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Abstract

This thesis evaluates the ranking quality of a web browser extension search engine that uses explicit

relevance feedback to learn a personalized model. A user study is conducted to collect a small scale data

that will be used in the evaluation process and the comparison with classi�cation SVM and SVM Rank.

We conclude that the learned personalized model enhances the ranking performance and outperforms

the original rank, classi�cation SVM and SVM Rang in a small-scale data.
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1 Introduction

With the enormous growth of website number, returning good ranked results to a user search query is

becoming a harder task. To deal with this problem, most of the commercial search engines record certain

user activities such as queries and clicks, which consequently results in the rise of privacy issues. In the

last years, a new type of search engines referred to as private search engine appeared with the goal of

enhancing web searching privacy. On the other side renouncing to store user behavior has a�ected the

ranking quality of the search results. In this context, the Knowledge Engineering Group of TU Darmstadt

developed a web browser extension search engine named Poodle that store user behavior locally in the

browser and uses them to learn a model that delivers a personalized results rank. Essentially the learned

model is based on explicit relevance feedback provided by the user, the use of such feedback has been

relaxed over the years because of their high cost and the fact that there is no guarantee to obtain them as

most users are unwilling to provide such information especially on the web. This fact could be neglected

assuming that users accept to be cooperative when using Poodle as a search engine. Adopting such

approach motivated us to examine the added bene�t for the performance of Poodle ranking using data

collected through a user study.

The rest of this thesis is organized as follows. In chapter 2, machine learning methods used in this thesis

will be introduced, including text preprocessing techniques, classi�cation algorithms, and evaluation

metrics. In chapter 3 we discuss related work. In chapter 4 we describe the functionality and the

di�erent features of Poodle. In chapter 5 the user study and the collected data are described. In chapter

6 we present the results and evaluate Poodle ranking. In chapter 7 we conclude this work.
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2 Preliminaries

2.1 Machine Learning

Machine learning is a �eld of arti�cial intelligence that focuses on acquiring knowledge from available

data to develop an algorithm, which can be used to make a prediction on new and unseen data. Machine

learning is applied in many computing tasks such as natural language processing, medical diagnosis,

email �ltering, computer vision, information retrieval, and others. Within information retrieval, we are

interested in the text classi�cation problem because it is the key idea behind Poodle functionality. The

text classi�cation problem is formulated as follows:

Given a set of text documents D and a set of classes C, for each pair [d j, cp] such that d j ∈ D and cp ∈ C ,
a binary function F assign 1 to it if it predicts that the document d j is a member of class cp or 0 if it

predict that the document d j is not a member of class cp

F : D×C→ {0,1} (2.1)

2.2 Text Preprocessing

Text classi�cation is a complex problem, that requires high dimensional. This is why the original text

document has to be simpli�ed through text preprocessing techniques. In the rest of this section, the

basic steps of text preprocessing are presented.

2.2.1 Tokenization

Tokenization is the process of converting a stream of characters into a stream of words. Thus, the goal of

tokenizer is the identi�cation of the words in the text. The common way to do it is to �rst split the text

into phrases using a vertical bar, question mark, and full stop. Then the phrases are split into words

using space and comma, usually, punctuation is discarded after the tokenization.

At �rst sight, this strategy seems to be su�cient, however, some particular cases must be treated carefully.

For example punctuation within words, digits, the apostrophe for possession and hyphens. In such

situations, the output word could have many forms, this is why we must use the same tokenization

strategy for both document and query. In addition to these particular cases, there are some speci�c

words that we wish to recognize as terms, such as web URLs, IP addresses and email addresses. For

these cases, a list of exceptions is needed.

2.2.2 Stop Word Removal

Typically, words that occur frequently in most documents of the corpus are not a good di�erentiator,

which make them useless for purposes of retrieval. Such words are called stopwords and are �ltered out of

the index terms. A basic example of stopword are conjunctions, prepositions, and articles. Furthermore,

stopwords removal contribute to a decrease in the corpus's size which improves the performance of

the retrieval system. This is why stopwords list has been expanded to include some verbs, adverbs, and

adjectives, for example, the SMART Retrieval-System[10] stopword list for the English language contains

571 words. Nevertheless, stopword removal might reduce recall, for example, the query 'to be or not to

be' might contain only the term 'be' after the stopword removal which makes it impossible to �nd any

relevant result to the query, that is why some web search engines use a full-text index.
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2.2.3 Stemming

Almost in every text document, occurs the same word several time but in a di�erent morphological form.

This might reduce the performance of the retrieval system, for instance, if a user speci�es a word in a

query which occurs in another variant in the relevant document, there is a possibility that the relevant

document will not be returned to the user. This problem can be avoided by detecting these variations and

mapping them to their common root or stem. This process is referred to as stemming. For example, the

word connect is the stem of the words: connected, connecting, connection and connections. Stemming

has the advantage of reducing the corpus size as it substitutes distinct terms by the same word, thus

making information retrieval a faster process.

