determine the quality of the prediction and it also can be used to evaluate the perfor-
mance of a decision tree (you can interpret the accuracy as the probability that the classification of any
new instance is correct).
In probability theory, probability distributions are used to describe the probability of an event in an
experiment. There are two kinds of probability distributions, discrete and continuous probability dis-
tributions. In discrete and continuous probability distributions, the probability mass function (pmf) or
the probability density function (pdf), respectively, can be used to determine the probability that an
outcome of the modeled experiment takes a specific value or is in a specified range considering the re-
spective distribution. A pmf in discrete probability distributions thereby assigns a probability to every
possible outcome (finite) while the pdf in continuous distributions can be used to determine the prob-
ability that an outcome lies in an interval7. Discrete probability distributions are used when there is a
finite number of possible events. Thereby, each event is assigned a probability. For example, the binomial
distribution is built based on an event, which can happen, or be a success with a probability of prob. The
distribution is built over a number of tries t. The intuition behind the binomial distribution is, that every
trail is independent from each other and is a success with a probability of prob. Therefore, to achieve
k successes in t tries, which can happen in

� t
k

�

different ways, there needs to be k successes and t − k
failures, which can be calculated with probk(1− prob)t . Hence, the pmf of the binomial distribution is

Binom(k, t, prob) =
�

t
k

�

probk(1− prob)t (2.1)

So, there can be s = 0, 1, ..., t possible number of successes whereby the number of successes which are
close to the probability ( s

t ≈ prob) are most likely. An example of a binomial probabiliy distribution is
shown in Figure 2.2a.
Continuous probability distributions are not based on a finite number of events but on continuous val-
ues. When using continuous probability distributions, common use cases are “How likely is the value x
smaller than b?” or “How likely is it, that the value x is in between a and b?”. A continuous probability
distribution, which will be important for this thesis, is the beta distribution. In the beta distribution,
there are two parameters α and β which determine the shape of the beta distribution. The beta distribu-
tion can be used to estimate probabilities when the actual probability is unknown. The prior knowledge

6 In which case the aleatoric uncertainty is maximal.
7 With an infinite amount of possible outcomes (due to the continuity), every single outcome has a probability of zero.

Only intergrating over intervals results in probabilities.
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used to estimate the probability is represented by α and β . The higher α and β , the more precisely an
actual probability value can be estimated. The pdf on the beta distribution is

Beta(x ,α,β) =
xα−1(1− x)β−1

B(α,β)
(2.2)

B both in the beta as well as in the beta-binomial distribution denotes the beta function (Abramowitz
and Stegun, 1965).
The beta distribution is used in the beta-binomial distribution. Instead of a probability prob, the beta-
binomial distribution takes two parameters α and β8 (alongside t) to determine the probability distri-
bution. Thereby, the beta-binomial distribution takes a random probability from the beta distribution.
So for an increasing α and β with α

α+β −→ prob, the beta-binomial distribution converges to the binomial
distribution. For small values α and β though, the distribution is significantly less peaked. The pmf of
the beta-binomial distribution is as follows:

Beta-Binom(k, t,α,β) =
�

t
k

�

B(k+α, t − k+ β)
B(α,β)

(2.3)

Figure 2.2 shows a binomial as well as multiple beta-binomial distributions. You can see, that, even
though prob = 0.6 = 3

3+2 =
α1

α1+β1
, the beta-binomial distribution is much steeper than the binomial

distribution. This changes noticeably for α2 = 6, β2 = 4 and α3 = 30, β3 = 20 ( α
α+β = 0.6 for every α, β

pair).

2.6 Belief Functions

This part gives the background on belief functions. While most of the theory surrounding belief functions
seems to be based on "A mathematical theory of evidence”(Shafer, 1976), we will only explain the basic
information about this topic. The following introduction of belief functions is therefore oriented on
guided by the information on belief functions given in Quost et al. (2011) and Denœux (2006).
The so called frame of discernment Ω is a finite set which consists of all possible states of belief. The
mass function m : 2Ω → [0, 1] assigns a mass to every subset of Ω. It must hold that

∑

A⊆Ωm(A) = 1.
The mass of any subset A is not necessarily larger than zero but every A ⊆ Ω with m(A) > 0 is called a
focal set of m. Mass functions are normalized if ; is not a focal set. If there are no more than two focal
sets, one of them being Ω, a mass function is called simple (m(A) = 1− w and m(Ω) = w for A⊂ Ω and
w ∈ [0, 1]).
Such mass functions m can also be represented by their plausibility and commonality functions which
are, respectively, defined as follows:

pl(A) =
∑

B∩A6=;

m(B),∀A⊆ Ω, (2.4)

q(A) =
∑

B⊇A

m(B),∀A⊆ Ω. (2.5)

Combining two mass functions is possible by using Dempster’s rule of combination ∩ :

(m1 ∩ m2)(A) =
∑

B∩C=A

m1(B)m2(C),∀A⊆ Ω. (2.6)

An important disadvantage of Dempster’s rule of combination for this thesis is that it requires m1 and m2
to be independent and to not share parts of evidence. That also means that classifiers which are trained

8 Sometimes a and b is used instead of α and β .
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(a) Binom(k, 10, 0.6)
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(b) Beta-Binom(k, 10, 3, 2)
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(c) Beta-Binom(k, 10, 6, 4)
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(d) Beta-Binom(k, 10, 30, 20)

Figure 2.2: Here, examples of a binomial and different beta-binomial distributions are shown.

on overlapping datasets are not completely independent, even if they were trained using different algo-
rithms. Therefore, Dempster’s rule of combination does not seem well suited to combine such classifiers.
Moreover, decision trees in random forests also share parts of evidence (because data points are used
multiple times in multiple decision trees) and therby Dempster’s rule of combination is probably not a
good choice for combining decision trees in random forests.
For this reason, the cautious rule of combinations (cautious rule) was introduced (Denœux, 2006). The
idea behind the cautious rule is based on the Least Commitment Principle (Smets, 1993). This principle
states that, given two plausibility functions pl1 and pl2, pl2 is less committed than pl1 if

pl1(A)< pl2(A),∀A⊆ Ω.

Following the intuition behind a plausibility function pl(A) as "the maximum amount of potential specific
support that could be given to A" (Smets, 1993)9, the Least Commitment Principle states that, when
considering two belief function, the least committed one is the most appropriate. Without going into any
more detail about the derivation (you can refer to the quoted papers for that purpose), the idea behind
the cautious rule is finding the mass function m12 as a combination of m1 and m2 (therefore being more

9 For a better understanding: The plausibility functions contains the sum of all masses which share at least one element of
Ω, so one possible state. Therefore, any mass not contained in pl(A) does not share anything with A. So, the plausibility
functions give as much support to A as reasonably possible.
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informative than either original one). Applying the Least Commitment Principle, you choose the mass
function as the solution which is the least committed one out of the set of possible mass functions.
The calculation can be done by calculating the weight functions of m1 and m2 using

w(A) =
∏

B⊇A

q(B)−1|B|−|A|+1
, (2.7)

and combining those weight functions. Here, ∧ denotes the minimum operator.

w12(A) = w1(A)∧w2(A),∀A⊂ Ω (2.8)

Using this equation, the cautious rule of m1 and m2 is noted m1 ∧ m2 and given by

m12 = m1 ∧ m2 = ∩
A⊂Ω

Aw1(A)∧w2(A). (2.9)

2.7 Exploration and Exploitation

Another topic which at first glance does not seem very relevant for this paper is exploration and exploita-
tion. Often explained by the example of the multi-armed bandit problem, the core of this area is making
the best decision in an environment where you want to maximize some kind of score (reward) but you
lack knowledge about the environment. The multi-armed bandit problem can be seen as a problem,
where there are several slot machines and you want to choose the slot machine which maximizes your
profit. However, you do not know the chances of the slot machines. If one machine gave more profit
than another one after trying out both once, this does not guarantee that the second one is worse than
the first one because the performance is influenced by randomness. Now, the problem is making the
best decision when choosing which slot machine to use. Thereby, two factors need to be considered.
Exploitation describes the fact that slot machines which performed well in previous tries are more likely
to be profitable than those which did not. However, you do not want to exploit a machine which in fact
is worse but only was more profitable because of randomness which is why you also want to exploit the
other slot machines. Therefore, the upper confidence bound algorithm (UCB) was introduced which aims
to optimize the trade-off between exploration and exploitation (Auer et al., 2002).

2.8 Decision Trees

One common machine learning technique is decision tree learning. Thereby, a tree structure is used to
predict the class of a new instance by following the path according to this instance. Using the training
data, decision trees are built top down by choosing a feature on which the current node (starting at
the root) is split. At the beginning, all instances can be seen as contained in the root node. When
splitting a node on a feature, the node gains two or more child nodes, one for every possibility of the
split. The instances of the node which has been split are then divided accordingly and assigned to the
associated child nodes. This procedure can be repeated multiple times for every child node until either
the resulting child only contains instances of one class, in which case the prediction for this node can
not be improved further, there are no more feature to be split on, or another stop criterion is reached.
After that, predicting new instances is possible by following the decision path of the tree considering the
features of the instance to be classified. When reaching a node, a decision about the prediction has to
be made. The most common method is using the probability taken from the instances in that node. The
class with the highest probability is then predicted.
There is a certain terminology for trees and decision trees in particular, which will be important for
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understanding later parts of this thesis. Every node of a tree, which has no successor (no child nodes)
is called a leaf or a leaf node. The depth of the tree describes the maximum number of nodes in any
decision path starting from the root node going to a leaf. Thereby, the root node has a depth of zero,
children of the root node have a depth of one, their children a depth of two and so on. In order to assign
a depth to every node in the tree, this procedure can be repeated until all leaf nodes are reached. For
example, Figure 2.3 shows a simple decision tree with a maximum depth of three. The decision tree in
this example can be used to determine whether an animal is a bird, a cat, a dog, a dolphin, an elephant,
a fish or a spider. When classifying a new instance, the decision tree is traversed from the root node
(orange) to a leaf node (blue). At each node, starting with the root node, the test of the respective node
is performed and then the corresponding edge is followed to the next node. When a leaf node is reached,
a prediction is made based on the information in that leaf. Keep in mind that usually the prediction in
the leafs is based on the instances in that leaf. This is not shown in the figure here.
Pruning of a decision tree describes the process of simplifying the tree in order to avoid overfitting on
the training data. Among others, two common ways of pruning decision trees is restricting the growth
of the tree in the tree building process by specifying a minimum numbers of instances which have to be
contained in a node in order to construct a split resulting in that node or by specifying a maximum depth
of the tree. However, deciding how to set those and other decision tree parameters, can be a difficult
and time consuming task when looking for the best10 decision tree.
In this thesis, the focus is on binary classification and therewith on binary decision trees. An example
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Figure 2.3: Simple example of a decision tree.

of a binary decision tree is shown in Figure 2.4a. Instead of classifying between different animals, this
decision tree only decides if an instance is a mammal or not. Because we know that every pet in our
example (not in reality) is a mammal, the Barks node of the decision tree in Figure 2.3 can be omitted.
Note, that, since there are only two possible labels, different leafs will predict the same class.11 Here,
the classes of binary classification will be seen as positive and negative (for simplicity) and the colors
green and red, respectively, will be used to represent these classes. Besides Figure 2.4a, Figure 2.4b
shows how a pruned decision tree12 might look like. In this example, the decision tree was built on a
training set containing one instance of every animal of the previous example13. One pruning strategy
which could have resulted in that tree (instead of the unpruned tree of Figure 2.4a) is restricting the
maximum depth to 1. In this example, the instances of the training set (here, there are only seven train
instances, which is far less than should be used in an actual machine learning model) are split among
all leafs of the decision tree. The instances in the respective leaf then determine the prediction made
10 Again, it should be noted that the “best” classifier or decision tree can vary even within the same task depending on the

evaluation technique.
11 That is not unusual but it is stated here explicitly so that the reader does not get the wrong idea from the first example,

where this is not the case.
12 Alternatively, this tree can be seen as the decision tree in Figure 2.4a but still in creation after constructing the first split.
13 Which is one bird, one cat, one dog, one dolphin, one elephant, one fish and one spider, so a total of seven training

instances.
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for that leaf. In this example, a probability of 33% in favor of the positive class would be predicted for
the first (left) leaf, a probability of 75% in favor of the positive class for the second (right) leaf. Because
the class distributions in the leafs are not distinct, this decision tree does not have an accuracy of 100%
on the training set but it might generalize better to unseen data. For example, hamsters are classifiyed
correctly by the smaller tree but not by the first one. This also shows how important it is to have a large
amount of representative data in order to train a good model.
Furthermore, it should be said that there are a couple of important decision tree algorithms which can be

Number of legs ≥ 4

Has feathers

Has gills

Mammal No Mammal

No Mammal

Pet

Size > 2 meter

No Mammal Mammal

Mammal

False

False

False True

True

True

False

False True

True

(a)

Number of legs ≥ 4

1 positive
2 negative

3 positive
1 negative

False True

(b)

Figure 2.4: Figure 2.4a shows an example of an unpruned binary decision tree. How a pruned decision
tree for the same data could look like is shown in Figure 2.4b.

used for machine learning classification. An introduction to what are probably the most popular decision
tree algorithms, ID3, C4.5, and CART is given in Gupta et al. (2017). In addition to listing advantages
and disadvantages of these algorithms, this paper also contains information about the attribute selection
measures entropy, information gain, gain ratio, and gini index which, when building the decision tree,
can be used to determine the best split of the data in a decision tree node. The decision tree algorithms
and attribute selection measures are not well explained within this thesis because this thesis aims to
explore how a prediction of a new instance in a decision tree can be improved in order to achieve a
better overall prediction in random forests. Therefore, for this thesis, we assume that the decision trees
and the decision tree structure are fixed and we do not try to improve the decision tree learning but the
decision tree classification (prediction) process. For that, comprehensive knowledge about the decision
tree building process is not necessary.

2.9 Ensemble Learning

In machine learning, particularly in classification, we want to achieve the best possible accuracy. There-
fore, many methods exist which can help to improve the performance (i. e. accuracy) of a model when
using machine learning algorithms. One such technique is ensemble learning. "Ensemble learning refers
to learning a weighted combination of base models of the form

f (y|x ,π) =
∑

m∈M
wm fm(y|x)

where the wm are tunable parameters." (Murphy, 2012) Here,M ist the set of classifiers in the ensem-
ble, fm(y|x) is the prediction of the instance x for class y made by the classifier m and π is a parameter
vector. Less formally, ensemble learning describes the process of using the outputs of multiple machine
learning models (for example classifiers) in order to aggregate those to one final prediction. The idea
is, that using multiple models which all by themselves have different errors in different regions of the
data, makes it so that those error regions of one specific model will be overshadowed by the aggregated
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prediction of the ensemble (the set of models used for ensemble learning is called ensemble).
For example, a very trivial but nevertheless quite effective way of applying ensemble learning is by av-
eraging the predictions of the ensemble. When looking at the definition given by Murphy above, the
average would correspond to the case of wm =

1
|M|∀m. Another possibility is using the best prediction

of the ensemble. In that case, the weight for the best prediction w∗m is w∗m = 1 and the weight for every
other prediction is wm = 0,∀m 6= m∗.
When applying ensemble learning, some things should be considered. First of all, ensemble learning al-
ways comes at the cost of runtime and storage requirement. If you use n models, you need n times more
runtime14 and storage than if you are simply using one model. Therefore, you want the ensemble to be
worth the effort. But if we now image using ensemble learning on top of our machine learning model
to achieve better results, we might have the problem that our models are very similar or even identical.
Especially in the latter case we have an extra cost but no improvement in performance. That should
make clear that we would like the models to be different in some ways because otherwise ensemble
learning is superfluous. How you achieve that can vary for different machine learning algorithms. Some
might even contain a significant amount of randomness in which case it could be enough to use different
random seeds to get models with varying performance in different regions of the data. However, there
also exist different methods which are not as model specific. If you have enough data, you might con-
sider splitting the data in n parts, and training n different models on one part of the data each, thereby
getting n different models. The idea is that, if there is enough data available, the different models will
each capture a large part of the data and make errors in different regions. Therefore, ensemble learning
will improve the overall performance. However, you want to train your model on a large amount of data.
Having enough data can be a problem in any case but this problem is amplified when only using 1

n of the
training data.
Another, more data efficient way of training your models is bagging (Breiman, 1996). Bagging15 de-
scribes the procedure of using different parts of the same data set to train a set of different models
on that datasets. Thereby, every model draws data from the dataset "at random, but with replace-
ment" (Breiman, 1996). Therefore, any datapoint might be in the training set for any classifier either
once, not at all, or even multiple times. Breiman showed that bagging is a useful method which can help
to increase the accuracy when using machine learning.

2.10 Random Forests

Random forests are an ensemble learning technique based on decision trees. Basically, random forest
use a number of decision trees in order to derive an overall prediction based on the single decision tree
predictions. As stated before in 2.9, the models within an ensemble should be different in some ways in
order for the ensemble to add value to the aggregated prediction. Random forests achieve that in two
ways. Firstly, bagging is applied to train different decision trees on different parts of the data. Secondly,
the trees are built in a more random way than usual by selection some features at random. This inserts
more randomness in the single decision tree building process which makes the random forest ensemble
more effective. As a result, random forests are a powerful machine learning method which can achieve
good performances in machine learning and particularly improve upon single decision trees (Breiman,
2001).

14 One advantage of ensemble learning is that it is possible to to increase the runtime as much because you can parallelize
the classifier in the ensemble.

15 Short for "bootstrap aggregating", for more details see Breiman (1996).
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3 Related work

The problem in Ceolin et al. (2011) is that there is a high uncertainty in a decision when the population
the decision is based on is too small. When deriving a probability from a small number of samples, you
should not assume that the resulting probability is representative of the actual probability, “Flipping a
coin twice, obtaining a heads and a tails, does not guarantee that the coin is fair, yet.” (Ceolin et al.,
2011). What is done in this paper is deriving the probability from the beta distribution where the param-
eter α and β are taken from the samples but additionally increased by one. This way, a higher sample
count is needed in order to approximate the directly derived probability. This can also be seen as using
the Beta-Binomial distribution and comparing it to the Binomial distribution.
The Laplace estimation or Laplace correction was suggested by Provost and Domingos to be the best way
of getting probability estimates of decision trees. Thereby, instead of using the calculated probability p

N ,
where p is the number of instances of the respective class and N is the total number of instances of that
leaf, the Laplace correction provides a smoothed estimation by predicting a score of p+1

N+C (C being the
number of total classes). It was also stated that larger trees give better result for probability estimation
and that the Laplace correction works well on those trees. Furthermore, using bagging with decision trees
for probability estimation never worsened but potentially improved the results of probability estimation.
Another paper goes into detail as to why random forests perform well (Wyner et al., 2017). Here, random
forest are compared to AdaBoost, a very successful machine learning algorithm where an improvement
is achieved over multiple iterations. Thereby, AdaBoost adapts the model to improve accuracy on those
instances which were classified incorrectly by the previous iterations (Freund et al., 1999). Moreover,
based on empirical observations, Freund et al. stated that AdaBoost does not overfit even for many
iterations. Wyner et al. argue that random forest behave similarly. Therefore, they introduced the in-
formal notion of spiked-smooth. Thereby, spiked describes the behavior of classifiers adapting to small
regions like noise points and smooth refers to this behavior being achieved by averaging. In other words,
a spiked-smooth decision surface can be a result of averaging multiple classifiers which perfectly fit their
respective data. Thereby, spiked-smooth classifiers fit noise of the data but only locally in very small
regions. Therefore, overfitting should not be a large problem because the extreme localization of noise
points makes it so similar data points are not classified as the noise points but as the region around them.
All in all, AdaBoost as well as random forest are, according to Wyner et al., not (or at least only slightly)
affected by overfitting.
Considering probability estimation, Možina et al. argue that rule learning algorithms (therefore includ-
ing decision trees) are to optimistic when building models. If you were to find out the probability of a
region (for a single rule), you could determine those by calculating s

n where s is the number of positive
examples and n is the number of all examples. However, it is argued that rule learning tends to be
overly optimistic on that ratio. Since rule learning aims to find regions with a distinct (0% or 100%)
probability, it might happen that rules are chosen in a way that pure regions are discovered even though
those regions are not actually representing the computable probability s

n . However, those rules can be
a result of random patterns in the data and not of the actual underlying probability. For this reason,
Možina et al. introduced an algorithm to determine es which describes the expected value of s. Using es,
it is possible to calculate a probability estimation of a region which is not as optimistic. They conclude
with mentioning that such corrections might be beneficial for probability estimation on some machine
learning algorithms which behave similar as rule learning such as decision tree learning.
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4 Decision Tree Prediction Methods

This chapter covers prediction methods which can be used in place of what is usually the probability. As
is the goal of this thesis, the proposed prediction methods aim to take the number of instances used for
the prediction into account. Therefore, for this chapter we define p as the number of positive instances
in the leaf and n as the number of negative instances in the leaf. So, to make a prediction of the class
of the instance i, this instance i will be assigned to a leaf in the decision tree. Based on the number of
positive instances in that leaf (p) and the number of negative instances in that leaf (n), the prediction of
i is made.
Please note, that the formulas in the different approaches calculate the prediction value in favor of the
positive class. The prediction value for the negative class can be calculated by simply swapping p and n
in the respective formula.
First, the probability approach is explained in more detail (4.1), then a prediction method which strongly
takes the number of instances into account is presented (4.2). The following prediction methods are
based on different ideas, namely prior information (4.3), UCB (4.4), belief functions (4.5) and probabil-
ity distributions (4.6).

4.1 Probability

Using the probability is what is usually done when making predictions from decision trees. Since the goal
of this thesis is improving upon this probability approach, it is worth shortly explaining how probability
is applied in decision trees in order to make appropriate comparisons afterwards. The probability is
calculated as follows:

Probability(p, n) =
p

p+ n
(4.1)

As stated previously, you can see that the probability stays constant if the number of positive and nega-
tive instances increases proportionally. The behavior of the probability function can also be seen more
precisely in Figure 4.1. Here, as well as in the figures of the following sections, there are two types
of graphs. The first type of graph only shows one function, which is plotted based on the number of
instances p and n which are increased in a constant relation p

n whereby p and n are non-negative inte-
gers1. So for those type of graphs, we start with the smallest values p and n which fulfill the relation
and plot the corresponding value. Then we plot 2 · p and 2 · n with the corresponding value and we
continue like that until x · (p + n) > 100 because we only plot the graph until 100 instances. We stop
at 100 because with an increasing amount of instances, the uncertainty (at least the epistemic part) will
decrease. Therefore, for the motivation of this thesis, it is more important to achieve good results for
lower number of instances. The other type of graph uses the relation of p and n itself, so basically the
percentage of positive instances. Using this class ratio (basically the underlying probability), instances
are generated. This results in more or less varying graphs because for different graphs different values
are generated. For example, given a class ratio of 3

4 (0.75%), the first ten instances might all be positive,
therefore not really representing the underlying probability. On the other hand, this behavior is the same
in actual datasets. Due to noise or just randomness in general, the instance representation does, most
of the time, not approximate the actual probability of this region well. To get a better understanding of
this, the graphs of this type are built on 1000 different instance sets based on the class ratio. For every
graph shown in this chapter, an underlying probability of 75% is used. Every graph is shown (light blue).

1 While some methods support p = n = 0, other methods like the probability are not defined on p = n = 0. Since we are
never dealing with empty leafs, p + n > 0 always holds and that case is not a problem. Whenever it is undefined, no
value for that case is calculated and therefore no value for that case is shown in the graph.
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The red line in those graphs shows the average of all graphs, which should therefore be similar to the
corresponding graph of the previous type. The green lines show the 0.1 and 0.9 quantile and the purple
lines show the 0.25 and the 0.75 quantiles. With the help of those colored graphs, it is easier to make
statements about the behavior of the respective methods.
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Figure 4.1: Probability. The very simple behavior of this graph makes sense, since the graph assumes a
constant probability. The right graph uses randomly generated values according to the prob-
ability of 0.75. It can be seen, that especially for small number of instances, the confidence
using probability can be significantly to high or to low. For high instances numbers, the results
seem reasonable.