We can distinguish four types of stemming algorithms: a�x (i.e., pre�xes and su�xes) removal, table

lookup, successor variety, and n-grams. Among these di�erent strategies, the a�x removal is known for

its simplicity and e�ciency. There are many a�x removal algorithms, the most popular one For English

is the Porters Stemmer algorithm [1][2]. The Porters Stemmer algorithm uses a su�x list to de�ne rules

which are applied to remove the su�x, these rules are grouped into 5 di�erent phases to ensure e�ciency,

for example, the rule:

s→ φ (2.2)

convert plural words to their respective singular form by removing the letter 's' at the end of the word.

Notice that the rule that will be applied is the one which its left-hand side matches with the longest

su�x sequence of letters of the word, for example given these two rules and the word stresses:

sses→ ss
s→ φ (2.3)

The �rst rule is applied and we get the right stem stress instead of 'stresse'.

In 2006 Porter designed a detailed framework of stemming, called Snowball[16]. The framework allows

programmers to develop their own stemmers for other character sets or languages.

2.3 Vector-Space Model

Every text classi�cation problem requires another representation form of the documents that are suitable

for the learning algorithm and the classi�cation task and other than a sequence of strings and characters.

The conventional solution to this problem is the use of the vector space model. Vector space model is

the representation of a set of documents as a vector in a standard vector space. Let D be the set of all

available documents.

D = {d1, . . . ., dm} (2.4)

We de�ne the vocabulary T as the set of the terms occurring in all the documents.

T = {t1, . . . ., tn} (2.5)

For each document di ∈ D we de�ne for every term tk ∈ T a weight wi,k ∈ R that re�ect the importance of

the term in the document. All the weights of the document di form the vector wi which is a representation

of the document di in the vector space model.

wi = (wi,1, . . . ., wi,n) ∈ Rn (2.6)
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2.3.1 Term Weighting

Text documents are composed of many terms. Using these terms to describe the document is not that

easy because words within text are not equally important some words are more ambiguous than others.

To identify the importance of a term for the text description, we assign a weight w to each term that

characterizes its importance. The computation of the term weight depends on the used model. In the

Boolean model, we assign 1 to terms that occur in the document and 0 to terms that do not occur. Other

models use the frequency of the terms to compute the weights, for example, the bag-of-words model. We

can calculate the weights Using the frequency of words di�erently, depending on where we interpret its

in�uence:

� Locally: the more a term occurs in a document, the more it is relevant. For this case we de�ne the

term frequency weight TF as the fraction of the count of the term t in the document d ft,d and

the total length of document d.

T F(t, d) =
ft,d
∑

i∈d fi,d
(2.7)

� Globally: the more a term occurs in di�erent documents of the corpus, the less it is relevant. For

this case, we de�ne the inverse document frequency IDF as the logarithm of the fraction of the

total number of the documents in the corpus N and the number of the document where the term

t occurs.

I DF(t, D) = log
N

|{d ∈ D : t ∈ d}|
(2.8)

It is common to combine TF and IDF and use the TFIDF approach, which is the multiplication of TF

and IDF as it gives high weights to terms that appear frequently in a small number of documents in the

document set.

T F I DF(t, d, D) = T F(t, d) ∗ I DF(t, D) (2.9)

2.3.2 Cosine Similarity

Computing similarity between vectors in the vector space is a fundamental task for many text mining

application. For example, a web retrieval system has to return a relevant result to the user's query,

which can be achieved by measuring the similarity between the query vector and the documents vectors.

In recent years, many similarity metrics have been proposed such as Cosine, Jaccard, Dice, Overlap[17].

Among all these metrics the cosine similarity measure is the most widely used one. Instead of using the

distance between two vectors to determine their similarity, the cosine similarity uses the cosine of the

angle between the two vectors.

Given two vectors d1 and d2 the cosine similarity between them is calculated as follows:

cos(θ ) =
d1 · d2

‖d1‖ · ‖d2‖
=

n
∑

i=1

d1,id2,i

√

√

√

n
∑

i=1

d2
1,i ·

√

√

√

n
∑

i=1

d2
2,i

(2.10)
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2.4 Classi�cation Algorithm

A Classi�cation algorithm is a program responsible for learning a model that can be used to classify new

data. Based on the used learning mechanism, Classi�cation algorithms can be split into two groups:

� Unsupervised learning, where we are not trying to predict speci�c features and instead would like

to group similar instances together for example clustering.

� Supervised learning, where a set of training data must be provided to the algorithm as input.

Furthermore, classi�cation algorithms that require training data in the learning phase can be also split

into two categories based on the training data availability:

� Batch learning: This type of learning requires the availability of the entire training data before

starting the learning phase. Therefore training data has to be collected and summarized in an

extra step. The Batch algorithm aims for optimizing a cost function that is de�ned on the training

data set, bypassing much time through the training data which require good memory and hardware

resources.

� Incremental learning: In contrast to batch algorithms, the training data are not all at once provided

to the learning algorithm as input. But rather, the training data is provided as a continuous stream.

Each training instance is treated once, there is no need for storage and reprocessing. The most

recent model that re�ects all the training instance seen so far is maintained until a training instance

that violate the model appear then it is immediately adjusted.

In the rest of this section, we present four learning algorithms that are widely used in the text classi�cation

problem.