4.2 Linear Prediction

One way to directly take the number of instances into account is to use the difference between the
number of instances of the positive and of the negative class.

Linear(p, n) = p− n (4.2)

Since the difference between the positive and the negative instances determines the strength of the
resulting value, more instances with the same class ratio are valued higher than less instances. While
this fulfills the motivation of this thesis, one might argue that it is not a good property of this approach
that a leaf l1 = (p1, n1) = (5,0) results in the same value as another leaf l2 = (p2, n2) = (505,500).
You could say that l1 is in favor of the positive class while l2 is pretty much even. This is a result
of the inability of this approach to distinguish between the uncertainty of the prediction based on the
number of instances (epistemic uncertainty) and the uncertainty which is a result of the underlying data
distribution (aleatoric uncertainty). In the previous example, it seems likely that a prediction resulting
in l2 has about equal chances of being positive or negative, so you can be pretty sure that even the
actual probability of instances in that leaf is about 50%2. For l1 on the other hand, if you had to make a
prediction, you would predict the positive class because we have only seen a couple of positive but not
one negative instance. Still, the small number of instances on which this prediction is based also means
that the certainty of this prediction is not very high.
Another important notion is that, compared to most of the other prediction methods, linear prediction
does not return a value in [0,1] but any natural number depending of the number of instances. This
might be worth keeping in mind when looking at aggregation strategies.

2 We are looking at a leaf with 1005 instances, so it is safe to assume that the difference between the actual probability
(unknown) and the calculated probability ( 505

1005 ≈ 50%) is not particularly large.
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Figure 4.2: Linear. As per definition, the linear-prediction graph increases linearly with the number of
instances (more precisely, the difference p − n). An important property of this approach is,
that a higher number of instances results in a higher prediction value which is easy to see on
both plots. However, the variance actually increases with more instances.

4.3 Prior Based Prediction

As described before, the beta binomial distribution takes prior knowledge into account. Inspired by this
procedure, you can think of a prediction method utilizing prior knowledge. So instead of deriving a
prediction from (p, n) only, you might be able to reach more accurate predictions using

p+pprior
p+pprior+n+nprior

.
Obviously, the question remains how pprior and nprior should be set. To allow for an intuitive under-
standing of the method names, we will call those methods Prior prediction methods. In this thesis, two
suggestions for choosing the prior values are made. The Prior1,1 prediction3 uses pprior = 1 and nprior = 1,
resulting in

Prior1,1(p, n) =
p+ 1

p+ 1+ n+ 1
=

p+ 1
p+ n+ 2

(4.3)

In comparison to probability, this approach only slightly changes the resulting value for large p and n.
For small values, the difference is more significant. As a result, this formula achieves the motivation of
this thesis in a rather simple way. The more instances are available for the prediction, the closer the
predicted value comes to the probability value of Probability(p, n) = p

p+n . For example, for one positive

and no negative instance Probability(1,0) = 1 but Prior1,1(1, 0) = 2
3 whereas for 100 positive and zero

negative instances, Probability(100, 0) = 1 and Prior1,1(100, 0) = 101
102 ≈ 1. You can see this behavior and

thereby the difference to the probability prediction in Figure 4.3
The second prior based formula suggestion uses the instances of the prior node of the decision tree path
as prior information.

Priorprev-node(p, n) =
p+ pprior

p+ pprior + n+ nprior
(4.4)

where pprior and nprior are the number of positive and negative instances, respectively, which are taken
from the predecessor of the leaf node. Note that this strategy is similar to using the previous node
with the probability function, only with the difference that the instances which also reach the leaf are
weighted twice (p <= pprior and n<= nprior). This method can be seen as a compromise between taking
the probability of the leaf node and taking the probability of the previous node (reducing the depth of

3 Prior1,1 can also be reffered to as the Laplace correction (Provost and Domingos, 2000) and is not a new method. However,
I will stick to the name Prior1,1 because of the connection to the other Prior method in this chapter.
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Figure 4.3: Prior1,1. Here, the prediction starts at 0.5 but converges fast to the underlying probability of
75%. While this is very similar to the probability prediction, for small number of instances the
spread of the graph is significantly smaller.

the tree by one for the respective prediction). How the Priorprev-node prediction method might look like
can be seen in Figure 4.4.
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Figure 4.4: Priorprev-node. Here, pprior = 30 and nprior = 20. Keep in mind that the previous node (pprior =
30 and nprior = 20) in reality can not be smaller than the leaf node. This is not taken into
account here, because pprior = 30 and nprior = 20 are constant. Moreover, previous leafs can
be very different so this graphs should be treated with caution.

4.4 UCB Inspired Prediction

The idea behind UCB was presented before. Here, this adaptation of the UCB formula is following the
idea of exploration and exploitation in order to get a method which lets us make predictions based on
decision tree leafs. In comparison to the multi-armed bandit problem though, we can not increase our
knowledge of the instance distribution in the leafs, so the terms of exploration and exploitation have to
be interpreted slightly differently.
Exploitation describes the probability of one class compared to the other class. So if we want to be
secure about the prediction, the probability should be as close to 1 or 0 for the positive or negative class
as possible. Looking at multi-armed bandits, a high exploitation value indicates that this decision had
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good results up to this point so it might be a good idea to pursue that decision. For the decision tree
prediction, the reasoning can be understood similarly. Training instances which reached a leaf showed
that is it more or less likely for instances of that sort to be classified as the specific class when they follow
the same decision path. On the other hand, exploration can be seen as an uncertainty about the decision.
The idea is that leafs with a high number of instances can be seen as if they had frequently been explored
in the past. Therefore, in this decision tree based approach, we say that the exploration is small when a
prediction is based on many instances and vice versa. The resulting formula looks as follows:

UCB-DT(p, n) = Probability⊕(p, n) +α

√

√ ln (nall)
p+ n

(4.5)

where nall is the overall number of instances used in the training process and α can be set at will. Now,
we could choose an α value to determine the quality of the leaf. But instead of doing so, we suggest
calculating the α value for a specified scenario and using that value as the degree of confidence of this
approach. The idea is that for p > n we have two exploitation values, Probability⊕(p, n) ∈ [0.5, 1] and
Probability	(p, n) = 1 − Probability⊕(p, n) ∈ [0,0.5]. We now want to calculate the α value for which

Probability⊕(p, n)− α ·
r

ln (nall)
p+n = Probability	(p, n) + α ·

r

ln (nall)
p+n . If n > p, the same formula applies,

but with switched classes of positive and negative. Note that for p = n the value of α is zero. With this
information you can calculate α:

Probability⊕(p, n)−α

√

√ ln (nall)
p+ n

= Probability	(p, n) +α

√

√ ln (nall)
p+ n

Probability⊕(p, n) = Probability	(p, n) + 2α

√

√ ln (nall)
p+ n

Probability⊕(p, n)− Probability	(p, n) = 2α

√

√ ln (nall)
p+ n

Probability⊕(p, n)− Probability	(p, n)
2

= α

√

√ ln (nall)
p+ n

Probability⊕(p, n)− Probability	(p, n)

2
r

ln (nall)
p+n

= α

α=
Probability⊕(p, n)− Probability	(p, n)

2
r

ln (nall)
p+n

(4.6)

The larger α, the higher the confidence in the prediction. Since α only represents the confidence in the
prediction, it still needs to be combined with the actual prediction. The prediction then is

UCB-DT(p, n) =







α, if p > n
−α, if p < n
0, if p = n

(4.7)

What the formula looks like in use can be seen in Figure 4.5.
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(d) nall = 100000

Figure 4.5: UCB. Here, graphs of different values of nall are shown. The prediction value increases for
more instances, but slower than linearly. It can also be seen, that the third and fourth graph
look like the second one, but decreased by a constant factor. This might indicate, that the
value of nall does not matter when comparing prediction values, as long as it stays equal for
all predictions.

4.5 Plausibility

A paper by Hüllermeier is based around the distinction of aleatoric and epistemic uncertainty. By combin-
ing the set based approach around belief functions and probabilistic arguing, another prediction method
can be created.
We want to find out the plausibility π for a class or model. First of all, the plausibility describing how
likely it is that any classifier h ∈H fits the data can be described as

πH (h) =
L(h)

suph′∈H L(h′)
=

L(h)
L(hml)

, (4.8)

where hml ∈ H refers to the maximum likelihood estimation calculated on the data of the problem.
For any classifier h, we can determine the degree of support of an instance x0 for any class in binary
classification (for example the positive class ⊕) by

π(⊕|h, x0) = max(2h(x0)− 1, 0) (4.9)

We can see that we only get support if h(x0) > 0.5 which makes sense because if that is not true, the
respective other class is more likely. Now, we can get the plausibility of the positive class considering an
instance x0 using the formula

π(⊕, x0) = suph∈Hmin(πH (h),π(⊕|h, x0)) (4.10)
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The respective formula for the negative class (	) can be defined analogously.
Following this idea, Hüllermeier introduces a formula which can be used for machine learning based on
instances of two classes. For decision trees, we can again see p as the number of positive instances of a
leaf and n as the number of negative instances of that leaf. Hereby, we get the formulas for π

π(⊕) = sup
α∈[0,1]

min

�

αp(1−α)n

( p
p+n)p(

n
p+n)n

, max(2α− 1,0)

�

π(	) = sup
α∈[0,1]

min

�

αp(1−α)n

( p
p+n)p(

n
p+n)n

, max(1− 2α, 0)

� (4.11)

Coming back to the concept of aleatoric and epistemic uncertainty, we can now derive those values.

ue =min(π(⊕),π(	)) (4.12)

ua =min(1−π(⊕), 1−π(	)) = 1−max(π(⊕),π(	)) (4.13)

That makes it possible to derive the preferences of the positive and the negative class.

p⊕ =







1− (ua + ue), if π(⊕)> π(	)
1−(ua+ue)

2 , ifπ(⊕) = π(	)
0, else (π(⊕)< π(	))

(4.14)

We can now also derive the preference for the negative class

p	 = 1− (p⊕ + ua + ue) (4.15)

and see that

p⊕ + p	 + ua + ue = 1 (4.16)

Thereby we have one measure for the positive and the negative class each and we can also determine
the aleatoric and the epistemic part of this leaf (p, n). While p⊕ is not considered a plausibility itself, we
will call this approach the Plausibility prediction because it uses the concept of plausibility. Since there is
no other method using plausibilities, there is no danger of confusion and this name can be chosen. This
leads us to our formula for the prediction

Plausibility(p, n) = p⊕ (4.17)

where p⊕ is calculated as explained above. How this whole Plausibility approach (Hüllermeier, unpub-
lished) can behave is visualized in Figure 4.6.

4.6 Confidence Bounds

Another way for assessing the confidence in a prediction based on instance counts is taking a look at
probability distributions. The idea is to build a probability distribution on the leaf, which is used to
predict the instance. Therfore, the number of positive and negative instances in that leaf are available
to be used when building the distribution. Now, you can build a probability distribution for the other
class by simply swapping the values of p and n. Doing so will create two probability distributions, one
for every class, which can now be used to find out how likely it is that one class should be preferred (and
by how much).
Following this idea, one way to measure the similarity between the distribution of both classes is by
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Figure 4.6: Plausibility prediction. The upper left graph (4.6a) shows how the components of the prob-
ability approach behave (uncertainty is the sum of aleatoric and epistemic uncertainty). The
upper right graph (4.6b) shows how p⊕ settles down around 0.6, the bottom left (4.6c) shows
how the epistemic uncertainty decreases and the bottom right graph (4.6d) shows how the
aleatoric uncertainty first increases and than settles around 0.4.

taking the shared are of both distributions. For example, in discrete distributions this can be achieved
by taking the minimum value of every possible number of successes. The resulting area must be within
the interval [0, 1] because the sum of the area of one single distribution must be 1 and the area can
not increase by taking the minimum. Therefore, a small area close to 0 indicates that almost 100% of
all instances can be strictly assigned to one class, while an area of 1 (both distributions are the same)
indicates that both classes are equally likely.
An alternative to using the area is using the intersection of the distributions in the middle4. The intuition
here is that the higher the intersection point is, the more similar are both distributions. If the intersection
is at the bottom close to 0, then the similarity of both distributions is small so the prediction of one class
can be done with more confidence. Furthermore, the interpretation of the height is more difficult than
for the area. What you can say is, that, starting from 0, a higher height (intersection point) indicates
a weaker prediction. But unlike the area, the height is not necessarily within [0,1] because discrete
probability distributions usually have small values for a high number of tries n. So, to increase the com-
parability of different heights, you could normalize the heights by dividing it with the maxmimum of the
probability distributions. This way, all heights are in [0,1] and a height of 1 occurs whenever both dis-

4 There is always an intersection in the middle because the distributions are symmetric.
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tributions are equal. While computational effort is not the focus of this thesis, note that the calculation
of the height can (in most cases) be done significantly more efficiently than the calculation of the entire
area.
The suggested distributions to use this approach on are the binomial and the beta-binomial distribution.
Here, the parameters of the binomial distribution are prob = p

n and t = p + n. For the beta-binomial
distribution, we set α = p + 1, β = n+ 1 and t = p + n. In order to draw the distribution of the other
class, we set prob = n

p , β = p + 1 and α = n + 1 for the respective parameter and leave t the same.
Now the area or height can be calculated. Note that for the binomial distribution, if p = 0 or n= 05, the
distribution is maximal (1) at 0 or 1, respectively and therefore the method does not distinguish between
cases where one instance count is 0 (for example p = 1, n = 0 and p = 100, n = 0 result in the same
values). This is an important weakness of the binomial distribution in this approach.
An example showing how this approach works can be seen in Figure 4.7.
Since we can choose to use either the area, the height or the normalized height, all of which return val-
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Figure 4.7: Both graphs shown here are built using Binom(k, 15, 2
3 .). The first graph shows how the area

between the binomial distribution of the positive and the negative class is calculated. The
area is drawn in yellow, showing the intersection of the area of the distributions. The second
graphs shows, considering the same distribution functions, how the height is computed. If
the point in the middle is not part of the discrete distribution like here (if n is even, taking
the height of the distribution at n/2 is the correct value), then the height can be interpolated
between the two nearest points (blue, in the middle). Normalization of the height can be
done by dividing by the maximum height of the distribution (blue, here at 5 and 10 num-
ber of successes). In this example, the values are (rounded): area = 0.18, height = 0.09,
maximum_value= 0.21 and normed_height= height

maximum_value = 0.4.

ues within [0, 1], we denote those values as confidence_measure. That means, that a confidence_measure
can either be the area, height or normalized height of this approach. So how is this measure supposed
to be used for prediction? We introduce two possible formulas here. Because we know that a high confi-
dence_measure indicates a weak prediction, an easy way to convert that into an prediction values is given
by

CB1(confidence_measure) =

¨

1− confidence_measure, if pos≥ neg

−(1− confidence_measure), else
(4.18)

CB1 makes a statement about much the prediction is in favor of one of the two classes. However, it
does not take the probability into account. Imagine a high number of tries t, a probability close to 0.5

5 p = 0 and n= 0 is impossible in the decision tree setting.
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(for example prob = 0.6) and the binomial distribution. Here, the confidence measure will be close to
0 (because the high value of t will results in a pointed distribution) and therefore the CB1 will predict
something close to 1. So the probability, in this case the aleatoric uncertainty, has almost no weight
which might turn out to be an important weakness of this prediction method. Still note that probability
is not ignored completely, because for prob = 0.6, it takes a significantly higher t to reach a confidence
measure close to 0 compared to prob= 0.9.
Nevertheless, we want to introduce another prediction method which takes the underlying probability
into account with more weight.

CB2(confidence_measure) = 0.5+ (1− confidence_measure)(prob− 0.5) (4.19)

Again, prob is the probability derived from the number of positive and negative instances (prob = p
p+n).

CB2 always returns value in [0, 1] but the weaker the prediction is, the closer the predicted value is
to 0.5, which indicates no preference for any of the two classes. With the maximum confidence in the
prediction, the probability will be returned.
For the rest of this thesis, this confidence bounds idea can be referred to as CB(p, n). At any point where
the variants are important, it will be described which variants are talked about. One variant of this idea
can be seen in Figure 4.8.
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Figure 4.8: Confidence Bounds. Shown here is an example for the confidence bounds prediction. Here,
the normalized height for the beta-binomial distribution is used and the second prediction
transformation (CB2) is applied.
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5 Aggregation Methods

We consider the predictions of the classifiers (decision trees) within the random forest as the prediction
vales x , where x i is the output value of the ith decision tree. There are N decision trees in a random
forest, therefore it always holds that i ≤ N or i ∈ [1,2, 3, ..., N].

5.1 Simple Aggregation Functions

First of all, there are a couple of rather simple aggregation functions which can be used. The sections
here will briefly introduce the average, maximum, median and voting aggregation methods which can be
used to combine classification prediction. You can find also find further information in Ponti Jr (2011).

5.1.1 Average

One frequently used combination method is taking the average of your predictions to reach a final
prediction. This basically means that every prediction in the ensemble has the same weight assigned to
it.

average(x) =
1
N

N
∑

i=1

x i (5.1)

You can argue that we do not want the predictions to have the same weight because the different pre-
dictions are based on a different number of leafs, i. e. have a varying amount of uncertainty. However,
applying the prediction methods of the previous chapter, the idea is that the single prediction values
of the individual classifiers already include a level of uncertainty, therefore the average can still make
sense. Nevertheless, using the probability for the prediction in the decision trees and the average as the
aggregation methods, we indeed can get results which are in contrast to the goal of this thesis.

5.1.2 Maximum

Another popular aggregation method is taking the maximum of our predictions. For example, when
aggregating prediction values x with x i ∈ [0,1] where x i > 0.5 indicates a preference for the positive
and x i < 0.5 a preference for the negative class, the maximum prediction means taking the single
prediction xmax as the final prediction. In this case, it has to be true that |xmax − 0.5| ≥ |x i − 0.5| for all
i. Note, that the max prediction is not useful when used on top of probability predictions. Since every
pure leaf results in a probability of 0% or 100%, those pure leafs will always have the maximal best
prediction. This is also true for a prediction based on one positive and zero negative instances. Anyways,
this disadvantage does not hold for the other prediction methods introduced in the previous chapter
which leads to the assumption that the max prediction can work better for those.

5.1.3 Median

The median works very similarly to the average. The difference is that, instead of averaging all results,
all results get sorted and the result in the middle gets chosen as the final prediction. If the number of
predictions which need to get aggregated is not even, the average of the two prediction in the middle
will be chosen. All in all, median and average give very similar or even identical results. However,
the median prediction is less prone to outliers. Imagine the simple example of three prediction values
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x = (0, 1,0)T . Thereby we have an average of average(x) = 1
3 but the median predicts the middle value

of the sorted tuple (0,0, 1) which is 0. We can see that this is equivalent to the median of the tuple
(0, 0,0) thereby ignoring the outlier of the first tuple, 1. All in all, I expect average and median to be
very similar for the aggregation of prediction in random forest but it is possible that the differences of
one of those methods are beneficial to the respective other one in the random forest setting.

5.1.4 Voting

Voting describes the aggregation method for classification in which every classifier in the ensemble votes
for a class. In the case of binary classification, that means either voting 0 for the first, or 1 for the second
class1. Then, the final classification of the ensemble is the class with the most amount of votes.
If you assign, possibly varying, weights to the predictions of each classifier, this aggregation is called
weighted voting. If all weights are equal (i.e. you are not using weights), it is called unweighted voting.
Note, that if we were to use weighted voting on our prediction methods, the degree of certainty of those
methods will be disregarded which results in a loss of information. Since most of the proposed predic-
tion methods would predict the same class on one decision tree2, disregarding the actual value of the
prediction renders the prediction methods useless because the voting results will also be the same.
On the other hand, for unweighted voting we would need to find a way to assign weights to the predic-
tions. Therefore, it seems reasonable to assign weight based on the certainty of the prediction. However,
we already did this when considering prediction methods. Therefore, applying unweighted voting on
top of that seems redundant. For example, the linear prediction method has a higher value if the (dif-
ference of the positive and negative) number of instances is high. All in all, in order to not increase the
amount of methods too much, this thesis will not consider unweighted voting aggregation, because of
the reasoning that similar weighting is implicitly present in the prediction methods of single decision
trees.

5.2 Generalized Mixture Functions

A more advanced method to aggregate classifier results are Generalized Mixture (GM) functions. The
idea of GM functions is defining “dynamic weights at the member outputs, making the combination
process more efficient” (Costa et al., 2018). Then,

HΘ(x1, ..., xn) =







x1, if x1 = ...= xn

1
n−1

∑n
i=1

�

x i −
xi |xi−Θ(x1,...,xn)|

∑n
j=1 |x j−Θ(x1,...,xn)|

�

, otherwise
(5.2)

is a GM function where Θ : [0,1]n→ [0, 1] is a function which determines how the GM function works.
A very detailed derivation and study of the properties of GM functions can be found in Farias et al.
(2016). Most important for the scope of this thesis is that GM functions actually behave quite similar to
the respective Θ function. Thereby, some Θ functions which are proposed in the paper by Costa et al. are
the average (arithmetic mean), the median and the maximum. This results in the three GM functions
Havg, Hmed and Hmax. We can get some understanding just by looking at the formulas. It is trivial but
also definitely desired, that the prediction of the classifiers is passed through the aggregation function
if the values of all predictions are equal. Otherwise, a weight is assigned to every value x i. Let us say
w(Θ, x1, ..., xn) =

|xi−Θ(x1,...,xn)|
∑n

j=1 |x j−Θ(x1,...,xn)|
. Because of the sum of absolute values in the denominator, we know

1 It is possible to implement voting also considering the case where no decision is made for a classifier, so that the respective
classifier abstains from voting.

2 The only prediction method introduced in Chapter 4 which can change the predicted class of one single decision tree
is the Priorprev-node prediction, for every other method the predicted class is equivalent to the predicted class of the
probability, only the value of the prediction is differently high.
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that |x i−Θ(x1, ..., xn)| ≤
∑n

j=1 |x j−Θ(x1, ..., xn)| and therefore 0≤ w(Θ, x1, ..., xn)≤ 1. Now, looking at
the formula

Havg(x1, ..., xn) =

¨

x1, if x1 = ...= xn
1

n−1

∑n
i=1 (x i − x iw(Θ, x1, ..., xn)) , otherwise

(5.3)

we can see that, within the outer sum
∑n

i=1, we sum up x i(1−w(Θ, x1, ..., xn)). Therefore, every instance
x i adds between 0 and x i to the sum, depending on the weight w (or rather 1− w). Moreover, you can
see that x i has a higher impact on the aggregation if it is close to the value of the underlying aggregation
function Θ3 because in that case w(Θ, x1, ..., xn) approaches zero and x i gets almost its full weight for
the aggregation.
All in all, GM functions try to improve upon their underlying aggregation function Θ by assigning
less weights to predictions x i which are further away from the results of the aggregation function
Θ(x1, ..., xn). In their paper, Costa et al. stated that GM functions achieved better results than their
respective Θ functions alone when applied with a large number of classifiers in the ensemble.

5.3 Instance Pooling

Considering the goal of this thesis to avoid that small leafs with a high uncertainty have a large impact
on our final aggregated prediction, a very straight forward way of dealing with this problem is not even
making predictions in the leafs. Instead, the idea of instance pooling is to return the number of positive
and negative instances for the respective leaf of every decision tree and aftterwards sum those instances
up (pooling). This results in a final number of positive and negative instances, pall =

∑N
i=1 pi and

nall =
∑N

i=1 ni, respectively. I previously argued that the probability is an useful mechanism to reach a
prediction if the number of instances its based on is significantly high. Here, this is the case, so we can
now get to the final prediction by calculating Probability(pall , nall) =

pall
pall+nall

as the probability for the
positive class.
Also note, that the predictions made by instance pooling are equal to the average of the linear-prediction.
However, the AUC score of both approaches can be different and instance pooling might be better when
looking at those. Furthermore, this also means that you can see the result of the pooling approach as
a confidence in the prediction (we get a probability in [0, 1] for the predicted class). Without further
changes, this is not possible for the linear approach and therefore I would argue that instance pooling is
more helpful when assessing the worth of the final prediction.