2.4.1 Naive Bayes

The Naive Bayes classi�er is a probabilistic classi�er based on the bayes theorem. To classify a test

document d, the probability P(c | d) that a document d belongs to a class c is computed for every class

ci ∈ C . Once these probabilities have been computed for all classes, the document d is assigned to the

class with the highest probability.

c = arg max
c∈C

P(c | d) (2.11)

To calculate the probability P(c | d) we use the bayes theorem and we obtain the following:

c = argmax
c∈C

=
P(c) ∗ P(d | c)

P(d)
(2.12)

The denominator P(d) in equation 10 can be omitted because it is the same for all classes and does

not a�ect the argmax. It remains to estimate P(c) and P(d | c), for this purpose we use the maximum

likelihood, which estimate the class prior probability P(c) as follows:

P(c) =
Nc

N
(2.13)

where Nc is the number of documents in class c and N is the total number of documents. To estimate

the conditional probability P(d | c) some simpli�cation have to be done �rst, the most common one, is

the application of the positional independence assumption, which assume independence among the index

9



terms that compose the documents. This assumption does not hold with real documents, this is why

classi�ers based on it are called Naive Bayes classi�ers. After the simpli�cation we obtain:

P(d | c) = P(t1, t2 . . . tn | c) =
|d|
∏

i=1

P(t i | c) (2.14)

where t are the terms od document d. Now we can estimate P(t | c) as the relative frequency of term t
in documents belonging to class c as follows:

P(t | c) =
Tc t
∑

t∈V

Tc t

(2.15)

where Tc t is the number of occurrences of t in training documents from class c and V is the corpus

vocabulary. The problem with this estimation is that it assign 0 to the estimation of terms that did not

occur in the training data and by result all the classes probabilities will be 0. To avoid this problem the

Laplace smoothing is used, which adds 1 to each count.

P(t | c) =
Tc t + 1
∑

t∈V

(Tc t + 1)
=

Tc t + 1

(
∑

t∈V

Tc t) + |V |
(2.16)

Putting all together we get:

c = argmax
c∈C

P(c)
|d|
∏

i=1

P(t i | c) (2.17)

where P(c) is claculated as in equation (13) and P(t i | c) as in equation (16).Usually we add logarithms

of probabilities instead of multiplying probabilities to avoid ending in a �oating point under�ow:

c = argmax
c∈C

log(P(c)) +
|d|
∑

i=1

log(P(t i | c)) (2.18)

The training and testing Nive Bayes algorithm pseudo code[6] is represented in Algorithm 1 and Algo-

rithm 2.

2.4.2 Rochio

The Rocchio algorithm [5] was initially invented to improve the performance of the retrieval system

using explicit relevance feedback. Under the assumption that relevant documents are similar and non-

relevant documents are dissimilar from the relevant documents, the initial query is reformulated such

that it gets closer to the neighborhood of the relevant documents and away from the neighborhood of

the non-relevant documents.

The standard Rocchio method to compute the modi�ed query qi+1 is given as

qi+1 = α · qi + β ·
∑

j

r j − γ ·
∑

j

i j (2.19)
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Algorithm 1 TrainNaiveBayes(C,D)

1: V ← Ex t ractVocabular y(D)
2: N ← CountDocs(D)
3: for each c ∈ C do

4: Nc ← CountDocsInClass(D, c)
5: prior[c]← NC \ N
6: tex tc ← ConcatenateTex tO f AllDocsInClass(D, c)
7: end for

8: for each t ∈ V do

9: Tc t ← CountTokensO f Term(tex tc, t)
10: end for

11: for each t ∈ V do

12: condprob[t][c]← Tc t+1
∑

t

(Tc t + 1)

13: end for

14: return V, prior, condprob

Algorithm 2 TestNaiveBayes(C,V,prior,condprob,d)

1: W ← Ex t ractTokensF romDoc(V, d)
2: for each c ∈ C do

3: score[c]← log prior[c]
4: end for

5: for each t ∈W do

6: score[c]+ = log condprob[t][c]
7: end for

8: return argmaxc∈C score[c]

where r j ∈ R and R is the set of relevant documents, i j ∈ I and I is the set of non-relevant documents

and α, β , γ are tunning constants. Typically α is �xed to 1 and γ shoould be smaller than β because

relevant documents contain more bene�cial information than the non-relevant documents.

The Rocchio relevance feedback has been adjusted to deal with text classi�cation problem. We just have

to interpret the training set as relevance feedback, we consider terms that belong to training document

of a given class cp as positive feedback, and terms that belong to training documents outside the class

cp as negative feedback. For every class c ∈ C a prototype vector −→µ called centroid is calculated as the

vector average of its members:

−→µ (c) =
1
|Dc|

∑

d∈Dc

d (2.20)

, where Dc is the set of documents with class c. The resulting set of centroid vectors represents the

learned model. The pseudo-code of the Rocchio algorithm is shown below in Algorithm 3. To classify a

new document d ′, it is �rst represented as a vector in the vector space, then the cosine of d ′ and every

class centroid vector is calculated, d ′ will be assigned to the class with which its vector has the highest

cosine.

Assign d' to class c= ar gmaxc′ cos(
−→
c′ ,
−→
d ′ ) (2.21)

As shown in Figure 2.1, we have two classes positive and negative, for each class the centroid vector is

computed, to classify the document represented with the blue vector the cosine of the angle between

11



Algorithm 3 TrainRocchio(C,D)

1: for each c j ∈ C do

2: Dj ← {d : 〈d, c j〉 ∈ D}
3:

−→µ j ←
1
|Dc |

∑

d∈Dj

d

4: end for

5: return {−→µ1, . . . ,−→µ j}

Figure 2.1: Rocchio Classi�cation

the blue vector and each centroid vector is calculated. The document is then assigned to the class with

which the document has the biggest cosine value.

2.4.3 Perceptron

The Perceptron algorithm is a binary classi�er that belongs to the gradient descent algorithm class.

Gradient descent algorithms are iterative learning algorithms which aim to optimize a function of the

data that computes a goodness criterion, in each step the derivative of the function is calculated and

the parameters of the model are updated in the direction of the steepest gradient. This will enhance the

performance of the model because the direction of the steepest gradient improves the goodness criterion

better than any other direction. The pseudo code of the Perceptron learning algorithm[7] is given in

Algorithm 4, we consider the problem of classifying a text document to the class yes or no with
−→
d is

the vector representation of the text document:
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Algorithm 4 The Perceptron Learning Algorithm

1: function decision(
−→
d ,
−→
W ,θ )

2: if
−→
W ·
−→
d > θ then

3: return yes

4: else

5: return no

6: end if

7: end function

8:
−→
W = 0

9: θ = 0
10: while not converged yet do

11: for all elements
−→
d j in the training set do

12: d = decision(
−→
d j ,
−→
W ,θ )

13: if class(
−→
d j ) = d then

14: continue

15: else

16: if class(
−→
d j ) = yes and d= no then

17: θ = θ − 1
18:

−→
W =

−→
W +

−→
d j

19: end if

20: else

21: if class(
−→
d j ) = no and d= yes then

22: θ = θ + 1
23:

−→
W =

−→
W −

−→
d j

24: end if

25: end if

26: end for

27: end while

The goal of the Perceptron algorithm is to learn a weight vector −→w and a threshold θ such that the

dot product of the weight vector and the representative vector of a document
−→
d compared with the

threshold θ provides the classi�cation decision.

Predict yes i� −→w ·
−→
d > θ

Otherwise no
(2.22)

At the beginning of the learning state, The weight vector −→w and the threshold θ are initialized to zero,

then for every instance of the training set, make perceptron a prediction. If the prediction is false we

update the model by moving the weight vector in the direction of the greatest change. For the case,

where the class is yes and it is predicted no, we add the document vector to the weight vector otherwise

we subtract the document vector from the weight vector.

Figure 2.2 illustrates the miss-classi�cation correcting process of the perceptron algorithm, the vector −→x
is �rst assigned to the 'NO' class as it lies on the 'no' side of the decision boundary S. The correction
step adds −→x to −→w , now lies −→x on the 'yes' side of S′ the decision boundary of the new weight vector
−−−→w+ x
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Figure 2.2: Perceptron Learning

2.4.4 Support Vector Machine

Support Vector Machine is a learning method founded by Vapnik[18], the �rst application of SVM was

as a binary classi�er where the algorithm tries to �nd a decision boundary that correctly classi�es the

training data, a multiclass classi�cation was later implemented by combining multiple binary classi�ers.

For linear separable problems, there is usually many possible separators, as Figure 2.3 shows the line L1,

L2 and L3 classify correctly the two di�erent data. The strategy for choosing the separator boundary

di�er from one learning algorithm to another, for instance, the Perceptron algorithm �nds just any linear

separator, unlike Naive Bayes which search for the best linear separator according to some measure. The

SVM algorithm de�nes the decision surface to be maximally far away from any data point, the distance

between the decision surface and the closest data points is called 'margin' and the data located on the

border of the margin are referred to as the support vectors, all these SVM characteristic are illustrated

in Figure 2.4.

By maximizing the margin avoid SVM uncertain classi�cation decision as the data near the decision

surface could be almost classi�ed in either way.

2.4.5 SVM Rank

Support Vector Machine has been extended for many application such as regression and ranking. The

SVM Rank distinguish from the classi�cation SVM by 2 factors, the training data presentation, and the

output. Instead of using a set of data objects and their class labels as training data, the ranking SVM

training data are formed as an ordered set which is denoted as:

R= {(X1, Yi), . . . ., (Xm, Ym)} (2.23)

where yi is the ranking of X i, such that Yi < Yj if X i � X j. In the context of web search this could be

extracted as follow: consider a user who clicked on the third displayed link, we can assume that he has

scanned the links from top to bottom and then decided to click on the third one, so he preferred the
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Figure 2.3: Linear classi�ers in two-dimensional spaces

third link over the �rst and the second, this could be expressed as a partial relation l ink3 � X2 and

l ink3 � X1 and used as training data. The SVM Rank goal is to learn a function F such as :

∀{(X i, X j) : Yi < Yj ∈ R} : F(X i)> F(X j) ⇐⇒ W · X i > w · X j (2.24)

where w is a weight vector that is adjusted by learning so that a maximum number of the training data

relation are satis�ed if there exists a function F that satis�es all the relation we say that the ordering R

is linearly rankable.