5.4 Beta Distribution Aggregation

The goal of the beta distribution is to estimate the actual probability, in our case based on the number
of positive and negative instances in the leaf. A possible way to apply probability distributions to leafs
in a decision tree in order to get a prediction value was introduced in 4.6. Contrary to that approach,
this section proposes another way of using distributions, particularly the beta distribution, to aggregate
multiple leafs to reach a final prediction within a random forest.
First, the beta distribution is calculated for every leaf. This is done in the same way as described before.
Afterwards, instead of trying to extract one single value representative for the prediction of the respective
decision tree, we keep the distributions and sum them up. That means you have one distribution as an
input from every decision tree classifier. The sum of those distributions now forms another distribution.
How the aggregation can look like can be seen in 5.1. Any such aggregated distribution however does
not trivially lead to a final prediction. One possibility is by making the prediction based on the maximum
(the x-value of the graph, basically the argmax) of the distribution. Thereby you get a value within [0,1]

3 More precisely, if this distance (numerator of w) is significantly larger than the sum of all distances (denominator of w).
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Figure 5.1: The five blue graphs show five different graphs which have been created by plotting the beta
distribution on one leaf each. The average of those five distributions is shown by the red
graph.

which can be interpreted as the most likely probability and therewith can be chose as the aggregated
prediction. Another possibility is by splitting the distribution in two halves at 0.5. If the sum of the area
under the graph in [0,0.5) is higher than the are under the graph in (0.5,1], the prediction can be made
in favor of the negative class. Otherwise, we can predict the positive class. In my opinion, intuitively the
maximum approach does make more sense, because the beta distribution aims to find the most likely
probability and the maximum of the aggregated distributions hence should be the most likely probability.
However, decision trees tend to construct pure leafs if possible. But if you have a leaf where there is only
one kind of instance and the number of instance of that type gets higher, the beta distribution of that
single leaf gets a very high density at 0 or 1. As a result, single pure leafs can, even with only a couple
of instances, influence the maxima strongly, because of those outlier at the interval boundaries. This
possible disadvantage does not have a nearly as strong weight when using the prediction based on the
area.

5.5 Belief Function Aggregation

Besides the aggregation of the Plausibility prediction, we can also think about other aggregation methods
based on belief functions which can be used in random forests.
A very simple idea is utilizing the information given by this approach by weighting the predictions by
their epistemic uncertainty. This leads us to the Epistemic-Weight aggregation.

Epistemic-Weight=
1
N

N
∑

i=1

p⊕ i · (1− ue i) (5.4)

Another idea is trying out Dempster’s rule of combination and the cautious rule. The remaining question
here is how we get mass functions from the available values (p⊕, p	, ua, ue). We define the mass
functions as follows4:

m(;) = 0

m({+}) = p⊕
m({−}) = p	

m({+,−}= ue + ua

(5.5)

Now, we can apply Demster’s rule of combination and the cautious rule.
4 It is not ruled out that different transformations into mass functions can also make sense. However, the transformation

shown here seemed the most logical and will be used for this thesis.
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6 Experiments

This chapter describes how the experimenst were implemented and executed. Thereby, a brief introduc-
tion of the framework used, scikit-learn, is given. Afterwards, the dataset and some of its properties are
listed and lastly, the setup of the experiments is described.

6.1 Framework

There are a couple of possible ways to implement decision trees and random forests, so it is important
to specify which method is used for an experiment. In this thesis, scikit-learn (Pedregosa et al., 2011)
is used. Scikit-learn is a software library which provides many machine learning algorithms, including
an implementation of decison trees and random forests. I will now give a short overview about those
implementations and how you can use them.
Scikit-learn implements, “an optimised version of the CART algorithm”1. This also means that regression
and classification is supported but with the focus on binary classification in this thesis, only classification
trees are used here. However, decision trees in scikit-learn do not support categorical variables which
should be kept in mind when looking at the datasets. There are several possible parameters which can
be set, among them the splitting criterion (gini or entropy), the maximum depth of the tree (max_depth),
a number of required minimum samples in a leaf (min_samples), and a random state. The latter can
be used to force deterministic behavior of the decision tree building process (like which split is applied
when there are two equally good splits for a node). The goal of this thesis is not improving the decision
tree building process. Therefore, we stick with the trees created by scikit-learn but we alter the predic-
tion values of the trees by using different prediction methods instead of the probability (see chapter 4).
The scikit-learn implementation of random forests is built on top of decision trees. Thereby, a predeter-
mined number of decision trees is created and the predictions of those trees are averaged in order to
get the final prediction. As mentioned previously, it is necessary to use different (random) decision trees
within the forest for the random forest ensemble to achieve better results. That is why those decision
trees are built from bootstrap samples (bagging) drawn from the training set. Additionally, you can set
how many features are considered when splitting a node in the decision tree building process. Using this
max_features parameter2, we can make sure that trees are built more varied because different features
are used to construct splits in different trees. By default, max_features is set to the root of the number of
features in the dataset (max_features =

p

n_features)3. Apart from that, you can also change the same
parameters of the decision trees in the same way you can do for single decision trees.
For random forests, we also do not change the way the models are created (except for setting different
parameters) but how the prediction is made. Therefore, we apply different prediction methods to the
decision trees of the forest and we aggregate those predictions not only by using average but also by
applying different aggregation methods introduced in the previous chapter (5).
Because scikit is easier to use with numerical features, only numerical features are used in these experi-
ments.

1 https://scikit-learn.org/stable/modules/tree.html, accessed 12.07.2019
2 You can also set this parameter in single decision trees, however it usually does not make sense to restrict the considered

number of features when only making prediction based on a single decision tree. The default value for max_features in
scikit-learn decision trees is None, i. e. all features are considered.

3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html,
accessed 12.07.2019
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6.2 Datasets

In this thesis, 15 binary datasets were used to evaluate the previously introduced methods. Because
we want to analyze the effectiveness of the methods across the board, different datasets with different
instance and features sizes from different sources were chosen. The “Breast Cancer Wisconsin” dataset is
available through scikit-learn. Almost half of the datasets, namely the “Banknote Authentication”, “Blood
Transfusion Service Center” (Yeh et al., 2009), “Climate Model Simulation Crashes” (Lucas et al., 2013),
“Magic Telescope”, “MiniBooNE particle identification”, “QSAR Biodegradation” (Mansouri et al., 2013)
and the “Skin Segmentation” (Bhatt and Dhall) datasets are imported from the UCI machine learning
repository (Dua and Graff, 2017). A couple of the datasets used here are arff datasets downloaded
online (arf), those are the “Diabetes”, “Ionosphere”, “Sonar” and “Spambase” datasets. The last three
datasets were downloaded using the OpenML (Vanschoren et al., 2013) import function from scikit-
learn. These datasets are the “Scene recognition” (Boutell et al., 2004), “SenseIT Vehicle” (Duarte and
Hu, 2004) and the “Webdata” (Zeng et al., 2008) datasets. Table 6.1 shows an overview of the size of the
datasets by listing the number of instances, the number of features and the class ratio of each dataset.
Moreover, for the remainder of this thesis, I will refer to the datasets using abbreviations because the
actual name can be rather long in some cases and the meaning of the datasets is not very important
here. Therefore, the abbreviations listed in the table are used in order to easily distinguish the different
datasets.
Before continuing, there are a couple of things worth noting about the datasets used. First of all, it can
be expected that the methods tried in this bachelor thesis might behave differently depending on the
size and the properties of the dataset. Especially when looking at different decision tree configurations
(max_depth, min_samples) the tree for different sized datasets will look significantly different. For exam-
ple, using a large number of min_samples can make trees of small datasets very small (up to one node,
the root node, only) while trees of the largest datasets are still quite big. We should also keep in mind,
that many datasets are not balanced very well (class ratio is far from 50%) which might play a role when
looking at how well certain methods behave on certain datasets and why.

Name of the dataset Abbreviation instances features Class ratio
Banknote authentication banknote 1372 4 0.44
Blood Transfusion Service Center transfusion 748 4 0.24
Breast Cancer Wisconsin breast_cancer 569 30 0.63
Climate Model Simulation Crashes climate 540 20 0.91
Diabetes diabetes 768 8 0.35
Ionosphere ionosphere 351 34 0.64
MAGIC Telescope telescope 19020 10 0.35
MiniBooNE particle identification particle 130064 50 0.72
QSAR biodegradation biodeg 1055 41 0.34
Scene recognition scene 2407 299 0.18
SensIT Vehicle vehicle 98528 100 0.50
Skin Segmentation skin 245057 3 0.79
Sonar sonar 208 60 0.47
Spambase spambase 4601 57 0.39
Webdata webdata 36974 123 0.24

Table 6.1: Overview over the datasets used. Here, you can see the name of the dataset, the abbreviation
that will be used in the following parts of this thesis, the number of instances and the number
of features of the respective dataset, as well as the class ratio, i. e. how well balanced the
dataset is in regard to class distribution. Keep in mind that the number of features listed here
do not include the class label.
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6.3 Setup

Two major experiment setups were used in this thesis. First, decision tree prediction methods (Chapter 4)
were tested on single decision trees. Afterwards, a similar experiment was conducted which tested
prediction and aggregation methods (Chapter 4 and 5) on random forest. While the latter is more
applicable to the goal of this thesis and therefore more important, we can still get some insight from
looking at methods on single decision trees. As previously mentioned, all experiments use the scikit-
learn implementation of decision trees and random forests, thereby adding additional prediction and
aggregation methods.

6.3.1 Decision Tree Experiment Setup

For the first experiment, comparing accuracy scores is not very helpful because all but one prediction
method predict the same class. The difference only lies in the actual scores resulting from the respective
leaf used for the prediction. Therefore, the area under curve (AUC) is calculated to evaluate the quality
of the results. This makes sense because when aggregating trees we want that the more certain, better
predictions are valued higher than uncertain predictions. Since AUC considers the prediction value and
not only the prediction itself, we expect to achieve representative results this way.
For every dataset, several decision tree parameter combinations are tested. We set the min_samples pa-
rameter of the scikit-learn DecisionTreeClassifier to 2n, n ∈ {0, 1,2, 3,4, 5,6, 7,8, 9} and both criterions
gini and entropy are tested for every min_samples. Additionally, a 2-fold cross-validation (CV) is used for
every parameter combination. This CV is repeated 5 times using different random states, which results
in 10 AUC values for every parameter combination and prediction method. For the evaluation, those 10
results are averaged (averaging of the CV).
Overall, 24 methods are tested, 18 of which beeing variations of the confidence bounds idea (see sec-
tion 4.6, more details about the variations follow in the evaluation chapter). The other 6 methods, as
introduced in chapter 4, are Probability, Linear, Prior1,1, Priorprev-node, UCB-DT and Plausibility.

6.3.2 Random Forest Experiment Setup

The second experiment is aimed at finding out how the classification results of random forest differ
and possibly improves when using alternative prediction and aggregation methods. Therefore, we look
at the accuracy (for differences and possible improvements in classification) as well as the AUC (to
make it easier to find differences if accuracies are similar) scores. The number of estimators (decision
trees) within the random forests is 50 in all cases. In practice, you might want to have an even higher
number of trees but because running the experiment for every configuration and method is fairly time
consuming, we stick with 50 estimators, which should be enough for a suitable evaluation. Like in the
previous experiment, a bunch of different configurations are executed. For every random forest, either
the min_samples parameter is set to 2n, n ∈ {0,1, 2,3, 4,5, 6,7, 8,9} or the max_depth parameter is set to
x ∈ {2, 3,5, 7,10}. Examining all combinations of those two parameters is in many cases redundant be-
cause one parameter will “dominate” the other one4. For other cases, both parameteres will do roughly
the same. Nevertheless, there are definitely cases which construct different trees when combining both
parameters. However, looking at those cases is most likely not worth the extra time needed to run this
setup. Moreover, it is easier to evaluate the results when we know which parameter is responsible for
building the tree in the way it was built. Just like in the previous experiment, we also again tried out
both splitting criterions supported in scikit-learn, gini and entropy.