Figure2.5 [8] illustrates how two di�erent weight vector W1 and W2 ranks four data points in a two

dimensional example, the projection of the points onto the weight vector is used for the ranking, which

implies that the order of the points for W1 is: 1,2,3,4 while it is 2,3,1,4 for W2. The margin δ is the

distance between the closest two projections within all the points if two di�erent weights vectors generate

the same ranking the one with the maximum margin is selected.

The SVM Rank returns for each data a score computed by the learned function that determines the

global ordering of the data.
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Figure 2.4: SVM support vectors and margin

Figure 2.5: Ranking 4 points with two di�erent weight vectors

2.5 Evaluation Metrics

Assessing the performance of a retrieval system is necessary to �nd out if the applied methods return

good results or not and compare it with existing or new introduced systems. For this purpose some

metrics has been de�ned, we present here 3 metrics that are widely used to evaluate the ranking quality

of retrieval systems.
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� Average Precision: generally precision is the percentage of relevant items in the returned set, in

the context of web search precision is computed for every relevant document in the returned list,

the average of all these precision values represent the average precision for the given query.

av gP =
1
|Ri|

|Ri |
∑

k=1

P(Ri[k]) (2.25)

[6] In the best case where all the relevant documents are ranked ahead all the non relevant doc-

uments the average precision reach the max value 1. Consider the example illustrated in table 1

where denote a relevant document and denote a non-relevant document, we get the following

precision values: 1/2 for d1, 2/3 for d2, 3/6 for d3, 4/7 for d5 and 5/8 for d4, the average of all

these values is the average precision of this query which is 0.5726. The average precision can also

be averaged over all the queries, this single values is referred to as the Mean Average precision

which is also used to evaluate ranking systems.

� NDCG at K: Discounted Cumulative Gain (DCG) was invented by Järvelin and Kekäläinen[19] and

is commonly used in web search applications. DCG has an advantage over the Average Precision

that it accept not only binary relevance, but also multi levels relevance such as perfect, excellent,

good, fair and bad. In addition DCG associate positions with weights called discounting factor,

which increase proportionally with the position and aim to penalize relevant documents occurring

in lower ranking position by dividing its relevance with the corresponding position discounting

factor. DCG has the following general form:

DCG =
k
∑

i=1

ri

log(i + 1)
(2.26)

where k is the maximum rank considered and ri is the relevance at position i. To be able to

compare DCG values of di�erent queries, we need to normalize them by dividing with the optimal

DCG values(ODCG)

N DCG =
DCG

ODCG
(2.27)

� Average Position: A simple method to evaluate a given ranking is to average the positions of the

relevant documents:

Av gPosi t ion=
1
N
·

k
∑

i=1

pos(ri) (2.28)

[20] where N is the number of the relevant document and pos(ri) is the position of the relevant

document ri. This could approximate the area where most of the relevant document are located.

Table 2.1: Example of 10 document ranking

Documents d6 d1 d2 d10 d9 d3 d5 d4 d7 d8

Relevance
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3 Related Work

In this section, we will discuss two relevant areas of related work: learning to rank via user feedback and

personalized search.

Using user feedback to improve the quality of web search result rank have been well studied in online

learning, we distinguish here between two type of feedback:

� explicit feedback, where the feedback information is provided directly by the users

� implicit feedback, where the feedback information is derived from the user interaction with the

search results, for instance, the clicks generated or the time spent on a website.

in [10] a comparison between two web search systems, one uses explicit feedback and one uses implicit

feedback, have been conducted by means of a user study. The results show that there were no signi�cant

di�erences and supported the hypothesis of the possibility to substitute explicit feedback with implicit

feedback. In the work of [11], Joachims et al. a new approach to learning a ranking function based

entirely on clickthrough data was introduced. The recent work in [12] Joachims et al. examined the

reliability of implicit feedback generated from clickthrough data by performing eye tracking studies to

analyze the user decision process and comparing the implicit feedback with relevance judgments provided

by human assessors. The results show that it is not recommended to interpret clicks as a direct indication

of relevance, a better approach is to interpret them as a user preference. Complementing explicit feedback

with implicit feedback was proposed in the work of [13], Bell et al. The combination of both feedback

arts is realized via a factorized neighborhood model and show consistent improvements over baseline

methods

Personalized search is a promising path to enhance the performance of ranking quality, various techniques

have been developed in this domain. In [14], White et al. user interactions are used to re-rank search

results and predict the user search interests, which are represented as a list of Open Directory Project

(ODP) categories. In[15], Sontag et al. a generative probabilistic model is introduced, which evaluates

the search results relevance using user pro�le that is learned via long-term search history.
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4 Poodle

Using Google search engines is preferred by most internet user because it delivers fast and relevant results.

However, with these advantages comes privacy concerns, especially in the realm of search tracking, data

storage, and use of personal information. For example, in order for Google to provide highly detailed

and relevant results, they need to track all user's search history such as: what you search for, the ads

you are interested in, What links you click, Which images you view, Which videos you watch.

This problem motivated the TU Darmstadt knowledge engineering group to develop a web search tool

that returns personalized search result while ensuring privacy. The project was divided into two steps,

�rst, a javascript machine learning framework named JSLearn was implemented then a web browser

application named Poodle was developed based on the JSLearn framework. The framework supplies

reusable, extendable parts as well as ready-to-use parts. Most importantly it contains several classi�er

and text processing algorithms such as stemming algorithms and tokenizing algorithms.

In the following, the functionality and features of Poodle will be explained in details.

4.1 Poodle functionality

To ensure privacy, the results shown by Poodle are taken from a discrete search engine named

'Startpage'[21]. Startpage is a popular discrete search engine that returns Google results without tracking

user's IP address, using cookies to identify users and storing user's data.

Every time a user submits a search query on the Poodle side, send Poodle a request to 'Startpage' with

the same query and post the results as soon as a response is available. The results that Poodle shows will

only match with the Startpage results when Poodle has not yet learned a model, otherwise, it will depend

on the latest learned model. To learn its model uses poodle relevance feedback provided by the user as

training data, every link is �tted with two buttons: the like button and the dislike button. By means

of these buttons, users have the possibility to assess any link. Poodle employs a binary classi�cation in

most of its features with the classes like and dislike, where the liked links are assigned to the like class

and the disliked links are assigned to the dislike class. Every link is treated as a text document using its

title and snippet. The snippet is the small text associated with each link, it provides a summary of the

search result and helps the user decide which links are of interest. Figure 4.1 illustrates how a link is

displayed to the user, we can recognize the two buttons on the right side, the title written in blue and the

snippet in the black box. All the links are represented as a vector in the vector space, where the terms

are deduced after the application of text preprocessing steps and associated with its term frequency TF.

In such a scenario, it was not possible to use the TF-IDF weight although it improves the performance

because the corpus cannot be de�ned in advance. Poodle has at its disposal three learning algorithm:

Naive Bayes, Perceptron and Rocchio, all these algorithm work simultaneously but only the results of

the selected one will be shown, the learning process is e�ected incrementally, each new incoming training

instance update the last learned model, which results in a reclassi�cation of all the links.

Moreover, Poodle has the ability to record all user interaction during the search as well as the di�erent

states of the ranking. This information could be extracted as a history �le and used for further research.

Figure 4.2 illustrates an example of Poodle history �le, where the user searched for the query word

'Darmstadt' and rated one link, the �rst block corresponds to the results ranking before the rating and

the second block corresponds to the ranking after the rating. Each block contains the complete URL list

of the search results and the user settings. For every URL in the history �le the user rating, the score of

each classi�er and the description text (snippet and title) are stored.
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Figure 4.1: snippet

Figure 4.2: Poodle history �le

4.2 Poodle Features

The latest version of Poodle o�er 3 main features, which we present in more details in this section

4.2.1 Personalized Ranking

Unlike any other search engine, O�er Poodle the opportunity to the user to manipulate the ranking of

the query search results by using the like and dislike buttons. Clicking on the like button of a link will

push it to the top in contrast to the dislike button, which will push the link to the bottom. This will

a�ect also the rank of the other links, by ameliorating the rank of the links that are similar to the liked

link and lower the rank of the links that are similar to the disliked link. Every click will update the

Poodle model and will somehow change the ranking. Figure 4.3 and Figure 4.4 illustrate an example of

Poodle Personalized Ranking function, on the �rst Figure we can see that the all links have the same

score at the start of the search, when mouseover on a link the rating buttons are displayed to the user,

on the second Figure we can see that the third link on the �rst Figure jumped to the �rst place after

getting a positive rate from the user, this could be recognized by the number in the middle of the button,

other links position also changed as a consequence of the user feedback, this could be identi�ed by the

arrow on the right side of the link and by the two boxes on the left side of the link that indicates Poodle

rank and the original rank, for example, the third link on the second Figure was placed seventh on the

original rank.

4.2.2 Labeling

Finding the right result for a search query could be a hard task, due to the huge increase of the internet

site number and ambiguity of the search query. This forces users to either reformulate the search query
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or going through all the displayed results until �nding the wished result. To reduce this problem e�ect,

Poodle comes up with the labeling function. As �gure x shows, the user can create some labels that are

shown on the left side of the screen, then assign suitable links to each label. The links that are manually

assigned to a label, have a boldly marked label. By clicking on a label only links that belong to this

label will be displayed.

4.2.3 Context search

Another way to rank search results, is to re-rank them in context to a chosen link, in this case, all the

feedback already stored are ignored and only the selected link is considered. To use this function, the

user has to click on the show more button of a link. Context search can go down to two steps. The

�rst step only considers the �rst search result selected and the second step considers the �rst and second

search result selected as context.

Figure 4.3: snippet
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Figure 4.4: snippet
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5 User Study

The ranking is an important task that every search engine has to execute. That is why it is essential to

evaluate the quality of the ranking process as it gives the opportunity to assess the currently employed

methods, compare it with other familiar methods and maybe open the door to developing new ranking

strategies with higher quality results. The evaluation requires the availability of a data-set that include

queries, the retrieved documents, and judgments. Usually ranking searcher use in the evaluation phase,

one of the open source benchmark data-sets for learning to rank such as LETOR[22], in order to evaluate

Poodle ranking, we decided to collect our own data-set through a user study because it allows us to

generate data with a personalized characteristic.