4 Imagine min_samples = 64 and max_depth = 3. The trees of large datasets will be heaviliy restricted because of the
max_depth value, making the min_samples parameter superfluous. Similarly, for small datasets, the max_depth parameter
will not matter.
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For this experiment, we looked at 55 prediction / aggregation methods. However, this number comes
from the fact that we can use the same prediction values of the decision trees but aggregate them in
different ways. Because of long run times, only one confidence bounds variation was tested in this ex-
periment (detailled explanation in the evaluation chapter). Besides that, all prediction methods from
the decision tree experiment were also applied here. To aggregate one prediction per tree for a final
prediction, we looked at 7 different ways of doing so, averaging, median, max and their respective GM
variants, as well as unweighted voting. Those are 7 · 7 = 49 of the 55 variations. Furthermore, we
took a look at instance pooling, the two proposed possibilities to combine beta distributions (max or
area) for a final prediction, dempster’s rule of combination, the cautious rule and the Epistemic-Weight
aggregation. For the dempster’s rule and the cautious rule, clipping on mass functions was applied so
we can make sure that a combination is always possible. This is because if the mass function of {+} or
{-} is 1, this would usually mean that the respective class must be true. However, this is not the case
in our application (due to numerical inaccuracies, in theory the respective values can never become ex-
actly 1 but only close to 1) which is why we have to make sure that those value are always < 1 which is
done by clipping, i.e. decreasing the value of those mass functions (here, 1−0.00001 is used for clipping).
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7 Evaluation

This chapter covers the evaluation of both experiments. First, the decision tree experiment will be
analysed and afterwards an evaluation of the random forest experiment will be conducted.

7.1 Decision Tree Experiment Results

As described in the previous chapter, the experiment returned a lot of results because of the high number
of configurations. Although the goal of this thesis is not to find alternative ways of building decision
trees, we still not only want to find out how different prediction methods behave on specific trees but
we want, at least to a certain degree, find out which methods benefit of which tree structures. In other
words, only because one method performs best on a certain type of tree (for example large, unpruned
trees) and another methods performs worse on the same kind of tree, that does not mean that this
second method is not the overall best performing method when considering a different type of tree. This
is why we take a look at a variety of tree building parameters and we hope to gain valuable insights that
way, however, even this setup is obviously not exhaustive. For this experiment, we have 15 datasets, 2
splitting criteria, 10 different min_samples values, 10 iterations (resulting from 5 times 2-fold CV) and
24 different prediction methods. This makes a total of

15 · 2 · 10 · 10 · 24= 72000

results to be used for the evaluation. To reduce randomness and the influence of outliers, we averaged
over the CV results, therefore having 72000

10 = 7200 results to work with.
In order to deal with the number of results, a statistical evaluation of the decision tree experiment is
conducted. Following an approach suggested by Demšar (2006), first, a Friedman test (Friedman, 1937)
is applied, which can be followed by a Nemenyi test (Nemenyi, 1963). By applying the Nemenyi test on
top of the Friedman test, we can state which methods perform significantly better than other methods.
However, there will be some cases where the differences of the ranks in the Friedman test will not be
significant. Nevertheless, it might still be worth to recognize those small differences, too. Therefore,
I will make clear when we talk about statistically significant differences and when we only talk about
slight differences in the rank, which have no statistical significance.
First, I will analyse the differences between the confidence bounds method variants. This makes it
possible to only consider the better variants, thereby reducing the complexity of the following analysis.
After that, I will take a look at how the different decision tree parameters influence the strength of the
prediction. Here, I will generalize over the prediction methods. A closer look at how the prediction
methods behave on different decision trees will be done afterwards.

7.1.1 Confidence Bounds Variants Comparison

In this decision tree experiment, 18 of the 24 prediction methods are based on the confidence bounds
idea. Considering those 18 methods, we expect those to share some properties. So, in order to split
the evaluation of 7200 results in smaller parts, a comparison of the confidence bounds variations among
themselves seems useful.
First of all, what even are the 18 variations used? The following explanation briefly repeats the ideas
introduced in 4.6 and states some abbreviations in brackets1 which allow us to identify those variations

1 Thereby, any method can be describes by its distribution, the way it gets a value used for the prediction, and the way this
value is used to return the final prediction value. For example, a variation can be beta_norm-height_value.
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without having to write half a sentence each time when naming one. For this experiment, we applied
the confidence bound idea on the binomial (bin), beta (beta) and beta-binomial (beta-bin) distribution.
For every distribution, we looked at the prediction using the area (area), the height (height) and the
normalized height (norm-height). Moreover, for every of those 9 possibilities, we tried out two ways to
get to the final prediction. Once, by using that value itself (value), only with a different sign depending
on the predicted class and once by generating a probability which lies between 0.5 and the class ratio
probability of the respective leaf (prob).
When comparing the ranks of those 18 variants, we get the ranks shown in Table 7.1. Beyond that,
I conducted a couple Friedman Tests on the data to find the best variations. Therefore, my goal was
finding out how 1. the probability distributions, 2. the value calculation method and 3. transformation
of that value into the final prediction compare to their alternatives. For this reason, I fixed the specific
values of two of those 3 factors and only compared the alternatives of one factor. For example, for a com-
parison of the distributions, I first compared bin_area_value, beta_area_value, and beta_bin_area_value
and looked at the result of this comparison. Afterwards, I did the same using the other 5 combinations
you can get from using one of (area, height, norm-height) and (value, prob) each. Using this procedure,
I can make sure to appropriately compare the parts of the variations. Anyway, you can also get a good
impression by just looking at the table. This analysis gave the following insights. When comparing the
probability distributions, the beta-binomial distribution always got the best results with a statistically
significant difference2. It is not surprising, that the binomial distribution falls short of the other two dis-
tributions, since when looking at distributions build on pure leafs, we do not get values which represent
the uncertainty of the respective leafs. It is possible that the beta distribution performs worse than the
beta-binomial distribution because it is continuous and maybe discrete probability distributions are bet-
ter suited for those approaches. Furthermore, you can also see that the beta distribution performs much
worse for the unnormalized height. This is a result of its continuous nature because resulting values can
be arbitrarily high when no normalization is applied. Also, the prob prediction works significantly better
than the value prediction for every conducted Friedman test. This indicates, that the intermediate values
we extract from the probability distributions rather model uncertainty than estimating a probability. As
a result, mixing the class ratio of that leaf into the final decision gives better results. When comparing
area, height, and norm-height however, the results were not quite as clear. As just noted, for the beta
distribution, the height is worst alternative and the area seems to be slightly better than even the nor-
malized height. The binomial distribution however got better results for the height in both cases but
here all three alternatives are very close to each other3. Normalizing the height achieved the best results
when using the beta-binomial distribution but only by a small margin.
To sum up, of all the variants tested, the beta-binomial distribution with the final prediction incorpo-
rating the probability works quite a bit better than the respective alternatives. For the calculation of
the value based on the distribution, the normalized height seems to be a little bit better than the un-
normalized height. While there are cases where the area achieved better results, we conclude that the
normalized height seems to be the best alternative. Still, the difference here is very small and we can not
say that the area is strictly worse. All in all, we take the beta-binomial distribution using the normalized
height calculation and the final prediction including the probability as the best of the 18 variants which
will be used representative for the confidence bounds idea for the rest of this thesis.

7.1.2 Decision Tree Parameter Comparison

When comparing the different min_samples values for the experiment4, we get the average ranks shown
in Table 7.2. We can see that, on average, min_samples = 16 has the best results. That fits our expectation
that unpruned trees are overfitting but too large trees are underfitting. However, we should not conclude

2 Following, significant will always mean statistically significant.
3 But due to the fact that the binomial distribution is much worse overall, this was not investigated further.
4 Those values are obtained by generalizing over the prediction methods.
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value bin beta beta-bin
area 14.558 9.838 7.145
height 14.065 13.788 7.802
norm-height 13.703 9.577 6.432

prob bin beta beta-bin
area 11.163 7.162 5.495
height 10.820 10.090 5.457
norm-height 10.988 7.628 5.288

Table 7.1: The table was built comparing the ranks of those 18 confidence bounds variants. For better
visibility, the value and the prob variations (how to get to the final prediction value) are shown
in two seperate tables.

that 16 is the best or even somewhere around the best min_samples value to fit trees with because this
parameter mostly depends on the size and the variance of the dataset. If the dataset has zero noise and is
large enough, unpruned trees can give an accuracy of 100%. However, this assumption is unreasonable.
Therefore, the results about the quality of different min_samples parameter are not surprising and do not
give new insights.
However, one thing we can keep in mind for the random forest experiment is that entropy seems to work
better for larger trees compared to gini. While this does not mean that entropy generally performs better,
another Friedman test comparing only these criteria gave an average rank of 1.330 for entropy and an
average rank of 1.670 for gini. This difference even increased when only looking at large (min_samples=
1 or min_samples= 2) trees (1.257 for entropy, 1.743 for gini).

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.386 5.200 4.948 4.057 3.214 3.810 5.024 6.362 8.090 8.910

(a) Gini and Entropy

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.162 4.943 4.781 4.000 3.381 4.105 5.100 6.519 8.081 8.929

(b) Entropy

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.610 5.457 5.114 4.114 3.048 3.514 4.948 6.205 8.100 8.090

(c) Gini

Table 7.2: These tables show the average ranks of the decision tree parameter min_samples. The first
table only compares those, generalizing over every other parameter and method (7.2a). The
second and third table only consider trees built using entropy (7.2b) or gini (7.2c), respectively.

7.1.3 Decision Tree Prediction Method Comparison

Let us again start with a table comparing the average ranks of our seven remaining prediction methods
(7.3). It is promising to see that the probability performs worse than every other method. The Prior1,1
method gets the best results, with the other methods ranking in between Prior1,1 and the probability. Fur-
thermore, we can see that for fully grown trees, the probability actually performs terrible in comparison
to any other method. This is a result of the amount of small, pure leafs, which give a terrible estimation
because they always return a probability of either 0 or 1. For such large trees, the Linear prediction
method actually performs better and Prior1,1 falls down a bit, otherwise the order is similar. Interestingly
enough, for small trees, the probability actually gets very good results, comparable to Plausibility and
CB and only beaten by Prior1,1. Not shown here is, that the criteria entropy and gini have no obvious
influence of the performance of the methods in comparison.
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Overall, the probability estimation based on the leafs seems to be a very good estimation for leaf pre-
dictions, but only if there is enough data in the leafs (i. e. a high number of instances). However,
this might lead to underfitting. Therefore, when looking at a single decision tree, all proposed methods
achieved better AUC score (better ranking) than the probability in general. However, only adapting the
probability slightly as done by Prior1,1 got the best results for this experiment. That is probably because
it maintains the accuracy of the probability for a high number of instances (value nearly the same) but
it incorporates uncertainty for smaller leafs, thereby reducing the main disadvantage of the probability.
While it seems that Prior1,1 is the best choice for single decision trees, there are more factors to keep in
mind when looking at random forests. Therefore, the other methods should not be ruled out (yet).

prediction method Probability Linear Prior1,1 Priorprev-node UCB-DT Plausibility CB
rank 5.323 4.212 2.742 4.410 3.548 4.078 3.687

(a) All decision trees

prediction method Probability Linear Prior1,1 Priorprev-node UCB-DT Plausibility CB
rank 7.000 2.433 2.892 4.683 2.642 4.483 3.867

(b) Large trees

prediction method Probability Linear Prior1,1 Priorprev-node UCB-DT Plausibility CB
rank 3.642 5.087 2.987 4.725 4.325 3.654 3.579

(c) Small trees

Table 7.3: This table shows the average ranks of the 7 remaining prediction methods, excluding all but
one of the confidence bound variants. CB is that confidence bound variant, as described earlier
in this chapter. The first table generalizes over all tree parameters (7.3a). Also shown are
the ranks of the methods for very large trees (min_samples ≤ 2, (7.3b)) and smaller trees
(min_samples ≥ 64, (7.3c)).

7.2 Random Forest Experiment Results

The random forest experiment evaluation is based on the AUC metric because that makes it easier to see
differences than looking only at the accuracy.

7.2.1 Preliminary Evaluations

The decision tree experiment compared different variants of the confidence bounds idea. We found out,
that, of all tested variants, the beta-binomial distribution worked best. Also, the prediction using the
normalized height achieved slightly better results than using the area. While this difference was rather
small, using the height also makes it so the calculation can be done much more efficiently and does not
scale with the number of instances in each leaf (because for the area, you need to calculate the whole
probability distribution), thereby being much more reasonable to run for larger experiments.