The goal of the user study in the �rst place is to gather a good sample of history �les that we can

use later for the evaluation, as well as investigating the participant's opinion about Poodle and which

improvements they would like to see in the future version. The Poodle setting used during the user study

is the default setting expect the number of the search results which we �xed at 20, the used algorithm

which varies from one participant to another, and the use of implicit feedback which we turned o� as

we are only interested on studying the bene�ts of explicit feedback. At the beginning of the user study

a quick demonstration of Poodle usage is presented to the participants, then we asked them to answer a

questionnaire.The �rst part of the questionnaire must be answered through Poodle search, at the same

time participants were asked to rate search results of their choice positively or negatively using the

rating buttons. This part includes on total 5 questions, which response should re�ect the participant's

tendencies, this is why we avoided informational questions during the task design. The complete list of

questions is given in the following:

1. Find a Holiday destination.

2. Find an appropriate reservation for the selected destination.

3. Find some attractions that you would like to visit the selected destination.

4. Search again for a holiday reservation for another destination.

5. search for attractions for the second destination.

The �rst 3 questions aim to let Poodle learn a personalized model for the participant using the generated

clicks, while the last 2 questions were designed to test if the gained information is re�ected in the

returned results. We expected that in the last two questions the top-ranked results are similar to the

liked links in the �rst 3 questions. Poodle results were satisfying, most of the participants could notice

the personalization e�ect, for example, a participant who searched for a cheap holiday o�er to his wished

destination get back cheap o�er links ranked on the top when searching for another holiday destination

o�er. In the second part of the questionnaire, the usability of Poodle was investigated, some improvement

suggestion was proposed and some bugs were identi�ed by the participants. At the end of the study the

history �le is exported and stored. A total number of 9 students took part in the user study generating,

on average per participant 6 queries and 12 clicks. The detailed recorded information per history �le is

given in Table 2
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Table 5.1: History �les summary

History File ID Query number Like clicks Dislike clicks Classi�er

1 6 11 6 Rocchio

2 4 9 9 Rocchio

3 7 5 8 Rocchio

4 6 8 2 Naive Bayes

5 7 6 4 Naive Bayes

6 7 7 4 Naive Bayes

7 6 8 2 Perceptron

8 7 8 2 Perceptron

9 9 11 3 Perceptron
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6 Poodle Ranking Evaluation

In order to evaluate Poodle ranking using the history �les collected from the user study, for each �le,

queries were grouped by question, we computed for each group the average precision, NDCG, the average

position of positive rated examples and the average position of negative rated example before and after

each user click, then we averaged these values over all the history �les on a �rst stage and on a second

stage only between �les with the same used classi�er.

Figure 6.1 to Figure 6.4 show that Poodle ranking improves continuously over the iterations, the NDCG

and the Average Precision values reach their maximum value 1 at the end of each question iteration,

which means that the liked links are placed above all other results. This spectacular result is due to

the higher ranks assigned to links identi�ed as relevant by the user, a more realistic way to evaluate the

ranking quality is to examine it before the relevance feedback is given, this could be observed at the

�rst iteration of each question, we exclude here the �rst question because it has the same ranking as the

source search engine. Although there is no user feedback at these iterations, the results are impressive in

particular for the last 2 questions, the average position of positive rated links is around 2 there, for the

last question there were almost no disliked links. The average precision and NDCG values exceed 0.75

which is even better than the �rst iteration. This con�rms our expectation that Poodle will perform at

its best in the fourth and �fth question

Figure 6.1: NDCG evolution per iteration for every

question.

Figure 6.2: Average precision evolution per itera-

tion for every question.

Figure 6.3: Average position of negative rated links. Figure 6.4: Average position of positive rated links.
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Figure 6.5 to 6.7 show the performance of each classi�er, we can notice that Rocchio performs signi�cantly

better than Perceptron and Naive Bayes particularly at the �rst iteration of each question, thereafter

perform Perceptron and Naive Bayes better and succeed to catch up with Rocchio performance. Hence,

it is recommended to use Rocchio as default classi�er because it delivers a good result in its entirety.

Figure 6.5: NDCG evolution for each classi�er.
Figure 6.6: Average precision evolution for each

classi�er.

Figure 6.7: Average position of positive rated links

for each classi�er.

In the rest of this section, we compare Poodle with the original search engine as well as SVM and SVM

Rank.

6.1 Comparison with the Original Ranking

Poodle has safety and privacy advantage over basic search engine because it saves the user interaction

locally in the browser, but what if these search engine still return better results even prevented from

user feedback? To verify this possibility, we compare Poodle ranking with the original ranking from

'Startpage'. For each query, we compute the average precision, the NDCG, the average position of

positive rated example and the average position of negative rated example at each iteration. For the

original rank these values are the same because the rank within a query did not change. The results

given in Figure 6.8 to 6.11 show that Poodle outperforms the original ranking in all the graphs, except

the average position of negative rated example, from the �rst to the last iteration of each query and

with a signi�cant di�erence in the fourth and �fth question's queries. Concerning the average position of

negative rated example, the lack of dislike clicks and the stability of the original rank could explain the
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Figure 6.8: Average precision evolution of Poodle

compared with Google.

Figure 6.9: NDCG evolution of Poodle compared

with Google.

Figure 6.10: Average position of positive rated links

of Poodle compared with Google.

Figure 6.11: Average position of negative rated

links of Poodle compared with Google.

advantage of the original rank over Poodle in the �rst iterations of each group, in the further iterations

overtake Poodle this disadvantage and performs better.

6.2 Comparison with SVM and SVM Rank

We now compare Poodle ranking against SVM and SVM Rank to see if a more sophisticated learning

algorithm with the same training data performs better than Poodle or not. First, we create the input

�les for both algorithms from the collected history �le, this is done automatically using python scripts.

At the same time we maintain the same training approach as Poodle, we repeatedly train after each

new feedback and use the latest model to produce a ranking for the current query. Each line from the

training �le for the classi�cation SVM, correspond to one feedback and has the following form:

< l ine >=< tar get >< f eature >:< v alue > ...< f eature >:< v alue > (6.1)

where the target Value determines the class of the feedback, it has the value +1 for positive feedback

and -1 for negative feedback, the feature-value pair denotes the order of the feature and its value. For

example the following line:

− 1 1 : 0.43 3 : 0.12 4 : 0.2 (6.2)

represents a negative feedback where the �rst feature has the value 0.43 the third feature has the value

0.12 and the fourth feature has the value 0.2. Just like Poodle the feature are the terms extracted from
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the link description after the application of the same text Preprocessing steps and associated with the

corresponding term frequency, the order is set by the chronological appearance of each term. On the

other side, all the returned results of the query search are represented by a line in the test �le with

the target value 0. After each train, we run the latest model with the test �le of the actual query in

regression mode. In the output �le a prediction value to each line is returned, by ordering these values

in descending order we get the predicted rank, then we compute for that rank the average precision,

the NDCG value, the average position of positive rated example and the average position of negative

rated example. The results are illustrated in Figure 6.12 to Figure 6.15 ,for the �rst few iterations SVM

could not makes any predictions due to the small training data size, for these iterations we assigned

0 to the average precision, NDCG and the average position of the negative ranked example, while the

average position of positive ranked example is represented by the average of all the position. SVM results

were only good toward each group last iterations after user feedback are provided. At the beginning of

each group, perform Poodle signi�cantly better, especially on the fourth and �fth group where SVM in

opposite to Poodle does not re�ect the personalized feedback already gained.

We compare now Poodle against SVM Rank, we follow the same scheme as we did with the classi�cation

SVM, the only exception is that SVM Rank requires a di�erent form of the inputs �les. The target

value is now used to generate pairwise preference constraints, an example with a high target value means

that it is preferred over an example with a lower target value, for the examples with the same target

values, there is no preference constraints generated, to determine the target value from the rating clicks

we followed the following strategies:

� a positive rated example is preferred overall not rated example that a appear above it.

� the negative rated examples have the lowest target values amongst all the training example.

Preference constraints should only be produced within the same query, this why we add the special

feature 'qid' to permit the generation of the preference constraints only for examples with the same 'qid'.

For example, consider the following training data:

3 qid : 1 1 : 0.53 2 : 0.12
2 qid : 1 1 : 0.13 2 : 0.1
7 qid : 2 1 : 0.87 2 : 0.12

(6.3)

only the preference constraint example1 > example2 is generated because the �rst example target is

greater than the second example target and both have the same 'qid' value. Figure 6.16 to Figure 6.16

show that SVM Rank results are similar to classi�cation SVM with the advantage of classifying from

the �rst iteration.

Figure 6.12: NDCG evolution of Poodle compared

with SVM.

Figure 6.13: Average Precision evolution of Poodle

compared with SVM.
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Figure 6.14: Average position of positive rated links

of Poodle compared with SVM.

Figure 6.15: Average position of negative rated

links of Poodle compared with SVM.

Figure 6.16: Average precision evolution of Poodle

compared with SVM Rank.

Figure 6.17: NDCG evolution of Poodle compared

with SVM Rank.

Figure 6.18: Average position of negative rated

links of Poodle compared with SVM

Rank.

Figure 6.19: Average position of positive rated links

of Poodle compared with SVM Rank.
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7 Conclusion and Future Work

This thesis evaluated Poodle ranking performance using data collected from a user study, results show

that poodle ranking outperformed the original rank, classi�cation SVM and SVM Rank within small-scale

queries and feedback. Nevertheless, we can not yet make a general statement, large-scale experiments

are still needed. However, performing better than SVM Rank and classi�cation SVM, point out that

there is no need to add newly complicated classi�ers, more interesting is to extend the available classi�er

with new techniques such as query expansion using new terms extracted from the relevant example and

term reweighting based on the user judgments. Adopting a probabilistic model instead of vector space

model might be an alternative possibility to enhance the overall performance.
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8 Appendix

Figure 8.1: User Story
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Figure 8.2: User Story
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Figure 8.3: User Story
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