7.2.2 Random Forest Parameter Comparison

Before considering the methods, we will again briefly look at the random forest parameter, i.e. which
trees work better in a random forest5. In single decision trees, large trees often overfit and small trees
5 Again, this is done by generalizing over all prediction methods.
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often underfit the data. Therefore, restricting the tree size a little and avoiding leafs with only one or
slightly more instances gives the best results on average. In the case of random forests, there are two
additional factors to keep in mind. Firstly, trees are built with randomness, thereby probably being less
effective alone as decision trees built without randomness (random feature selection). Secondly, it does
not necessarily hurt our overall prediction if some decision trees within the random forest make false
prediction because they only play a small role in the ensemble. So what does change when looking at
the tree parameters in random forests compared to single decision trees?

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.152 4.315 4.283 4.692 5.775 7.273 9.108 11.524 12.655 13.383

max_depth 2 3 5 7 10
rank 11.325 9.768 7.888 6.891 5.965

(a) Gini and Entropy

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.029 4.316 4.356 4.642 5.744 7.417 9.256 11.526 12.672 13.385

max_depth 2 3 5 7 10
rank 11.347 9.825 7.909 6.850 5.724

(b) Entropy

min_samples 1 2 4 8 16 32 64 128 256 512
rank 5.276 4.315 4.210 4.741 5.807 7.130 8.961 11.522 12.638 13.380

max_depth 2 3 5 7 10
rank 11.304 9.712 7.868 6.932 6.205

(c) Gini

Table 7.4: These tables show the average ranks of the decision tree parameters min_samples and
max_depth. The first table only compares those, generalizing over every other parameter
and method (7.4a). The second and third table only consider trees built using entropy (7.4b)
or gini (7.4c), respectively.

The first thing that is apparent when looking at the parameter (7.4) is that, compared to the analysis
of decision trees, even larger trees perform better. Previously, the best min_samples value was 16 and
now it went down to 4. The reason for this is probably because small leafs allow the decision trees
to cover more information but the main disadvantage, overfitting, is reduced by using multiple trees
in the random forest ensemble. Furthermore, nothing indicates that choosing a particular max_depth
parameter can greatly benefit the performance of random forests. In general, max_depth is very sim-
ilar to min_samples anyway, it seems like another approach to the same problem. In particular, the
problem being overfitting and the solution reducing the size of the tree in order to generalize better.
Thereby, choosing a specific min_samples parameter is arguably more appropriate when looking at mul-
tiple datasets. Particularly for this thesis, min_samples can guarantee us that we have x or more number
of instances which are used for every prediction in a decision tree. Thereby, we can reduce the epis-
temic uncertainty (while risking underfitting). The goal of max_depth is the same but cutting a tree at
a depth makes it so small datasets might be (completely or almost) fully grown on that depth while
larger datasets are still underfitting due to the large amount of features and instances. However, setting
max_depth can make sure to reduce the memory consumption of a model which is more difficult to es-
timate when using min_samples. However, for the further analysis, we will not focus on the max_depth
parameter much because it is easier to understand trees built using min_samples and because the tested

41



values of max_depth do not indicate any special advantage.
A comparison of the splitting criteria gives comparable results to the decision tree experiment. In gen-
eral, the average rank of entropy (1.252) succeeds that of gini (1.748). Again, this difference slightly
increases when looking at large trees (1.222 entropy, 1778 gini) and decreases when considering smaller
trees (1.300 entropy, 1700 gini). This also matches the result shown in Table 7.4, where we can see that
entropy gave better results for min_samples = 2 as opposed to min_samples = 4 (still, this difference is
very small).
Overall, it seems like larger trees are outperforming smaller trees even more than for single decision
trees. For the following analysis, it will be interesting to see how and which methods perform bet-
ter for min_samples between 1 and 16 since larger values clearly give worse results (trees with higher
min_samples or trees using the max_depth parameter will no longer be considered).

7.2.3 Random Forest Methods Evaluation

The large number of prediction methods, aggregation methods, and parameter configurations makes
evaluating the methods rather difficult. Ideally, you would like to rank the methods in terms of per-
formance from best to worst. However, there are at least two factors which make this very difficult if
not impossible. One problem is that the averaged performance of the methods in our experiment is not
sufficient to appropriately assess the strengths and weaknesses of the methods. For example, the method
which is the best on average might be worse than another method for a specific parameter configuration.
Now, maybe that second method would actually get the best results overall on the parameter configura-
tion and thereby this would be the best approach for random forest classification. Another problem we
are dealing with is that the performance of many methods is very similar. Many instances get the same
prediction either way and slight differences in the performance might just be a result of randomness in
the data or the classifier. In order to deal with the extent of this evaluation, we will take a look at which
methods performs worse in general and afterwards only evaluate the best methods more closely.

Simple Aggregation and Generalized Mixture Functions

Of the 55 overall prediction methods, 49 are different aggregation of the same values calculated from de-
cision trees. Can we find aggregation functions that clearly perform better than others? Table 7.5 shows,
how the aggregation functions perform for the respective decision tree prediction methods. Thereby, a
Friedman test was conducted for each of the seven prediction methods, comparing the seven aggregation
methods. While these tests do not compare the prediction methods among each other, you can get a feel-
ing for the performance when looking at the voting aggregation, since voting has the exact same results
for six of the seven prediction methods, excluding Priorprev-node. Before even comparing the aggregation
functions, it can be seen that for Linear and UCB-DT, voting gave the best results. Since voting does
not even consider the prediction methods, we can conclude that those two prediction methods are not
very good overall. Moreover, the Linear prediction with max aggregation gave some of the worst results
in general (the results were not bad per se but significantly worse compared to other methods). This
fits the idea that the ensemble learning of random forests really helps to correct errors of the decision
trees within that. Furthermore, we can see that in general aggregation methods which only forward the
prediction of one decision tree per instance (maximum and median) give worse results than aggregation
methods which mix the predictions of the trees. On the other hand, using those functions as a baseline
for the aggregation using GM-functions can work well.
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Average Median Max Voting GM-Avg GM-Med GM-Max
Probability 3.177 4.290 6.831 4.200 3.157 3.307 3.057
Linear 4.887 2.330 6.667 2.123 3.863 3.363 4.767
Prior1,1 3.587 4.070 6.693 3.847 3.373 3.263 3.167
Priorprev-node 3.017 4.760 5.637 5.067 3.197 3.547 2.777
UCB-DT 4.306 3.067 6.683 2.877 3.713 3.393 3.907
Plausibility 3.177 4.387 6.660 4.223 3.263 3.373 2.917
CB 3.490 4.073 6.707 3.800 3.440 3.420 3.070

Table 7.5: This table shows the performance of seven prediction methods with seven aggregation meth-
ods. As previously mentioned, only random forests built with min_samples ≤ 16 are consid-
ered.

Futher Aggregation Methods

For now, let us consider the generalized mixture variant of the maximum aggregation for the Probability,
Prior1,1, Priorprev-node, Plausibility and CB prediction methods. Thereby, we do not have too many meth-
ods and we can compare those and the other six methods we did not look at in the previous step. Doing
so, we get the results of Table 7.6.

method Probability Prior1,1 Priorprev-node Plausibility CB
rank 3.430 4.227 8.223 3.550 4.013

method Pooling Beta-Sum Beta-Max Dempster Cautious Epistemic-Weight
rank 8.073 6.040 8.417 5.860 10.310 3.857

(a) min_samples≤ 16

method Probability Prior1,1 Priorprev-node Plausibility CB
rank 4.233 4.600 6.850 3.733 4.250

method Pooling Beta-Sum Beta-Max Dempster Cautious Epistemic-Weight
rank 8.533 6.383 7.967 5.767 9.967 3.717

(b) min_samples== 1

Table 7.6: These tables show the average ranks across 11 of the tested prediction methods. To reduce the
complexity and the visibility of this comparison, only five of the 49 methods, which have been
inspected in the previous section and had good results, are considered. Therefore, the five
methods in the respective upper tables use the generalized mixture version of the max function
as the aggregation method. The first table (7.6a) considers tree with min_samples ≤ 16, the
second table (7.6b) only trees built using min_samples== 1.

The first thing which is probably surprising is that the probability is the best methods when considering
trees until min_samples≤ 16. Other methods which are more or less close to the performance of proba-
bility are Prior1,1, Plausibility, CB, Beta-Sum, Dempster and Epistemic-Weight. The methods Priorprev-node,
Pooling, Beta-Max and Cautious perform quite a bit worse. Anyway, comparing eleven methods over
two tables can be confusing, so let us look at every method individually. Now, I will first describe what
can be concluded by the Friedman tests for each method and afterwards I will pose questions about the
performances of some methods which might be surprising when comparing it with other methods.
The probability gives the best results even for rather large trees. However, when we only look at fully
grown trees, the two similar Plausibility methods achieve slightly better results. Following the motiva-
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tion of this thesis, it is not surprising that the performance of probability gets worse on larger trees, it
is however surprising that it still performs better than most methods and is still the best on relatively
large (but not fully grown) trees. Prior1,1 has good results but always stays behind the probability in per-
formance which is contrary to the single decision tree experiment. The fact that Priorprev-node achieves
bad results makes sense when considering that large trees performed better in the random forest en-
vironment. Therefore, considering the nodes of the depth before the leafs seems to be inferior to the
leafs themselves. Plausibility and Epistemic-Weight, two very similar methods in their nature, achieve very
good results, particularly on unpruned trees. Thereby, it seems like the inclusion of epistemic uncertainty
helps those methods to perform better. The confidence bounds method find itself among the good, but
not the best methods. Pooling of the leafs also does not give great results, this can be justified in the same
way as the Linear prediction method, as that it ignores a main advantage of ensemble learning methods
by focusing to much on predictions of large leafs only. The beta distribution aggregation methods had
decent if not bad performances. The fact that the max aggregation of those has the best results can be
reasoned by the strong influence of large, pure trees on the aggregated distribution. Contrary to expec-
tations, the Cautious rule was considerably worse than Dempster’s rule, which actually performed rather
well, which is counter-intuitive because the Cautious rule was meant to compensate a disadvantage of
Dempster’s rule that our items of evidence , i. e. the instances in the leafs, are not distinct amongst the
random forest.
So, as far as possible, it was argued why certain methods performed better or worse than other methods.
Before I continue, keep in mind, that we are still comparing average ranks. Therefore, we do not say
that any method is bad per se but that some methods are just slightly better than others. Nevertheless,
the methods are all not bad for random forest classification and the actual differences in accuracy are
minimal most of the time. However, we would like to find out what the advantages and disadvantages
of certain methods are, thereby only considering the differences, even if those are small.
Some of the methods performance are surprising and should be looked at more closely.

1. Why does the probability perform so well even if the decision tree experiment showed it performing
worse than any alternative?

2. Why has Prior1,1 worse results compared to the decision tree experiment, moreover, why is it worse
than the probability?

3. Is it possible to find out what the plausibility approaches do better than the other methods, partic-
ularly for larger trees?

4. All in all, what is the best method to use? (How) Does it depend on the dataset and which param-
eter should be chosen?

The following sections try to go into detail about those questions.

Performance of the Probability Prediction

We want to find out why probability prediction works so well. Therefore, we can look at Figure 7.1. The
first row shows heatmaps which indicate which prediction of single leafs in a random forest match the
true prediction. Thereby, we insert a point with 0 into a cell whenever the prediction does not match
(more positive than negative instances in that leaf and the prediction is negative or vice versa) and we
insert 1 if it does match6. The heatmaps display the average of those counts. Thereby, the x-axis shows
the number of instances in the respective leaf and the y-axis shows the class ratio (hereby including the
lower bounds and excluding the upper bound, an exception is the 90-100 range, where 100 is included).
These heatmaps show, that larger leafs with a clearer class ratio more often contain the true prediction

6 In case that number of positive and negative instances are equal, 0.5 is inserted.
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than smaller or more mixed leafs. For telescope, the accuracy is lower starting at a class ratio of ≈ 50%.
This can be explained by the fact that this dataset is not as balanced as the other two and only 35% of
the instances there are positive. Therefore, predicting the negative class is true more often.
The next two rows show the same heatmap but on different color mappings. These two heatmaps get
the same points (class ratio and instance number) as the first heatmaps but here the value is 1 if the
prediction of the forest of the respective instance is true and 0 otherwise. In other words, leafs can be
inserted with 1 even if their own prediction is false if the random forest ensemble corrects that prediction.
The first of those two rows (second row overall) can be compared with the first row of heatmaps. We
see that although many mixed and small leafs often have bad predictions, they overall perform very well
in the forest. We can conclude that the ensemble learning of the forest adds significant value to the
predictions. The next row can be viewed seperately. While all leafs give good predictions on average,
we can see that mixed leafs are less helpful compared to pure leafs. Also small, pure leafs are false more
often than larger leafs. However, it seems like even the smallest leafs (size 1) do not perform worse,
maybe even better, than larger, mixed leafs. This might indicate that, even for probability, we prefer
small leafs over larger, less pure leafs.
The fourth row of heatmaps is the difference of the first and second (or third) row of heatmaps (order:
second minus first). This means we can see which leafs profit the most of being part of a random forest
ensemble, as opposed to predicting the class itself. We can see that the difference in large, pure leafs is
very small. Those most of the time predict the correct class in either case. However, we can see a clear
improvement on more mixed and on smaller leafs. The improved performance on mixed leafs makes
sense since the predictions of those leafs automatically have a lesser influence on the final prediction7.
For smaller leafs, this is more surprising because those leafs in particular were expected to worsen the
performance of the forest, avoiding which was the motivation of this thesis. However, it seems like the
randomness and the construction of trees in random forests makes it so even those predictions are more
often than not corrected for the final random forest prediction. This can also be seen as a confirmation
of Wyner et al. who claimed that random forests, just like AdaBoost, build models which are not prone
to overfitting. Furthermore, this would mean that the weakness of random forests which build the
motivation of this thesis is rather a weakness of single decision trees and less a weakness of random
forests. It seems as random forest in their nature are less prone to problems of that kind. All in all, when
we argue that the probability is always a good measure when considering large leafs and we now know
that small leafs are not a large problem either, it makes sense that the probability prediction performance
could not be surpassed significantly by any other method.
The last row of Figure 7.1 shows the number of instances per cell which were used to construct the upper
heatmaps.

Analysis of the Prior1,1 Prediction

When comparing the performance of the Prior1,1 and the probability predictions on different leafs (Fig-
ure 7.2) we can find some small differences. Overall, both methods are very similar but we can find
differences for smaller leafs. For larger leafs, the heatmaps show almost identical behavior, which makes
sense since both prediction methods are very similar in that case. For small instances however, there are
some deviations but it is difficult to draw conclusion out of those. We can see that particularly the leafs
with one instance work better for the probability (highest negative number in the comparison Prior1,1
minus probability). For other small, but less pure instances, sometimes the opposite is the case. However,
we know that the probability overall performs just slightly better most of the time. I think the reason
here is that random forests, as shown in the previous section, are very good at dealing with small leafs
despite their epistemic uncertainty and that they utilize the information given in small leafs because this

7 For example, two predictions of 40% and 100%, respectively, combined result in a prediction of the postive class, there-
fore the 100% prediction has a larger influence.
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information can be valuable as well (i. e. the prediction of that leaf can be true, arguably with a proba-
bility of ≥ 50%). The Prior1,1 prediction however shifts the prediction from the pure values 0 and 1 to a
more neutral value, 0.5. While the purpose of reducing uncertainty seems useful, the experiments show
that it does not work as well as the probability itself. Therefore, I think that the loss of information by
the Prior1,1 methods is actually a larger disadvantage than the reduction of uncertainty is an advantage
for that method.

Analysis of the Simpler Plausibility Approaches

Particularly for large trees, the Plausibility prediction methods and the Epistemic-Weight prediction per-
formed very well. What both of those methods do is calculating prediction values by taking the epistemic
and the aleatoric uncertainty into account. Figure 7.3 compares the methods with each other. All in all,
the differences are small and seem to be rather random. I do not think that I can reliably draw conclusion
here but I would argue that the Plausibility prediction is more appropriate because it already incorporates
the epistemic uncertainty and thereby Epistemic-Weight is doing redundant work. However, the experi-
ment has shown that this redundancy is barely noticeable when comparing the results of both methods.
A comparison of the Plausibility and the probability prediction is done in Figure 7.4. However, I find it
difficult to draw conclusions here. We can see that differences are more noticeably for smaller leafs. It
seems like Plausibility tends to perform slightly better on small, mixed ratio leafs but leafs with only one
instance give better results for the probability. All in all, I do not know which situation makesPlausibility
behave better or worse than the probability, what I can say though is that Plausibility performed compa-
rably well on the experiments when using large trees. Therefore, this approach definitely has potential
and might even be superior in certain situations, maybe when using different learning tasks.

Search for the Best Prediction Method

Overall, it would be great if we could say which prediction method and decision tree parameter are the
best to choose. However, the experiment and further analysis have shown that a few of the proposed
methods are too similar to be sorted in a order of performance. It is possible to try to find some different
behavior, particularly on smaller leafs but all in all it would probably be overstated to say that only one
of the proposed methods is superior to every alternative. Not looking at the Friedman ranks but also
at the best prediction per dataset does not give much more information. It turns out that larger trees
generally behave better, mostly in the range from 1 to 8 minimum instances per leaf (min_samples).
Furthermore, sometimes the Plausibility prediction has the best accuracy on a random forest, in other
cases the probability and in some cases even one of the methods which we categorized as worse methods
can by chance classify an instance correctly which was not correctly classified by the other methods.
Therefore, the randomness in the data and the random forest itself can make one method perform better
than another one, just by chance.
Nevertheless, some things about the methods in random forests can be said. Firstly, the probability and
Plausibility prediction methods seem to be the best two alternatives. Thereby, using a GM-function might
or might not give slightly better results than averaging but voting, median and max usually perform
worse, probably because they are not utilizing all the information which is available in the random forest
model. So, if slightly increasing the accuracy of the model is worth the extra time, testing out different
prediction methods might be worth it. Overall, I think that using the probability with the average
function gives very good results which can not significantly be surpassed by different methods. Moreover,
the Plausibility approach takes more time for the calculation. On the other hand, the Plausibility can
give additional information about the uncertainty of the respective leaf prediction but that was not
investigated further in this thesis.
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Open Questions

There are some method performances which do not fit my intuition. Unfortunately, despite some further
testing I was not able to figure out meaningful reason for the differences in performance. Firstly, the
GM-functions and their variation. As previously mentioned, all of them consider all predictions in the
aggregation, opposed to the regular median and maximum functions which only choose one. This makes
them perform better. However, it is unclear to me which of the GM-functions (and the regular average
function) perform better or worse in certain situations. In this experiment, the performance of all was
very similar.
Another open question is why Dempster’s rule of combination achieved better results than the cautious
rule. Possible reasons are the numerical inaccuracies inherent to computer science, the measures which
were used to allow for the computation (clipping) and the transformation of the plausibility values and
the uncertainties into mass functions. Furthermore, it is possible that the belief-function framework does
not fit the random forest classification environment well (which might be connected to the fact that
clipping was necessary in the first place) . However, Hüllermeier’s approach managed to perform well
when aggregating the values in a simpler fashion.
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Figure 7.1: Each column shows the same heatmaps for a different dataset. For each row, a different
heatmap was created. The datasets are (left to right): sonar, spambase, and telescope. Fur-
ther explanation on the construction and meaning of the heatmaps can be found in the text.
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Figure 7.2: This heatmaps show for three different datasets (sonar, spambase, telescope) the differ-
ence (Prior1,1 minus probability) between the probability and the Prior1,1 predictions. The
heatmaps describe how often leafs are part of the correct prediction.
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Figure 7.3: The heatmaps here show the difference of the Epistemic-Weight prediction minus the Plausi-
bility prediction.
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Figure 7.4: The heatmaps here show the difference of the Plausibility minus the probability prediction.
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8 Conclusion and Future Work

This final section will give a summary of the results presented in this thesis and information about pos-
sible future work which can be done in this area.
Dealing with uncertainty is a hard task in machine learning. Variance in the dataset and bias in the model
can make it so that it can be very difficult to find the correct model and also make the right decision.
This thesis considered decision trees and random forests, particularly the leafs used for the respective
predictions. It was argued that a small number of instances per leaf might not be an appropriate basis
for a prediction, particularly when a probability of 100% or 0% is predicted for small, pure leafs. A num-
ber of different prediction methods were introduced using the number of instances in a leaf to return a
prediction value which not only gives insight about the preference of a class based on the class ratio, but
also based on the uncertainty.
An experiment conducted on single, not random decision trees confirmed that such methods achieve
better results when ranking the scores (i. e. the confidence) of the predictions made using that tree.
Thereby, the Prior1,1 prediction which only changes the way predictions are made slightly (compared to
the probability), gave the best ranking results. This falls in line with Provost and Domingos work which
also stated that this method (there called the Laplace correction) gives considerably better results for
probability estimation. Nevertheless, other prediction methods proposed in this thesis also gave better
ranking than the probability but they overall stayed behind the Prior1,1 approach.
Considering an even wider set of prediction and aggregation methods and combinations, another experi-
ment was conducted which tested the performance of such methods on random forests. The results given
here were surprising considering the decision tree experiment. While larger trees (i. e. trees with smaller
leafs) on average gave better results than smaller trees, we could still observe than no other of the pro-
posed methods was able to achieve significantly better results than the probability. Particularly surprising
was that the Prior1,1 prediction, which achieved the top performance on decision trees, ranked below the
probability. We reasoned that the uncertainty resulting from a single prediction is noticeably less relevant
in random forests because the randomness and the ensemble learning applied by random forests make
the random forest compensate mistakes of the single decision trees very well. Moreover, further analysis
indicated that the predictive information in small leafs (even in leafs with only one instance) more often
helps the aggregated prediction of the random forest ensemble than it hurts the prediction because of its
uncertainty. Consequently, the weakness of decision trees, that uncertainty resulting from low instance
counts worsens the predictive power of the model, is not nearly as present in random forests as it is in
single decision trees. Also, this behavior of random forests support the statements in the paper by Wyner
et al. where they claimed that random forest are not prone to overfitting. For that reason, the probability
gives great results in random forests, even when small leafs are used.
However, some other insights could be given by the experiment. Aggregation methods which only for-
ward one prediction perform worse for a random forest aggregation than predictions which give positive
weight to every decision trees in the classifier. Methods should not focus too much on one single pre-
diction only for the reason that this prediction is based on a large leaf because if the prediction of one
such leaf is false, then it is difficult for the ensemble to outweigh that decision. One prediction method
which achieved remarkable performance, even on random forests, was the Plausibility approach. This
approach (Hüllermeier, unpublished), using aspects of belief-functions (Shafer, 1976), probability, and
aleatoric and epistemic uncertainty managed to perform comparably to the probability on larger trees,
event though it uses a greatly different way of reaching prediction values.
All in all, my recommendation for using prediction methods on random forest is sticking to probability
as no other methods achieved significantly better performance and because calculation of probability is
very fast and efficient which is not given for every other method. However, when small improvements
for the ensemble are desired, it might be worth trying out different approaches as done in this thesis.
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Nevertheless, keep in mind that small improvements could also be a results of randomness and not of
actual superior performance of the respective prediction and aggregation methods.
We did not get significant improvements on random forest prediction but that does not mean that this
is not possible. Maybe building trees differently could give better results for particular methods or it at
least seems to be worth trying out. For example, you could use a certain measure, such as a threshold
based on epistemic uncertainty, to stop the trees from growing instead of using a number of minimum
instances. However, I do not expect that last suggestion to achieve significantly improved results because
very large trees were shown to perform better on average.
Furthermore, you can think of many more prediction or aggregation methods similar or entirely differ-
ent to those proposed in this thesis. While they did not outperform the probability in the experiment
here, it is possible that there are applications on different machine learning tasks where such measures
considering uncertainty are more beneficial than in a random forest environment. That such methods
can give improvements in the estimation of the certainty of predictions was successfully shown in the
decision tree experiment.
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